Supplementary material

Chemosphere

Inhibition of human drug transporter activities by succinate dehydrogenase inhibitors

Marie Kerhoas¹, Marc Le Vée¹, Jennifer Carteret¹, Elodie Jouan¹, Valentin Tastet¹, Arnaud Bruyère¹, Laurence Huc^{1, 2} and Olivier Fardel³

¹Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France

²Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), INRAE/CNRS/Université Gustave Eiffel, F-Marne-La-Vallée, France

³Univ Rennes, CHU Rennes, Inserm, EHESP, I Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France

This file contains 7 tables and 7 figures.

Table S1. Summary of the experimental conditions for transporter activity assays.

Table S2. Monitored ion transitions for SDHIs and caffein.

Table S3. Summary of in vitro SDHI effects towards drug transporter activity.

Table S4. List of SDHI molecular descriptors significantly correlated with OAT3 inhibition.

Table S5: Combination index (CI) values for OAT3 inhibition by combined treatment with bixafen and prothioconazole.

Table S6. Prediction of in vivo OCT2 and BCRP inhibition by blood concentrations of SDHIs.

Table S7. Prediction of intestinal BCRP inhibition by benzovindiflupyr.

Fig. S1. Chemical structure of the SDHIs.

Fig. S2. Concentrations-dependent effects of SDHIs towards OAT3 activity.

Fig. S3. Comparison of SDHI and drug K_i values for inhibition of OAT3-mediated transport of 6-CF.

Fig. S4. Concentrations-dependent effects of pydiflumetofen, benzovindiflupyr and prothioconazole towards OCT2, BCRP and OAT3 activities.

Fig. S5. Effects of pydiflumetofen towards OCT2-mediated transport of its endogenous substrate dopamine.

Fig S6. Spearman rank correlation analysis between the percentages of OAT3 inhibition and the SDH IC_{50} values for 8 SDHIs.

Fig. S7. Lack of *trans*-stimulation of OAT3 activity by SDHIs.

Transporter	Cells	Substrate Method of analysis	Reference inhibitor	Incubation parameters
P-gp	MCF7R	Rhodamine 123 (5.3 μM) Fluorimetry (485/535 nm)	Cyclosporin A (100 µM)	Accumulation (30 min)
MRPs	HuH-7	CDCF (3.0 μM)ProbenecidFluorimetry (485/535 nm)(2 mM)		Accumulation (30 min) + Efflux (60 min)
BCRP	HEK-BCRP	Hoechst 33342 (16.2 μM) Fluorimetry (355/460 nm)	Fumitremorgin C (10 µM)	Accumulation (30 min) + Efflux (90 min)
OATP1B1	HEK- OATP1B1	DCF (10.0 µM) Fluorimetry (485/535 nm)	BSP (100 μM)	Accumulation (5 min)
OATP1B3	HEK- OATP1B3	8-FcA (10.0 μM) Fluorimetry (494/517 nm)	Rifamycin SV (100 µM)	Accumulation (5 min)
OAT1	HEK-OAT1	6-CF (10.0 μM) Fluorimetry (485/535 nm)	Probenecid (2 mM)	Accumulation (5 min)
OAT3	OAT3 HEK-OAT3 HEK-OAT3 HEK-OAT3 [³ H]-E3S (4.09 nM) Scintillation counting		Probenecid (2 mM)	Accumulation (5 min)
OCT1	HEK-OCT1	ASP ⁺ (10.0 μM) Fluorimetry (485/607 nm)	Amitriptyline (200 µM)	Accumulation (5 min)
OCT2	HEK-OCT2	EK-OCT2 ASP ^{+⁺} (10.0 μM) Fluorimetry (485/607 nm) [³ H]-Dopamine (13.23 nM) Scintillation counting		Accumulation (5 min)
MATE1	HEK-MATE1	[³ H]-MPP (12.06 nM) Scintillation counting	Amitriptyline (200 µM)	Accumulation (5 min)
MATE2-K	HEK-MATE2- K	[³ H]-MPP (12.06 nM) Scintillation counting	Amitriptyline (200 µM)	Accumulation (5 min)

Table S1. Summary of the experimental conditions for transporter activity assays.

Table S2. Monitored ion transitions for SDHIs and caffein.

Compounds	Mass to charge (m/z)
Caffein	195.100 → 138.10
Benzovindiflupyr	398.000 → 342.10
Bixafen	414.000 → 394.10
Fluxapyroxad	382.100 → 362.10
Pydiflumetofen	425.900 → 192.90
Sedaxane	332.100 → 159.20

	SDHIs (10 µM)														
Transporter	Benzovindiflupyr	Bixafen	Boscalid	Carboxin	Fluopyram	Flutolanil	Fluxapyroxad	Furametpyr	Isofetamid	Isopyrazam	Penflufen	Penthiopyrad	Pydiflumetofen	Sedaxane	Thifluzamide
OAT1	↓	=	=	=	=	=	=	Ш	=	=	II	=	↓	=	=
OAT3	$\downarrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow \downarrow$	$\downarrow\downarrow$	=	↓	$\downarrow\downarrow$	$\downarrow \downarrow \downarrow \downarrow$	Ш	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow \downarrow$	=
OATP1B1	$\downarrow\downarrow$	\downarrow	=	=	=	=	II	Ш	=	\downarrow	II	=	=	\downarrow	=
OATP1B3	\downarrow	↓	=	=	=	=	=	Π	↓	$\downarrow\downarrow$	\rightarrow	$\downarrow\downarrow$	↓	=	=
OCT1	=	=	=	=	=	=	=	=	=	=		=	=	=	=
OCT2	=	=	=	=	=	$\downarrow\downarrow$	$\downarrow \downarrow$	Ш	=	=	\rightarrow	=	$\downarrow \downarrow \downarrow$	\downarrow	=
MATE1	↓	↓	↓	\downarrow	↓	↓	\rightarrow	Ш	↓	↓	\rightarrow	↓	↓	\downarrow	\downarrow
MATE2-K	\downarrow	\downarrow	\downarrow	=	\downarrow	\downarrow	\rightarrow	Ш	\downarrow	\downarrow	\rightarrow	\downarrow	\downarrow	\downarrow	=
P-gp	=	=	=	=	=	=	II	Ш	=	=	II	=	=	=	=
MRPs	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
BCRP	$\downarrow\downarrow\downarrow\downarrow$	Ļ	=	=	=	=	=	=	=	↓	=	Ļ	\downarrow	=	=

Table S3. Summary of *in vitro* SDHIs effects towards drug transporter activities.

SDHIs were tested at 10 μ M towards transporter activity in transporter-expressing cells.

=, no change; \downarrow , transporter inhibition < 50%; $\downarrow\downarrow$, 50% \leq transporter inhibition < 66.6%, $\downarrow\downarrow\downarrow\downarrow$, transporter inhibition \geq 66.6%.

	Molecular descriptor	Correlation with OAT3 inhibition %		
Block	Name	Spearman coefficient (r _s)	Significance (p value)	
Functional group counts	number of CHRX2 (nCHRX2)	0.85	0.0004	
Geometrical descriptors	quadrupole x-component value / weighted by Sanderson electronegativity (QXXe)	0.76	0.0015	
Constitutional indices	sum of atomic van der Waals volumes (scaled on Carbon atom) (Sv)	0.70	0.0048	
Geometrical descriptors	quadrupole x-component value / weighted by ionization potential (QXXi)	0.70	0.0048	
Geometrical descriptors	quadrupole x-component value / weighted by van der Waals volume (QXXv)	0.68	0.0068	
Geometrical descriptors	quadrupole x-component value / weighted by polarizability (QXXp)	0.63	0.0134	
Geometrical descriptors	quadrupole x-component value / weighted by I-state (QXXs)	0.63	0.0134	
Constitutional indices	number of non-H bonds (nBO)	0.59	0.0224	
Functional group counts	number of Pyrazoles (nPyrazoles)	0.60	0.0256	
Constitutional indices	percentage of N atoms (N%)	0.55	0.0342	
Functional group counts	number of ethers (aliphatic) (nROR)	-0.54	0.0381	
Constitutional indices	number of Nitrogen atoms (nN)	0.55	0.0387	
Molecular properties	Verhaar Fish base-line toxicity from MLOGP (mmol/l) (BLTF96)	-0.54	0.0408	
Molecular properties	Verhaar Algae base-line toxicity from MLOGP (mmol/l) (BLTA96)	-0.54	0.0408	
Molecular properties	Moriguchi octanol-water partition coeff. (logP) (MLOGP)	0.54	0.0422	
Molecular properties	squared Moriguchi octanol-water partition coeff. (logP^2) (MLOGP2)	0.54	0.0422	
Molecular properties	Verhaar Daphnia base-line toxicity from MLOGP (mmol/l) (BLTA96)	-0.54	0.0422	

Table S4. List of SDHI molecular descriptors significantly correlated with OAT3 inhibition.

% inhibition OAT3 activity	CI ^a	Mixture concentration $(\mu M)^b$	Nature of effect ^c
10	1.20594	0.87	Antagonistic
20	0.73441	1.59	Synergistic
30	0.53987	2.40	Synergistic
40	0.42652	3.38	Synergistic
50	0.34886	4.67	Synergistic
60	0.29001	6.50	Synergistic
70	0.24187	9.45	Synergistic
80	0.19952	15.23	Synergistic
90	0.15830	32.88	Synergistic

Table S5: Combination index (CI) values for OAT3 inhibition by combined treatment with bixafen and prothioconazole.

^a CI values were calculated using CompuSyn software.

^b The ratio [Bixafen]:[Prothioconazole] is 3:1.

° Synergistic effect: CI < 0.8; additive effect: $0.8 \le CI \le 1.2$; antagonistic effect: CI > 1.2.

Table S6. Prediction of in vivo OCT2 and BCRP	inhibition by blood concentrations of SDHIs ^a .
---	--

SDHI	ADI (mg/kg/day)	$I_{\text{max}}{}^{\text{b}}$	F_u^c	I _{max, u} d	Transporter	IC ₅₀	Ratio I _{max,u} /IC ₅₀	Predicted <i>in vivo</i> inhibition
Pydiflumetofen	0.09	2.95 µM	0.016	0.05 μΜ	OCT2	2.0 μΜ	0.025	No inhibition
Benzovindiflupyr	0.05	1.76 µM	0.015	0.03 µM	BCRP ^e	3.9 µM	0.008	No inhibition

^a In vivo inhibition of drug transporter activity can be predicted if the ratio $I_{max,u}/IC_{50} \ge 0.1$ (Giacomini et al., 2010).

^b defined as the approximated maximum plasma concentration.

^c defined as the unbound plasma fraction and *in silico* predicted using ADMETlab 2.0.

 $^{\rm d}$ defined as the approximated maximum unbound plasma concentration.

^e related to non-intestinal BCRP.

Table 57. I realedon of micsunal DCM minoriton by benzoy manupyr
--

SDHI	ADI (mg/kg/day)	${ m I_{gut}}^{ m b}$	Transporter	IC ₅₀	Ratio I _{gut} /IC ₅₀	Predicted <i>in vivo</i> inhibition
Benzovindiflupyr	0.05	35.2 µM	BCRP	3.9 µM	9.0	No inhibition

^a *In vivo* inhibition of intestinal BCRP activity can be predicted if the ratio $I_{gut}/IC_{50} \ge 10$ (Giacomini et al, 2010). ^b defined as the luminal gut concentration.

Benzovindiflupyr (BZP)

Bixafen (BXN)

Boscalid (BCD)

Carboxin (CBN)

Fluopyram (FPM)

Flutolanil (FLL)

Furametpyr (FRP)

Isofetamid (IFD)

Isopyrazam (IPM)

Penflufen (PFF)

Penthiopyrad (PTP)

Pydiflumetofen (PDN)

Sedaxane (SDX)

Thifluzamide (TFD)

Fig. S1. Chemical structures of SDHIs. SDHIs currently authorised in the European Union are indicated in red.

Fig. S2. Concentrations-dependent effects of SDHIs towards OAT3 activity. Various concentrations of benzovindiflupyr, bixafen, fluxapyroxad, pydiflumetofen and sedaxane were tested against OAT3-mediated uptake of the fluorescent dye 6-CF in HEK-OAT3 cells. Data are expressed as % of transporter activity found in control cells not exposed to SDHIs, arbitrarily set at 100 %. They are the means \pm SEM of at least three independent experiments. The IC₅₀ values are indicated at the top of the graphs.

Fig. S3. Comparison of SDHI and drug K_i values for inhibition of OAT3-mediated transport of 6-CF. K_i values for drugs (n=12) inhibiting OAT3 with high affinity are from Zou et al., 2021. n.s., not statistically significant.

Fig. S4. Concentrations-dependent effects of pydiflumetofen, benzovindiflupyr and prothioconazole towards OCT2, BCRP and OAT3 activities. Data are expressed as % of the transporter activity in control cells not exposed to fungicides, arbitrarily set at 100%. They are the means \pm SEM of at least three independent assays. IC₅₀ values are indicated at the top of the graphs.

[Prothioconazole] (µM)

Fig. S5. Effects of pydiflumetofen towards OCT2-mediated transport of the endogenous substrate dopamine. HEK-OCT2 cells were incubated with 13.23 nM [³H]-dopamine for 5 min at 37°C in the absence (control) or presence of various concentrations of pydiflumetofen or of the reference OCT2 inhibitor amitriptyline. Intracellular accumulation of dopamine was next determined by scintillation counting. Data are expressed as % of dopamine accumulation in control cells, arbitrarily set at 100%, and are the means \pm SEM of at least three independent experiments. *, p<0.05 and ***, p<0.001 when compared to dopamine accumulation in control cells.

Fig. S6. Spearman rank correlation analysis between the percentages of OAT3 inhibition and the SDH IC_{50} values for 8 SDHIs. SDHI IC_{50} values for SDH inhibition are from Benit et al., 2019, and the OAT3 inhibition percentages from Fig. 2. The Spearman rank coefficient (r_s) and the p value are indicated at the top of the graph.

Fig. S7. Lack of trans-stimulation of OAT3 activity by SDHIs. HEK-OAT3 cells were first incubated in the absence (control) or presence of various concentrations of SDHIs or 1 mM glutaric acid (used here as a positive trans-stimulating agent) for 15 min at 37 °C. After washing, cells were next incubated with 10 μ M 6-CF for 5 min at 37 °C. Accumulation of 6-CF was finally determined by spectrofluorimetry. Data are expressed as % of 6-CF accumulation in control cells, arbitrarily set at 100 % and indicated by dashed lines on the graphs. They are the means ± SEM of at least three independent experiments. *, p < 0.05, **, p < 0.01 and ***, p < 0.001 when compared to control.