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The biophysics of water, has been debated overmore than a century. Although its
importance is still underestimated, significant breakthroughs occurred in recent
years. The influence of protein condensation on water availability control was
documented, new findings on water-transport proteins emerged, and the way
water molecules rearrange to minimize free energy at interfaces was deciphered,
influencing membrane thermodynamics. The state of knowledge continued to
progress in the field of deep-sea marine biology, highlighting unknown effects of
high hydrostatic pressure and/or temperature on interactions between proteins
and ligands in extreme environments, and membrane structure adaptations. The
role of osmolytes in protein stability control under stress is also discussed here in
relation to fish egg hydration/buoyancy. The complexity of water movements
within the cell is updated, all these findings leading to a better view of their impact
onmany cellular processes. Theway water flow and osmotic gradients generated
by ion transport work together to produce the driving force behind cell migration
is also relevant to both marine biology and cancer research. Additional common
points concern water dynamic changes during the neoplastic transformation of
cells and tissues, or embryo development. This could improve imaging
techniques, early cancer diagnosis, and understanding of the molecular and
physiological basis of buoyancy for many marine species.
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1 Introduction

Water is essential to the biosphere, shaping the earth and making life possible, where
alteration of oceanic crust and serpentinization process play fundamental roles (Brovarone
et al., 2020; Andreani et al., 2023; Schwander et al., 2023). In addition to being the medium
of biology, water also represents the main actor in metabolism (Frenkel-Pinter et al., 2021).
The biophysics of water, a central question for bothmarine biology and biomedical sciences,
is a potential transdisciplinarybridge, and after more than a century of investigations, it is
still receiving increasing attention, raising questions and perspectives. The anomalous
properties of liquid water, continuously debated with, are still challenged (Urbic and Dill,
2018). In cell biology, the importance of water has always been underestimated, however its
role in protein folding and structure, proton and electron transfer, nucleic structure, and
communication at a distance were emphasized (Chaplin, 2006). Given all the breakthroughs
published in the literature, it is crucial that we consider the concept of ‘water as a

OPEN ACCESS

EDITED BY

Sean Sun,
Johns Hopkins University, United States

REVIEWED BY

Yizeng Li,
Binghamton University, United States
Jeffrey M. Dick,
Central South University, China

*CORRESPONDENCE

Daniel L. Pouliquen,
daniel.pouliquen@inserm.fr

RECEIVED 18 March 2024
ACCEPTED 29 April 2024
PUBLISHED 13 May 2024

CITATION

Pouliquen DL (2024), The biophysics of water in
cell biology: perspectives on a keystone for
both marine sciences and cancer research.
Front. Cell Dev. Biol. 12:1403037.
doi: 10.3389/fcell.2024.1403037

COPYRIGHT

© 2024 Pouliquen. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Perspective
PUBLISHED 13 May 2024
DOI 10.3389/fcell.2024.1403037

https://www.frontiersin.org/articles/10.3389/fcell.2024.1403037/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1403037/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1403037/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1403037/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2024.1403037&domain=pdf&date_stamp=2024-05-13
mailto:daniel.pouliquen@inserm.fr
mailto:daniel.pouliquen@inserm.fr
https://doi.org/10.3389/fcell.2024.1403037
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2024.1403037


biomolecule’ (Ball, 2008) to avoid missing an essential part of
knowledge for students and researchers in the future. Instead, the
cytomatrix should be viewed as a cooperative system of
supramolecular water-ion-protein complexes (Shepherd, 2006).

A major point in understanding water’s biophysical properties
in the intracellular environment is its evolution in a very crowded
space (Fayer, 2011). Reviewing its role in the subcellular structuring
of a prokaryotic cell, Spitzer looked back to the pioneering studies
conducted on marine species, and suggested viewing the physical
and chemical interactions and processes that structure the
cytoplasm through a ‘complex vectorial (bio)chemistry’ (Spitzer,
2011). Another consequence is that water entropy is maximized,
with an impact on the cytoskeleton and gene expression (Li et al.,
2022). Evidence that crowding provided a mechanism by which cells
are sensitive to their volume change had previously been supported
by experimental observations (Burg, 2000), a significant parameter
for egg and embryo buoyancy in marine species, and thus their
ecological behavior. Meanwhile, direct observation of the spatial
distribution of water molecules inside a living cell has revealed
different crowding environments in the nucleus and cytoplasm
(Takeuchi et al., 2017).

Active fluxes of water and solutes of water play an essential role
during cell shape changes and cell motility, emphasizing the role of
hydraulic pressure in cell dynamics (Li et al., 2020). Cell volume
regulation also involves ion/water transport systems, and the last
two decades were characterized by tremendous insight into the role
of aquaporins (Verkman, 2005; Papadopoulos et al., 2008). Besides the
cytoskeleton, which had long been suggested as generating the driving
force for cell migration, the water flow due to osmotic gradients
generated by localized ion transport across the plasma membrane
also contributes to this process (Morichita et al., 2019). Experimental
evidence for anomalous diffusion of water in biological tissues, measured
by nuclearmagnetic resonance (NMR) has been extensively documented
(Köpf et al., 1996), leading to the development of diffusion-weighted
magnetic resonance imaging (DW-MRI), applied to cancer diagnosis
and follow-up after treatment (Patterson et al., 2008). Interestingly, the
role played by another technique, quasielastic neutron scattering
(QENS), provided additional value in understanding the role played
by water molecules in tumors before and after treatment with
chemotherapy drugs (Martins et al., 2022).

As an echo to biophysical investigations on structured (bound)water
in cell biology (Pouliquen et al., 2006a; 2006b), a long-distance effect for
structured water was observed, related to an ordering of water molecules
binding to specific sites on surfaces such as biological membranes,
forming localized clusters corresponding to what is called today an
‘exclusion zone’ (Chen et al., 2012). This term of ‘structured water’,
commonly used by numerous NMR investigators of water in biological
systems from the 1970s to the 1990s, refers to the gel-like consistency of
water in the intracellular environment, nicely described by Pollack, who
argued for a ‘marriage between interface science and biology’ (Pollack,
2003). In this vision, one last crucial parameter of the problem is also
represented by the strength of hydration, which is charge density-
dependent (Collins, 1997). Meanwhile, improvements were made in
the knowledge of the ‘water affinity’ of the different ions, another
interesting question of interest common to both marine and
biomedical sciences (Collins, 2019).

Investigations on water properties in membrane interfaces
(Disalvo et al., 2008) have progressively led to seeing water as a

structural and thermodynamic component of biomembranes
(Disalvo et al., 2022). Given the impact of the crowding effect on
the thermodynamics of metabolic reactions, the way water shapes
proteins was recently documented, revealing its role in protein
stabilization (Crilly et al., 2021). In parallel, water wires were
shown to be critical for the functioning of membrane proteins
(Paulino et al., 2020). Protein stabilization is also a key issue for
preserving living cells and tissues. As different freezing approaches
are currently used, the molecular interplay between cryoprotectants
and water/ice were analyzed using molecular dynamics simulations
in the context of protein stabilization and preservation of cell
membranes (Weng et al., 2019). Water being replaced by sugars,
the way in which extremotolerant organisms exploit sugars as
desiccation protectants for preserving protein structure is another
area undergoing intense investigations (Brom et al., 2023). Finally,
biophysical studies of organisms living in extreme conditions
revealed mechanisms for sensing water stress and the relevant
signal transduction pathways involved in cellular responses to
water-deficit stress (Caramelo and Iusem, 2009).

Here, starting with a survey of the most recent findings, we will
examine questions relevant to both marine biology and cancer
research (Figure 1), pointing to some potential intellectual
bridges between them, likely to open interesting prospects for
the future.

2 Recent breakthroughs on the
biophysics of water in the cell

The mechanisms of water movements have received considerable
attention. The role played by aquaporins in regulatingmigration-related
processes was reviewed, highlighting their complex interrelationships
with cell volume change, and signaling pathway activation (Smith and
Stroka, 2023). Based on simulations of cellular water exchange,
improved current physical diffusion models were proposed (Gardier
et al., 2023). This is in line with parallel findings revealing vascular
leakiness to circulating fluids, involving endothelial cell gap formation
related to lamellipodia dynamics (Arce et al., 2023). The question of
membrane water permeability was also updated through changes in
membrane structure. For example, calcitriol, a unique component of the
Helicobacter pylorimembrane, facilitates water transport, crossing from
one layer to another more easily than cholesterol (Cao et al., 2024).

Salinity or membrane composition also tune the interactions
between biomolecular condensates and membranes, a reciprocal
mechanism existing between water activity and supramolecular
rearrangement, with protein secondary structure altering water
dynamics in turn (Mangiarotti et al., 2023). The way biomolecular
condensation of intrinsically disordered proteins controls water
availability in cells was also investigated (De Souza and Stone, 2023;
Watson et al., 2023). Additional findings improving our understanding
of cellular condensates were the dissection of the role played by water-
mediated interactions in a prototypical cellular condensate environment
using long-timescale atomistic simulations (Brown and Potoyan, 2024).
The difficulty with studying water structure within cells directly was
overcome by demonstrating the power of the water bend-libration
combination band using Raman spectral imaging. This revealed
fascinating images of cellular water subpopulations within
neuroblastoma cells (Ramos and Lee, 2023). The consequence of the
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crowded space on water activity was also studied in the mitochondrial
matrix, revealing the impact of its changes on biochemical reactions
(Bulthuis et al., 2023). Another case showed the impact of crowding and
cellular interactions on in vivo folding of the three-helix bundle protein
B in the cytoplasm (Russell et al., 2023). Finally, the way
macromolecular crowding affected the enzymatic reaction provided
by hydrolases, through changes in water structure, was detailed (Perillo
et al., 2023).

A central question related to these investigations concerns
thermodynamics. Earlier works questioning the thermodynamic
explanation for water-protein interactions (Watterson, 1997), and
how solid-state physics could help understand the behavior of
hydrated proteins (Teeter et al., 2001), found some echo in recent
publications. First, free energies analyzed for four hydrated globular
proteins differing by their net charges revealed that water was most
stable around anionic residues, and least stable near hydrophobic
residues (Kalayan et al., 2023). As most biomacromolecules fold into
chiral structures for their biological functions, how water molecules
rearrange to minimize free energy at interfaces was shown, with achiral
water molecules assembling in the first hydration shell of the protein
into a chiral supramolecular structure with chirality transferred from
the protein (Yan et al., 2023). Applied to ribonuclease A, an ultra-high-
resolution x-ray analysis structure exhibited a refined model based on
two times more water molecules interacting with the protein, with
thermodynamic implications (Lisgarten et al., 2023).

More than 25 years ago, the unique properties of water molecules
were recognized as being key players for protein-DNA interactions and
molecular recognition (Robinson and Sligar, 1998). Their hope for

further biochemical and biophysical work was recently accomplished
when the thermodynamics of water networks in protein cavities was
investigated in the context of rational drug design (Barros et al., 2023).
The way water fine-tunes the 3D shape and dynamics of tumor-
associated carbohydrate antigens was also nicely highlighted
(Bermejo et al., 2018). Investigations into water-protein interactions
reported the role of water molecules in the activation of G protein-
coupled receptors (Hu et al., 2023). However, in the cell, water also
serves as a substrate for proton transport. Accordingly, the role of water
transport and proton release, for water molecules delivered to the
catalytic center in photosystem II (PSII) was determined. This work led
to an updated view of how ordered water molecules within the different
channels contribute to catalyzing the light-induced oxidation of water
into molecular oxygen (Doyle et al., 2023). In the same field, in
cytochrome c oxidase, the order and molecular dynamics of
protonation in its two distinct channels and the number of water
molecules required for proton transport were deciphered (Gorriz et al.,
2023). Finally, to improve our knowledge of the controlled diffusion of
protons through transmembrane proteins, it was hypothesized that
protons are conducted through dry apolar stretches by forming
transient water wires (Kratochvil et al., 2023).

3 Lessons from the oceans

Given the extraordinary life diversity in the oceans, these
findings could inspire engineering for the coming decades, for
example, in the design of new materials for industry and

FIGURE 1
An illustration of the different topics corresponding to potential intellectual bridges at the interface between the biophysics of water in the cell/
marine biology/cancer research. Subtopics relevant to water biophysics are illustrated in blue rectangles (uppercase letters). Thicker arrows represent
suggestions for priority research fields likely to open innovative perspectives. Some connections between terms (symbolized by arrows) were voluntarily
removed for clarity.
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healthcare. In the case of the Photobacterium genus, which includes
psychrophile and piezophile species living in symbiosis with marine
organisms, an interesting study highlighted the role of cosolvent-
water interaction in the modulation of bacterial luciferase
functionality (Lisitsa et al., 2023). The mechanism of light-driven
water photooxidation of PSII isolated from the halotolerant green
alga Dunasiella salina, revealed an unexpected level of
conformational flexibility (Caspy et al., 2023). In channel
rhodopsins, the way the timing of the proton transfer was tightly
controlled was investigated, showing how the number and location
of water molecules close to the proton transfer groups had an impact
on the proton transfer pathways (Adam and Bondar, 2018).

For organisms living in the deep sea, a fundamental question
concerns the effect of high hydrostatic pressure and how they adjust
the volume changes of their biochemical reaction in cellulo (Oliva
et al., 2020). Adapting to extreme environmental conditions was
initially analyzed in terms of the conformational stability of proteins
(Jaenicke and Závodszky, 1990). This question, later extended to the
sub-seafloor and continental subsurface, led to investigations into
the mechanisms driving molecular adaptation, through the
stabilization effect of small molecules known as piezolytes,
among which the most potent is trimethylamine N-oxide
(TMAO). Using Fourier transform infrared (FTIR) spectroscopy
combined with electronic-structure-based computer simulations,
pressure-induced changes were connected to a locally enhanced
H-bonding network at high compression (Imoto et al., 2016). The
effect of TMAO was then attributed to its large dipole moment,
making it possible to form strong interactions with water molecules
by forming H-bonds with at least three of these molecules, resulting
in preferential hydration of the protein surface (Kamali et al., 2022).
Recently, this protective effect was extended to high temperature
TMAO molecules binding very specific amino acids on the protein
surface while other molecules ‘in a shell further away from the
protein herd water molecules to enhance protein stability’ (Boob
et al., 2023). Finally, in nucleic acids, TMAO rescued the shift
produced by high pressure in the conformational equilibrium of a
DNA hairpin into the open, unfolded state (Patra et al., 2018).

TMAO was found early in tissues from marine organisms
(Yancey et al., 1982). Although initially debated, the hypothesis
that TMAO was adaptively regulated with depth in deep-sea
teleosts progressively gained support (Samerotte et al., 2007), and
the highest TMAO contents in teleost marine fishes was found in
Notoliparis kermadecensis, the deepest known fish in the southern
hemisphere (Yancey et al., 2014). Paul H. Yancey also mentioned that,
although ‘TMAO can effectively counteract many inhibitory effects of
hydrostatic pressure on numerous proteins’, ‘for vertically migrating
marine animals, hydrostatic pressure stress responses are even more
poorly characterized’ (Yancey, 2020). Interestingly, his investigations
connect with previous studies based on the combination of 1H-NMR
relaxometry and spectroscopy on the evolution of bound (‘structured’)
water during the early development of turbot (Psetta maxima)
(Pouliquen et al., 1998) (Figure 2). Our results could be
reinterpreted in the light of reports confirming the presence of
TMAO in extracts of juvenile turbot (Hoerterer et al., 2023), and
in oocytes of the common carp (Cyprinus carpio), showing increased
TMAO levels with post-ovulation time (Hajirezaee et al., 2021). The
considerable variability we observed in the spin-lattice relaxation
times of structured (unfrozen) water could be related to TMAO

content changes, connected to its role in stabilizing protein
structure during yolk protein proteolysis post-ovulation.
Improvements in our understanding of the biophysical/biochemical
parameters affecting fish egg hydration, and how piezolytes act, are
also crucial in relation to buoyancy changes during their early
embryonic development. In this field, the discovery of new
aquaporins has provided insight into the molecular basis of the
production of viable eggs (Cerda, 2009). The multiple functions
these channels have was extensively reviewed (Cerda et al., 2017).
Many efforts were also made to develop the theoretical basis for
buoyancy variations in fertilized eggs, for example, applied to the
Atlantic cod (Gadus morhua) (Jung et al., 2014). The case of vertical
distribution was examined for marine fish eggs; however, its
importance is crucial across species and for many ecosystems
given the impact of climate change (Sundby and Kristiansen,
2015). Connected to lipid composition changes in the lipid sac and
membranes of marine planktonic copepods, regulating buoyancy
determines their seasonal life cycle, and in particular their vertical
migration (Pond et al., 2014).

One last issue concerns TMAO interactions with lipid
membranes. A gel-to-fluid phase transition was observed, shifting
to higher temperatures with increasing TMAO concentration,
leading to a drastic water loss in the interlamellar space of fully
hydrated multivesicular lipid assemblies (Manisegaran et al., 2019).
For some microorganisms living in deep-sea hydrothermal vents,
the biophysical properties of archaeal membranes also revealed
lower water permeability compared with that of n-acyl
phospholipids, while remarkably, macrocyclization improved the
membrane barrier to water (Dannenmuller et al., 2000). The liquid-
crystalline state that characterized their membranes, in addition to
their low permeability, appeared to be an adaptation for living in a
wide range of econiches, from cold ocean water to high temperatures
and pressure in hydrothermal vents (Chugunov et al., 2014).

4 Discussion

1H-NMR investigations of marine fish eggs/embryos, and normal/
neoplastic tissues identified changes in water state, revealing a
common increased dynamics of structured water in early
development and carcinogenesis. However, the normal-to-cancer
transition involved specific additional changes in the cross-
relaxation between water and macromolecular protons (Figure 2;
Pouliquen et al., 1993; 1995; 2001). These findings agree with
differences observed in heat capacity in tumorous vs. normal
tissues (Vaupel and Piazena, 2022). Using QENS, considerable
diversity was also observed in the flexibility of the different types
of intracellular water in normal and cancerous cells (Marques et al.,
2020), while MR elastography highlighted its link with tumor fluidity
(Streitberger et al., 2020). Conversely, a fluid-to-solid transition
characterized proliferative cells becoming dormant (Munder et al.,
2016). Differences in composition analyzed through simulations also
revealed a shift in electron density of water in line with the lower
stability observed in cancer vs. normalmembranes (Elfiky et al., 2023).
However, other topics could benefit from transdisciplinary bridges
between marine biology and cancer research, and vice versa. First, the
role of TMAO in tumorigenesis, initially related to the anaerobic
metabolism of Enterobacteriaceae (Barrett and Kwan, 1985), is
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increasingly questioned, especially for colon cancer (Duizer and de
Zoete, 2023). However, TMAO directly drives an immunostimulatory
phenotype inmacrophages, supporting T cell responses, and reducing
pancreatic ductal adenocarcinoma burden (Mirji et al., 2022).
Accordingly, in triple-negative breast cancer, TMAO activated
CD8+ T cell-mediated immunity by inducing pyroptosis in tumor
cells (Wang et al., 2022). This topic thus requires much more
investigation. Secondly, some aquaporins are prospective
biomarkers of prognostic significance in prostate cancer
(Kushwaha et al., 2023), the role of aquaporin five in lung cancer
beingalso questioned (Jaskiewicz et al., 2023). Water exchange
through aquaporin-4 being measured by MRI, transmembrane
water-efflux rates are a biomarker of proliferative glioma (Ruan
and Keshari, 2022). MRI also allows to investigate damage to the
myelin sheath, making it possible to study the different water pools in
complex macromolecular environments (van der Weijden et al.,
2023). This, like MR microscopy (Pooh et al., 2011), chemical
exchange saturation transfer (CEST) MRI (Maralani et al., 2023),
or DW-MRI for determining microscopic tumor spread (Shusharina
and Nguyen, 2023), could increasingly benefit to marine biology, as
shown recently (Chanet et al., 2023; Sauer et al., 2023; Gerussi
et al., 2024).

In conclusion, an increasing number of molecules isolated from
oceans show interesting properties in oncology/immunology.
Integrating the complex role of water molecules in the cell, and
its changes during neoplastic transformation are expected, for better
understanding molecular recognition and optimizing engineering-
based drugs and materials. All questions relevant to water entropy,
protein interactions, supramolecular rearrangement and membrane
biology are also a huge domain, which could lead to many
innovations in both disciplines.
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FIGURE 2
Examples of 1H NMR investigations into the biophysical properties of structured (bound) water in experimental models relevant to marine biology
and cancer research. Adapted from Pouliquen, D. et al. Comp. Biochem. Physiol. B (1998) 120, 715–726. doi: 10.1016/S0305-0491(9,810,067–6) and
Pouliquen D., et al. Anticancer Res. (1993) 13, 49–56, with permissions. Both models presented a shift (horizontal red arrow) in the temperature
corresponding to the minimum of the spin-lattice relaxation time (T1), meaning correlation times for the rotational motion τR of unfrozen water
molecules were decreased during the early development of turbot (Psetta maxima) embryos, and during rat liver carcinogenesis. A common increase in
the activation energy for the rotational motion ER occurred in parallel. However, the two evolutions differed by the decrease (green vertical arrow) in the
minimum of T1, only observed in the second case, which meant additional changes in the cross-relaxation parameters between water and
macromolecular protons. Correlation times were calculated from the procedure described in the supplementary text of Pouliquen et al. (2006a) (https://
www-nature-com/articles/4401731#Sec18), Pouliquen, D., et al. Cell Death Differ. (2006) 13, 301–310. doi: 10.1038/sj.cdd.4401731.
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