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Abstract

Senescent cells have been recognized to play major roles in tumor progression and are nowadays
included in the hallmarks of cancer [46]. Our work aims to develop a mathematical model capable
of capturing a pro-invasion effect of senescent fibroblasts located in the conjunctive tissue. We focus
in the present article on the first moments of the invasion cascade. Considering a localized epithelial
tumor, we model the digestion of the collagen fibers of the basement membrane by the proteolytic
enzyme MMP-2. The activation of MMP-2 is modelled in detail, as MT1-MMPs bound to the surface
of tumor cells interact with proMMPs and TIMPs, proteins enriched in the secretome of senescent
Cancer-Associated Fibroblasts, along with its inhibition by TIMPs. Using numerical simulations of
the model, calibrated via an extensive literature search, reproducing biologically relevant scenarios,
we test the model’s suitability to investigate the effect on basement membrane digestion of fibroblasts
presenting a senescence-associated secretory phenotype. Via model reduction, steady state and global
sensitivity analyses, we identify the most influential parameters in view of their calibration with
empirical data. We conclude the paper discussing mathematical and interdisciplinary perspectives.

1 Introduction

1.1 Biological context
1.1.1 Carcinoma progression

Cancer is a disease characterized by a disorder of the regulatory processes, i.e. a disease of cellular home-
ostasis. Despite the tremendous progress made in the past decades to understand tumor progression and
find efficient treatment strategies, cancer persists as the first cause of death in many countries. This is
partly due to the extreme complexity of this disease, which involves numerous actors and interlaced bio-
logical and physical processes. In particular, other cells (e.g. endothelial cells, fibroblasts, immune cells)
in the tumor micro-environment (TME) can act alternatively in favour and against tumor advancement,
depending on their activated or altered status along cancer etiology or progression [47, 48].

Carcinomas are tumors that originate in an epithelium (such as lung, breast, colorectum, prostate,
stomach, liver, thyroid, cervix, bladder, . . . ) prior to their progression toward the invasion of their cellular
and matrix micro-environment. Carcinomas account for the major part of cancer incidence worldwide
(about 20 millions cases) with a mean mortality rate of about 50% worldwide, although the latter varies
a lot depending on the country/region [37].

The risk of being diagnosed for a carcinoma is related to ageing [12, 110]. Among the various carcino-
mas, non-melanoma skin cancers such as basal cell carcinomas or squamous cell carcinomas are amongst
those whose incidence will be the most dynamic in the next decades [56]. Hence, although the rate of
mortality is moderate in most of these cancers, their massive incidence is already a critical issue.

Typical in solid tumors, carcinoma evolution can be broken down into a series of steps common to
rather most types. Tumor initiation occurs from an accumulation of mutations in a single cell, or a few
cells, resulting in abnormal proliferation. After a commonly avascular growth, tumors generally stabilise
at a diameter of 0.1−0.2cm [53], from lack of nutrients and/or space. Regulation by the environment may
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also occur. At this stage, the carcinoma remains in situ, meaning that the epithelial cells are still in their
original compartment, touching their underlying basal lamina, physical and anchoring border with the
neighbouring conjunctive tissue [93, 88]. Carcinoma progression presents then the basal lamina rupture
as a critical point prior to invasion, i.e. progression within the TME. The invasion of cancer cells within
the surrounding tissue is associated with the development of malignancy, the acquisition of aggressive
traits by the cells, and metastasis. Although cancer risk is commonly attributed to intrinsic or inherited
mutations, the involvement of age-related perturbations within the TME in the increase of the cancer
risk or its progression is clear [71, 110]. In the present article, we are interested in the contributions of
senescent stromal cell (fibroblasts) secretions, and particularly MMPs, in the progression of carcinomas
in the initial stages of cancer invasion via the digestion of the basement membrane.

1.1.2 Basement membrane digestion

During invasion, tumor cells need to migrate within the extracellular matrix (ECM) – i.e. the network
consisting of extracellular macromolecules providing cells with structural support – in the conjunctive
tissue (CT), after they have successfully degraded the basement membrane (BM) – i.e. a thin layer of dense
ECM separating the tumor from the CT. The ECM is made of a network of fibers, with collagen being
the most abundant structural protein (amongst others such as elastin, laminin, fibronectin, proteoglycans,
glycoproteins, . . . ), and is crucial for the homeostasis and the regulation of the cell migration, growth and
differentiation. Its cellular and molecular composition varies along ageing [39, 70].

Cancer cells can break through dense barriers of ECM using proteolytic enzymes that remodel the
ECM’s fibers network and expose new routes of invasion. The matrix metalloproteinases (MMPs) class is
a large family of proteins, secreted in nonactive forms (proMMPs) and become proteolytically active in the
extracellular medium under the action of other proteinases such as Membrane-Type Metalloproteinases
(MT-MMPs), but also serine proteinases, furin, or other MMPs. In fact, MMPs also have cross-activating
effects on diffusing or soluble MMPs: MMP-2, for instance, may be activated both by MT1-MMP and in-
terstitial MMP-1 [72]. MMP activation occurs after successive proteolytic cleavages within the pro-domain
and a bait domain leading to a cystein-zinc ion switch that will drive the intra-molecular remodeling of the
MMP [108]. The various forms of the MMPs are sensitive to their binding to proteins known as Tissue-
Inhibitors of MetalloProteinases (TIMPs). The main function of TIMPs is to act as MMP inhibitors,
playing a crucial role in regulating proteolytic degradation in a variety of physiological processes, hence
ensuring homeostasis [106]. In cancer, however, the physiological ratio between TIMPs and proMMPs
may be disrupted, favoring tumor invasion. TIMPs are commonly found in the TME [27], and produced
by stromal cells such as fibroblasts (see e.g. [14]).

Being interested in BM digestion, in this paper we focus on MMP-2, which is known to digest gelatin
and type IV collagen, this latter being one of the main components of the BM [104]. MMP-2 may be
overexpressed both by tumor and stromal cells, such as fibroblasts, and it is generally produced in its
inactive form. The activation depends on the activity of MT1-MMP that relies on the stabilizing effect of
TIMP-2. Indeed, after a stabilized complex composed of two MT1-MMP and one TIMP is formed, pro-
MMP-2 is presented to this latter by integrin, resulting in the cleavage of a part of it and, ultimately, the
activation of the MMP-2. This effect is therefore dependent on the amount of TIMP-2 in a dose-dependent
manner, as an excess of this inhibitory enzyme will disorganize the dimeric MT1-MMP complex and inhibit
the interaction with the proMMP-2 protein and this latter activation [54, 72, 85]. Membrane bound
MT1-MMP is enriched at tumor invadipodia, i.e. specific membrane protrusions where tumor cells invade
their TME. MT1-MMP membrane expression shows a turn-over which has been indicated as a necessary
function to control proMMP-2 activation and increase collagen digestion [109]. Clear gelatinolytic activity
was described in the stromal compartment proximal to damaged BMs in human skin biopsies, from aged
and young donors, in association with the detection of cells displaying markers of cancer initiation [81].
The basal membrane in aged tissues is thinner in association with profound modifications of molecular
and cellular components in the underlying microenvironment contributing to epithelial dysfunctions with
potential promotion of cancer [39]. Among the stromal cells in the TME, senescent fibroblasts (SFs) have
been observed to secrete pro- and active MMP1 and MMP-2 [81].

1.1.3 The role of senescent fibroblasts

Senescence is a cellular state characterized by an arrest of proliferation, resistant to apoptosis, resulting
from a panel of replicative, oncogenic, oxydative, DNA-impacting, metabolic stresses [11, 76]. Senescent
cells accumulate with age in various tissues as in the skin [28]. Among many others, cancer is an age-
related disease [12, 110]. In association with the cell-cycle arrest, inducing senescence of cancer cells have
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been aimed and reported to regulate tumor growth. Cancer progression should however be considered
within its microenvironment network of influences. Indeed, while normal mammary fibroblasts can reg-
ulate cancerous features of breast epithelial cells in collagen 3D matrices via their secretions and ECM
contraction level [78], senescence of stromal cells contribute to tumor progression via a specific secretome
the Senescence-Associated Secretory Phenotype, SASP. Therefore, as highlighted in Hanahan’s latest pre-
sentation of the hallmarks of cancer [46], senescent cells are nowadays recognized as important contributors
to cancer progression via the release a huge amount of proteins – e.g. growth factors, chemokines, MMPs
– in the TME [36, 23, 24, 49, 64, 69, 81]

Senescent fibroblasts as Cancer-Associated Fibroblasts (CAFs) share common features as they display
different subsets/impacts depending on their molecular or activation state. Activated CAFs and late senes-
cent fibroblasts display mostly similar secretomes. Hence, the acquisition of a senescence-associated secre-
tory phenotype by SFs turns them equivalent to a subtype of Cancer-Associated Fibroblasts (CAFs) [5]
that similarly secrete proMMP-2 on top of many growth factors, cytokines such as the interleukin IL-
8 [107], ECM components and other enzymes that affect the TME similarly to the senescent fibroblasts
SASP. In line with the antagonistic pleiotropy hypothesis [97, 35], targeting senescent cells is under active
therapeutic trials. The removal of senescent cells in vivo was shown to reduce age-related diseases in mice,
among which cancer risk [6, 45]. Thus, SFs may promote carcinogenesis and carcinoma progression in aged
organisms. The SASP have numerus possible impacts leading to different therapeutical concepts [43, 76].
Early steps of cancer invasions rely on basal membrane disruption. The fibroblast’s SASP displays strong
MMP levels and activities, and fibroblasts as CAFs contribute to cancer invasion via their MMP-related
matrix digestion or via the remodelling the latter (stiff tracks) [5, 111]. Despite accumulating evidence
on the impact of SFs in carcinoma progression, much more needs to be achieved in order to identify the
net of cellular contributions in order to adapt potential treatment strategies targeting SFs to prevent or
slow down cancer invasion. We seek to develop a theoretical platform, initially fed by data from literature
and biological data from patient samples or biological models, in order to provide a tool to highlight and
manipulate critical actors of he first steps of the age-related cancer risk progression, i.e. the digestion of
the BM as initial mark of invasion.

1.2 Mathematical modelling
Mathematical and computational models are nowadays commonly used to study biological systems. They
allow to test hypotheses, uncover hidden mechanisms and explore scenarios in silico, with limited cost
and time engagement. In cancer research, this ultimately helps to improve our understanding of tumor
progression and propose treatment optimisation strategies.

The field of mathematical oncology has undergone enormous growth in the past thirty years (see for
instance the review articles [1, 3, 8, 10, 13, 95] and references therein). The integration of mathematical
and computational models into precision oncology is only emerging in recent times, particularly through
the development of digital twins [52, 112]. This includes, for instance, their application to radiation
treatment of non-melanoma skin cancers [1].

Enormous modelling efforts have been made to describe ECM digestion and cancer invasion of the
CT, e.g. see [33, 99] and references therein. Models comprising systems of partial differential equations
(PDEs), which allow for a mechanistic description of the invasion process at the tissue-scale, comprise a
particularly prolific branch of this field following the first model proposed by Gatenby and Gawlinski [42].
However, while many models have been proposed for different types of movements in the CT, fewer are
the works focussing on the role of stroma cells in boosting cancer invasion, on the biochemical reactions
responsible for activation of proteolytic enzymes and on the digestion of the BM.

1.2.1 Models of cancer invasion promoted by stroma cells

Among the many stroma cells that play a role in cancer progression, particular attention has been given
to macrophages and fibroblasts, whose prominent role in tumor spread has lead to dedicated studies on
Tumor-Associated Macrophages (TAMs) and CAFs. The focus on these stroma cells and cancer-associated
phenotypes has indeed spilled over to the mathematical modelling literature.

Various works proposed PDE and computational models of tumor spread under the cytotoxic action
of macrophages, or TAMs, e.g. see [9, 31, 68, 79, 87, 103]. In these works, the crosstalk between tumor
cells and macrophages results in the emergence of spatial patterns in the tumor spread. Most models
predict these features whilst ignoring ECM degradation, with the emergent behaviour resulting from
macrophage infiltration in the tumor, enhanced cell aggregation and cooperative migration. Eftimie and
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coworkers [9, 103] additionally showed that tumor cell motility can significantly increase in the presence
of TAMs, which may secrete MMPs involved in the degradation of the ECM.

Other works focused on modelling, using PDEs [66, 65] or agent-based [50] models, the dynamics
stemming from the molecular crosstalk between cancer cells and fibroblasts, leading to fibroblast differ-
entiation into myofibroblasts [66, 65] or CAFs [50], which then enhanced cancer cell proliferation and
motility. Kim et al. [66], in particular, reproduced in silico a Tumor Chamber Invasion Assay, in which
cancer cells and fibroblasts are plated in two chambers separated by a semi-permeable membrane which
allows soluble molecules to pass through, but not cells, and its extension including a layer of ECM on
the membrane in [65]. In the latter work, myofibroblasts secrete proMMPs which are assumed to become
active and degrade the ECM in combination with cancer cells, an assumption which indirectly models
the MMP-activating role of MT1-MMPs on the membrane of cancer cells. This simplified approach to
modelling MMP activation was also employed by Gallinato et al. [41], who proposed a PDE model for
the transition of a tumor from the in situ stage to the invasive phase, in which fibroblasts in the CT
secreted proMMPs. The proteolytic degradation of the BM by active MMPs led to an increase in the BM
permeability over time, ultimately allowing cells to pass through.

The invasion-boosting effect of SFs was captured by the hybrid model presented by Kim et al. [64],
which reproduced experimental observations on melanoma invasion. In their work, matrix-degrading
enzymes are assumed to be secreted by SFs already in their activated form. Nonetheless, as detailed
in Section 1.1.2, MMP activation may involve complex interactions and ultimately TIMPs may play an
important role in regulating ECM degradation given its dual role of MMP activator and inhibitor [77].

1.2.2 Models of TIMPs-regulated proteolytic degradation of the ECM

The first model of MMP-mediated ECM degradation accounting for the complex biochemical reactions
responsible for MMP activation was proposed by Karagiannis and Popel [62]. Ignoring spatial dynamics or
sources of proMMPs and TIMPs, the model comprises a system of ordinary differential equations (ODEs)
and was employed to investigate how varying the initial concentrations of proMMP-2 and TIMP-2 affects
the final percentage of collagen digested. The authors found that a high initial TIMP-2 concentration
saturates ECM degradation, as expected from its inhibitory function, and that the highest levels of collagen
digestions were obtained for intermediate concentrations of TIMP-2, resulting from the key role this protein
has in the activation of MMP-2. Analogous results were obtained in [98], who employed a similar model
to explore the efficacy of different MMP inhibitors, motivated by the large variety of interactions between
complexes formed during MMP-2 activation. The model proposed in [62] was extended by Donze et al. [30]
to analyse the existence and stability of oscillatory proteolytic dynamics assuming a periodic switch in
the role of TIMP-2 as activator or inhibitor of MMP-2. Another extension was proposed by Hoshino
et al. [55] who included MT1-MMP turnover on the membrane of cancer cells, following experimental
results highlighting the importance of MT1-MMP expression on invadopodia for ECM digestion. They
found that low turnover rates hindered ECM degradation also due to the key role of MT1-MMP in the
MMP-2 activation process, providing a systematic explanation for the experimental observations.

Deakin and Chaplain [17] implemented simplified MMP-2 activation dynamics, mediated by TIMP-2
and MT1-MMP, in a spatially explicit model of cancer invasion. The model, comprising a system of
PDEs, built on the previous work of Chaplain and Lolas [18] which considered ECM digestion by cancer
cells to be regulated by the plasminogen activation system. The model in [17], which could already
predict complex invasion patterns, assumed proMMP-2 to be already attached to the MT1-MMP-TIMP-2
complex and TIMP-2 to be only secreted by cancer cells, and did not include MMP-2 inhibition by TIMP-
2. Conversely, in a model of glioma invasion [89] the authors considered the inhibitory effect of TIMP-2
on MMP-2, respectively secreted by healthy and cancer cells in the presence of healthy tissue, although
MMP-2 was assumed to be secreted already in its active form. The aim of this work was to investigate
how the production of TIMP-2 and that of MMP-2 may balance each other to contain invasion. A similar
investigation was conducted by Joshi et al. [61], who considered a well-mixed system of stem cells to
reproduce in vitro experiments to elucidate the mechanisms underlying stem cell-based transplantation
therapies.

Despite the variety of models that have been proposed which consider the role of TIMPs in the
proteolytic degradation of the ECM, the few spatially explicit ones focus on the invasion of the CT by
cancer cells, assuming the digestion of the BM has already occurred. Indeed, we highlight that in [41] the
inhibitory effect of TIMPs is considered using a constant decaying rate in the active MMPs concentration
equation. Hence, the dynamics of TIMPs concentration and the dual role (activation/inhibition) that
TIMP plays is not represented.
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1.2.3 Models of cancer invasion mediated by the digestion of the basal membrane

Ribba et al. [94] proposed a modelling framework that represents the digestion of the BM and the healthy
tissue to investigate the role of therapies targeting MMPs, modelling both the BM and healthy tissue as
d-dimensional domains. Nonetheless, the BM is very thin compared to the rest of the tissue, measuring
between 1 and 1.5 µm in width [80], and modelling frameworks considering the BM to be a d−1 dimensional
manifold portray more accurately the dimensionality of the invasion process. In the works of Kim and
coworkers introduced in Section 1.2.1 [65, 66], such multi-dimensional coupling was employed to model
the semi-permeable membrane in the Invasion Chamber Assay they were reproducing, while keeping the
ECM in [66] as a d-dimensional domain. The thin membrane modelled was permeable only to soluble
molecules, which satisfied the transmission conditions derived by Friedman et al. [40] via homogenization,
and not cells, which satisfied no-flux boundary conditions.

Such multi-dimensional coupling has been employed in the PDE model of BM invasion by tumor
cells proposed by Gallinato et al. [41]. In their model, the authors apply nonlinear Kedem-Katchalsky
transmission conditions [63, 67] across the BM, which describe the discontinuity of the pressure across the
thin weakly porous membrane as a linear function of the flux. This discontinuity depends on permeability
of the membrane, which in [41] is assumed to increase over time under the proteolytic action of MMPs, as
previously described in Section 1.2.1. Chaplain et al. [19] presented a formal derivation of biophysically-
consistent transmission conditions which, compared to those in [41], allow the cell volume fraction to also
be discontinuous across the membrane, while ensuring mass conservation. These conditions, which were
later extended to the case of multiple populations in [44] and rigorously derived in [21], can be regarded as a
nonlinear generalisation of the classical Kedem-Katchalsky interface conditions [63]. In [19], in particular,
they capture BM digestion leading to cancer invasion by letting the effective mobility coefficient depend
on the local concentration of MMPs, released by cancer cells in the active form.

The selected literature review we presented showcases the very rich research in tumor invasion mod-
elling, with many elements of the biological system we seek to model. However, recent empirical obser-
vations on the role of SF secretome on carcinoma invasion, which includes both proMMP-2 and TIMP-2,
calls for further development of these modelling frameworks.

1.3 Scope and outline of the paper
In the present work, we propose a biophysically consistent mathematical model of BM digestion by MMP-
2, which are produced in their inactive form together with TIMP-2 by SFs in the stroma, and activated
by TIMP-2 and MT1-MMPs expressed on the surface of cancer cells. To the authors’ knowledge a
mathematical model that captures accurately this dynamics while representing the evolution of the BM
density in both time and space does not exist in the literature.

The model, comprising a system of PDEs and ODEs, combines the following features:
i. secretome spatiotemporal dynamics in the CT, including secretion by SFs modelled as local sources

in the stroma;
ii. transmission of SF secretome from the stroma to the BM;
iii. detailed biochemical reactions regulating MMP-2 activation at the BM;
iv. BM digestion by active MMP-2.
We model the BM as a d− 1 dimensional manifold (where d is the dimension of the domain modelling

the stroma), and let the biochemical reactions regulating MMP activation occur in this domain, aided
by cancer cells in the strict vicinity of the BM. It is important to consider that the amount of soluble
molecules coming from the CT contributing to the MMP activation dynamics may be lowered as these
molecules pass from the CT to the BM, the latter being more dense and thus less permeable. Moreover, the
utilization of these molecules in the activation cascade may affect their overall dynamics, e.g. by resulting
in a sink at the boundary corresponding to the BM. To ensure these biophysical effects are not neglected,
we formally derive the transmission conditions of SF secretome at the BM by performing a dimensionality
reduction procedure on the extended model in which the BM is modelled as a d-dimensional domain. These
phenomena, which were not captured in [19, 41], represent an important element of novelty introduced in
our work, together with the comprehensive framework including all of the dynamics listed in points i-iv
above.

The model aims to capture accurately the biological phenomena described above and to be tractable.
To improve analytical and computational tractability, also in view of model calibration with experimental
data and model extensions, we derive a reduced model under simplifying assumptions and study this latter
analytically. Via numerical simulations and global sensitivity analyses, we explore biological scenarios and
compare the sensitivity of the two models, to ensure key elements of the model’s predictive capability
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are not lost during model reduction. Using relevant parameter values carefully drawn from the literature
(that rely on dosages and experimental measurements), the numerical simulations of our model illustrate
the model’s ability to accurately describe the rupture of the BM, and the potential effect of SFs on tumor
progression from the in situ stage to the invasive one.

The paper is organized as follows: the model assumptions and equations are presented in Section 2;
the reduced model is summarized in Section 3 together with selected key analytical results; results of
the numerical simulations and global sensitivity analyses are outlined in Section 4; a discussion of the
results and research perspectives is given in Section 5.2, particularly in view of the model’s extension to
a comprehensive framework investigating tumor invasion aided by stroma cells. A list of frequently used
acronyms can be consulted at the end of the manuscript (Table 4).

2 The mathematical model

2.1 Model assumptions
We consider a potentially invasive tumour in a healthy non-proliferating tissue, focusing on the stage at
which the tumour is isolated and separated from the CT by a dense BM. The BM permeability depends
on the local density of ECM, and cancer cells may invade the CT only if the ECM density is sufficiently
lowered by proteolytic degradation. In order to study the effect of the position of the SFs and the rate
at which they secrete TIMPs and proMMPs on the digestion of the BM, we consider a reduced model of
SFs’ secretome dynamics in the CT, and ECM degradation at the BM mediated by MMP-2 activation.
In particular, the model reduction is based on the following assumptions and simplifications:

• We do not model explicitly the healthy cells but we take into account the ECM remodelling effect
of healthy cells near the BM.

• We assume cancer cell proliferation has reached saturation near the BM due to the physical con-
straints imposed by it. Therefore, we neglect the spatio-temporal dynamics of cancer cells, but do
take into account the fact that a higher cell density near the BM results in higher concentrations of
molecules involved in MMP-2 activation.

• We neglect the proteolytic action of MT1-MMPs in order to focus on their role in MMP-2 activation.
We also neglect the secretion of endogenous proMMP-2 by tumor cells.

• We do not model dynamics of specific integrins (e.g. αvβ3 or β1) and their important roles in the
activation cascade of MMP-2, but we assume that this effect is captured within specific parameters
(i.e. the reaction rates of our system).

We propose a model which translates into mathematical terms the following biological assumptions:

A1. The collagen fibers in the BM can only be decomposed by active MMPs.

A2. The reverse reaction decomposing the active MMP-ECM protein complex into the original enzyme
and substrate occur at fast rates, i.e. ECM degradation follows Michaelis-Menten kinetics.

A3. The ECM can be remodelled (i.e. produced) by healthy cells, provided space is available.

A4. MT1-MMPs, which are present on the cancer cell surfaces in monomeric form due to protein ex-
pression [16] and recycling of internalised MT1-MMPs [109], can activate proMMP-2 only when in
dimeric form.

A5. MT1-MMP dimerization, proMMP-2 activation and TIMPs-mediated MMP-2 inhibition occur ac-
cording to the biochemical reactions depicted in Figure 1.

A6. MMP and TIMP molecules decay over time (naturally and due to uptake/elimination by other cells).

A7. MT1-MMP and complexes involving MT1-MMP on the surface of cancer cells decay over time due
to the MT1-MMP internalization by tumour cells involved in the rapid turnover of this enzyme [55].

A8. SFs secrete both proMMP-2 and TIMPs, increasing the physiological levels of these molecules to
pathological levels.

A9. While MT1-MMPs and associated complexes are bound to the cell surfaces, soluble MMPs and
TIMPs secreted by SFs are diffusive.
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Note that the biochemical reactions summarized in Figure 1 allow us to capture the role TIMP-2 has in
the proMMP-2 activation process and the fact that they may hinder the proteolytic action of MMP-2 in
three possible ways [77]:

(i) by excessive binding to MT1-MMP, reducing the number of free MT1-MMP molecules available for
proMMP-2 fission;

(ii) by directly binding to proMMP-2, thus sequestering it from the activation complex;

(iii) by directly binding to active MMP-2, blocking its proteolytic action.

Figure 1: Biochemical reactions included in the model. Visual summary of biochemical reactions
between MT1-MMP monomers, MT1-MMP dimers, proMMP-2s, TIMP-2s and active MMP-2s included
in the model. MT1-MMPs, and all derived complexes, reside on the membrane of cancer cells, and may
be subject to turnover (via expression and internalisation), a simplified version of which is included in
our model. The association and dissociation rate ki depend on specific integrin availability (e.g. beta 3
integrin is responsible for recruiting proMMP-2 [26]) and may de facto be subject to temporal fluctuations,
but are assumed to be constant in our model for simplicity.

2.2 Model equations
Let t ∈ R≥0 denote time and x = (x1, x2) ∈ Ω denote the spatial position in the two-dimensional domain
Ω ⊂ R2, modelling a 2D cross-section of the CT. The boundary of the domain Ω is denoted ∂Ω. Namely,
we assume the domain to be the square Ω = [0, L]× [0, L] and that the BM is located at the top boundary
Γ ≡ {x = (x1, L)} with x1 ∈ [0, L], as illustrated in Figure 2.

In this article, we use the following units: seconds (s) for time, decimeter (dm) for space, and nanomolar
(nM=nmol/dm3) for molecular concentrations and BM density. Moreover, we use the following notation
(see also Figure 1):

• The density of tumor cells in a sufficiently close neighbourhood of the BM is denoted by ρ0 (in
number of cell/dm3) and is assumed to be constant for t ∈ [0, T ] where T > 0 is a finite time
horizon.

• The density of ECM in the BM, i.e. at x ∈ Γ, is denoted by M(x, t) (in nM);

• The concentration of MT1-MMPs in monomeric and dimeric form at x ∈ Γ are denoted, respectively,
by cm(x, t) and cd(x, t) (in nM).

• The concentration of unbound proMMP-2, TIMP-2 and active MMP-2 at x ∈ Γ are denoted, re-
spectively, by cp(x, t), ct(x, t) and ca(x, t) (in nM).

• The concentration of unbound soluble proMMP-2 and TIMP-2 secreted by SFs in the CT, i.e. x ∈ Ω,
are denoted, respectively, by c̄p(x, t) and c̄t(x, t) (in nM).
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Conjunctive
tissue

Epithelium BM

x1

x2

x3

SF

Figure 2: Schematic illustration of the epithelium, CT, and the BM. The red vertical plan
represents our two-dimensional domain Ω that is a cross section of the CT. We also represented that the
CT contains a SF (denoted by the star-shaped cell).

• The concentration of the different MT1-MMP dimer (‘2MT1’) complexes observed at x ∈ Γ during
MMP-2 activation by ci(x, t) with i = 1, ..., 3, i.e. 2MT1-TIMP (i = 1), 2MT1-TIMP-proMMP
(i = 2) and 2MT1-TIMP-TIMP (i = 3) (in nM).

• The concentration of TIMP-bound proMMP-2 and MMP-2 at x ∈ Γ are denoted, respectively, by
ctp(x, t) and cta(x, t) (in nM).

Then, the model is given by the following ordinary differential equation system at x ∈ Γ for t ∈ (0, T )

dM

dt
= −γca

M

Km +M
+ rM

(
1− M

Mmax

)
+

, (2.1)

dcm
dt

= αmρ0 −k0c
2
m + k−0cd − βmcm, (2.2)

dcd
dt

= k0c
2
m − k−0cd − k1cdct + k−1c1 − βdcd, (2.3)

dcp
dt

= Ip(t)−k2cp(ct + c1) + k−2(ctp + c2)− βpcp, (2.4)

dct
dt

= It(t)−ct[k1(cd + c1) + k2(cp + ca)] + k−1(c1 + c3) + k−2(ctp + cta)− βtct, (2.5)

dca
dt

= k3c2 − k2ctca + k−2cta − βaca, (2.6)

dc1
dt

= k1cdct − c1[k1ct + k2cp] + k−1(c3 − c1) + (k−2 + k3)c2 − β1c1, (2.7)

dc2
dt

= k2c1cp − (k−2 + k3)c2 − β2c2, (2.8)

dc3
dt

= k1c1ct − k−1c3 − β3c3, (2.9)

dctp
dt

= k2ctcp − k−2ctp − βtpctp, (2.10)

dcta
dt

= k2ctca − k−2cta − βtacta. (2.11)

modelling the digestion of the ECM in the BM, coupled – though the terms Ip(t) and It(t) in (2.4) and (2.5),
defined in (2.14), the initial conditions and boundary conditions (2.18)-(2.19) – with the following PDE
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system for (x, t) ∈ Ω× (0, T ),

∂t c̄p − D̄p∆ c̄p = S̄p(x)− βp c̄p, (2.12)

∂t c̄t − D̄t∆ c̄t = S̄t(x)− βt c̄t, (2.13)

modelling the spatio-temporal dynamics of the concentration fields of TIMP-2 and proMMP-2 in the CT.

ECM degradation and remodeling in the BM. The first term on the right-hand-side of equa-
tion (2.1) models the proteolytic degradation of ECM proteins by active MMP-2s (A1), modelled according
to Michaelis-Menten kinetics (A2), with turnover number γ > 0 and Michaelis–Menten constant Km > 0.
Following the modelling strategy adopted in [29], the second term on the right-hand-side of equation (2.1)
models ECM remodeling (A3), which occurs at a maximum rate rM > 0 and only if space is available,
where Mmax > 0 is the ECM density carrying capacity at the BM and where we have used the notation
(·)+ = max(·, 0).

MMP-2 activation near the BM. The first term on the right-hand-side of equation (2.2) models
the expression of MT1-MMP in monomeric form on the surface of cancer cells (A4), occurring at a
rate αm > 0. The terms highlighted in teal in equations (2.2)-(2.11) model the biochemical reactions
summarised in Figure 1 (A5) according to the law of mass action, with reaction rates ki > 0 (i =
0,−0, 1,−1, 2,−2, 3). The last terms on the right-hand-side of equations (2.4)-(2.6), (2.10) and (2.11)
model natural decay of ci(t, x) at a rate βi > 0, for i = {p, t, a, tp, ta} (A6). The last terms on the right-
hand-side of equations (2.2)-(2.3) and (2.7)–(2.9) model internalization of MT1-MMP (A7) at rates βi > 0,
for i = {m, d, 1, 2, 3} (assumed to be equal, see Table 1). Finally, the first terms on the right-hand-side
of equations (2.4) and (2.5) model the inflow/outflow of proMMP-2 and TIMP-2 due to environmental
sources (A8), and are given by

Ip(t) = κ̂p ( c̄p|x=0 − cp ) and It(t) = κ̂t ( c̄t|x=0 − ct ) , (2.14)

modelling the transmission of proMMP-2 and TIMP-2 from the CT to the BM at the right boundary Γ,
with transmission rates κ̂i > 0, as derived in the formal model reduction procedure inspired by [74] and
detailed in Appendix A.

SFs’ secretome dynamics in the CT. The second terms on the left-hand-side of equations (2.12)
and (2.13) model diffusion of c̄p(t, x) and c̄t(t, x) at a rate Dp > 0 and Dt > 0, respectively (A9). The
first terms on the right-hand-side of equations (2.12) and (2.13), i.e. S̄p(x), S̄t(x), respectively model the
sources of proMMP-2 and TIMP-2 in the CT. They are of the form

S̄p(x) = sphp + fp(x) and S̄t(x) = spht + ft(x) , (2.15)

where sphi (i = {p, t}) is a constant source term modelling the physiological production of proMMP-2 and
TIMP-2 by cells of the CT, and fi(x) (i = {p, t}) model the constant secretion of proMMP-2 and TIMP-2
by SFs. In particular, we take

fp(x) =

N∑
i=1

rpδxi,σ(x) and ft(x) =

N∑
i=1

rtδxi,σ(x)

where we model proMMP-2 and TIMP-2 production at maximum rates rp > 0 and rt > 0, respectively,
as sharp gaussians centered at the positions xi ∈ Ω (i = 1, ..., N) of the N SFs present in the domain,
i.e. we define

δxi,σ(x) :=
1√
2πσ2

exp

(
− (x− xi)

2

2σ2

)
, (2.16)

for some small variance 0 < σ2 ≪ 1 (we take σ2 = 0.04 dm2). Finally, as in equations (2.4) and (2.5), the
last terms in (2.12) and (2.13) model natural decay (A6).

Boundary conditions. We assume that soluble proMMPs and TIMPs produced by SFs cannot cross
the boundaries of the domain, and complement equations (2.12) and (2.13) with the Neumann boundary
conditions

D̄p∇ c̄p · ν = D̄t∇ c̄t · ν = 0 on ∂Ω \ Γ× (0, T ), (2.17)
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with ν the outward normal vector to the boundary ∂Ω. While in vivo these soluble molecules may
escape the tissue through epithelial membranes, the physical walls of experimental devices justify this
assumption in vitro. The transmission of proMMP-2 and TIMP-2 from the CT to the BM is captured by
Robin boundary conditions at Γ, as derived in the model reduction procedure detailed in Appendix A,
i.e. equations (2.12) and (2.13) are also complemented with (which are compatible with (2.14))

−D̄p∇c̄p · ν = κp(c̄p − cp), on Γ× (0, T ), (2.18)
−D̄t∇c̄t · ν = κt(c̄t − ct), on Γ× (0, T ), (2.19)

where κp > 0 and κt > 0 describe the diffusive permeability of proMMP-2 and TIMP-2, respectively, in
the BM. While these molecules can cross the BM, we assume that they will immediately interact with
cancer cells in the close proximity of the BM. Such dynamics can be adequately captured by the chosen
boundary conditions at Γ.

Initial conditions. We consider the initial conditions to reflect the scenario in which no ECM degra-
dation, biochemical reaction, or secretion by SFs has taken place. Thus, for simplicity, we consider the
initial ECM density to be at carrying capacity, i.e.

M(x, 0) = Mmax on Γ. (2.20)

All other soluble molecules, in the CT and at the BM, are taken to be at physiological levels at day 0, i.e.

ci(x, 0) = cph
i for i = {m, d, a, 1, 2, 3, tp, ta} on Γ, (2.21)

cp(x, 0) = cph
p and cp(x, 0) = cph

t on Γ, (2.22)

c̄p(x, 0) = cph
p and c̄t(x, 0) = cph

t a.e. in Ω̄. (2.23)

2.3 Parameter values
The baseline values used for the model parameters are summarized in Table 1. We combine results
from experiments and computational works to characterize the maximum number of parameters from
the existing literature (see Reference publications in Table 1). Some parameters are estimated here,
consistently with our model equations (marked with a * next to the Reference publications in Table 1).
In particular:

• the BM carrying capacity is estimated from empirical measurements of collagen IV, the main com-
ponent of the BM, and its molecular weight;

• internalisation rates of MT1-MMP dimers and complexes are assumed to be the same as those of
MT1-MMP monomers;

• decay rates of proMMP-2, TIMP-2 and MMP-2 are computed from half-life values, those of TIMP-
2/proMMP-2 and TIMP-2/MMP-2 complexes are estimated from physiological levels assuming they
correspond to equilibrium concentrations;

• physiological production rates of proMMP-2 and TIMP-2 are estimated from physiological levels
assuming they correspond to equilibrium concentrations;

• physiological levels of MT1-MMPs, proMMP-2, TIMP-2, MMP-2 and TIMP-2/MMP-2 complex are
estimated from empirical measurements of serum levels of these proteins and their molecular weight;

• values of the diffusive permeability and transmission rates of proMMP-2 and TIMP-2 in the BM are
estimated consistently with the physical considerations and definitions introduced in the formal BM
dimension reduction procedure, detailed in appendix A.

Details about the references used and the computations made to obtain the above-listed parameter values
can be found in Appendix B.

Remark 1. It is worth mentioning that we use measurements in blood and transpose the values to tissue
concentrations. This may be untrue and most probably the values depend on the tissue. However, as we
were unable to find measurement in tissue samples, we use these values in this work. This can easily be
updated whenever better data is available.

Few parameters lack empirical measurements or estimates in the literature (marked with only a * in
the last column of Table 1). For simplicity, we set the physiological levels of the remaining molecular
complexes to zero. Relevant parameter values for the tumor cell density in contact with BM and the
production rates of proMMP-2 and TIMP-2 by SFs are found using numerical testing. In particular,
baseline values of TIMP-2 and proMMP-2 production rates by SFs are chosen to add 1% and 200%,
respectively, to the respective physiological production rate at the SF location.
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Parameter Biological meaning Value & Unit Reference
γ Maximum ECM degradation rate 0.236 s−1 [61]

Km Michaelis-Menten constant of ECM proteolytic degradation 0.1357 nM [61]
rM Maximum ECM remodeling rate 6.18× 10−4 nM/s [61]

Mmax ECM carrying capacity 62.5× 103 nM * [2]
αm Production rate of monomeric MT1-MMP by cancer cells 5× 10−4 nmol/s/cell [17]
ρ0 Number of tumor cells adjacent to the BM 1× 102 cells/dm2 *
k0 Maximum MT1-MMP dimerization rate 2 1/nM/s [55]
k−0 Dissociation rate of MT1-MMP dimers 1× 10−2 s−1 [55]
k1 Association rate of TIMP-2 and MT1-MMP 2.71 1/nM/s [105]
k−1 Dissociation rate of bound MT1-MMP and TIMP-2 1× 10−4 s−1 [105]
k2 Association rate of proMMP-2 and TIMP-2 0.14 1/nM/s [86]
k−2 Dissociation rate of bound proMMP-2 and TIMP-2 1× 10−4 s−1 [86]
k3 MMP-2 activation rate 0.02 s−1 [62]
βm MT1-MMP monomer internalization rate 3.85× 10−2 [55]
βd MT1-MMP dimer internalization rate 3.85× 10−2 * [55]

β1, β2, β3 Internalization rate of MT1-MMP complexes 3.85× 10−2 * [55]
βp Decay rate of proMMP-2 6.08× 10−4 s−1 * [83]
βt Decay rate of TIMP-2 4.45× 10−5 s−1 * [15]
βa Decay rate of active MMP-2 1.22× 10−3 s−1 * [83]
βtp Decay rate of TIMP-2/proMMP-2 complex 3.60 s−1 *
βta Decay rate of TIMP-2/MMP-2 complex 0.035 s−1 *

Dp, Dt Diffusion coefficients of proMMP-2, TIMP-2 1.29× 10−6 dm2/s [17, 22]
sphp Physiological production rate of proMMP-2 1.09×10−2 nM/s * [90, 83]
spht Physiological production rate of TIMP-2 4.28×10−4 nM/s * [15, 90]
rp Production rate of proMMP-2 by senescent fibroblasts 8.34×10−4 nM/s *
rt Production rate of TIMP-2 by senescent fibroblasts 2.22 ×10−6 nM/s *

κp, κt Diffusive permeability of proMMP-2 and TIMP-2 in the BM 1.935×10−6 dm/s * [17, 22, 96]
κ̂p, κ̂t Transmission rate of proMMP-2 and TIMP-2 across the BM 0.9675 s−1 * [17, 22, 96]
cph
m Physiological levels of monomeric MT1-MMP 0.14 nM * [73]
cph
d Physiological levels of dimeric MT1-MMP 0.14 nM * [20]
cph
p Physiological levels of proMMP-2 18 nM * [90, 101]
cph
t Physiological levels of TIMP-2 9.6 nM * [90, 102]
cph
a Physiological levels of active MMP-2 0.44 nM * [90, 101]
cph
ta Physiological levels of TIMP-2/MMP-2 complex 17 nM * [90]
cph
tp Physiological levels of TIMP-2/proMMP-2 complex 6.72 nM * [4]

cph
1 , cph

2 , cph
3 Physiologial levels of MMP-2 activation complexes 0 nM *

Table 1: List of parameters found in equations and initial conditions (2.1)-(2.23) and baseline parameter
values used in this paper, drawn from the literature. Parameters which are not explicitly found in the
literature and were calculated here are marked with a * in the last column. Details about the calculations
used to estimate parameters from the referenced papers can be found in Appendix B.

3 Reduced system from simplifying assumptions
To improve analytical and computational tractability, in view of future work comprising model calibration
with experimental data and model extensions, we derived a reduced system under simplifying assumptions.

In summary, we assume the inhibitory action of TIMP-2 is irreversible, that the evolution of the
complexes’ concentrations c1, c2, c3 and MT1-MMP turnover are very fast compared to other dynamics in
the system, and that natural decay in the BM is negligible in the timescale considered (cf. SA1-SA4 in
Appendix C). In the reduced, simplified model we have that ∀x ∈ Γ and t ∈ (0, T )

dM

dt
= −γca

M

KM +M
+ rM

(
1− M

Mmax

)
, (3.1)

dct
dt

= κ̂tct − k2ct(cp + ca)− κ̂tct, (3.2)

dcp
dt

= κ̂pcp − k2cpct

(
1 +

k1k3
k−1(k−2 + k3)

c̄d

)
− κ̂pcp, (3.3)

dca
dt

=
k1k2k3

k−1(k−2 + k3)
c̄dctcp − k2ctca, (3.4)

in which c̄d is a given parameter representing the constant concentration of available dimeric MT1-MMP
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and ci ≡ ci(x, t)|Γ (i = {t, p}), i.e. the concentrations of TIMP-2 and proMMP-2 at the BM coming from
the CT. System (3.1)–(3.4) is coupled to System (2.12)–(2.13).

Equilibrium concentrations. We analysed the steady state of the reduced system (3.2)–(3.4), cf.
Appendix C.1.1. The corresponding equilibrium concentrations are plotted in Figure 3 for varying values
of the concentrations of TIMP-2 and proMMP-2 reaching the BM from the CT. We see that the equilibrium
concentration of active MMP-2: increases (linearly) with the amount of proMMP-2 coming from the CT;
(linearly) decreases with the amount of TIMP-2 coming from the CT; is zero in the absence of TIMP-2
coming from the CT; increases with the amount of MT1-MMP dimers (cf. Supplementary Figure S1).
These results are consistent with the dual role of TIMP-2 in MMP-2 activation.

Figure 3: The analytical equilibrium of the reduced system demonstrates that the dual role
of TIMP-2, as activator and inhibitor of MMP-2, is still captured in the reduced model.
Concentration of TIMP-2 (left), proMMP-1 (center) and active MMP-2 (right) at steady state of the
reduced ODE system (3.2)–(3.4), for varying fixed concentrations of proMMP-2 (cp∗) and TIMP-2 (ct∗)
coming from the CT. The steady state is given by (C.3) for ct

∗ > 0, and by (C.4) otherwise, under the
parameter values listed in Table 1 and Ca = 0. The latter corresponds to the value obtained at equilibrium
under initial conditions ct = cp = ca = 0 at t = 0. We consider TIMP-2 and proMMP-2 concentrations
from the CT in the ranges ct

∗ ∈ [0, cph
t + 1%cph

t ] and cp
∗ ∈ [0, cph

p + 200%cph
p ], in line with the parameter

choices reported in Section 2.3.

BM rupture and cancer invasion. We define BM rupture as the decrease of the BM density below
an arbitrary value that corresponds to the critical density below which tumor cells can invade. We
derived a condition for this long-term sustained BM rupture, allowing cells to begin invading the CT,
cf. Appendix C.1.2. From this condition, we have that BM rupture and cancer invasion is more likely
to occur for: higher values of active MMP-2 at equilibrium, which depends on the amount of proMMP-
2 and TIMP-2 coming from the CT and MT1-MMP2 dimers; higher BM degradation rates; lower BM
remodeling rates. These results are consistent with the biological meaning of these quantities.

4 Numerical results
To test the model’s ability to predict biologically relevant scenarios, we conduct numerical simulations
of the full System (2.1)–(2.13), complemented with definitions (2.14)-(2.16), boundary conditions (2.17)-
(2.19), and initial conditions (2.20)-(2.23), under the baseline parameter values stated in Table 1. The
results are discussed in Section 4.1, while section 4.2 is dedicated to a global sensitivity analysis of both
the full and reduced models, using the SAFE (Sensitivity analysis For Everyone) toolbox [92].

Numerical method and set up. In Section 4.1 we set dim(Ω) = 2 and dim(Γ) = 1 (“2D” case), while
in Section 4.2 we set dim(Ω) = 1 and dim(Γ) = 0 (“1D” case). In particular, in 2D we assume that the
domain Ω = [0, L]× [0, L] is a square of side length L dm (or, in 1D, a line of length L dm). We consider
a uniform discretization of the domain Ω using Nx ×Nx nodes (or, in 1D, using Nx nodes), and using Nx

nodes for Γ. We construct a cell-centered finite volume spatial discretization of our system and integrate
it in time using an explicit Runge-Kutta integration method, up to a final time T. For details about our
numerical scheme, we refer to Appendix D, and the values of T, L and Nx used are reported in Table 2.
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Parameter Meaning Unit Value S.4.1 Value S.4.2
dim(Ω) Dimension of the CT 2 1

T End time days 7 1
L Length in each dimension of Ω dm 0.1 0.1
Nx Number of nodes in the xi direction 50 20

Table 2: Simulation parameters used in Section 4.1 and Section 4.2.

4.1 Model’s ability to reproduce biologically relevant scenarios
4.1.1 Biologically relevant test cases

To test the model’s ability to reproduce biologically relevant scenarios, we consider three test cases:

• Healthy test case: we consider a healthy tissue, free from any tumor cells, i.e. ρ0 = 0, and assume
that there are no SFs in the CT.

• Tumor test case: we assume that a tumor is present, but no SFs, and the tumor cell density in
contact with the BM is given by ρ0 = 103χ[L/4,3L/4].

• Tumor with a senescent fibroblast test case: we assume a tumour is present, and again consider
ρ0 = 103χ[L/4,3L/4], as well as a SF in the CT at a position (xSF

1 , xSF
2 ).

4.1.2 Results of the full model under the baseline parameter set

The BM density at day 7 predicted by the model for each test case is displayed in Figure 4 (left), where we
also mark the critical BM density for BM rupture (assumed to be Mcrit = Mmax/2), and the corresponding
concentration of TIMP-2 and proMMP-2 in the CT at day 7 is displayed in Figure 5. We also show the
time evolution of the BM density in Figure 4 (right), which is still evolving at day 7 in the presence of a
tumour – in fact, its dynamics span several weeks (cf. Supplementary Figure S2). This is not the case for
the remaining molecular concentrations in our system, which have all reached a steady state by day 7 –
in fact, their dynamics only span several hours (cf. Supplementary Figures S3-S5).

Figure 4: The model predicts that the presence of a SF speeds up BM digestion, with the
fastest digestion rate occurring at the point closest to the SF. BM density predicted by the full
model for the healthy (green), tumour (blue) and tumour+SF (red) test cases. The BM density M(t, x) is
plotted over time (up to day 7) at x1 = xSF

1 , i.e. at the point in the BM closest to the SF, on the left. On
the right we plot the spatial distribution of the BM density at day 7, marking the position x1 = xSF

1 closest
to the SF with a dotted line. The dashed horizontal line marks the critial BM density Mcrit below which
we expect cells to be able to invade BM. These results are obtained solving System (2.1)–(2.13), under
definitions (2.14)-(2.16), boundary conditions (2.17)-(2.19), and initial conditions (2.20)-(2.23), under the
parameter values in Table 1 or as specified in Section 4.1.1 for each test case.
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Figure 5: The inclusion of a SF in the model results in the prediction of accurate gradients of
proMMP-2 in the CT, and faster digestion of the BM. TIMP-2 (top) and proMMP-2 (bottom)
concentrations in the CT at day 7 predicted by the full model for the healthy (left), tumour (center) and
tumour+SF (right) test cases. On the right plots, the cross marks the position of the SF in the CT,
i.e. the center of diffusion of SF secretome. The BM is marked in red at x2 = L along with its status at
day 7: intact (solid line), partially degraded (dashed) or ruptured (dotted), i.e. degraded below a critical
value, cf. Figure 4 (left). These results are obtained solving System (2.1)–(2.13), under definitions (2.14)-
(2.16), boundary conditions (2.17)-(2.19), and initial conditions (2.20)-(2.23), under the parameter values
in Table 1 or as specified in Section 4.1.1 for each test case.

Healthy test case. In the healthy test case we observe no BM degradation, as displayed in Figure 4
(green line), and as expected in a healthy epithelial tissue. As we assumed no tumor cells are present in a
healthy tissue, there is no production of monomeric MT1-MMP and consequently no MMP-2 activation:
even though their initial concentrations were positive, they becomes zero exponentially fast (cf. Supple-
mentary Figure S3) due to internalisation and natural decay. Interestingly, we notice that a gradient of
TIMP-2 and proMMP-2 in the CT forms in the x2 direction, i.e. orthogonally to the BM, as displayed in
Figure 5 (first column). This is due to the transmission conditions at the BM and the reactions occurring
at this location, which result in an increase in TIMP-bound proMMPs (cf. Supplementary Figure S3).

Tumor test case. In the tumour test case we observe partial degradation of the BM in the region
where the tumour is present, as displayed in Figure 4 (blue line). This localized degradation of the BM
in the tumor region is explained by the localization of MT1-MMP produced by tumor cells, which ensure
positive levels of active MMP-2 persist locally (cf. Supplementary Figure S3). This supported by the
experimental results of [81], in which we observe a localized activation of proMMP-2 close to the BM.
Nonetheless, the resulting levels of active MMP-2 do not suffice to predict cancer invasion within one week
– this will happen as time advances (cf. Supplementary Figure S2). On the other hand, we observe in
Figure 5 (second column) a gradient of TIMP-2 and proMMP-2 concentrations in the CT analogous to
that observed in the healthy test case, with slightly lower levels of TIMP-2 recorded in the CT at day 7.
This is likely due to the recruitment of these molecules in the MMP-2 activation cascade, as demonstrated
by the increase in the levels of molecular complexes (cf. Supplementary Figure S3, bottom row).

Tumour with a SF test case. With the addition of a SF close to the BM – specifically, at a distance
of 0.5 mm in Figures 4 and 5 – we instead observe BM rupture within 5 days, as displayed in Figure 4 (red
line). This is due to the the large amount of proMMP-2 secreted by the SF that reached the BM in the
tumour region, creating a larger imbalance between activation and inhibition compared to the tumor test
case, resulting in a larger amount of active MMP-2 (cf. Supplementary Figure S5) and ultimately faster
BM digestion. Interestingly, the digestion of the BM is asymmetric in space, with the fastest digestion
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Figure 6: The model predicts that the presence of a SF in the CT can induce BM rupture
according to a delicate balance between its distance from the BM and the rates at which
it secretes proMMP-2 and TIMP-2. BM density at the point closest to the SF (i.e. at x1 = xSF

1 )
predicted by the full model for the tumour+SF test case, varying the distance between the SF and the
BM. In particular, we consider a SF located at xSF

2 = 0.005 dm (left), at xSF
2 = 0.05 dm (center)

and at xSF
2 = 0.095 dm (right), recalling that the BM is located at x2 = 0.1 dm. In each plot, the

BM density predicted by the model at day 7 is shown for varying values of the proMMP-2 secretion
rate rp ∈ [0, 4.17 × 10−3] s−1 and the TIMP-2 secretion rate rt ∈ [0, 2.22 × 10−4] s−1 by the SF. The
black line marks the critical BM density Mcrit below which ECM pore size are sufficiently large for
cancer cells to pass through, here referred to as BM rupture. Following this criterion, the regions of the
parameter space in which the model predicts “RUPTURE” or “NO RUPTURE” by day 7 are marked on
each plot. These results are obtained solving System (2.1)–(2.13), under definitions (2.14)-(2.16), boundary
conditions (2.17)-(2.19), and initial conditions (2.20)-(2.23), under the parameter values in Table 1 or as
specified in Section 4.1.1 for the Tumour+SF test case.

rate occurring at x1 = xSF
1 , i.e. in correspondence of the SF position, at which point we expect complete

BM digestion shortly after 10 days (cf. Supplementary Figure S2). This is due to the radial diffusion of
the SF secretome from the SF position in the CT, as displayed in Figure 5 (bottom right plot), which
creates spatial heterogeneity in the enzymes concentration fields in the BM mirroring the pattern observed
in the BM, with the largest amount of proMMP-2 in the BM occurring at the point closest to the BM (cf.
Supplementary Figure S5), i.e. at x1 = xSF

1 in our geometric setting. The spatial pattern of proMMP-2
in the CT is not observed for TIMP-2 in Figure 5 (top right plot) only because production of TIMP-2 by
the SF is assumed to be small, and thus the effect of the SF on this concentration field appears negligible.

4.1.3 Further exploring the role of SF location and secretion rates

Under the baseline parameter set it is clear that the presence of a SF close to the BM may significantly
speed up BM digestion and, consequently, cancer invasion due to their secretome. We recall that, due to
a lack of empirical measurements, the secretion rates of TIMP-2 and proMMP-2 by SFs were arbitrarily
set in the baseline scenario. We thus explored how the BM density at x1 = xSF

1 , i.e. the point at the
BM most affected by SF secretome, varying the distance of the SF from the BM, and its TIMP-2 and
proMMP-2 secretion rates, as displayed in Figure 6. We observe that higher secretion rates of proMMP-2
and lower secretion rates of TIMP-2 by SFs result in a lower BM density at day 7 and thus higher change
of observing BM rupture within a week. This is in line with the results of the steady state analysis of the
reduced system and the equilibrium concentration of active MMP-2 shown in Figure 3. However, if the
SF does not secrete any TIMP-2, BM degradation may still occur, suggesting that physiological levels of
TIMP-2 in the CT suffice to initiate the MMP-2 activation cascade, and any TIMP-2 produced by SF will
likely play a saturating role. Finally, it is clear from Figure 6 that decreasing the distance of the SF from
the BM increases its influence on BM dynamics, and BM rupture may be observed at day 7 for a wider
range of TIMP-2 and proMMP-2 secretion rates. We expect that increasing the proportion of SFs in the
CT close to the BM would lead analogous results.
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4.2 Global sensitivity analysis of the full and reduced models
4.2.1 Description of the global sensitivity analysis method

Global sensitivity analysis (GSA) is a powerful tool to study how the uncertainty in the model’s outputs
depends on the uncertainties of the inputs. To better understand the relative importance of the parameters
of the model and identify key ones, we conduct GSA using the SAFE toolbox [92, 91] for Matlab. In
particular, we employ the Elementary Effects (EEs) Test included in the toolbox, encoding a revised
version of the Morris method [84]. This GSA method is based on the calculation of the EEs associated
with each model input (parameter values, in our case), and revised versions of the Morris method consider
the absolute value of EEs to avoid potential cancellation effects in the summation of EEs with opposite
signs. In particular:

• a large mean of the absolute value of the EEs indicates the parameter has individual important effect
and, viceversa, a small mean indicates the parameter has a negligible effect on the output;

• a large standard deviation of the absolute value of the EEs indicates the parameter has a non-linear
effect or one dependent on its interaction with other parameters.

The EE Test is the least computationally expensive GSA method, and it is therefore particularly suited
for screening and ranking of model inputs in more involved mathematical models, like the one presented
here. For an overview of GSA methods, we refer the interested reader to the review article [58].

As GSA methods need to run a lot of simulations of the model, we restrict our analysis to the one
dimensional case, i.e. dim(Ω) = 1 and dim(Γ) = 0. As the addition of a SF in the CT can particularly
speed up BM digestion, as seen in Section 4.1, we set up our GSA to target variations of the BM density
M . To capture variations in the time evolution of this quantity, we consider Nt = 100 equally spaced time
points tj (j = 1, . . . , 100) at which we save the BM density M(tj), and compute

Y = ∆t

Nt∑
j=1

|M(tj)|
|M0|

, (4.1)

where ∆t = T/Nt is the spacing between two saved time points. From now on, the quantity Y will be
referred to as the output of our simulations. The spatio-temporal parameters used in each model simulation
(i.e. T , L, Nx) for the GSA are specified in Table 2 (last column). The parameter sets considered as inputs
during the GSA are specified in following sections for the full and reduced model, respectively. For each
parameters set, the GSA relies on 500 points sampled from the parameter space using the Latin Hypercube
technique with a radial sampling method. The parameter space is defined considering each parameter has
a uniform probability distribution in a range chosen to span several orders of magnitude both below and
above that of the baseline parameter value. These ranges are specified in Table 3 for the parameters of
the full model, and for c̄d we consider values in the range [10−7, 10−3].

Parameter Lower bound Upper bound Parameter Lower bound Upper bound
k0 0.02 200 γ 2.36× 10−3 23.6
k−0 1× 10−4 1 KM 1.357× 10−3 13.57
k1 0.0271 271 rM 6.18× 10−6 6.18× 10−2

k−1 1× 10−6 0.01 ρ0 10 10000
k2 0.0014 14 αm 5× 10−6 0.05
k−2 1× 10−6 0.01 Dt 1.29× 10−8 1.29× 10−4

k3 2× 10−4 2 Dp 1.29× 10−8 1.29× 10−4

βt 4.45× 10−7 4.45× 10−3 κt 1.935× 10−8 1.935× 10−4

βp 6.08× 10−6 6.08× 10−2 κp 1.935× 10−8 1.935× 10−4

βa 1.29× 10−8 1.29× 10−4 sph
t 4.272× 10−6 4.272× 10−2

βm 3.85× 10−4 3.85 sph
p 1.0944× 10−4 1.0944

βd 3.85× 10−4 3.85 rt 2.22× 10−8 2.22× 10−4

βtp 0.036 360 rp 8.28× 10−6 8.28× 10−2

βta 3.5× 10−4 3.5 xSF
1 0 0.1

Table 3: Lower and upper bounds of the parameter values considered in the GSA of the full model, sorted
in parameter Set 1 (left) and Set 2 (right). The unit of measurement of each parameter is given in Table 1.
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4.2.2 Sensitivity analysis of the full model

We perform GSA on the full model (2.1)–(2.13), by analysing separately two parameters sets:

Set 1: The biochemical reaction coefficients (k0, k−0, k1, k−1, k2, k−2, k3) and the molecular decay coeffi-
cients (βt, βt, βp, βm, βd, βtp, βta);

Set 2: The parameters related to the BM degradation and production (γ,KM , rM ), the cancer cells and
their MT1-MMP expression (ρ0, αm), the production and diffusion of TIMP-2 and proMMP-2 in
CT (spht , sphp , rt, rp, Dp, Dt) and their transmission to the BM (κt, κp), the position of the SF (xSF

1 ).

Remark 2. We emphasize that variations of the parameter βd affect Equation (2.3) and Equations (2.7)–
(2.9) as βd = β1 = β2 = β3. Similarly, variations of κi (i = {p, t}) affect Equations (2.18)-(2.19), but
also Equations (2.4)-(2.5) via definition (2.14) as κ̂i = κi/ε (see (A.16)).
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Figure 7: GSA highlights the most influential parameters of the full model (2.1)–(2.13) on the
speed of BM digestion. Using Morris’ method, we quantify the impact of changes in parameter values
on the time evolution of the BM density. The boxplots display mean and standard deviation of the EEs of
each parameter in Set 1 (a) and Set 2 (b), as prescribed in Section 4.2.2, on the output Y defined in (4.1)
(see Section 4.2.1 for details on the methodology). The most influential parameters are the decay rates of
MT1-MMP dimers βd and TIMP-2 βt, the activation rate of MMP-2 k3, the rate of MT1-MMP monomer
expression by cancer cells αm and the tumor cell density ρ0. Changes of these parameters lead to large
linear and nonlinear effects on the output.

Figure 7 summarizes the results of the GSA of the full model. We observe that, for parameter Set 1
(Figure 7a), the most important parameter is the decay rate βd. This is explained by the fact that changes
in this value not only affect the concentration of MT1-MMP dimers, which is crucial in the activation
process, but also that of all complexes involving this compound (cf. Remark 2), resulting in an amplified
effect of this parameter. Changes in the TIMP-2 decay rate βt also lead to large variations in the output,
visibly larger than those observed for the decay rates of proMMP-2 and MMP-2. As this parameter directly
affects the amount of TIMP-2, this result further highlights the importance of the dual role of TIMP-2 as
both activator and inhibitor of MMP-2. The parameter with third largest impact on the model output is
k3, the rate of MMP-2 activation at the end of the activation cascade, which directly impacts the amount
of active MMP-2. The larger effect of this parameter, compared to those of the association coefficients
involved in the activation process k0, k1 and k2, could be attributed to the irreversibility of the reaction
it relates to. On the other hand, the dissociation rates k−i (i = {0, 1, 2}) and decay rates of TIMP-bound
active and inactive MMP-2 appear to have a negligible effect. In parameter Set 2 (Figure 7b), we notice
that the MT1-MMP expression rate by cancer cells αm has the largest effect on the outcome, immediately
followed by the cancer cell density ρ0. This re-stresses the importance for BM digestion of MT1-MMP
production on the surface of cancer cells, indeed one of the corner stones of MMP-2 activation. We note
that the Michaelis-Menten constant of BM proteolytic degradation KM , the BM production rate rM and
TIMP-2 production rate by the SF rt appear to have negligible effect, likely due to the relatively small
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value of these parameters. Last, but not least, we remark that all most influential parameters induce
both linear and non-linear effects. This means that the influence of an individual change of any of these
parameters lead to an important variation in the output but also that changing two or more of these
influential parameters at the same time results in an even larger variation of the output due to cumulative
effects.

4.2.3 Global sensitivity analysis of the reduced system

We perform GSA on the reduced system (3.1)–(3.4) with (2.12)-(2.13), considering two sets of parameters:

Set 1: The biochemical reaction coefficients (k1, k−1, k2, k−2, k3) and the fixed concentration of free
dimeric MT1-MMPs (c̄d).

Set 2: The proMMP-2 and TIMP-2 decay rates (βp, βt), their production and diffusion rates in the CT
(spht , sphp , rt, rp, Dp, Dt), their transmission to the BM (κt, κp), the parameters related to the digestion
and the production of the BM (γ, rM ,KM ), and the position of the SF in the CT (xSF

1 ).
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Figure 8: GSA indicates that the reduced model (3.1)-(3.4) with (2.12)-(2.13) is more sensitive
to uncertainty in the most influential parameters compared to the full model. Using Morris’
method, we quantify the impact of changes in parameter values on the time evolution of the BM density.
The boxplots display mean and standard deviation of the EEs of each parameter in Set 1 (a) and Set
2 (b), as prescribed in Section 4.2.3, on the output Y defined in (4.1) (see Section 4.2.1 for details on
the methodology). The most influential parameter in the reduced system is the fixed concentration of
free dimeric MT1-MMPs c̄d, followed by the BM degradation rate γ and the proMMP-2 physiological
production rate sph

p . EEs means and standard deviation of the most influential parameters of the reduced
system are larger than those of the full system, indicating increased sensitivity of the reduced model.

Figure 8 summarizes the results of the GSA of the reduced model. The main observation is that the
value of c̄d (Figure 8a), i.e. the fixed concentration of free dimeric MT1-MMPs, is crucial for the output
of the reduced system, with EEs mean notably larger than those obtained for the full system. Indeed this
parameter encapsulates the effect of MT1-MMP expression and internalisation by cancer cells, and that of
MT1-MMP dimerisation and de-dimerisation, i.e. it includes the effect of ρ0, αm and βd which were among
the most influential parameters in the full model. Notably, the MMP-2 activation rate k3 appears to have
negligible effects in the reduced system, as opposed to its strong impact in the full model. This might
result from the quasi steady-state assumption on the activation complexes imposed during model reduction
– mathematically, this is explained by the fact that k3 appears at the nominator and denominator of the
same fraction in equations (3.3) and (3.4). The reduced impact of k3 likely favours the striking effect of c̄d.
Another parameter that has a remarkably larger EEs mean in the GSA of the reduced model, compared
to that found for the full model, is the BM degradation rate γ (Figure 8b). Interestingly, we observe
that the parameters in Set 2 relating to proMMP-2 dynamics appear to have consistently larger effects
on the output than the analogous TIMP-2 related parameters, with the physiological production rate
of proMMP-2 sph

p having gained significant importance. While the model’s sensitivity to uncertainty in
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these inputs has changed upon model reduction, the negligible effect of KM , rM and rt remains consistent
across models. Finally, we again have that all most influential parameters induce both linear and non-
linear effects, yet with a stronger impact than those identified for the full system, indicating an increased
sensitivity upon model reduction.

5 Discussion
It is now widely recognised that cells in the stroma may play major roles in tumour progression. Our
goal is to develop a mathematical model which can implement empirical data and suggest promising
experimental investigations, in order to reduce the cost and timeline of the empirical work necessary
to promote therapeutic strategies targeting SFs against carcinoma progression. We presented in this
article the results of our initial modelling efforts, which focus on the first step of the invasion cascade:
the rupture of the BM. We proposed a tractable and detailed model of BM digestion by cancer cells
involving the contribution of SFs located in the CT, which builds on the current biological knowledge of
this phenomenon.

5.1 Summary of modelling efforts and key results
Our model contains several elements of novelty which ensure that various aspects of biologi-
cal complexity relevant to carcinoma invasion are captured within the same framework. To
the best of our knowledge, the present work is the first to mathematically represent tumor cells mediated
rupture of the BM aided by SF secretome. Remarkable modelling progress to capture cancer invasion
following BM digestion was achieved by Gallinato et al. [41], and following extensions [19]. However, in
these works the BM digestion was modelled as the result of the activity of degrading enzymes secreted only
by the tumor. Our model captures the diffusion of the SF secretome inside the CT and its transmission to
the BM, at the other end of which these enzymes may interact with MT1-MMP located on the membrane
of tumor cells, and activate MMP-2. The inclusion of these dynamics in the mathematical model enables
the study of the partnerships that exist between tumor cells and helping cells in the stroma, which are
nowadays well known to aid cancer invasion. While this framework, including fibroblast facilitating ECM
degradation by cancer cells, was partially considered in [66] for a Tumour Chamber Invasion Assay, our
model captures better the dimensionality of the problem by considering the BM to be a d− 1 dimensional
domain, where d is the dimension of the CT, as similarly done in [41]. Altogether, our model allows for a
more complete and biophysically consistent representation of the phenomenon, and the results of numer-
ical simulations highlight the importance of considering these pro-tumour cells located in the stroma, as
the digestion of the BM appears faster closer to a SF rich CT area.

Compared to the aforementioned works and previous mathematical models of tumor invasion (see
e.g. [17, 18, 61, 88]), our model also comprises a comprehensive description of the biochemical reactions
regulating the activation and inhibition of MMP-2, capturing the dual role of TIMP-2 as only previously
seen in dedicated studies ignoring spatial dynamics [62, 98]. We remark that such dual role of TIMP-2 is
still captured in the reduced model that we derived using typical simplifying assumptions, as demonstrated
by the results of our steady state analysis, summarised in Figure 3.

Moreover, additional efforts were made in this work to extract parameter values from the literature,
deriving several missing ones from steady state assumptions and reference enzyme concentrations reported
in empirical studies. Hence, except for 2 of them (the production rates of enzymes by SF, i.e. rp, rt), most
of the parameters are directly found from experimental studies or previous modelling works that fit these
parameters using experimental data. The remaining parameters are obtained from simple computations:
starting from empirical measurements of physiological enzyme concentrations, we compute the remaining
parameters assuming that the physiological conditions correspond to steady-states in the reaction-diffusion
equations. This procedure allowed us to find biologically relevant parameter values. We conducted a
sensitivity analysis to estimate how errors on these parameter values could influence the output of the
model and that of a reduced model obtained under typical simplifying assumptions. This latter part of
the work is crucial, as it also highlights changes in the model’s sensitivity upon reduction, which is not
very often considered for invasion models.

The results of numerical simulations are in good qualitative agreement with the current
biological understanding of the phenomenon. The flexibility of the model allowed us to explore
the behavior of the system on the relevant test cases, reproducible under different parameter sets, via
numerical simulations. The model predicts that the presence of an epithelial tumour may result in slow
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BM digestion at the tumour location, as opposed to the case of a healthy tissue where the BM remains
intact, thanks to the presence of MT1-MMPs on the surface of tumour cells which initiate the MMP-2
activation cascade. Moreover, our results clarify that SF secretome may aggravate the imbalance between
the activation and inhibition dynamics of MMP-2, boosting cancer invasion. In fact, the inclusion of SFs
in the CT results in the emergence of more accurate gradients of proMMP-2 in the CT, extending radially
from the position of the SF, and faster digestion of the BM localized at the points closest to the SF. It is
at this point that we expect to first observe BM rupture, i.e. the decrease of BM density below a threshold
allowing cells to pass through the BM, and the initiation of cancer invasion. Our results also highlight
that the possibility of observing BM rupture within a given time frame increases as the distance between
the SF and the BM decreases, as the rate of proMMP-2 secretion by the SF increases and as its TIMP-2
secretion rate decreases. These secretion rates are hard to estimate as they may vary across experimental
conditions, tissue samples and among SF population.

While these results are in good qualitative agreement with the current biological understanding of
the phenomenon, we remark that the amount of time after which the model predicts BM rupture may
not accurately convey the empirical timescale of this phenomenon, which may be faster. First of all,
the critical BM density for cancer invasion, which we arbitrarily set to half the carrying capacity, may
be higher. Secondly, we considered the presence of only one SF in the CT for illustrative purposes –
although the model is flexible enough to represent numerous SFs in different locations within the CT –
and in vivo the number of SFs may be significantly larger, yielding an enhanced effect of combined SFs’
secretome. Lastly, despite the great efforts made in identifying appropriate parameter values, these are
taken or estimated from a variety of works in the literature, and model calibration with experimental data
is necessary to ensure a wholly coherent parameter set.

Sensitivity analysis reveals that model prediction accuracy depends on knowledge of the
amount of MT1-MMPs that epithelial tumor cell express at the invadopodia, especially
after model reduction. Given the large number of parameters in the full model, we derived a reduced
version of the model under biologically motivated simplifying assumptions on the relative scales of the
dynamics prescribed within the MMP-2 activation cascade. We remark that these assumptions were
further justified by the results of numerical simulations, during which concentrations of soluble molecules
reached equilibrium much faster than the BM density. Model reduction not only lowers the degrees of
freedom of the system, facilitating future experimental calibration of the model, but also allows us to
draw analytical conclusions on the equilibrium of the system and necessary conditions for sustained BM
rupture. Moreover, it allows for a comparison with previous cancer invasion mathematical models that
included some MMP-2 activation or inhibition dynamics under similar assumptions.

In view of this calibration, we performed GSA to investigate the models’ robustness to uncertainty
in the parameter values and identify the most influential parameters on the speed of BM digestion by
cancer cells in the presence of a SF in the CT. The most influential parameters of both versions of the
model displayed both linear and non-linear effects, indicating uncertainty in these inputs may influence the
model output also through its interaction with other parameters, as expected given the complexity of the
equations and dynamics prescribed in the model. Notably, we found that the most influential parameters
of the full model have lower EEs mean and standard variation than those of the reduced model. This
suggests that the predictive capability of the full model is more robust to uncertainty of parameter values
than the reduced one, and it is therefore better suited for in silico investigations when the parameters are
not accurately measured, despite the higher computational cost.

From the GSA we found that uncertainty in the parameters associated with the amount of MT1-MMPs
available on the surface of cancer cells – i.e. tumour cell number, MT1-MMP expression rate by tumour
cells, internalisation rate of MT1-MMP dimers and complexes involving it – has the largest impact on the
output of the full model. This was followed by an important role played by the rate of the irreversible
reaction at the end of the MMP-2 activation cascade. Interestingly, we found that this latter parameter
had negligible effect on the output of the reduced model, which may be an advantage in the absence of
accurate estimates for this rate. However, this advantage is counterbalanced by the intensified effect of
the parameter modelling the fixed concentration of free dimeric MT1-MMPs, which only appears in the
reduced model capturing the collective effect of the MT1-MMP dynamics on the surface of cancer cells.
Such simplification is the main drawback of the reduced model, as enormous importance if given to a
parameter which is even more difficult to measure empirically.
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5.2 Modelling and interdisciplinary perspectives
Mathematical modelling perspectives. In this work we use mathematical modelling to represent and
study the contribution of SF secretome in initial cancerous progression of carcinoma toward BM rupture
and invasion. In particular, we investigate the potential impact of this partnership on the digestion of the
BM, which is the first step of carcinoma invasion. While our model is able to capture numerous biological
effects, there are several planned extensions that would allow the inclusion of additional biologically
relevant features.

The transmission coefficient κi (i = t, p) models the rate at which proteins from the CT are transmitted
to and across the BM. It is computed using the diffusion coefficient Di of the protein and the width of
the BM. In particular, we assumed that the diffusivity of each protein in the BM is 10−6 smaller than
in the CT (see Appendix B), a coarse assumption explained by the fact that the BM is a dense sheet
of collagen fibers. A more accurate description of the protein diffusivity in the BM could be achieved
integrating information on the physical properties of the BM in this parameter. Specifically, it would be
relevant to use a diffusion coefficient dependent on the tortuosity of the BM, which is related to the pore
sizes of the ECM network within the BM, estimated to be between 10 and 130 nm in diameter [59]. This
is particularly relevant in our modelling framework because as the BM is degraded, the size of the pores
increase, ultimately increasing the protein diffusivity within the BM. This effect could be implemented
in our model by considering a BM density dependent transmission coefficient κi(M) = Ki(M)Di

ε with
0 ≤ Ki(M) < 1 being the partitioning coefficient (as in [38]).

Secondly, in our model, MT1-MMP turnover is modelled as a combination of the production of
monomeric MT1-MMP by cancer cells, with rate αm, and the internalization of monomeric, dimeric
and complexes involving MT1-MMPs, via decay terms with rates βi (i = m, d, 1, 2, 3)). While this was
sufficiently detailed for the purpose of this first work, it might be an overly simplified representation of
MT1-MMP turnover. As MT1-MMP turnover also plays an important role in subsequent steps of invasion
in the CT, it might be relevant to adapt the model proposed in [55] to our setting.

In the present work, we only consider the digestion of the BM by MMP-2 enriched in SF secretome and
activated by tumor cells. Nonetheless, degradation of the BM may also be mediated by MT1-MMPs or by
other MMPs directly produced by tumor cells. This process was neglected for the moment to discriminate
the effect of SFs located in the CT in the digestion of the BM. The addition of a source term of proMMP,
of the form of αpρ0 (αp corresponding to the rate of production of proMMP by the tumor cells, having unit
nmol/cell/s) in the equation for the proMMP-2 in the BM may be sufficient to include this phenomenon.

Furthermore, while we only consider the action of MMP-2 in this work, it may be relevant to extend
this framework to include the dynamics of other MMP subtypes. For instance, MMP-9 may play an
important role in the digestion of the BM and the invasion process (see [57] and references therein), even
though no relevant amount of MMP-9 was measured in SF secretome in [81]. In this natural extension
of our work, MMP-9 dynamics may be captured with a modelling strategy analogous to that used for
MMP-2.

Finally, as already demonstrated by experimental observations, SFs’ secretome plays a role not only
in the digestion of the BM, but also in the subsequent invasion of carcinoma cells in the CT [81]. It may,
in particular, promote epithelial-to-mesenchymal transition of carcinoma cells, enhancing their motility
capabilities. Our next efforts will be devoted to the development of a model of invasion of carcinoma cells
inside the CT, and we will focus on capturing the cancer cell motility-boosting effect of SF secretome.
Coupling a model for invasion inside the CT and the present model will lead to a complete mathematical
representation of the partnership between carcinoma cells and the SFs during invasion.

Interdisciplinary perspectives. A limitation of our work was our ability to find precise parameter
values that correspond to the specific pathophysiological context under study. Although a thorough
calibration from the literature was conducted, some parameters are not found in the current literature or
originate from different contexts, not specifically measured using epithelial samples. For example, reference
enzyme concentrations used in this work were measured in plasma serum, due to a lack of measurements in
tissues. Most probably, concentrations differ from one tissue to another. The importance of this limitation
is highlighted by the results of our sensitivity analysis, which demonstrate that uncertainties on limited
parameter values could tremendously impact the simulations’ outputs. This will be a crucial point for our
future work, where we will compare our model’s numerical results to the results of biological experiments.
We aim to accurately replicate the experimental setup in silico to achieve quantitative comparisons.

Therefore our numerical model needs to be fed by data gathered from biological models mimicking
skin carcinoma progression, which will allow us to harvest critical information on specific factors involved
in early cancer progression. Specifically, organotypic 3D models of skin carcinoma progression are being
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developed to allow us to gather data on the impact of cellular and matricial densities, proximity of stroma
cells and their secretory activity in the senescent context. Moreover, data on protein concentrations and
gradients analyzed in human biopsy specimen from the clinic will also be relevant, in order to identify the
histological expression patterns of critical molecules associated with different stages of cancer progression
and invasion features, or in samples from patients of different ages.

Data from these experiments, and from patients, will nourish the mathematical model with quan-
titative information that will improve the quality and specificity of parameter values upon empirical
calibration.Therefore, the concentrations of critical actors identified in the model from the sensitivity
analysis will be measured in the biological model in order to replace those inferred from related literature.
This will help improve the predictive capability of the model and allow the simulation of scenarii in which
molecules or processes are targeted to interfere with cancer progression. In summary, the mathematical
and biological model will mutually feed one another, in a synergistic numerical and experimental approach.

Carcinoma invasive growth also comprises other factors such as inflammation, collective and individual
migration of tumor cells, mechanical effects such as pressure, stiffening of the tissue, and partnerships
existing with other cells of the stroma (e.g. macrophages, cancer-associated fibroblasts, . . . ). The ultimate
goal of our work will be to progressively add new cellular contributions to build a complete model of
carcinoma invasion that comprises more of the previously mentioned effects. Even though such a model
will be highly complex, the present work demonstrates that designing and simulating an already complex
subsystem, as well as charachterizing a large parameter set using the literature, is manageable.

Acronym Meaning Acronym Meaning
BM Basement Membrane ODE Ordinary Differential Equation
CAF Cancer-Associated Fibroblast proMMP MMP precursor
CT Conjunctive Tissue PDE Partial Differential Equation
ECM Extracellular Matrix SF Senescent Fibroblast
GSA Global Sensitivity Analysis TAM Tumour-Associated Macrophages
MMP Matrix MetalloProteinases TIMP Tissue-Inhibitor of MMP
MT1-MMP Membrane-Type MMP TME Tumour Microenvironment

Table 4: List of frequently used acronyms.
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A Mathematical notation and derivation of the model

A.1 Original system
Notation. We consider a general function u(x, t) depending on space x ∈ Rd (d = 1, 2, 3, we choose
d = 3 in this section) and time t ∈ [0, T ] (T > 0 a positive finite time horizon). We denote by ∂tu the
partial derivative of u with respect to time and ∇u = (∂x1

u, ∂x2
u, ∂x3

u) the gradient of u in space. We
denote by ∆u = div(∇u) = ∂2

x1x1
u+∂2

x2x2
u+∂2

x3x3
u the laplacian of u, with div(v⃗) = ∂x1

v1+∂x2
v2+∂x3

v3
the divergence of the vector field v⃗ = (v1, v2, v3).

Full system. In this section, we introduce the mathematical model comprising a system of PDEs describ-
ing the dynamics of the SFs’ secretome in the CT, with boundary conditions modelling the transmission
of these concentrations to the BM, and a system of PDEs describing the activation and degradation dy-
namics in the BM. Details about the modelling assumptions and the notations for the different unknowns
can be found in Section 2.

We start with two domains, i.e. smooth bounded open subsets, ΩCT,ΩBM ⊂ Rd, separated by a “mem-
brane” denoted by Γ. We highlight that Γ simply models the boundary separating the two domains and
not a real physical membrane with a positive thickness. We have the following system of equations

∂tc̄t = D̄t∆c̄t + S̄t(x)− βtc̄t, in ΩCT × (0, T ), (A.1)
∂tc̄p = D̄p∆c̄p + S̄p(x)− βpcp, in ΩCT × (0, T ), (A.2)
c̄t = ct, on Γ× (0, T ), (A.3)
c̄p = cp, on Γ× (0, T ), (A.4)

D̄t∇c̄t · ν = DBM
t ∇ct · ν, on Γ× (0, T ), (A.5)

D̄p∇c̄p · ν = DBM
p ∇cp · ν, on Γ× (0, T ), (A.6)

∂tct = DBM
t ∆ct +Rt(x, t)− βtct, in ΩBM × (0, T ), (A.7)

∂tcp = DBM
p ∆cp +Rp(x, t)− βpcp, in ΩBM × (0, T ), (A.8)

with ν the unit normal vector to Γ that points from the BM to the CT. The rest of the boundary conditions
on ∂ΩCT \ Γ× (0, T ) and ∂ΩBM \ Γ× (0, T ) are set to zero-flux boundary conditions.

Equations (A.3)–(A.6) are transmission conditions modeling the diffusion of TIMP-2 and proMMP-2
between the CT and the BM. In particular, Equations (A.3)–(A.4) model continuity of the concentration
at the border between the two domains, and equations (A.5)–(A.6) model the continuity of the flux across
this interface. Moreover, while the terms S̄t(x) and S̄p(x) in equations (A.1)-(A.2) are as defined in (2.15),
the terms Rt(x, t) and Rp(x, t) in equations (A.7)–(A.8) include the biochemical reactions terms. Namely,
we have

Rt(x, t) = −ct[k1(cd + c1) + k2(cp + ca)] + k−1(c1 + c3) + k−2(ctp + cta), (A.9)
Rp(x, t) = −k2cp(ct + c1) + k−2(ctp + c2). (A.10)

Equations (A.1)-(A.8) are coupled, via the reaction terms Ri(t, x), i = {t, p}, with the rest of the
system modelling proMMP-2 activation, BM digestion and TIMP-mediated MMP inhibition: assuming
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the diffusion of the rest of the components is negligible, we have

∂tM = −γca
M

Km +M
+ rM

(
1− M

Mmax

)
+

, in ΩBM × (0, T ),

∂tcm = αmρ0 −k0c
2
m + k−0cd − βmcm, in ΩBM × (0, T ),

∂tcd = k0c
2
m − k−0cd − k1cdct + k−1c1 − βdcd, in ΩBM × (0, T ),

∂tca = k3c2 − k2ctca + k−2cta − βaca, in ΩBM × (0, T ),

∂tc1 = k1cdct − c1[k1ct + k2cp] + k−1(c3−c1) + (k−2 + k3)c2 − β1c1, in ΩBM × (0, T ),

∂tc2 = k2c1cp − (k−2 + k3)c2 − β2c2, in ΩBM × (0, T ),

∂tc3 = k1c1ct − k−1c3 − β3c2, in ΩBM × (0, T ),

∂tctp = k2ctcp − k−2ctp − βtpctp, in ΩBM × (0, T ),

∂tcta = k2ctca − k−2cta − βtacta, in ΩBM × (0, T ).

A.2 Dimension reduction of the BM
In order to improve computational tractability of our model, as the BM is a very thin structure compared
to the rest of the tissue [7], we reduce the dimension of ΩBM, which then becomes a subset of Rd−1

(whereas ΩCT ⊂ Rd). We do this following a simple and formal dimension reduction procedure, inspired
by ideas from [74] to derive 1D-3D coupled problems.

Smallness assumptions and decomposition. We introduce a small parameter 0 < ε ≪ 1 describing
the thickness of the BM, i.e. Ω̄BM = Γ× [0, ε]. Assuming Γ is a flat surface, we consider that ∀x ∈ Ω̄BM, x
is defined by x := (x1, x2, x3) with (x1, x3) ∈ Γ and x2 = εx̄2, (x̄2 ∈ (0, 1)), coherently with the coordinate
system adopted in Section 2 and illustrated in Figure 2. We decompose the concentrations ci as

ci(x1, x2, x3, t) = ĉi(x1, x3, t) + c̃i(x1, x2, x3, t) for i = {t, p, d, tp, ta, 1, 2, 3}, (A.11)

where ĉi(x1, x3, t) corresponds to the average of the concentration in the x2 direction, i.e.

ĉi =
1

ε

∫ ε

0

ci dx2 =

∫ 1

0

ci(εx̄2) dx̄2, (A.12)

and c̃i(x1, x2, x3, t) is a fluctuation around this average. Integrating both sides of the decomposition (A.11)
along the width of the BM (i.e. the x2 direction) and using the definition (A.12) of the average ĉi, we
obtain that the fluctuation must satisfy ∫ ε

0

c̃i dx2 = 0.

We assume that the fluctuations are small and that the concentration fields evolve smoothly within the
BM, i.e. spatial derivatives of the fluctuations in the BM are small.

Under assumption (A.11) and definitions (A.9)-(A.10), we have that both sources Ri (i = {t, p})
in (A.7) and (A.8) also admit a decomposition in the form (A.11).

Simplified dynamics in the BM. Since we assumed that the fluctuation of the concentrations within
the BM – i.e. c̃i in (A.11) – are small, we simplify the dynamics in the BM by focusing on the evolution of
the averages of the concentration fields in the BM along the x2 direction (i.e. along the width of the BM)
– i.e. ĉi defined in (A.12). This will allow us to drop the dependency on x2 of the dynamics, providing
an approximation that is well suited for a model in which the dimensionality of the BM is reduced to
d − 1. Given that the thickness of the BM is very small, we expect that the diffusion of the enzymes in
the x2 direction will have a strong impact on the average concentration ĉi, while we assume diffusion in
the (x1, x3) plane (i.e. tangential to Γ) is negligible.

Integrating Equations (A.7)–(A.8) with respect to x2, dividing by ε, and neglecting the diffusion in
the tangential plane (x1, x3), we obtain for any (x1, x3) ∈ Γ and t ∈ (0, T )

1

ε

∫ ε

0

∂tci dx2 −
DBM

i

ε

[
∇ci · ν

∣∣
x2=ε

−∇ci · ν
∣∣
x2=0

]
=

1

ε

∫ ε

0

Ri − βici dx2,

30



where we used the divergence theorem, with ν being the outward normal to ∂ΩBM. Since we assumed
zero-flux boundary conditions on ∂ΩBM \ Γ× (0, T ) and using the definition (A.12), we have

∂tĉi +
DBM

i

ε
∂x2

ci(x1, 0, x3, t) · ν = R̂i − βiĉi, (A.13)

for i = {t, p}. We note that the directional derivative ∂x2
ci(x1, 0, x3, t) · ν also appears on the right-hand-

side of (A.5)–(A.6).

Approximation of concentration gradients at the interface. We now construct an approximation
of ∂x2

ci(x1, 0, x3, t) for i = {t, p}. Since ε is small, assuming ci is sufficiently smooth to allow a Taylor
series approximation, we consider the following expansion around x2 = 0

ci(x1, ε, x3, t) = ci(x1, 0, x3, t) + ε∂x2
ci(x1, 0, x3, t) +O(ε2).

Using this, we know that the following holds

∂x2
ci(x1, 0, x3, t) =

ci(x1, ε, x3, t)− ci(x1, 0, x3, t)

ε
+O(ε).

Using the continuity of concentrations (A.3)–(A.4) at the interface Γ, and the decomposition (A.11) at
x2 = ε, we rewrite this as

∂x2ci(x1, 0, x3, t) =
ĉi(x1, x3, t)− c̄i(x1, 0, x3, t)

ε
+

c̃i(x1, ε, x3, t)

ε
+O(ε).

We approximate c̃i(x1, ε, x3, t) as

c̃i(x1, ε, x3, t) = (Ci
ε − 1)

(
ĉi(x1, x3, t)− c̄i(x1, 0, x3, t)

)
,

with constant Ci
ε > 0 for ε > 0. Thus, for ε small, we have

∂x2ci(x1, 0, x3) ≈ Ci
ε

ĉi(x1, x3)− c̄i(x1, 0, x3)

ε
for i = {t, p}. (A.14)

This approximation is justified by the fact that the ci (i = {t, p}) satisfy a reaction-diffusion equation in a
thin domain, with Dirichlet boundary conditions on Γ and zero-flux boundary conditions at the other end
of the domain. At equilibrium, this leads to a concentration profile along the x2 direction analogous to
the one shown in Figure 9, where we simulated this scenario in 1D (with Γ the left boundary) and tested
the approximation (A.14) for different values of Ci

ε. We clearly have that Ci
ε > 0 for ε > 0 (analogous

profiles were obtained for decreasing values of the domain size).

Dimension reduction. Substituting the approximation (A.14) in (A.13), we obtain the equations for
the evolution of the average quantities

∂tĉi +
DBM

i

ε2
Ci

ε (ĉi − c̄i(x1, 0, x3)) = R̂i − βiĉi, (A.15)

with i = {t, p}. Analogously, approximation (A.14) can be introduced in (A.5) and (A.6).
As this quantity is constant along the x2 axis and its computation only involves the knowledge of the

concentrations on Γ, we can reduce the dimension of ΩBM and use only Γ as the "BM" domain.

Physical considerations and transmission coefficients. While in a rigorous dimension reduction
procedure one needs to consider the limit ε → 0, we keep the ε-dependency in (A.15) in order to incorporate
information on the thickness of the BM into the rates at which different enzymes cross this membrane.

We consider a BM width ε = 2×10−6 dm, the average value measured by new experimental techniques
as reported in [96]. The diffusion coefficients of TIMP-2 and proMMP-2 within the ECM of the CT, i.e. D̄i,
estimated in [22] are of about 1.29× 10−6 dm2/s. In the absence of empirical measurements or estimation
of the diffusivity of these molecules within the BM, we consider that the much higher density of ECM in
the BM compared to that in the CT drastically reduces molecular diffusion rates of these molecules in the
BM, and we assume that DBM

i ≈ O(ε2/s).
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(a) ε = 10−6 and D = 10−12. (b) ε = 10−2 and D = 10−4.

Figure 9: Illustration of the best Cε to approximate the derivative. We compute the analytical
solution of the equation ∂tc = D∆c − βc in the 1D domain [0, ε] at steady-state, with β = 10−4 and
D = ε2, using ε = 10−6 (a, left) and ε = 10−2 (b, right). The equation is supplemented with Dirichlet
boundary condition on the left boundary c(t, 0) = c̄ = 0.1 and zero-flux boundary condition on the right
boundary. The steady state of the problem, i.e. c∞(x2) satisfying D∆c∞ = βc∞, is plotted in a solid blue
line. The dashed black line marks ĉ∞, i.e. the average of c∞ in the domain. The red dashed-dotted line
corresponds to the derivative of c∞ at x2 = 0. The colored dashed lines display different approximations
of this derivative using the formula ∂x2

c∞(0) ≈ Cε(ĉ
∞ − c̄)/ε, i.e. the equivalent of (A.14), for different

values of Cε: Cε = 1 (yellow dotted line), Cε = 2 (green dotted line), Cε = 3 (blue dotted line), and
Cε = 4 (cyan dotted line). Analogous results were obtained varying the grid size, the parameter c̄, and
ε maintaining the relation D = ε2. Similar results were obtained varying β ∈ [0, 10−3], although larger
values deteriorate the quality of the derivative approximation with Cε = 3. This deterioration is also
observed varying ε or D independently of each other, hence breaking the proportionality relation D ∝ ε2.

We note that while the value of Ci
ε may vary as ε or DBM

i vary independently, varying ε while main-
taining the proportionality relation DBM

i ∝ ε2 does not change the value of Ci
ε providing the best approx-

imation using (A.14) (cf. Figure 9, for which up to 16 orders of magnitude were tested for ε).
We introduce the following parameters: the diffusive permeability of the molecule denoted by the index

i across the BM (crossing the BM in the x2 direction) κi, and the corresponding transmission rate of the
molecule to the BM κ̂i, defined as

κi =
Ci

εD
BM
i

ε
and κ̂i =

κi

ε
=

Ci
εD

BM
i

ε2
, i = {t, p}. (A.16)

Remark 3. We emphasise that our method is formal and we do not send ε → 0, but only retain the
dynamics of the average concentration along the direction selected for dimensionality reduction, assuming
that ε, i.e. the BM width, is very small.

Remark 4. While we adopt a formal method for the dimension reduction of the BM, rigorous methods
yielding analogous results have been developed – we refer the interested reader to the method of two-scale
convergence for dimension reduction problems, e.g. see [82]. However, we also mention that in other
models modelling the effect of thin membranes, transmission is modelled as Kedem-Katchalsky conditions,
in which the flux is computed from the permeability and the concentration difference between the sides of
the membrane. Here, using this formal dimension reduction, we retain an information about the average
of these quantities in the BM in a simple manner.

Summary of the full reduced model. Altogether, using the bar notation to denote concentrations
in the CT ΩCT and the hat notation to denote the concentrations in the BM ΩBM ≡ Γ (which in now an
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open subset of Rd−1), we have the model

∂tc̄t = D̄t∆c̄t + S̄t(x)− βtc̄t, in ΩCT × (0, T ),

∂tc̄p = D̄p∆c̄p + S̄p(x)− βpc̄p, in ΩCT × (0, T ),

−D̄t∇c̄t · ν = κt(c̄t − ĉt), on Γ× (0, T ),

−D̄p∇c̄p · ν = κp(c̄p − ĉp), on Γ× (0, T ),

∂tĉt = κ̂t(c̄t − ĉt) + R̂t − βtĉt, in Γ× (0, T ),

∂tĉp = κ̂p(c̄p − ĉp) + R̂p − βpĉp, in Γ× (0, T ),

∂tM̂ = −γĉa
M̂

Km + M̂
+ rM

(
1− M̂

Mmax

)
+

, in Γ× (0, T ),

∂tĉm = αmρ̂0 −k0ĉ
2
m + k−0ĉd − βmĉm, in Γ× (0, T ),

∂tĉd = k0ĉ
2
m − k−0ĉd − k1ĉdĉt + k−1ĉ1 − βdĉd, in Γ× (0, T ),

∂tĉa = k3ĉ2 − k2ĉtĉa + k−2ĉta − βaĉa, in Γ× (0, T ),

∂tĉ1 = k1ĉdĉt − ĉ1[k1ĉt + k2ĉp] + k−1(ĉ3−ĉ1) + (k−2 + k3)ĉ2 − β1ĉ1, in Γ× (0, T ),

∂tĉ2 = k2ĉ1ĉp − (k−2 + k3)ĉ2 − β2ĉ2, in Γ× (0, T ),

∂tĉ3 = k1ĉ1ĉt − k−1ĉ3 − β3ĉ3, in Γ× (0, T ),

∂tĉtp = k2ĉtĉp − k−2ĉtp − βtpĉtp, in Γ× (0, T ),

∂tĉta = k2ĉtĉa − k−2ĉta − βtaĉta, in Γ× (0, T ).

We note that in Section 2 the hat is dropped for convenience, while κ̂i(c̄i− ĉi) = Si(x, t) and the remaining
biochemical reaction terms introduced in equations (2.4) and (2.5) are denoted by R̂i.

B Computation details of biologically relevant parameter values
Most baseline parameter values reported in Table 1 are found directly in the literature, short of a change
of unit to fit our reference system when required. These come from experimental measurements, were
computed using a computational model (different from ours), or were estimated to fit a relevant range.
As we use multiple sources to find a priori values for the parameters, we refine our parameter set using
optimization techniques to ensure that the outputs of our model are biologically consistent. Below we give
details of the references used and computations performed to estimate parameter values which were not
found in the literature (marked with a * in Table 1).

BM carrying capacity. The BM carrying capacity Mmax represents the maximum ECM density in the
BM. We consider the BM matrigel density used in in vitro invasion assays reported in [2], whose authors
estimated a protein concentration of about 10 mg/ml. Considering a molecular weight in the typical
weight range of collagen IV, the main component of the ECM found in the BM, i.e. about 160kDa [75],
we compute

Mmax =
10 mg/ml

160× 103 Da
≈ 6.2510−5 mol/dm3

= 62.5× 103 nM.

Physiological levels of TIMP-2, proMMP-2, active MMP-2 and TIMP-2/MMP-2 complex.
We use as reference, the serum levels reported in [90] for TIMP-2, proMMP-2, active MMP-2 and TIMP-
2/MMP-2 complex, which are in good agreement with the values reported by recent studies. Knowing the
molecular masses of TIMP-2 (21 kDa, see e.g. [102] and references therein), proMMP-2 (72 kDa [101]),
active MMP-2 (67 kDa [101]), and the complex TIMP-2/MMP-2 (88kDa, sum of the two free proteins),
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we compute the physiological molar concentrations

cph
t =

201.8 ng/cm3

21× 103 Da
≈ 9.6 nmol/dm3 = 9.6nM

cph
p =

1259.9 ng/cm3

72× 103 Da
≈ 18 nM,

cph
a =

29.4ng/cm3

67× 103 Da
≈ 0.44 nM,

cph
ta =

1456.4 ng/cm3

88× 103 Da
≈ 17 nM.

For the level of TIMP-2/proMMP-2 c∗tp, we use the value reported in [4] and obtain

cph
tp =

625× 103 ng/L
93× 103 Da

≈ 6.72 nM.

For the reduced model, detailed in Appendix A, we assume equilibrium level of MT1-MMP dimers are
given. With analogous calculations to those reported above, we take this to be c̄d = 8.55/(63×103) ≈ 0.14
nM, from normal serum concentration of MT1-MMP given in [73] and molecular mass in [20].

Remark 5. In the review article [51], the authors survey the different values of the level of MMP-
2, proMMP-2, TIMP-2 and the complex TIMP-2/MMP-2. We observe that, from one study to another,
discrepancies in serum or plasma levels of the proteins are found, which could be due to different techniques
used to measure these quantities but also due to differences in the cohort. The chosen reference publication
for the baseline parameter values used here ensures higher consistency in origin and measurement technique
among these values. Moreover, as already mentioned, these values are in good agreement with those
reported by recent studies.

Remark 6. It is worth mentioning that we use measurements in blood and transpose the values to tissue
concentrations. This may be untrue and most probably the values depend on the tissue. However, as we
were unable to find measurements in tissue samples, we use these values for the moment.

Physiological production rate of proMMP-2 and TIMP-2 in the CT. We assume the physio-
logical concentrations of TIMP-2 and pro-MMP2 for a healthy patient are equivalent to the equilibria c∗i
(i = {t, p}) of their dynamics in the CT (2.13)–(2.12) in the absence of SFs. This yields the relation

cphi = c̄∗i =
sphi
βi

, i = {t, p}.

Using the values for decay rates and physiological levels reported in Table 1, we find

sphp = 1.09× 10−2 nM/s,

spht = 4.28× 10−4 nM/s.

Molecular decay rates. Decay rates βi in System (2.1)–(2.12) represent molecular natural decay, but
may also capture the effect of molecule degradation and internalization by other actors, e.g. internalization
of membrane bound MT1-MMP [60], or internalization of TIMP-2/proMMP-2 [32]. We assume the decay
rates of MT1-MMP dimers and complexes match the one of MT1-MMP monomers, for which we use the
rate of MT1-MMP internalization estimated in [55].

We assume physiological levels of TIMP-2/proMMP-2 and TIMP-2/MMP-2 complexes correspond to
their concentrations at the equilibrium of system (2.1)–(2.13) in the absence of SFs. We estimate their
decay rates from the equilibrium of equations (2.10)–(2.11), using the reaction rates indicated in Table 1,
obtaining

βtp =
k2c

∗
t c

∗
p

c∗tp
− k−2 =

k2c
ph
t cphp

cphtp
− k−2 = 3.60 s−1,

βta =
k2c

∗
t c

∗
a

c∗ta
− k−2 =

k2c
ph
t cpha

cphta
− k−2 = 0.035 s−1.
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The other decay rates, assumed to model natural decay, are computed from the half-life ti,1/2 of the
molecule via the formula βi = ln(2)/ti,1/2. We know from [15] that the half-life of TIMP-2 in blood is
tt,1/2 = 4.33 hours, and compute

βt =
ln(2)

4.33× 3600
≈ 4.45× 10−5 s−1.

In [83], the authors reported a half-life in the plasma of tp,1/2 = 19 min for human recombinant proMMP-2
injected in mice deficient in MMP-2. As reported in [25], active MMP-9 has a shorter half-life compared
to the pro and inactive enzyme. Hence, we assume that ta,1/2 = 0.5tp,1/2 = 9.5 min. This gives the
coefficients

βp =
ln(2)

19× 60
≈ 6.08× 10−4 s−1,

and
βa =

ln(2)

9.5× 60
≈ 1.22× 10−3 s−1.

Diffusive permeabilities and transmission rates at the BM. As detailed in Appendix A, we
consider a BM of width ε = 2 × 10−6 dm, estimated for the human epidermal BM via new measuring
techniques, as reported in [96]. We consider diffusion coefficients of TIMP-2 and proMMP-2 within the
ECM of the CT estimated in [22], i.e. D̄i = 1.29×10−6 dm2/s. Given the much higher density of ECM in
the BM compared to that in the CT, we take the diffusivity of TIMP-2 and proMMP-2 in the BM to be
DBM

i = 1.29× 10−12 dm2/s. This is consistent with the assumption that DBM
i ≈ O(ε2/s) (while D̄i is of

the order of ε). Finally, to estimate the diffusive permeability of TIMP-2 and proMMP-2 in the BM, κi,
and their transmission rate across the BM, κ̂i, using definitions (A.16), we take Ci

ε = 3. The best value
to use for this parameter, introduced in the approximation of the concentration gradient in (A.14), was
investigated numerically (see Figure 9) Altogether this gives

κi =
3× 1.29× 10−12 dm2

2× 10−6 dm
≈ 1.935× 10−6 dm/s,

and

κ̂i =
3× 1.29× 10−12 dm2

4× 10−12 dm2 ≈ 0.9675 s−1.

C Reduced system and analytical results
We reduce System (2.1)–(2.11), comprising 11 coupled nonlinear equations, to an analytically tractable
model that retains the key biological processes under consideration. We then study the stability of this
reduced system and derive necessary conditions for BM rupture, i.e. tumour invasion.

Simplifying assumptions. We make the following simplifying assumptions:

SA1. the inhibition of proMMP-2 and active MMP-2 by TIMP-2 can not reverse (i.e. we take k−2ctp =
k−2cta ≈ 0 in Equations (2.4)-(2.6) and (2.10)-(2.11));

SA2. the activation and inhibition of proMMP-2 are very fast compared to the rest of the dynamics (hence,
we use the quasi steady-state assumption in Equations (2.7)-(2.11));

SA3. stable MT1-MMP expression by cancer cells is already in place and MT1-MMP dimerisation occurs
rapidly, so that MT1-MMP dimers quickly stabilize to some equilibrium value c̄d, which is kept
constant henceforth;

SA4. the natural decay of proMMP-2, TIMP-2 and active MMP-2 inside the BM is negligible compared
to the faster activation/degradation dynamics they are involved in (i.e. we take βp = βt = βa ≈ 0
in Equations (2.4)-(2.6)).
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Reduced model. Under these assumptions, System (2.1)–(2.11) reduces to the System (3.2)–(3.4), i.e.

dct
dt

= κ̂tct − k2ct(cp + ca)− κ̂tct,

dcp
dt

= κ̂pcp − k2cpct

(
1 +

k1k3
k−1(k−2 + k3)

c̄d

)
− κ̂pcp,

dca
dt

=
k1k2k3

k−1(k−2 + k3)
c̄dctcp − k2ctca,

where we have introduced the notation ci ≡ ci(x, t)|Γ (i = {t, p}) for the TIMP-2 and proMMP-2 concen-
tration at the BM coming from the CT, and equation (2.1) for the digestion of the BM, complemented by
the quantities obtained from the quasi-state assumptions SA2., i.e.

c1 =
k1c̄d
k−1

ct, c2 =
k2k1c̄d

k−1(k−2 + k3)
ctcp, c3 =

(
k1
k−1

)2

c̄dc
2
t , ctp =

k2ctcp
βtp

, cta =
k2ctca
βta

.

In the absence of spatial movement in the BM, the reduced system holds pointwise in x ∈ Γ.

C.1 Analytical results of the reduced system
We first analyse the steady state of the ODE system (3.2)–(3.4) and its linear stability. We then exploit
these results to derive sufficient conditions for BM rupture while analysing Equation (3.1).

C.1.1 Steady state

For simplicity, we assume the TIMP-2 and proMMP-2 dynamics in the CT have reached an equilibrium
and denote their equilibrium value at the BM by

ci = ci
∗ ≡ ci

∗(x), i = {t, p}, x ∈ Γ. (C.1)

Proposition 7. If ct∗ > 0, denoting

KR = k2 +
k1k2k3c̄d

k−1(k−2 + k3)
, (C.2)

the steady state solution of the ODE system (3.2)–(3.4) under assumption (C.1) is

c∗t =
κ̂tct

∗

κ̂t +KRc∗p
,

c∗p =

√(
κ̂tct

∗ − κ̂pcp
∗

2κ̂p
+

κ̂t

2KR

)2

+
κ̂tc̄∗t
KR

−
(
κ̂tct

∗ − κ̂pcp
∗

2κ̂p
+

κ̂t

2KR

)
,

c∗a =
k1k3c̄d

k−1(k−2 + k3)
c∗p.

(C.3)

If ct∗ = 0, the system (3.2)–(3.4) under assumption (C.1) admits infinitely many steady states in the form

c∗t = 0, c∗p = cp
∗, c∗a = Ca, (C.4)

with Ca ≥ 0 for biological relevance. From the non-negativity of parameters we have that c∗t , c∗p, c∗a ≥ 0.

Proof. The steady state Y ∗ = (c∗t , c
∗
p, c

∗
a) of system (3.2)-(3.4), under assumption (C.1), satisfies
κ̂tct

∗ − k2c
∗
t (c

∗
p + c∗a)− κ̂tc

∗
t = 0,

κ̂pcp
∗ −KRc

∗
pc

∗
t − κ̂pc

∗
p = 0,

(KR − k2)c
∗
t c

∗
p − k2c

∗
t c

∗
a = 0,

(C.5)

with KR defined in (C.2). Rearranging (C.5)1 we obtain

c∗t =
κ̂tct

∗

κ̂t + k2(c∗p + c∗a)
. (C.6)
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Thus, if ct∗ > 0 we have that c∗t ̸= 0 and from (C.5)3 we retrieve

c∗a =
(KR − k2)

k2
c∗p =

k1k3c̄d
k−1(k−2 + k3)

c∗p , (C.7)

i.e. (C.3)3. Substituting (C.7) in (C.6) we obtain

c∗t =
κ̂tct

∗

κ̂t +KRc∗p
, (C.8)

i.e. (C.3)1. Substituting (C.8) in (C.5)2, multiplying by (κ̂t +KRc
∗
p) and rearranging, we obtain

[κ̂pKR]
(
c∗p
)2

+ [κ̂pκ̂t +KR(κ̂tct
∗ − κ̂pcp

∗)] c∗p − κ̂pκ̂tcp
∗ = 0 . (C.9)

Thus we have

c∗p =

√(
κ̂tct

∗ − κ̂pcp
∗

2κ̂p
+

κ̂t

2KR

)2

+
κ̂tc̄∗t
KR

−
(
κ̂tct

∗ − κ̂pcp
∗

2κ̂p
+

κ̂t

2KR

)
,

i.e. (C.3)2, where we have chosen the largest root of (C.9) to ensure non-negativity of the proMMP-2
concentration c∗p, for biological relevance, which indeed we have from the non-negativity of the parameter
values. Having c∗p ≥ 0, we also have that c∗a ≥ 0 and c∗t ≥ 0 from (C.7) and (C.8), respectively.

On the other hand, if ct∗ = 0, we automatically have from (C.6) that c∗t = 0. Then, from (C.5)2 we
have that c∗p = cp

∗, while equation (C.5)3 becomes an identity and any value of c∗a = Ca ≥ 0 qualifies as
a biologically relevant steady state. Altogether, this gives (C.4).

C.1.2 Condition for BM rupture

We consider rupture of the BM to have occurred if the BM density M goes below a critical value Mcrit,
low enough to allow cancer cells to pass through. While this may temporarily happen in short finite time,
we focus on the case in which BM rupture is sustained in the long-term, i.e.

M∗(x) < Mcrit < Mmax for some x ∈ Γ, (C.10)

where M∗ is the BM density at equilibrium.

Proposition 8. Assuming the system evolves according to the dynamics described by (3.1)–(3.4), under
(C.1) and assuming ct

∗(x) > 0 for some x ∈ Γ, long-term sustained BM rupture (C.10) will occur if

CRUP(x) > 0 for some x ∈ Γ, (C.11)

where CRUP is defined as

CRUP(x) =
k1k3c̄d

k−1(k−2 + k3)
c∗p(x)−

rM
γ

(
1 +

KM

Mcrit

)(
1− Mcrit

Mmax

)
, (C.12)

with c∗p given in (C.3)2.

Proof. We know from Proposition (7) that at the x ∈ Γ where ct
∗(x) > 0, the steady state concentrations

of TIMP-2, proMMP-2 and active MMP-2 are given by (C.3). For BM rupture (C.10) to occur the
following must hold

dM

dt

∣∣∣∣
c∗a,Mcrit

< 0,

which from (3.1) gives

−γc∗a
Mcrit

KM +Mcrit
+ rM (1− Mcrit

Mmax
) < 0.

Rearranging this and plugging in c∗a from (C.3)3, we obtain (C.11) under definition (C.12).
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D Details of the numerical scheme for System (2.1)–(2.13)
In this section, we describe the discretization of our system that combines a cell-centered finite volume
spatial discretization and an explicit Runge-Kutta time integration method. We describe separately the
case dim(Ω) = 2, dim(Γ) = 1 and the case dim(Ω) = 1,dim(Γ) = 0.

We describe the discretization of the prototypal system for TIMP-2

∂tc̄t −Dt∆c̄t = St(x, t)− βtc̄t, Ω× (0, T ), (D.1)
−Dt∇c̄t · ν = κt(c̄t − ct), Γ× (0, T ), (D.2)
−Dt∇c̄t · ν = 0, ∂Ω \ Γ× (0, T ), (D.3)

∂tct = κ̂t(c̄t − ct) +Rt − βtct, Γ× (0, T ). (D.4)

D.1 Spatial discretization
Case dim(Ω) = 2,dim(ΩBM) = 1. We assume that the domain Ω = [0, L]× [0, L] is a square of side
length L. Let T = (Kij)i=1,...,Nx1

;j=1,...,Nx2
(with Nx1 , Nx2 the number of nodes in the x1 and x2 direction

respectively) be an admissible mesh for Ω in the sense of [34, Proposition 9.2]. For simplicity, we use equal
square control volumes (we also use the denomination "cells" for the control volumes), i.e. hi = h = kj
for i = 1, . . . , Nx1

, j = 1, . . . , Nx2
(hi, kj being the side lengths of the control volume Ki,j in the x1 and

x3 directions respectively) and Nx1 = Nx2 = Nx.
We approximate the concentration c̄t with its cell-averages stored at the cell centers i.e.

c̄t(x, t) ≈ c̄t,i,j =
1

|Ki,j |

∫
Ki,j

c̄t dx.

We formulate the finite volume discretization of equation (D.1) in any control-volume Ki,j : we have the
semi-discrete problem

dc̄t,i,j
dt

− 1

|Ki,j |

∫
∂Ki,j

Dt∇c̄t,i,j · ν ds =
1

|Ki,j |

∫
Ki,j

St dx− βtc̄t,i,j .

We discretize the flux in an interior cell (i.e. for any i, j = 2, . . . , Nx − 1) in the standard way using
two-point flux approximation∫

∂Kij

Dt∇c̄t,i,j · ν ds = hi

(
Fi,j+ 1

2
− Fi,j− 1

2

)
+ kj

(
Fi+ 1

2 ,j
− Fi− 1

2 ,j

)
,

with e.g.
Fi,j+ 1

2
= Dt

c̄t,i,j+1 − c̄t,i,j
1
2 (kj+1 + kj)

.

Furthermore, we approximate the source term as its average on each cell as the concentration, i.e.

1

|Ki,j |

∫
Ki,j

St dx = St,i,j .

Altogether, for each interior cell Ki,j , we have

dc̄t,i,j
dt

− 1

|Ki,j |

(
hi

(
Fi,j+ 1

2
− Fi,j− 1

2

)
+ kj

(
Fi+ 1

2 ,j
− Fi− 1

2 ,j

))
= St,i,j − βtc̄t,i,j .

As we assumed square cells, the equation simplifies to

dc̄t,i,j
dt

− Dt

h2
(c̄t,i,j+1 − 4c̄t,i,j + c̄t,i,j−1 + c̄t,i+1,j + c̄t,i−1,j) = St,i,j − βtc̄t,i,j .

For a cell touching the boundary ∂Ω \ Γ, the corresponding flux e.g. Fi−1,j for a cell touching the left
boundary of Ω, we have Fi−1,j = 0.

For a cell touching the boundary Γ, the discretization is different to take into account the Robin
boundary condition. We first describe how Equation (D.4) is discretized. The one dimensional domain
Γ is partitioned into Nx one dimensional cells Ci. The TIMP-2 concentration in each of these cells is
approximated by its average such that we have

dct,i
dt

= κ̂t(c̄t,i,Ny − ct,i) +Rt,i − βtct,i,
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for all i = 1, . . . , Nx, in which we approximated the integral of the reaction term Rt over the cell Ci, is
approximated by its average denoted Rt,i.

Assuming that the BM, Γ, corresponds to the top boundary of Ω. For any Ki,j with i = 1, . . . , Nx and
j = Ny, we have

Fi,j+ 1
2
= Dt∇ct,i,j+ 1

2
= −κt (c̄t,i,j − ct,i) .

Case dim(Ω) = 1,dim(ΩBM) = 0. We assume that the BM, denoted by the boundary Γ, is located
at the right-hand side of the domain, i.e. x = L. As in the previous subsection, we use the finite volume
method and partition the domain Ω = [0, L] (L being the size of the domain) in equally sized control
volumes T = (Ki)i=1,...,Nx . The size of each cell is denoted h. We approximate the concentration c̄t in
each cell with its average ct,i. The semi-discrete form of Equation (D.1) is

dc̄t,i
dt

− Dt

h

(
Fi+ 1

2
− Fi− 1

2

)
= St,i − βtc̄t,i,

for i = 2, . . . , Nx− 1. The flux is defined by

Fi+ 1
2
=

c̄t,i+1 − c̄t,i
h

, Fi− 1
2
=

c̄t,i − c̄t,i−1

h
.

for the leftmost cell, i.e. i = 1, the flux Fi− 1
2
= 0 For the rightmost cell, the flux Fi+ 1

2
= −κt(c̄t,i − ct),

with ct being the concentration in the BM given by the ODE (D.4).

D.2 Time integration scheme
Our semi-discrete system is solved using the ode15s function of the MATLAB ODE suite [100]. This
function is a variable step, variable order integration method used to integrate stiff problems (see [100]
for details about the algorithm).
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E Supplementary figures

Figure S1: Concentration of active MMP-2 at steady state of the reduced ordinary differential equation
(ODE) system (3.2)–(3.4), for varying MT1-MMP dimer concentrations c̄d corresponding to 50% (left),
75% (center) and 200% (right) of the physiological value cph

d in Table 1. The remaining details are
analogous to those of Figure 3.

Figure S2: BM density for the healthy (green), tumour (blue) and tumour+SF (red) test cases predicted
by the full model over the course of 21 days (3 weeks). The remaining details are analogous to those of
Figure 4 (right plot).
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Figure S3: Molecular concentrations in the BM (represented here as the x1 axis) at t = 0 days (dotted
line), t ≈ 6.79 hours (dashed line) and t = 7 days (solid line) predicted by the full model for the healthy
test case. The remaining details are analogous to those of Figure 4 (healthy test case). We observe a decay
of both TIMP-2 and proMMP-2 concentrations and a stabilization to steady values. The active MMP-2
concentration decay to 0 exponentially fast from natural decay and inhibition by TIMP-2. As no tumor
cells are present in this test case, MT1-MMP concentration decays to 0 and activation of proMMP-2 is
null.
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Figure S4: Molecular concentrations at the BM (represented here as the x1 axis) at t = 0 days (dotted
line), t ≈ 6.79 hours (dashed line) and t = 7 days (solid line) predicted by the full model for the tumour
test case. The remaining details are analogous to those of Figure 4 (tumour test case).
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Figure S5: Molecular concentrations at the BM (represented here as the x1 axis) at t = 0 days (dotted
line), t ≈ 6.79 hours (dashed line) and t = 7 days (solid line) predicted by the full model for the tumour+SF
test case. The remaining details are analogous to those of Figure 4 (tumour+SF test case).
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