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Uniform Ultimate Boundedness Analysis for Linear Systems with
Asymmetric Input Backlash and Dead-zone: A Piecewise Quadratic

Lyapunov Function Approach

A. Pierron1,2 J. Kreiss1 M. Jungers1 G. Millérioux1 J. Dupont2 M. Martig2

Abstract— This paper deals with the interconnection be-
tween a linear system and a nonlinear operator consisting
of asymmetric input backlash and asymmetric dead-zone.
The uniform ultimate boundedness of the system is studied.
A piecewise quadratic Lyapunov function, suitable with the
polyhedral description of the nonlinear operator is proposed.
The conservatism of existing results is therefore reduced. The
effectiveness and improvement of the results are assessed using
a numerical example.

Index Terms— Backlash, dead-zone, piecewise quadratic Lya-
punov function, uniform ultimate boundedness.

I. INTRODUCTION

The system investigated in this paper is a linear plant
whose input acts via a nonlinear operator exhibiting asym-
metric backlash and asymmetric deadzone. The presence of
a backlash operator (labelled also as a play operator [1]) is
motivated by a large range of nonlinear system applications
(see for instance [2]) and in particular when a cylinder is
used. Its intrinsic presence in the well known Hysteresis
phenomena and its relation to nonlinear memory effects (see
Prandtl-Ishlinkskii models [3], [4] for instance) makes it
essential in many applications. The deadzone is widespread
in mechanics to model solid frictions for instance. These
two types of nonlinearities are nevertheless rarely studied
together, even if they can be coupled in real systems. A
main difficulty is that the backlash operator is only piecewise
differentiable. In addition and because of the memory effect,
such a phenomena must be described by its time derivative,
when it exists. Various solutions propose to compensate the
nonlinear operator by an inversion as for instance in [4], [5].
However, this requires an exact knowledge of the nonlinear-
ity.

In this paper, we propose a different approach by analysing
the properties of the state trajectories. Due to the structure
of the studied system which may fail to be stable, we are
interested in providing guarantees of the Uniform Ultimately
Boundedness (UUB) property, by following [6]. The analysis
is performed thanks to a UUB-Lyapunov function which
presents the following properties: (i) outside the unit level
set (i.e. when its value is greater than 1), it decreases along
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the trajectory of the system and (ii) after reaching this level-
set, the trajectory remains inside it. The aim, here, is to pro-
vide tractable sufficient conditions as parameterized Linear
Matrix Inequalities (LMIs) and an optimization problem, as
a semidefinite program, that minimizes the size of the unit
level-set of this UUB-Lyapunov function.

In order to reduce the conservatism of considering only
common quadratic UUB-Lyapunov function to ensure the
UUB property [7], we propose here a piecewise quadratic
Lyapunov function. This kind of Lyapunov functions has
been introduced in the middle of the 90’s to deal with
piecewise affine systems, which are defined as affine dynam-
ics over regions corresponding to a polyhedral partition of
the state-space (see for instance [8] and references therein).
Such a tool has been used successfully for specific hybrid
systems [9] or systems with saturation or deadzone [10],
[11], and even more complex nonlinearities [12]. To the
best of our knowledge, such a tool has not been considered
for complex nonlinear operator with backlash, as the one
investigated here.

The paper is organized as follows. Section II introduces the
problem by describing the nonlinear operator and recalling
the definition of Uniform Ultimate Boundedness. Section III
details the preliminaries dealing with the structure of the
piecewise quadratic UUB-Lyapunov functions and the char-
acterization of the nonlinear operator. Section IV provides the
main result, that are parameterized LMIs ensuring the UUB
property. An optimization problem to minimize the resulting
UUB-set is given. Section V demonstrates on an example
the effectiveness of our method and the providing improve-
ment with respect to the literature. We finally conclude in
Section VI.

Notation: In stands for the identity matrix of dimension
n and 0n×m stands for the null matrix of dimensions
n × m, with 0n = 0n×n. For a matrix M ∈ Rn×m, M⊤

denotes its transpose. For a square matrix M ∈ Rn×n,
He(M) = M + M⊤ and M ≻ 0n (M ⪰ 0n) means that
M is positive (semi-)definite. For two symmetric matrices
M1,M2 of same dimension, M1 ≻ M2 (M1 ⪰ M2) means
M1 − M2 ≻ 0 (M1 − M2 ⪰ 0). The same symbol is
used for vectors as follows: for a vector z ∈ Rn, z ⪰ 0
means that all entries of the vector z are non-negative. For a
matrix M , M(j) and M(i,j) denote respectively its j-th row
and its (i, j)-th entry. The symbol ⋆ denotes a symmetric
block in symmetric matrices. For square matrices W and Z,
diag(W,Z) corresponds to the block-diagonal matrix.



II. PROBLEM FORMULATION

A. System description

We consider in this paper the continuous-time system:

ẋ(t) = Ax(t) +BΦ[f ](t),
f(t) = Kx(t),

(1)

where we denote the state x(t) ∈ Rn, with initial state
x(0) = x0 ∈ Rn, and the input f(t) ∈ R which is scalar
for the sake of simplicity. However, the same developments
may be applied to extend the study to the multiple input
case. The matrices A ∈ Rn×n, B ∈ Rn×1 and K ∈ R1×n

are constant and given. The nonlinear operator Φ gathers
asymmetric backlash and asymmetric dead-zone. It is the
main source of difficulty and its definition requires a special
attention.

The nonlinear operator Φ[f ](·) exhibits an hysteresis
memory and is defined for continuous and piecewise dif-
ferentiable function f ∈ C1

pw([0,+∞);R). If the unbounded
sequence of times {tj}j∈N is such that f is differentiable
over ]tj , tj+1[, then we have the evolution of the nonlinearity
output given for all time t ∈]tj , tj+1[, ∀j ∈ N :

˙︷ ︸︸ ︷
Φ[f ](t) =



laḟ(t) if Φ[f ](t) ≥ 0 and
((

ḟ ≥ 0 and
Φ[f ](t) = la(f(t)− ρa − h)

)
or(

ḟ(t) ≤ 0 and Φ[f ](t) = la(f(t)− ρa)
))

lbḟ(t) if Φ[f ](t) ≤ 0 and
((

ḟ ≤ 0 and
Φ[f ](t) = lb(f(t) + ρb + h)

)
or(

ḟ(t) ≥ 0 and Φ[f ](t) = lb(f(t) + ρb)
))

0 otherwise.
(2)

The parameters of the nonlinearity Φ are h, la, lb, ρa, ρb ∈
R>0 and are respectively called the backlash width, the
inclination and the threshold when f is positive and negative.
The characteristic of the nonlinear operator Φ is depicted on
Figure 1.

f(t)ρa ρa + h

Φ[f ](t)

−ρb − h −ρb

la la

lb lb

Fig. 1. Characteristic of the nonlinear operator Φ.

The nonlinear operator having affine branchs with respect
to f(t) = Kx(t), we introduce the next assumption.

Assumption 1: The triplet (A,B,K) is such that the ma-
trices (A−BlkK), k ∈ {a, b}, are Hurwitz.

Assumption 1 allows to cope with possibly non-Hurwitz
matrix A and will be a necessary condition for the feasability
of the LMIs in the main result (see Theorem 1 and also [6]).

B. Activation of the non-linearity

The function t 7→ Φ[f ](t) is continuous. The evolution
of the output Φ[f ](t) is well defined by relation (2). Never-
theless, the initial condition Φ[f ](0) is not uniquely defined
by the knowledge of the function f ∈ C1

pw([0,+∞);R) but
belongs to an interval depending on the initial value f(0):

Φ[f ](0)∈


[lb(f(0) + ρb);min(0, lb(f(0) + ρb + h)],

if f(0) ≤ −ρb;
{0}, if − ρb ≤ f(0) ≤ ρa;
[max(0, la(f(0)− ρa − h)); la(f(0)− ρa)],

if ρa ≤ f(0).
(3)

It can be interpreted as a memory effect.
The following sets Σi, i ∈ I = {1, · · · , 4}, are introduced

for the formal developments and proofs given in the sequel.

Σ1={(x, ϕ) ∈ Rn+1, ϕ ≥ 0,

ϕ+ laρa ≤ laKx ≤ ϕ+ la(ρa + h)},
Σ2={(x, ϕ) ∈ Rn+1, 0 ≤ Kx ≤ ρa, ϕ = 0},
Σ3={(x, ϕ) ∈ Rn+1,−ρb ≤ Kx ≤ 0, ϕ = 0},
Σ4={(x, ϕ) ∈ Rn+1, ϕ ≤ 0,

ϕ− lb(ρb + h) ≤ lbKx ≤ ϕ− lbρb},
Σ=∪i∈IΣi.

We have the following lemma, whose proof is developed
in [7] and inspired by [13].

Lemma 1: For any function f ∈ C1
pw([0,+∞);R), let

consider an initial condition for the output Φ[f ](0) such
that (f(0),Φ[f ](0)) ∈ Σ. Then, the function t 7→ Φ[f ](t)
is uniquely defined and (f(t),Φ[f ](t)) ∈ Σ, ∀t ∈ R≥0.

Hereafter, we will consider the following assumption.
Assumption 2: The initial condition Φ[Kx](0) is chosen

such that (Kx(0),Φ[Kx](0)) ∈ Σ.

C. Uniform Ultimate Boundedness property

The major concern of this study is in the neighborhood
of the origin. Indeed, because of the dead zone behavior of
Φ around zero, one can easily see that Φ[Kx](t) = 0 and
System (1) is in open-loop. The open-loop system might
present unstability (since no assumptions are made on matrix
A) for the origin, which prevents us to study stability of
System (1). Moreover, (1) may exhibit infinite number of
equilibrium points (this is the case when zero is an eigenvalue
of A). For all these reasons, we are interested in a weaker
notion than stability which is known as Uniform Ultimate
Boundedness (UUB) for system (1), whose definition is as
follows.

Definition 1 (UUB): [14, Definition 4.6] The trajectory
of system (1) is uniformly ultimately bounded with ultimate
bound b if there exist positive constants b and c, independent
of t0 > 0, and for every a ∈ (0, c), there is T = T (a, b) ≥
0, independent of t0, such that ∥x(t0)∥ ≤ a ⇒ ∥x(t)∥ ≤
b, ∀t ≥ t0+T . A set of the state-space implying that ∥x∥ ≤ b
is called a UUB-set.

Based on Definition 1, we study the following problem.



Problem 1 (Uniform Ultimate Boundedness analysis):
Given the system (1) and a gain K such that Assumptions 1
and 2 hold, determine the UUB-set of the system (1), as
small as possible and associated with the UUB property.

III. PROBLEM SETTING AND PRELIMINARIES

Our approach to solve Problem 1 is based on the idea
presented in [14, Theorem 4.18] using a Lyapunov-like
function (called in the following UUB-Lyapunov function)
that decreases along the trajectory outside its unit level set
and remains less than 1 inside.

Since the system is defined over a polyhedral partition (due
to the non-linear operator), and in order to fit as much as
possible the UUB-set, we will consider piecewise Lyapunov
functions over this partition. This is the main improvement
with respect to the result in [7]. In this case, we need to
ensure continuous property of the overall UUB-Lyapunov
function on the borders of each region. In the following,
we will ensure, over each intersection between a region of
the partition and the complementary of the unit level set
of the UUB-Lyapunov function, that the regional Lyapunov
function is decreasing. The associated conditions will involve
the state x, the nonlinearity Φ and its time-derivative Φ̇.

Therefore, we are looking in this paper at continuous
piecewise quadratic UUB-Lyapunov function. This section
will provide the tools and notations, before presenting the
main result in Section IV. Subsection III-A treats the struc-
ture of continuous piecewise quadratic UUB-Lyapunov func-
tion. Subsection III-B offers a background for the nonlinear
operator.

A. Structure of a continuous piecewise quadratic UUB-
Lyapunov function

From the definitions of Σi, i ∈ I, we can divide the
state space Rn in four regions bounded by the three parallel
hyperplans f(t) = Kx(t) ∈ {−ρb; 0; ρa}. Figure 1 shows
the relevance of such a decomposition. In order to highlight
the polyhedral partition, we introduce the notation x̄ =(
x⊤ 1

)⊤ ∈ Rn+1 and the following polyhedral partition
(see [8, Definition A.8]) of the state-space Rn related to
the definition of sets Σi, i ∈ I. Let us define Xi = {x ∈
Rn, Xix̄ ⪰ 0}, i ∈ I, with Xi ∈ Rni×(n+1),

X1 =
[
K −ρa

]
, X4 =

[
−K −ρb

]
,

X2 =

[
−K ρa
K 0

]
, X3 =

[
K ρb
−K 0

]
.

We can check that ∪i∈IXi = Rn and that only the
intersections between consecutive sets are not empty, such
that only Xi ∩ Xi+1 ̸= ∅, i ∈ {1, 2, 3}. In addition, the
sets Xi are closed and the intersections of their interiors are
empty. The origin belongs only to X2 and X3. We introduce
I0 = {2, 3} ⊂ I, the set of indices i such that 0 ∈ Xi. The
projection of Σi on its n-first components belongs to Xi,
i ∈ I.

By following the method detailed in [8, Appendix A], we
can build the continuity matrices F̄i ∈ R(n+3)×(n+1), i ∈ I,

based on the three halfplanes {x ∈ Rn, Kx − ρa ⪰ 0},
{x ∈ Rn, Kx+ 0 ⪰ 0} and {x ∈ Rn, −Kx− ρb ⪰ 0} as

F̄1 =

 K −ρa
K 0

01×n 0
In 0n×1

 , F̄2 =

 01×n 0
K 0

01×n 0
In 0n×1

 ,

F̄3 =

 01×n 0
01×n 0
01×n 0
In 0n×1

 , F̄4 =

 01×n 0
01×n 0
−K −ρb
In 0n×1

 .

By construction, the origin belonging in X2 and X3, the
last column of F̄2 and F̄3 are trivial. This choice allows to
impose

F̄ix̄ = F̄i+1x̄, ∀x ∈ Xi ∩ Xi+1, i ∈ {1, 2, 3}. (4)

The last block of rows in F̄i, i.e.
[
In 0n×1

]
, translates

the continuity of the state in Rn.
This polyhedral partition {Xi}i∈I of Rn, compatible with

the sets Σi, i ∈ I, depends only on the state x. For
this reason, we focus on regional UUB-Lyapunov functions
that are quadratic forms with respect to the state. As a
consequence, we can look for a UUB-Lyapunov function in
the class of continuous piecewise quadratic functions, defined
by

V (x) = Vi(x), x ∈ Xi, (5)

where the regional quadratic functions Vi(x) are given by

Vi(x) =

{
x̄⊤P̄ix̄ = x̄⊤F̄⊤

i T F̄ix̄, ∀i ∈ I/I0,
x̄⊤P̄ix̄ = x⊤Pix = x⊤F⊤

i TFix, ∀i ∈ I0,
(6)

with T = T⊤ ∈ R(n+3)×(n+3), a weighting matrix and
where for i ∈ I0, we denote Fi ∈ R(n+3)×n, the extraction
of the first n columns of F̄i.

Lemma 2 ( [9]): The function V (·) defined by (5) and (6)
is continuous over Rn, irrespectively to the matrix T .

Proof: The regional quadratic function (6) are continu-
ous. To prove the continuity property, we have to check the
continuity of V on the non-empty intersections of the regions
Xi. Thanks to the relation (4), we have ∀x ∈ Xi ∩ Xi+1,
i ∈ {1, · · · , 3}

Vi(x) = x̄⊤F̄⊤
i T F̄ix̄ = x̄⊤F̄⊤

i+1T F̄i+1x̄ = Vi+1(x).

The piecewise quadratic function V is thus continuous
over Rn, without constraint about matrix T .

In order to obtain other required properties of V via Lem-
mas 3 and 4, let us describe the building of the polyhedral
cell bounding related to the polyhedral partition of Rn [8,
Algorithm A.1]:

• If i ∈ I0, Ēi is obtained by deleting all rows of Xi

whose last entry is non-zero. Ei is then obtained by
extracting the n first columns of the resulting Ēi.

• If i ∈ I \ I0, Xi is unbounded and Ēi is obtained by
augmenting Xi with the row

[
01×n 1

]
.

This procedure leads to

Ē1=

[
K −ρa

01×n 1

]
, Ē4=

[
−K −ρb
01×n 1

]
, E2 = −E3 = K,



and ensures the implications
∀i ∈ I0, x ∈ Xi ⇒ Eix ⪰ 0, (7)

∀i ∈ I \ I0, x ∈ Xi ⇒ Ēix̄ ⪰ 0. (8)

Lemma 3: Assume that V obeys Equations (6), then there
exists a scalar β > 0 such that V (x) ≤ β∥x∥2, ∀x ∈ Rn.

Proof: The idea of the proof can be found in the
appendix of [9]. The main argument is that in an open
neighborhood of the origin, V is piecewise quadratic with
respect to the state x (instead of x̄). For i ∈ I0, there exists
βi > 0 such that Vi(x) ≤ βi∥x∥2. By construction, there
exists ϵ > 0 small enough such that ∥x∥2 ≤ ϵ implies
that x ∈ ∪i∈I0

Xi. Contraposing this statement implies,
x ∈ ∪i∈I\I0

induces ∥x∥2/ϵ ≥ 1. For each i ∈ I \ I0,
there exists β̃i > 0 such that Vi(x) ≤ β̃i∥x̄∥2 ≤ βi∥x∥2,
with βi = β̃i(1 + 1/ϵ). Selecting β = maxi∈I βi ends the
proof.

Lemma 4: If there exist a symmetric matrix T ∈
R(n+3)×(n+3) and matrices Ui, i ∈ I of adequate dimensions
with nonnegative entries, such that the LMIs

F⊤
i TFi − E⊤

i UiEi ≻ 0n, i ∈ I0 (9)

F̄⊤
i T F̄i − Ē⊤

i UiĒi ≻ 0n+1, i ∈ I \ I0, (10)

hold, then there exists α > 0 such that V (x) ≥ α∥x∥2.
Proof: The strict inequalities (9) allow the existence of

αi > 0 small enough such that 0n can be replaced in (9) by
αiIn. Multiplying left and right the resulting inequalities by
x⊤ and x respectively leads to i ∈ I0: Vi(x) − αi∥x∥2 ≥∑

j,k Ui,(j,k)(Ei,(j)x)(Ei,(k)x) ≥ 0. The latter inequality
comes from implication (7). We proceed in the same way
for inequalities (10) by replacing 0n+1 by diag(αiIn, 0)
and multiplying the result by x̄⊤ and x̄, i ∈ I \ I0:
Vi(x) − αi∥x∥2 ≥

∑
j,k Ui,(j,k)(Ēi,(j)x̄)(Ēi,(k)x̄) ≥ 0.

The latter inequality is a consequence of implication (8).
Selecting α = mini∈I αi completes the proof.

Due to Lemmas 2, 3 and 4, V can act as a candidate
continuous UUB-Lyapunov function.

B. Characteristics of the nonlinear operator

This subsection aims at providing sufficient conditions en-
suring that the UUB-Lyapunov function V decreases outside
its unit level set, (that is on {x ∈ Rn, V (x) ≥ 1}). To
use Assumption 1, we consider an adaptation of the dual
nonlinear operator Ψ related to Φ, (see [6] and [7]) by:

Ψ[Kx](t) = Φ[Kx](t)− liKx(t), ∀x ∈ Xi, (11)

with l1 = l2 = la and l3 = l4 = lb. The dual operator Ψ
benefits from being bounded, in particular when x ∈ Σ1∪Σ4.

In order to express compactly the dynamics and the
quadratic sector conditions related to Φ, we consider
the augmented vectors y, z ∈ Rn+3 given by y =(
x⊤ Φ Φ̇ 1

)⊤
and z =

(
x⊤ Ψ Ψ̇ 1

)⊤
, that are

linked to one another by y = Niz over x ∈ Xi, where

Ni =

 In 0 0 0
liK 1 0 0

liK (A+BliK) liKB 1 0
0 0 0 1

, i ∈ I.

In addition, we have x̄ = N0z, with

N0 =

(
In 0n×1 0n×1 0n×1

01×n 0 0 1

)
.

It is thus possible to rewrite Dynamics (1) as ˙̄x(t) = Γiz(t),
x ∈ Xi, where, i ∈ I,

Γi =

(
A+BliK B 0n×1 0n×1

01×n 0 0 0

)
∈ R(n+1)×(n+3).

Let us now focus on the characteristics of the nonlinear
operator. We can distinguish two kinds of conditions:

• Several conditions can be expressed as polyhedral con-
straints related to x, Ψ and also Ψ̇. They correspond
to a reformulation of the sets Σi ∈ Rn+1, i ∈ I,
and furthermore to the fact that in Σ2 and Σ3, we
have Φ̇ = 0. It results to the polyhedral constraints
{z ∈ Rn+3, Ḡiz ⪰ 0}, with

Ḡ1 =

[
l1K 1 0 0
01×n −1 0 −l1ρa
01×n 1 0 l1(ρa + h)

]
,

Ḡ4 =

[
−l4K −1 0 0
01×n −1 0 l4(ρb + h)
01×n 1 0 −l4ρb

]
,

and for i ∈ I0,

Ḡi =


K 0 0 (i− 2)ρb
−K 0 0 (3− i)ρa
liK 1 0 0
−liK −1 0 0

liK(A+BliK) liKB 1 0
−liK(A+BliK) −liKB −1 0

 .

• Equation (2) allows sector conditions in Σ1 and Σ4.
They are gathered in Lemma 5 which is proven in [7].

Lemma 5: In Σ1, we have the following quadratic sector
conditions, for any α1 > 1:

Φ̇ (Ψ + l1 (ρa + h/2)) ≤ 0, Φ̇
(
Φ̇− α1l1Kẋ

)
≤ 0, (12)

which imply that the quadratic forms in z satisfy respectively
z⊤M1,1z ≤ 0 and z⊤M2,1z ≤ 0, with

M1,1 = N⊤
1

0 0 −K⊤l1 0
⋆ 0 1 0
⋆ ⋆ 0 l1

(
ρa + h

2

)
⋆ ⋆ ⋆ 0

N1,

M2,1 = N⊤
1

0 0 − (α1l1KA)⊤ 0

⋆ 0 − (α1l1KB)⊤ 0
⋆ ⋆ 2 0
⋆ ⋆ ⋆ 0

N1.

In Σ4, we have , for any α4 > 1:

Φ̇ (Ψ− l4 (ρb + h/2)) ≤ 0, Φ̇
(
Φ̇− α4l4Kẋ

)
≤ 0, (13)

which imply that the quadratic forms in z satisfy respectively
z⊤M1,4z ≤ 0 and z⊤M2,4z ≤ 0, with

M1,4 = N⊤
4

0 0 −K⊤l2 0
⋆ 0 1 0
⋆ ⋆ 0 −l2

(
ρb +

h
2

)
⋆ ⋆ ⋆ 0

N4,

M2,4 = N⊤
4

0 0 − (α4l4KA)⊤ 0

⋆ 0 − (α4l4KB)⊤ 0
⋆ ⋆ 2 0
⋆ ⋆ ⋆ 0

N4.



IV. MAIN RESULT

This section provides sufficient conditions, expressed in
terms of parameterized LMIs, and gathered in Theorem 1.
An optimization problem is presented to select a solution
minimizing the size of the UUB set.

Theorem 1: Consider the system (1) that verifies Assump-
tion 2. Assume that there exist a symmetric matrix T ∈
R(n+3)×(n+3), matrices Ui and Wi, i ∈ I with suitable
dimensions and nonnegative components, positive scalars
τ0,i, τ1,1, τ2,1, τ1,4, τ2,4, such that Inequalities (9), (10) and

Πi + Ḡ⊤
i WiḠi ≺ 0, i ∈ I0, (14)

Πi − τ1,iM1,i − τ2,iM2,i + Ḡ⊤
i WiḠi ≺ 0, i ∈ I \ I0,(15)

where, i ∈ I, Πi = −τ0,i
(
diag(0n, 0, 0, 1)−N⊤

0 P̄iN0

)
+

He
(
Γ⊤
i P̄iN0

)
, hold. Then, for any choice of initial con-

ditions (Kx(0),Φ[Kx](0)) satisfying Assymption 1, the
system (1) is UUB with the UUB-Lyapunov function V given
by (5)–(6) and the UUB set LV = {x ∈ Rn, V (x) ≤ 1}.

Proof: Let us consider the function V having the
structure detailed in (6). V is continuous over Rn. The
unit level set LV is then closed. Thanks to (9) and (10),
Lemmas 3 and 4 apply and thus V is a UUB-Lyapunov
function candidate. Consider the structure of matrices Πi,
we have ∀i ∈ I:

z⊤Πiz = 2 ˙̄x⊤P̄ix̄−τ0,i(1−x̄⊤P̄ix̄) = V̇ (x)−τ0,i(1−V (x)).

For i ∈ I0, Inequality (14) being strict, ∃δi > 0 such that

V̇ (x)− τ0,i(1− V (x)) + δi∥x∥2

≤ −
∑

j,k
Wi,(j,k)(Ḡi,(j)z)(Ḡi,(k)z),

leading to V̇ (x) ≤ − δi
α V (x) in Xi \ LV , i ∈ I0, due to the

S-procedure. For i ∈ I \I0, the strict inequality (15) implies
that there exists δi > 0 such that

V̇ (x)− τ0,i(1− V (x))− τ1,iz
⊤M1,iz − τ2,iz

⊤M2,iz

+ δi∥x∥2 ≤ −
∑

j,k
Wi,(j,k)(Ḡi,(j)z)(Ḡi,(k)z),

leading to V̇ (x) ≤ − δi
α V (x) in Xi \LV , i ∈ I \ I0. Finally

with δ = mini∈I δi, we have V̇ (x) ≤ − δ
αV (x), ∀x ̸∈ LV .

The latter inequality guarantees that, outside LV , the
function V decreases exponentially to reach (in finite time)
the value 1 and that the set LV is positively invariant by the
dynamics (1) (see [14]).

Among all the solutions of Theorem 1, we would like
to select the one minimizing the size of the level set LV .
The difficulty is to have a cost function of an optimization
problem that is related to the size of a level set of a piecewise
quadratic positive function. By following the discussion in [8,
Section 7.1], the level set of a piecewise quadratic positive
function consists in a collection of pieces of ellipsoids. We
suggest to consider the average of the size of these ellipsoids
as an approximation of the size of LV . In other words, we
would like to minimize Tr(Q), where Q = Q⊤ such that[

Q In In In In
⋆ diag(P1, P2, P3, P4)

]
≻ 0, (16)

which is equal, by a Schur complement, to Q ≻
∑

i∈I P−1
i .

Let us provide the optimization problem that offers a solution
to Problem 1.

min
T,Q,Ui,Wi,τ0,i,τ1,1,τ2,1,τ1,4,τ2,4

Tr(Q),

under (9), (10), (15), (14).

Notice that the constraints in the optimization problem are
LMIs if the parameters τ0,i are given.

V. NUMERICAL ILLUSTRATION

In order to illustrate our result and compare it with the
available results in the literature, we consider the example
coming from [7]. The linear system is a double integrator
and the gain K satisfies Assumption 1.

A =

(
0 1
0 0

)
, B =

(
0
1

)
, K =

(
−2 −3

)
.

la = 1, lb = 1.2, ρa = 0.1, ρb = 0.2, h = 0.2.

We impose τ0,i = τ0, ∀i ∈ I, to have a single parameter
in the line search. The optimal value of Tr(Q) depends on
the parameter τ0. This dependency is depicted in Figure 2. In
order to numerically validate the fact that Tr(Q) approaches
the area of LV , we compute a posteriori the area of LV after
solving the optimization problem. We can see on Figure 2,
that the two curves have the same shape. We can explain the
curve as follows: for τ0 tending to zero, our conditions are
not feasible because A is not Hurwitz. In addition, τ0 should
be chosen such that (A−BlkK+ τ0

2 ) is Hurwitz, k ∈ {a, b},
that is here τ0 < 1.76. We set below τ0 = 0.6, which is the
argument of the minimimum.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

Fig. 2. Optimal value of Tr(Q) and area of LV , depending on τ0,i.

We consider the initial condition x0 =
(
0.8 0.4

)⊤
and we choose Φ[Kx](0) = −2.5, which verifies the
constraint (3). We depict the time trajectory of the state
x(t) on Figure 3. It is shown that V (t) decreases faster
than linearly in the semilogy scape to reach 1 at t = 2.7s
and after remains below 1. The value of the nonlinearity
Φ[Kx](t) follows the charateristic of the nonlinear operator
as depicted in Figure 4. Finally, we plot the state trajectory
in the state space in Figure 5. It is clear that LV (in red solid
line) is a smaller set than the ellipsoid (in black solid line)
generated by the conditions in [7] and consequently provides
a less conservative solution to Problem 1. LV is composed
of pieces of ellipsoids in the sets Xi, i ∈ I as expected.

For the initial condition x0 =
(
0.8 0.4

)⊤
, the state-

trajectory tends to the set LV and converges to a limit cycle
that lies into LV . In Figure 5, two other trajectories are
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Fig. 3. Time-trajectory of the state x(t) and the function V (t).

-6 -4 -2 0 2 4 6
-3

-2

-1

0

1

2

3

Fig. 4. Characteristic of the nonlinear operator. The starting point
corresponds to (Kx0,Φ[Kx](0)) = (−2.8,−2.5), depicted with a red
cross. The trajectory (Kx(t),Φ[Kx](t)) is in blue. The characteristic of
Figure 1 is recalled in back dashes.
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Fig. 5. Phase portrait of the system. The bounds of the polyhedral partition
Xi are depicted with dashed-dot lines. The black ellipsoid is the UUB-set
provided in [7] and the red curve depicted LV from Theorem 1. Several
trajectories are depicted starting from x0 =

(
0.8 0.4

)⊤ (in blue solid
lines) and from x0 =

(
0.3 −0.5

)⊤ and x0 =
(

−0.1 0.5
)⊤ (in

green solid lines).

depicted starting from x0 =
(
0.3 −0.5

)⊤
and x0 =(

−0.1 0.5
)⊤

. They respectively belong to X4 and X1

and reach (unstable) equilibrium points. Finally, we can
emphasize that the trajectories may cross each other, due
to the fact that Dynamics (1) does not depend only on the
state, but also on the memory of the trajectory via Φ.

VI. CONCLUSION

A piecewise quadratic Lyapunov function approach has
been used to cope with the uniform ultimately bounded-
ness property of a system which is a linear plant that is
feedback interconnected with a nonlinear operator exhibiting
an asymmetric backlash and an asymmetric deadzone. The
requirements of a Lyapunov function candidate are imposed
thanks to linear matrix inequalities and the exponential
uniform ultimately boundedness property is ensured thanks
to parameterized linear matrix inequalities. The tractability
of our sufficient conditions and the fact that our solution is
less conservative than the results available in the literature
are discussed on an academic illustration.
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for a class of hysteresis nonlinearity: Modeling and compensation,” in
2012 IEEE 51st IEEE Conference on Decision and Control (CDC),
pp. 5380–5385, 2012.

[6] S. Tarbouriech, I. Queinnec, and C. Prieur, “Stability Analysis and
Stabilization of Systems With Input Backlash,” IEEE Transactions on
Automatic Control, vol. 59, pp. 488–494, Feb. 2014.

[7] A. Pierron, J. Kreiss, M. Jungers, G. Millerioux, and J. Dupont,
“Stability analysis for linear systems with asymmetric input backlash
and dead-zone through LMI conditions,” in 2023 European Control
Conference (ECC), pp. 1–6, 2023.

[8] M. Johansson, Piecewise Linear Control Systems - A Computational
Approach. Lecture Notes in Control and Information Sciences,
Heidelberg, Germany: Springer-Verlag, 2002.

[9] M. Johansson and A. Rantzer, “Computation of piecewise quadratic
Lyapunov functions for hybrid systems,” IEEE Transactions on Auto-
matic Control, vol. 43, pp. 555–559, April 1998.

[10] S. Tarbouriech, G. Garcia, J. M. Gomes da Silva Jr., and I. Queinnec,
Stability and Stabilization of Linear Systems with Saturating Actuators.
Springer, 2011.

[11] D. Dai, T. Hu, A. R. Teel, and L. Zaccarian, “Piecewise-quadratic Lya-
punov functions for systems with deadzones or saturations,” Systems
& Control Letters, vol. 58, no. 5, pp. 365–371, 2009.

[12] V. Dilda, M. Jungers, and E. B. Castelan, “Uniformly ultimate bound-
edness analysis and synthesis for linear systems with dead-zone in the
actuators,” International Journal of Robust and Nonlinear Control,
vol. 25, no. 14, pp. 2502–2514, 2015.

[13] M. L. Corradini and G. Orlando, “Robust stabilization of nonlinear
uncertain plants with backlash or dead zone in the actuator,” IEEE
Transactions on Control System Technology, vol. 10, no. 1, pp. 158–
166, 2002.

[14] H. K. Khalil, Nonlinear Systems - Third Edition. Prentice Hall, 2002.


