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2ISAE-SUPAERO, Université de Toulouse, Toulouse, France.

3GERAD and Department of Mathematics and Industrial Engineering,
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4ICA, Université de Toulouse, ISAE–SUPAERO, INSA, CNRS, MINES
ALBI, UPS, Toulouse, France.

*Corresponding author(s). E-mail(s): paul.saves@onera.fr;
Contributing authors: youssef.diouane@polymtl.ca;
nathalie.bartoli@onera.fr; thierry.lefebvre@onera.fr;

joseph.morlier@isae-supaero.fr;

Abstract

Recently, there has been a growing interest in mixed-categorical metamodels
based on Gaussian Process (GP) for Bayesian optimization. In this context, dif-
ferent approaches can be used to build the mixed-categorical GP. Many of these
approaches involve a high number of hyperparameters; in fact, the more general
and precise the strategy used to build the GP, the greater the number of hyper-
parameters to estimate. This paper introduces an innovative dimension reduction
algorithm that relies on partial least squares regression to reduce the number of
hyperparameters used to build a mixed-variable GP. Our goal is to generalize clas-
sical dimension reduction techniques commonly used within GP (for continuous
inputs) to handle mixed-categorical inputs. The good potential of the proposed
method is demonstrated in both structural and multidisciplinary application con-
texts. The targeted applications include the analysis of a cantilever beam as well
as the optimization of a green aircraft, resulting in a significant 439-kilogram
reduction in fuel consumption during a single mission.

Keywords: Surrogate modeling, Gaussian process, Mixed-categorical inputs,
High-dimension, Bayesian optimization, Aircraft design

ar
X

iv
:2

31
1.

06
13

0v
2 

 [
m

at
h.

O
C

] 
 2

 F
eb

 2
02

4



Springer Nature 2023 LATEX template

2 High-dimensional mixed categorical GP

Nomenclature

GP : Gaussian Process
DoE : Design of Experiments
LHS : Latin Hypercube Sampling
PLS : Partial Least Squares
KPLS : Kriging with Partial Least Squares
BO : Bayesian Optimization
n : number of continuous variables
m : number of integer variables
l : number of categorical variables
Ω ∈ Rn : continuous space
S ∈ Zm : integer space
Fl : categorical space
Li : number of levels for the ith categorical variable
θcont : hyperparameters related to the continuous variables for GP
θint : hyperparameters related to the integer variables for GP
θcat : hyperparameters related to the categorical variables for GP
Θi, : matrix of hyperparameters for the ith categorical variable
Rcont(θcont) : correlation matrix for continuous inputs
Rint(θint) : correlation matrix for integer inputs
Rcat(θcat) : correlation matrix for categorical inputs
Θ = {θcont, θint, θcat} : hyperparameters for the Gaussian process model
G∗ : PLS rotation matrix
ζcri : full space cross-level relaxation of a categorical variable

θ̂ : continuous or integer hyperparameters for PLS approximation

Θ̂ : categorical hyperparameters for PLS approximation
MDA : Multidisciplinary Design Analysis
MDO : Multidisciplinary Design Optimization
EGO : Efficient Global Optimization
GD : Gower Distance
CR : Continuous Relaxation
HH : Homoscedastic Hypersphere
EHH : Exponential Homoscedastic Hypersphere
SPD : Symmetric Positive Definite
MLE : Maximum Likelihood Estimator
RMSE : Root Mean Squares Error
SMT : Surrogate Modeling Toolbox
SEGOMOE : Super Efficient Global Optimization with Mixture Of Experts
FAST-OAD : Future Aircraft Sizing Tool with Overall Aircraft Design
MAC : Mean Average Chord
TOFL : Take-Off Field Length
VT : Vertical Tail
HT : Horizontal Tail
DRAGON : Distributed fans Research Aircraft with electric Generators

by ONera

1 Introduction

Costly black-box simulations play an important role for many engineering and indus-
trial applications. For this reason, surrogate modeling has been extensively used across
a wide range of use cases, including aircraft design [1], deep neural networks [2], coastal
flooding prediction [3], agricultural forecasting [4], and seismic imaging [5]. These
black-box simulations are generally complex and may involve mixed-categorical input
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variables. For instance, a Multidisciplinary Design Analysis (MDA) aircraft design
tool [6] must consider mixed variables such as the number of engines or the list of
possible materials [1].

In this paper, our objective is to develop an affordable surrogate model, denoted
as f̂ , for a black-box function that involves mixed variables given by

f : Ω× S × Fl → R. (1)

This function f represents a computationally expensive black-box simulation. Ω ⊂ Rn
denotes the bounded continuous design set for the n continuous variables. S ⊂
Zm denotes the bounded integer set where L1, . . . , Lm are the numbers of levels
of the m quantitative integer variables on which we can define an order relation
and Fl = {1, . . . , L1} × {1, . . . , L2} × . . .× {1, . . . , Ll} is the design space for the l
categorical qualitative variables with their respective L1, . . . , Ll levels.

For such purpose, the use of a Gaussian Process (GP) [7], also called Kriging
model [8], is recognized as an effective modeling approach for constructing a response
surface model based on an available dataset. Specifically, we make the assumption
that our unknown black-box function, denoted as f , follows a GP with mean µf and
standard deviation σf , expressed as follows:

f ∼ f̂ = GP
(
µf , (σf )2

)
. (2)

Several modeling approaches have been put forward for addressing the challenges of
handling categorical or integer variables within the context of GP [1, 9–15]. In compar-
ison to GP designed for continuous variables, the most important changes concern the
estimation of the correlation matrix, an essential element in the derivation of µf and
σf . Much like the procedure for constructing a GP with continuous inputs, Continuous
Relaxation (CR) techniques [1, 13], models involving continuous latent variables [15],
and Gower Distance (GD) based models [14] use a kernel-based approach for esti-
mating this correlation matrix. However, recent innovative approaches take a different
path by modeling directly the various entries of the correlation matrix [9–12], and
therefore, do not rely on any kernel choice, such methods involve the Homoscedas-
tic Hypersphere (HH) [10] and the Exponential HH (EHH) [16] kernels. It has been
shown in [16] that the HH correlation kernel generalizes simpler methods like CR or
GD kernels. However, this more general method for handling categorical design vari-
ables increases the number of hyperparameters required to be tuned associated with
the GP model. In particular, this means that the method could only be used for small
dimensional problems.

Many efficient approaches have been proposed for handling a high number of con-
tinuous variables within GP [17–19]. The Kriging with Partial Least Squares (KPLS)
method [17, 18] is one of the most commonly used reduction techniques [20, 21]
to tackle high dimensional data. Several other dimension reduction methods include
principal components analysis [22], polynomial chaos expansion [23], radial basis
functions [24], active subspace [25], manifold embedding [26] or marginal Gaussian
process [27]. The KPLS technique allows constructing the GP model with the same
continuous variables but using a few number of parameters; which reduces significantly
the computational cost of computing a GP model. For mixed-categorical GP mod-
els, given that the computational effort related to the construction of the GP model
may not scale well to practical applications involving categorical variables with a large
number of levels, the number of hyperparameters to be tuned need to be considered
more thoroughly. In the literature, GPs have been applied to no more than 15 hyper-
parameters due to the high computational cost associated with the estimation of the
hyperparameters [28]. Adapting dimension reduction techniques, such as KPLS, to
mixed-categorical GPs will thus enable solving practical mixed-categorical engineering
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problems where often a high number of hyperparameters is required to be estimated.
To the best of our knowledge, there is no equivalent approach to handle mixed-
categorical data without using relaxation techniques. All existing dimension reduction
techniques, including KPLS, are not adapted for advanced mixed-categorical GP mod-
els such as HH or EHH. We note also that, although this paper focuses mainly on
surrogate modeling, the proposed models can be integrated within any surrogate-based
optimization method [29], such as surrogate-based evolutionary algorithm [30, 31] or
a Bayesian Optimization (BO) method [32].

In this work, we target to use dimension reduction techniques for reducing the
number of hyperparameters within the GP in order to allow modeling efficiently high-
dimension mixed-categorical data. In this context, high dimensionality is related to
the high number of categorical variables potentially with a high number of levels (a
few dozen). In fact, using relaxation approaches (by converting categorical choices to
continuous variables) leads to a very high number of hyperparameters to estimate,
particularly for high resolution approaches such as those based on HH and EHH ker-
nels. We have also specifically used our proposed mixed-categorical GP models, within
a BO framework, to solve a constrained optimization problem involving expensive-
to-compute black-box simulations for objective and constraints functions [33]. The
proposed approach is shown in particular to be efficient in solving a high dimensional
mixed-categorical Multidisciplinary Design Optimization (MDO) problem [34]. All
the GP models proposed in this work are implemented in the open-source Surrogate
Modeling Toolbox (SMT)1 [35].

The remainder of this paper is the following. In Section 2, a detailed review of the
GP model for continuous and for categorical inputs is given. In Section 3, we present
the PLS regression for vectors and matrices and their application to GP model for
both continuous and categorical inputs. Section 4 presents academical tests as well as
the obtained results on multidisciplinary optimization. Conclusions and perspectives
are finally drawn in Section 5.
Notations: For a vector x, both notations [x]j and xj stand for the jth component of x.

Similarly, the i (row index) and j (column index) entry of a matrix X is denoted [X]ji .

2 GP for mixed-categorical inputs

In this section, we present the mathematical background associated with GP for mixed-
categorical variables. This part also introduces the notations used throughout the
paper. Here, the general case involving mixed integer variables is considered. Namely,
we assume that f : Rn ×Zm × Fl 7→ R and our goal is to build a GP surrogate model
for f .

2.1 A mixed GP formulation

Given a set of data points, called a Design of Experiments (DoE) [36], Bayesian infer-
ence learns the GP model that explains the best this dataset. A GP model consists
of a mean response hypersurface µf , as well as an estimation of its variance (σf )2.
In the following, nt denotes the size of the given DoE dataset (W,yf ) such that
W = {w1, w2, . . . , wnt} ∈ (Rn × Zm × Fl)nt and yf = [f(w1), f(w2), . . . , f(wnt)]⊤.
For an arbitrary w = (x, z, c) ∈ Rn × Zm × Fl, not necessary in the DoE, the GP

model prediction at w writes as f̂(w) = µ(w)+η(w) ∈ R, with η being the uncertainty

between f̂ and the model approximation µ [28]. The considered error terms are ran-
dom variables of variance σ2. Using the DoE, the expression of µf and the estimation
of its variance (σf )2 are given as follows:

µf (w) = µ̂f + r(w)⊤[R(Θ)]−1(yf − 1µ̂f ), (3)
1https://smt.readthedocs.io/en/latest/

https://smt.readthedocs.io/en/latest/
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and

(σf (w))2 = (σ̂f )2

(
1− r(w)⊤[R(Θ)]−1r(w) +

(
1− 1⊤[R(Θ)]−1r(w)

)2
1⊤[R(Θ)]−11

)
, (4)

where µ̂f and σ̂f are, respectively, the Maximum Likelihood Estimator (MLE) [37] of
µ and σ. 1 denotes the vector of nt ones. R is the nt × nt correlation matrix between
the input points and r(w) is the correlation vector between the input points and a
given w. To have a compact notation, let [A]ji denote the coefficient of the matrix A
in the ith row and jth column. The correlation matrix R is defined, for a given couple
of indices (r, s) ∈ {1, . . . , nt}2, by

[R(Θ)]sr = k (wr, ws,Θ) ∈ R, (5)

and the vector r(w) ∈ Rnt is defined as r(w) = [k(w,w1,Θ), . . . , k(w,wnt ,Θ)]⊤, where
k is a given correlation kernel that relies on a set of hyperparameters Θ [12]. The
mixed-categorical correlation kernel is given as the product of three kernels:

k(wr, ws,Θ) = kcont
(
xr, xs, θcont

)
kint

(
zr, zs, θint

)
kcat

(
cr, cs, θcat

)
, (6)

where kcont and θcont are respectively the continuous kernel and its associated hyper-
parameters, kint and θint are the integer kernel and its hyperparameters, and last
kcat and θcat are the ones related with the categorical inputs. In this case, one has
Θ = {θcont, θint, θcat}. Henceforth, the general correlation matrix R will rely only on
the set of the hyperparameters Θ:

[R(Θ)]sr = [Rcont(θcont)]sr[R
int(θint)]sr[R

cat(θcat)]sr, (7)

where [Rcont(θcont)]sr = kcont(xr, xs, θcont), [Rint(θint)]sr = kint(zr, zs, θint) and
[Rcat(θcat)]sr = kcat(cr, cs, θcat). The set of hyperparameters Θ could be estimated
using the DoE dataset (W, yf ) through the MLE approach on the following way

Θ∗ = argmax
Θ

L(Θ) =

(
−1

2
yf

⊤
[R(Θ)]−1yf − 1

2
log |[R(Θ)]| − nt

2
log 2π

)
, (8)

where R(Θ) is computed using Eq. (7). To construct the correlation matrix for con-
tinuous or integer inputs, several choices for the correlation kernel are possible. Usual
families of kernels include exponential kernels or Matern kernels [38]. In contrast, to
construct the correlation matrix for categorical inputs, we can either use a kernel as
for the continuous or integer variables or we can directly model the entries of the
correlation matrix thanks to a Symmetric Positive Definite (SPD) matrix parameter-
ization. The latter approach is what is done for the HH kernel, for example [12]. For
this kernel, the hyperparameters θcat can be seen as a concatenation of a set of sym-
metric matrices, i.e., θcat = {Θ1,Θ2, . . . ,Θl}. The construction of this kernel is thus

relying on the estimation of
∑l

i=1
1
2Li(Li − 1) hyperparameters.

2.2 The homogeneous categorical kernel

A recent paper [16] unified the kernel-based approach and the matrix-based approach
through the homogeneous model described hereafter. Recall that l denotes the number
of categorical variables. For a given i ∈ {1, . . . , l}, let cri and csi be a couple of cate-
gorical variables taking respectively the ℓri and the ℓsi level on the categorical variable
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ci. The hyperparameter matrix peculiar to this variable ci is

Θi =


[Θi]

1
1 9 Sym.9

[Θi]
2
1 [Θi]

2
2 9

...
. . .

. . . 9

[Θi]
Li
1 . . . [Θi]

Li

Li−1 [Θi]
Li

Li

 .
First, the correlation term [Rcat(θcat)]sr can be formulated in a level-wise form [9] as:

kcat(cr, cs, θcat) =

l∏
i=1

[Ri(Θi)]
ℓsi
ℓri

=

l∏
i=1

κ(2[Φ(Θi)]
ℓsi
ℓri
) κ([Φ(Θi)]

ℓri
ℓri
) κ([Φ(Θi)]

ℓsi
ℓsi
),

(9)

where κ(.) is either a positive definite kernel or the identity and Φ(.) is a SPD function
such that the matrix Φ(Θi) is SPD if Θi is SPD. For an exponential kernel, Table 1
gives the parameterizations of Φ and κ that correspond to GD, CR, HH and EHH
kernels. Note that the complexity between these different kernels is reflected by the
number of hyperparameters that characterize them. As in [16], for all categorical
variables i ∈ {1, . . . , l}, the matrix C(Θi) ∈ RLi×Li is lower triangular and built using
a hypersphere decomposition [39, 40] from the symmetric matrix Θi ∈ RLi×Li of
hyperparameters. The variable ϵ is a small positive constant and the variable θi denotes
the only positive hyperparameter that is used for the GD kernel. Nevertheless, until
now, PLS regression was only applied to mixed integer inputs for the CR kernel [1].
In the following section, we will show how to extend the PLS regression for the more
general HH kernel.

Table 1: Kernels based on Eq. (9) formulation.

Name κ(ϕ) Φ(Θi) # of Hyperparam.

GD exp(−ϕ) [Φ(Θi)]
j
j :=

1
2
θi ; [Φ(Θi)]

j′
j ̸=j′ :=0 1

CR exp(−ϕ) [Φ(Θi)]
j
j :=[Θi]

j
j ; [Φ(Θi)]

j′
j ̸=j′ :=0 Li

EHH exp(−ϕ) [Φ(Θi)]
j
j :=0 ; [Φ(Θi)]

j′
j ̸=j′ :=

log ϵ
2

([C(Θi)C(Θi)
⊤]

j′
j −1)

1
2
(Li)(Li − 1)

HH ϕ [Φ(Θi)]
j
j :=1 ; [Φ(Θi)]

j′
j ̸=j′ :=

1
2
[C(Θi)C(Θi)

⊤]
j′
j

1
2
(Li)(Li − 1)

3 KPLS for mixed-categorical inputs

To have a sparse model that can extend to high dimension, and to facilitate the
optimization of the hyperparameters, one seeks to express the correlation matrix
Rcont(θcont) with d≪ n relevant hyperparameters. Such a method is KPLS [17] that
is an adaptation of the Partial Least Squares (PLS) regression for exponential ker-
nels. To introduce the variables and notations, the next part presents a short recall
of PLS regression for vector inputs and of KPLS for continuous variables. Then, the
second part presents our extension to matrix inputs and its application for categorical
variables.

3.1 KPLS for continuous inputs

In this part, we introduce the PLS regression for vector inputs as it was developed by
Wold [41] and its application to GP kernels (namely KPLS) developed by Bouhlel et
al. [17].
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3.1.1 PLS for vectors inputs

We present here the classical method for the continuous case but integer inputs can
be treated similarly by considering them as continuous. Let the DoE be (X, yf ) where
X is the continuous data matrix of size nt × n and yf is the response vector of size
nt. The PLS regression method is designed to search out the best multidimensional
direction in Rn that explains the output yf [41]. The first principal component (or
score) h(1) is obtained by searching the best direction (or weight) g(1) that maximizes
the squared covariance between h(1) = Xg(1) and yf :

g(1) = arg max
g∈Rn

{
g⊤X⊤yfyf

⊤
Xg s.t. g⊤g = 1

}
. (10)

Next, we compute the residuals of the inputs as X(1) = X − ξ(1)h(1) with ξ(1) being
the regression coefficients (or loadings) that minimize the residual for every point.
We also project the output and, denoting γ1 the corresponding coefficient, we have
yf(1) = yf − γ1h

(1). For all t ∈ {1, . . . , d}, we iterate the process of Eq. (10) with the
residuals X(t) and yf(t). At the end of the process, we can write the various computed
quantities in a matrix form. Namely, we denote G the n × d matrix such that g(t) is
the tth column of G and Ξ the n× d matrix such that ξ(t) is the tth column of Ξ. Let
G∗ = G(ΞTG)−1 be the n× d matrix such that G∗ = [G1

∗, . . . , G
d
∗] with G

t
∗ ∈ Rn, G∗

is called the rotation matrix [17, 42]. Thanks to this matrix, we can express the score
h(t) as a function of the input X as:

∀t ∈ {1, . . . , d}, h(t) = X(t)g(t) = XGt∗.

By PLS, we have built an approximationX ≈ HΞT whereH is nt×d score matrix such
that h(t) is the tth column of H and Ξ the loading matrix. This is the d-dimensional
approximation of X in Rn that minimizes the mean squared error. Therefore, we
have XG∗ ≈ HΞTG(ΞTG)−1 = H. Then G∗ ∈ Rn×d is the projection matrix from
X in the initial space to H in the reduced space and ΞT is its reciprocal such that
XG∗Ξ

T ≈ HΞT ≈ X. It follows that, for a given reduced dimension t ∈ {1, . . . , d}, a
given point xr can be expressed in the original space along t:

Ft : Rn −→ Rn

xr 7→
[
[G∗]

t
1 [x

r]1 , . . . , [G∗]
t
n [x

r]n

]
.

(11)

With PLS, we built a low-rank approximation and, in the following section, we show
how to build the GP model in a small subspace instead of building it in the full space.
The objective is twofold when the dimension increases. First, optimizing a small num-
ber of hyperparameters is much faster because, with more than 20 variables, building
a GP is really prohibitive in terms of computational cost [17]. Second, optimizing the
hyperparameters is harder and the resulting GP is often non-optimal and, not only is
more costly than the KPLS model but also leads to some degraded performance [1].
These two reasons motivated the need for the KPLS model described below.

3.1.2 KPLS for continuous variables

The construction of the correlation matrix Rcont(θcont) for continuous inputs, based
on square exponential kernels (or Gaussian kernel [7]) with PLS can be described as
follows. For a couple of continuous inputs xr ∈ Rn and xs ∈ Rn, one sets:
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[Rcont(θcont)]r,s =

d∏
t=1

kcontt (Ft(x
r), Ft(x

s), θ̂contt )

=

d∏
t=1

n∏
j=1

exp

(
−θ̂contt

(
[G∗]

t
j [x

r]j − [G∗]
t
j [x

s]j

)2)

=

n∏
j=1

exp

(
−θcontj

(
[xr]j − [xs]j

)2)
,

(12)

where θcontj =

d∑
t=1

(
[G∗]

t
j

)2
θ̂contt . Clearly, in the continuous case, constructing

Rcont(θcont) would require the estimation of d non-negative hyperparameters, i.e.,
θcont ∈ Rd+, d≪ n.

3.2 Extension of PLS to matrix inputs with application to
mixed-categorical GP

This part presents the extension of PLS for a general categorical GP kernel. More
precisely, in Section 3.2.1 we extend the PLS regression for matrix inputs and, in
Section 3.2.2 we applied it to the GP kernels for categorical variables.

3.2.1 A PLS framework for matrix inputs

We consider a general categorical variable c that can take L different levels. In that
context, we want to find a small ℓ× ℓ matrix Θ̂ to represent a bigger L×L correlation
matrix Θ, with ℓ < L. Recall that, from PLS, G∗ can be seen as the rotation matrix
from the initial space to the reduced space [43]. By taking into account the symmetry
of correlation matrices and their unit diagonal, we need to build a rotation matrix G∗

of dimension
(
L(L−1)

2 × ℓ(ℓ−1)
2

)
. The input dimension is denoted Din = L(L−1)

2 and

the output dimension is denoted Dout =
ℓ(ℓ−1)

2 .
First, we want to construct the matrix G∗ aforementioned. For a given input cr,

its natural one-hot encoding ecr is a basis vector of dimension L [16]. Meanwhile,
the input that we need for G∗ is of dimension Din so, in order to have a vector data
fitting the dimension, we propose to use a novel one-hot encoding relaxation that adds
a new dimension for every cross-correlation term. Subsequently, the relaxation ζcr is
such that ζcr ∈ {0, 1}Din : the L − 1 terms that correspond to the correlation with
the level taken by the input cr equal 1 and all other terms take value 0 and we call
this relaxation “cross-levels encoding”. One can observe that the Hadamard product
ζcr ⊙ ζcs = 1 in the dimension corresponding to the correlation between the levels
taken by cr and cs and zero everywhere else which is the property we were seeking
for. In other words, for all j ∈ 1, . . . , Din,{

[ζcr ⊙ ζcs ]j = 1, if ζcrj = 1 and ζcsj = 1,

[ζcr ⊙ ζcs ]j = 0, otherwise.
(13)

Example 1 illustrates how the relaxed vectors ζcr and ζcr are built using a simple
use-case.
Example 1. Consider a categorical variable c taking values in a color set of L = 4
levels such that, for any point r, cr ∈ {“green”, “red”, “blue”, “yellow”}. We want to
represent the value of cr as ζcr ∈ {0, 1}Din . In this case, Din = 6 which corresponds
to the 6 possible correlations ( “blue-red”, “blue-green”, “blue-yellow”, “red-green”,
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“red-yellow” and “green-yellow”). For instance, if nt = 3 points are considered such
that (c1, c2, c3) = {“blue”, “red”, “red”}, the first point c1 = “blue” will be repre-
sented as ζc1 = (1, 1, 1, 0, 0, 0), taking 1 for the dimensions related to the correlations
involving “blue” and 0 everywhere else. Similarly, the second point c2 = “red” will
be represented as ζc2 = (1, 0, 0, 1, 1, 0). And when taking the Hadamard product,
ζc1 ⊙ ζc2 = (1, 0, 0, 0, 0, 0), the only dimension that takes value 1 corresponds exactly
to the dimension representing “blue-red”.

Using the relaxed DoE X = {ζc1 , . . . , ζcnt} of dimension Din×nt, we can compute
the rotation matrix G∗ of dimension Din × Dout as in Eq. (10). Our goal is to use
the matrix G∗ to express an L × L matrix from a smaller ℓ × ℓ matrix. The L × L
symmetric matrix Θ with unit diagonal can be estimated using a smaller ℓ × ℓ SPD
matrix such that, for all j < j′, one has

[Θ]j
′

j =

ℓ∑
t=1

ℓ∑
t′=t+1

(
[G∗]

ψ(t,t′,ℓ)
ψ(j,j′,L)

)2
[Θ̂]t

′

t , (14)

where we rely on a matrix-to-vector lexicographical transformation ψ to insure that

both the input vector of size L(L−1)
2 and the output vector of size ℓ(ℓ−1)

2 are valid
representations of SPD matrices. For a given integer nlev and, for all k ∈ {1, . . . , nlev}
and k′ ∈ {k + 1, . . . , nlev}, the mapping ψ is given by:

ψ(k, k′, nlev) =
1

2
((nlev − 1)(nlev − 2)− (nlev − k)(nlev − k − 1)) + k′ − 1. (15)

This formulation gives a sparse vector representation of the hyperparameters used to
build the matrix Θ by lexicographic order of the triangular superior part of the matrix.
Notwithstanding, as we assumed that Θ is a symmetric matrix with unit diagonal,
we could have defined [Θ]jj′ in Eq. (14) by the triangular inferior values. This would
have led to the exact same kernel as what as been presented but with a slightly
different definition of ψ. With the expression of Eq. (14) we achieved to build a PLS
approximation for matrices as intended. To finish with, we insure that Eq. (14) works
for SPD matrices in order to build our GP upon it as described in the following section.
Theorem 1. Assuming that all the entries of Θ̂ are in [−1, 1] and that G∗ is computed
using PLS as in Eq. (10), the matrix Θ given by Eq. (14) also takes values in [-1,1].

Proof. Indeed, G∗ is a rotation matrix. Thus, for all j ∈ {1, . . . , L} and
j′ ∈ {j + 1, . . . , L}, the ψ(j, j′, L)-th row of G∗, given by [G∗]ψ(j,j′,L) ={
[G∗]

ψ(t,t′,ℓ)
ψ(j,j′,L)

}
1 ≤ t ≤ ℓ,

t + 1 ≤ t′ ≤ ℓ

, satisfies

(
[G∗]ψ(j,j′,L)

)⊤ (
[G∗]ψ(j,j′,L)

)
=

ℓ∑
t=1

ℓ∑
t′=t+1

(
[G∗]

ψ(t,t′,ℓ)
ψ(j,j′,L)

)2
= 1.

Hence, knowing that
∣∣∣[Θ̂]t

′

t

∣∣∣ ≤ 1 for all t, t′, one has

|[Θ]j
′

j | ≤
ℓ∑
t=1

ℓ∑
t′=t+1

(
[G∗]

ψ(t,t′,ℓ)
ψ(j,j′,L)

)2 ∣∣∣[Θ̂]t
′

t

∣∣∣ ≤ 1.

The matrix Θ is serving as a correlation matrix. For this purpose, it is essential
that the matrix be SPD. To ensure its SPD nature, we check in our implementation if
all of its eigenvalues are positive. If any eigenvalues are found to be negative, a nugget
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term is added to the covariance matrix to enforce the SPD property of the matrix
Θ. The nugget term allows us to mitigate numerical issues and maintain positive
definiteness. It is worth noting that in all our numerical tests, the matrix Θ has been
shown to be SPD. This suggests that if Θ̂ is SPD, then Θ̂ remains SPD, as discussed.
Such a result seems not trivial to prove using Eq. (14). Note also that Θ gives a good
approximation of the correlation matrix between the levels of a categorical variable.
This approximation can be used to understand the structure of our modeling problem
as in Section 4.

3.2.2 A new KPLS model for categorical variables

For a given categorical variable i, we want to express the matrix Ri(Θi) with less

than Din = Li(Li−1)
2 hyperparameters Θi. To do so, we generalize the KPLS method

of Bouhlel et al. [17] for any correlation matrix. Let Θ̂i be a ℓi × ℓi SPD matrix
defined on the reduced space whose values are in [−1, 1] constructed by homoscedastic

hypersphere decomposition [10]. The Dout =
ℓi(ℓi−1)

2 correlation parameters of Θ̂i can
be optimized by MLE from the scores projected data Hi = XiG∗ as in the continuous
case. Based on Eq. (14) for matrix PLS, we can introduce our new HH and EHH
KPLS kernels depending only on Dout hyperparameters defined as follows. Recall
that the matrix C(Θi) ∈ RLi×Li is lower triangular and built using a hypersphere
decomposition [39, 40] and that the variable ϵ is a small positive constant.

• The HH KPLS kernel is given by κ = ILi
, [Φ(Θi)]

j
j = 1 and, for all j ̸= j′,

[Φ(Θi)]
j′

j =
1

2

ℓ∑
t=1

ℓ∑
t′=t+1

(
[G∗]

ψ(t,t′,ℓ)
ψ(j,j′,L)

)2
[C(Θi)C(Θi)

⊤]t
′

t .

• The EHH KPLS kernel is given by κ(ϕ) = exp(−ϕ), [Φ(Θi)]jj = 0 and, for all j ̸= j′,

[Φ(Θi)]
j′

j =

ℓ∑
t=1

ℓ∑
t′=t+1

(
[G∗]

ψ(t,t′,ℓ)
ψ(j,j′,L)

)2 log ϵ

2
([C(Θi)C(Θi)

⊤]t
′

t − 1).

For EHH KPLS kernels, the proposed KPLS model as given by Eq. (14) can be shown
as a natural extension of the continuous KPLS as proposed by Bouhlel et al. [17]
(described also in Section 3.1.2). The result is shown hereinafter.
Theorem 2. For a correlation matrix Θ̂i, the projection formula used in Eq. (14)
extends the continuous KPLS to categorical matrices using an exponential kernel.

Proof. The KPLS kernel, for exponential kernel, is based on the fact that, for a given
reduced dimension t ∈ {1, . . . , d}, a given point xr can be expressed in the original
space along t as in Eq. (11). Therefore, we apply the same transformation to our
relaxed inputs and then apply the transformation ψ to have a matrix formulation from
the relaxed vectors. This leads to the natural way to express our new EHH KPLS



Springer Nature 2023 LATEX template

High-dimensional mixed categorical GP 11

kernel defined as [Ri(Θi)]
ℓsi
ℓri

= 1 if cri = csi and otherwise,

[Ri(Θi)]
ℓsi
ℓri

=

ℓi∏
t=1

ℓi∏
t′=t+1

Li∏
j=1

Li∏
j′=j+1

exp
[
−
(
[G∗]

ψ(t,t′,ℓi)
ψ(j,j′,Li)

[ζcri ]ψ(j,j′,Li) [G∗]
ψ(t,t′,ℓi)
ψ(j,j′,Li)

[ζcsi ]ψ(j,j′,Li)

)
[Θ̂i]

t′

t

]

=

ℓi∏
t=1

ℓi∏
t′=t+1

Li∏
j=1

Li∏
j′=j+1

exp

[
−
(
[ζcri ]ψ(j,j′,Li)[ζcsi ]ψ(j,j′,Li)

) (
[G∗]

ψ(t,t′,ℓi)
ψ(j,j′,Li)

)2
[Θ̂i]

t′

t

]

= exp

 Li∑
j=1

Li∑
j′=j+1

ℓi∑
t=1

ℓi∑
t′=t+1

−
(
[G∗]

ψ(t,t′,ℓi)
ψ(j,j′,Li)

)2
[Θ̂i]

t′

t

(
[ζcri ]ψ(j,j′,Li)[ζcsi ]ψ(j,j′,Li)

)
= exp

 Li∑
j=1

Li∑
j′=j+1

−[Θi]
j′

j

(
[ζcri ]ψ(j,j′,Li)[ζcsi ]ψ(j,j′,Li)

) 
= exp

 Li∑
j=1

Li∑
j′=j+1

−[Θi]
j′

j

(
δj,ℓri δj′,ℓsi

) 
= exp

[
−[Θi]

ℓsi
ℓri

]
,

where δi,j is the Kronecker symbol (i.e., δi,i = 1 and δi,j = 0 for all i ̸= j) and
Θ ∈ RLi×Li is given by Eq. (14).

In the next section, we will see how to apply our new KPLS matrix-based GP on
analytical and engineering problems. We will demonstrate how our surrogate models
can provide insights into the underlying structure of the correlation matrix and how it
can be utilized for BO when dealing with structural and multidisciplinary problems.

4 Results and discussion

In this section, we demonstrate how our GP performs over various test cases and
compare it to other GP models. To begin with, Section 4.1 gives the details of the
implementation used for the following computer experiments. Next, Section 4.2 illus-
trates the GP models on an analytical and on a structural test case. Finally, section 4.3
presents the use of these GP models for BO with mixed variables on an analytical test
case and then in the context of MDO for aircraft design. The considered test cases
in this section, as well as the number of hyperparameters related to each kernel, are
listed in Table 2.

Table 2: Number of variables and hyperparameters for the test cases in this study.

Problem # of variables
# of hyperparameters

GD CR HH

Categorical cosine problem 2 2 14 79
Cantilever beam 3 3 14 68
Toy function 2 2 11 46

DRAGON aircraft concept 12 12 29 147
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4.1 Implementation details

Optimizing the likelihood with respect to the hyperparameters necessitates the use of
an efficient gradient-free algorithm. In this study, we have employed COBYLA [44]
from the Python library Scipy, which employs default termination criteria related to
the trust region size. Since COBYLA is a local search algorithm, we have employed a
multi-start technique for enhanced robustness. Our models and their implementation
can be accessed in the SMT v2.0 toolbox [35, 45]. In SMT 2.02, the default number of
starting points for COBYLA is set to 10, distributed evenly. We utilize a straightfor-
ward noiseless Kriging model with a constant prior. It is important to note that the
absolute exponential kernel and the squared exponential kernel behave similarly for
categorical variables. The correlation values range between 2.06e− 9 and 0.999999 for
both continuous and categorical hyperparameters. Consequently, we select the con-
stant ϵ to correspond to a correlation value of 2.06e−9. The DoE are generated through
Latin Hypercube Sampling (LHS) [46], and the validation sets consist of evenly spaced
points.

For BO without constraint, we are using the EGO method of SMT 2.0 with the
aforementioned GP models from the same toolbox. For BO under constraints, we are
using the SEGOMOE method [47] with the mean criterion for the metamodels of con-
straints [48]. We are using the same GP models for both objective and constraints.
The optimization of the WB2s infill criterion [47] is done using SNOPT [49]. To
compare BO with, we used a Multi-Objective Evolutionary Algorithm (MOEA) [50]
named the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [51] due to its
low configuration effort and high performance. The NSGA-II algorithm used is the
implementation from the toolbox pymoo [52] with the default parameters (probability
of crossover = 1, eta = 3). Pareto fronts are not relevant in our study as we are con-
sidering single-objective optimization. We note that, although NSGA-II is designed
for multi-objective optimization, for the purpose of establishing a baseline reference
(for comparison), we have used NSGA-II to solve our mono-objective optimization
problem. In fact, to the best of our knowledge, NSGA-II is the only open-source opti-
mization solver available for addressing mixed-variable constrained optimization. In
this paper, all results are obtained using an Intel® Xeon® CPU E5-2650 v4 @ 2.20
GHz core and 128 GB of memory with a Broadwell-generation processor front-end
and a compute node of a peak power of 844 GFlops.

Note that when using KPLS, the GP models built based on the EHH and HH
kernels demonstrate comparable performance, with a slight advantage for HH in our
numerical tests. For this reason, and to enhance the readability of the numerical
section, we have decided to report only results on the HH kernel. Nevertheless, the
method related to the use of KPLS within the EHH kernel (i.e., EHH-PLS) is available
in the SMT 2.0 toolbox.

4.2 Surrogate modeling

In this section, we validate our model on both a state-of-the-art modeling problem
in Section 4.2.1 and on an structural cantilever beam problem in Section 4.2.2. More
precisely, the matrix based PLS model is compared with literature models like GD,
CR or HH. This section shows that the PLS information can capture the shape of the
correlation matrix between the various levels of a categorical variable.

4.2.1 Analytic validation on a categorical cosine problem (n = 1,
m = 0, l = 1 and L1 = 13)

In this section, we investigate the categorical cosine problem, as outlined in [12], to
showcase the behavior of the proposed kernels. The black-box function, denoted as
f , relies on both a continuous variable within the range of [0, 1] and on a categorical

2https://smt.readthedocs.io/en/latest/

https://smt.readthedocs.io/en/latest/
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variable with 13 distinct levels. Consequently, the relaxed dimension(i.e., the number
of hyperparameters) is 14 for the construction of a continuous GP with CR and the
most general GP with our new relaxation is of dimension 79.

Appendix A provides a detailed description of this function. A given point of
the DoE is denoted as w = (x, c), where x represents the continuous variable and c
represents the categorical variable. This work aims at modeling the interplay between
the various variables (together with their respective levels) as well as their impact on
the targeted function. Notably, the categorical variable exhibits two distinct groups of
curves, each comprising a subset of the 13 levels. The first group encompasses levels 1
to 9, while the second group consists of levels 10 to 13. Within each group, we observe
strong positive correlations, implying that variables within the same group exhibit a
similar behavior. Conversely, strong negative correlations manifest between the two
groups, indicating distinct behavior and characteristics between them. In this example,
the number of relaxed dimensions for continuous relaxation is 14. A LHS DoE with
98 points (14× 7, if 7 points per dimension are considered) is chosen to built the GP
models. On this test case, the number of hyperparameters to optimize is therefore 2
for GD and HH with 2D PLS, 14 for CR and 79 for HH as indicated in Table 3.

For GD, CR, HH and HH with PLS, the associated mean posterior models are
shown on Fig. 1 on the right and the estimated correlation matrices Ri = Rcat1 are
displayed on the left. The latter matrices can be interpreted as such: for two given
levels {ℓ1r, ℓ1s}, the correlation term [R1]ℓ1r,ℓ1s is in blue for correlation value close to 1,
in white for correlations close to 0 and in red for value close to -1; moreover the thinner
the ellipse, the higher the correlation and we can see that the correlation between a
level and itself is always 1. At first glance, one can see, on Fig. 1, that the predicted
values remain properly within the interval [−1, 1] only with the HH kernel and looked
badly estimated with GD. To quantify this assumption, we compute the Root Mean
Square Error (RMSE) and Predictive Variance Adequacy (PVA) [53] for every model
as

RMSE =

√√√√ N∑
i=1

1

N

(
f̂(wi)− f(wi)

)2
and PVA = log

 N∑
i=1

1

N

(
f̂(wi)− f(wi)

)2
[σf (wi)]2

 ,

where N is the size of the validation set, f̂(wi) and σ
f (wi) are the mean and standard

deviation predictions of our GP model at a point wi, f(wi) is the associated true value
and the validation set consists of N = 13000 evenly spaced points (see Appendix A).
The values are reported in Table 3 and show that the PVA is constant indicating that
the estimation of the variance is proportional to the RMSE. Nevertheless, the PVA
is smaller for the EHH and HH kernels because the optimization has not converged
yet after 887 seconds (79 parameters being hard to optimize in that case). However,
a longer run gives a RMSE of 1.280 and a PVA of 21.95 for HH, which, once again is
around the other PVA values. Note that the RMSE obtained with HH and EHH are
significantly smaller than the errors obtained with all other methods, even with an
incomplete optimization.

In Table 3, we also included the results obtained for different sizes of the PLS
reduced matrix, namely 2× 2, 3× 3, 4× 4 and 5× 5. As expected, these results show
that the more complex the model, the smaller the RMSE. Moreover, with the same
number of hyperparameters the HH 2D PLS outperforms GD in terms of accuracy
and retrieves part of the correlation matrix structure. Also, the HH 2D PLS model
can lead to almost similar performance as CR with significantly less hyperparameters.
Indeed, PLS reduces slightly the accuracy of the model because KPLS is a simplified
model optimized in a small subspace but it reduces the run time by a factor of around
10 on this categorical cosine test case. Both the CR and HH models have been built
for illustration purposes but are intractable in time for real test cases and the latter
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is the reason for developing reduced order model in this paper. Notwithstanding, in
terms of computational costs, computing PLS for matrices could be time-consuming
(130 seconds for 2D PLS versus 2.5 seconds for GD). However, this cost is a fixed
cost making our method of particular interest for large datasets and high number of
dimensions. We also include the metrics for CR+PLS but this method combines all

Table 3: Kernel comparison for the cosine test case in terms of num-
ber of hyperparameters, time, RMSE and PVA metrics.

Kernel # of Hyperparam. run time (s) RMSE PVA

GD 2 2.5 30.079 21.99

CR 14 19 22.347 23.04
CR+PLS 2 2.8 26.376 21.87

HH 79 887 5.330 15.34
HH+PLS(2x2) 2 130 26.087 21.86
HH+PLS(3x3) 4 326 25.504 21.95
HH+PLS(4x4) 7 819 23.01 22.13
HH+PLS(5x5) 11 1787 23.04 22.13

EHH 79 959 6.858 15.46

hyperparameters and does a unique PLS in a continuous space, therefore, this method
cannot be used to retrieve the correlation matrix and to study the categorical variable,
it has no explainability. Nevertheless, in terms of predictive power, this method is
associated with a computational time similar to GD for a better predictive power
which makes it a good method for quick prediction on uncertain zones as in the context
of BO. For the method developed in this paper, we tested several PLS components
but these components correspond to a small correlation matrix and therefore should

be of the form n(n+1)
2 , n ∈ N. We computed the models with the first number of PLS

components (1, 3, 6, 10) as indicated in Table 3 but the predictive gain is not significant,
especially given the increase in run time to build the model when the number of
components increases. In particular, after 6 components (4x4 matrix), we have a cost
comparable with the full model, and, even if these 6 hyperparameters are optimized
completely, the prediction is still rough whereas the incomplete optimization of the
HH model gives a significantly better prediction still. For that reason, in the following
experiments and comparisons, we will stick to the 1 component (2x2 matrix) PLS to
retrieve the matrix because this method is less expensive and almost as efficient as its
variants with more parameters. As mentioned before, the HH run has not converged
after 887 seconds but we used the same internal parameters in the SMT 2.0 software to
compare the various models fairly. To be as exhaustive as possible, we also added the
results for the EHH kernel, more details about the models without PLS are available
in [16].

4.2.2 Structural modelling: a cantilever beam bending problem
(n = 2, m = 0, l = 1 and L1 = 12)

A classic engineering problem frequently employed for model validation is the beam
bending problem in its linear elasticity range [12, 54]. This problem serves as an
illustrative example and involves a cantilever beam subjected to a load applied at its
free end, denoted as F . The specific setup of the problem is depicted in Fig. 2a. In
accordance with the findings presented in [54], the Young’s modulus for the material
is determined to be E = 200 GPa, and a load of F = 50 kN has been chosen for
the analysis. Furthermore, following the methodology outlined in [12], a total of 12
potential cross-sections can be used for the beam. These cross-sections encompass four
distinct shapes (square, circle, I and star), each with the possibility of being either
full, thick, or hollow, as visually depicted in Fig. 2b. For a given cross-section, which
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(a) GD kernel (2 hyperparameters: 1 cat. and 1 cont.)

(b) HH with PLS kernel (2 hyperparameters: 1 cat. and 1 cont.)

(c) CR kernel (14 hyperparameters: 13 cat. and 1 cont.)

(d) HH kernel (79 hyperparameters: 78 cat. and 1 cont.)

Fig. 1: Correlation matrices and associated predictions on the cosine problem using
a DoE of 98 points.

consists of a specific shape and thickness, its size is determined by the surface area
denoted as S. Additionally, each cross-section is associated with a normalized moment
of inertia Ĩ around the neutral axis, representing a latent variable connected to the
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beam’s shape [55]. Hence, the problem at hand involves modeling with two continuous

F = 50kN

δ

L

(a) Bending problem.

1 2 3 4 5 6

7 8 9 10 11 12

(b) Possible cross-section shapes.

Fig. 2: Cantilever beam problem [16, Figure 6].

variables: the length L, ranging from 10 to 20 meters, and the surface area S, ranging
from 1 to 2 square meters. Additionally, there is a categorical variable, Ĩ, with 12
levels representing the various cross-section options available. The tip deflection, at
the free end, δ is given by

δ = f(Ĩ , L, S) =
F

3E

L3

S2Ĩ
.

As a result, the relaxed dimension used to construct the GP model using the CR
method is 14, while the relaxed dimension for the most general GP model employing
the HH method is 68. To compare our models, we draw a 98 point LHS as training
set and the validation set is a grid of 12×30×30 = 10800 points. For the four models
GD, CR, HH and HH with PLS, the correlation matrix associated to every model are
drawn in Fig. 3 showing the predicted correlations between the available cross-sections.
We recall that these matrices can be interpreted as such: for two given levels {ℓ1r, ℓ1s},
the correlation term [R1]ℓ1r,ℓ1s is in blue for correlation value close to 1, in white for
correlations close to 0 and the thinner the ellipse, the higher the correlation.

The models are summarized in Table 4 indicating the complexity of each model
and the information that could be recovered from it. For the HH kernel, the indi-
cated computational time corresponds to the duration required to fully converge all
68 hyperparameters. In fact, the computational cost and difficulty to optimize the
likelihood in spaces of dimension superior to ten is the biggest limitations of HH and
such exhaustive kernels. This increase in difficulty to converge and associated com-
putational cost is one of the main motivations for our PLS method and for simpler
models. As expected, we have 3 groups of 4 shapes depending on their respective
thickness (respectively, the full levels {1,4,7,10}, the medium levels {2,5,8,11}, and
the hollow levels {3,6,9,12}). The more the thickness is similar, the higher the cor-
relation: the thickness has more impact than the shape of the cross-section on the
tip deflection. However, given the database, two points with similar L and S values
will have similar output whatever the cross-section. The effect of the cross-section on
the output is always the same (in the form of 1

Ĩ
) leading to an high correlation after

maximizing the likelihood. For the GD model in Fig. 3a, there is only one mean pos-

Table 4: Results of the cantilever beam models.

Categorical kernel Identified clusters # hyps. Time (s) RMSE (cm)
GD – 3 8 1.3858

HH+PLS Hollow cluster and Full cluster 3 38 1.2989
CR Medium cluster 14 89 1.1604
HH Full, Medium and Hollow 68 2128 0.1247

itive correlation value, therefore no structural information can be extracted from this
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unique value. On the contrary, the HH model is the most general one and can model
every cross-correlation value independently from the others and, in Fig. 3d, we can
distinguish the three groups of four shapes, as expected, because the shapes of the
cross-sections are not significant in comparison with their thickness. Concerning the
CR model, its structure favors the medium group, that is well represented, but the
thick and hollow shapes are not distinguished in Fig. 3c. To finish with, the HH+PLS
model in Fig. 3b captures well the hollow shapes correlations and managed to capture
half the full shapes correlations. More precisely, HH+PLS captured, with only one cat-
egorical hyperparameter (3 in total), the correlation between the full square and the
full circle cross-sections (indexed 1 and 4) but failed to capture the correlation with
full I and full star shapes (indexed 7 and 10). Consequently, with only one categorical
hyperparameter, our model performs really well and is able to reconstruct structure
from the data, thus outperforming the GD model for the same computational cost.

(a) GD kernel (3 hyperparameters: 1 cat.
and 2 cont.)

(b) HH with PLS kernel (3 hyperparame-
ters: 1 cat. and 2 cont.)

(c) CR kernel (12 hyperparameters: 10 cat.
and 2 cont.)

(d) HH kernel (66 hyperparameters: 64 cat.
and 2 cont.)

Fig. 3: Correlation matrix Rcat1 using different choices for Θ1 for the categorical
variable Ĩ from the cantilever beam problem.

To conclude, this section showed the capability of our PLS model to capture struc-
tures in the data while using only a small number of hyperparameters. Our model
eases the optimization of the likelihood function and reduces the computational cost
associated with the GP surrogate model. Notably, our work was efficiently applied to
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a structural modeling problem. However, building the GP surrogate is only part of the
total optimization cost, and, in the next section, we show how our GP can be used in
the context of high-dimensional MDO for aircraft design.

4.3 Surrogate-based optimization: Bayesian optimization

Efficient Global Optimization (EGO) is a well-known Bayesian optimizer that relies
on GP to find out the optimum of an unconstrained black-box problem that can be
evaluated a limited amount of times [56]. The workflow of EGO begins with building a
first GP model based on an initial DoE, followed by employing an acquisition function
to guide the selection of the next point that will be evaluated through the expensive
black-box function. The most commonly used acquisition function is the expected
improvement and, once a new point has been evaluated, the GP model is updated
and the selection process repeats with the updated GP. At every step, a new model
is built and a new point is evaluated until a maximal budget is reached. Hereinafter,
we will use the GP models aforementioned to optimize expensive-to-evaluate black-
box problems involving mixed integer variables using the EGO algorithm. Moreover,
EGO has been generalized to tackle constrained problems by Sasena et al. [57] with
an algorithm called SEGO and used in the optimizer SEGOMOE [47].

4.3.1 Analytic validation on a mixed optimization problem
(n = 1, m = 0, l = 1, and L1 = 10)

The mixed test case that illustrates BO is a toy test case [58] detailed in Appendix B.
This test case has two variables, one continuous and one categorical with 10 levels.
As a result, the relaxed dimension used to construct the GP model using the CR
method is 11, while the relaxed dimension for the most general GP model employing
the HH method is 46. In Fig. 4 and Fig. 5 six GP models are being compared. These
six models are four classical GP models, namely GD, CR, EHH and HH and two
PLS based models, namely our new model HH+PLS and the previously developed
CR+PLS model [1]. In particular, in [1], we used this CR+PLS method coupled with
a criterion to choose automatically the number of PLS components that gives the
best prediction for optimization. This adaptive PLS method for mixed integer has
been applied to the MDO of DRAGON as detailed in Section 4.3.2. To assess the
performance of our algorithm, we performed 20 runs with different initial DoE sampled
by LHS. Every DoE consists of 5 points in Fig. 4 and of 10 points in Fig. 5. For both
experiments, we chose a budget of 55 infill points. Figure 4a and Fig. 5a plot the
convergence curves for the six methods. To visualize the data dispersion, the boxplots
of the 20 best solutions after 25 evaluations are plotted in Fig. 4b and Fig. 5b. The
computational times for every method are indicated in Table 5 for a 5 point DoE and
in Table 6 for a 10 point DoE. We note that the overall computational cost is derived
by the optimization cost related to the maximization of the infill criterion. In fact,
such optimization is often related to the number of the design variables rather than the
size of the DoE. On this test case, our method gives the best results with the 5 point
DoE in terms of median convergence speed and dispersion among the 20 DoE. For
the 10 point DoE, our method is among the faster together with CR+PLS. However,
even if the HH+PLS method has been shown to be efficient for solving this test case,
it is still more costly than CR+PLS or GD because the computational cost associated
to the reconstruction of the matrix of hyperparameters is significant. Nevertheless, it
is a method based only on two hyperparameters (one categorical and one continuous)
making it around 20 times easier to optimize than HH or EHH and 3 times faster for
better performance. In any case, using a 5 point DoE is slightly more efficient than
using a 10 point DoE because BO is known to perform better with a smaller DoE for
a given budget of evaluations [59]. But this effect is not significant for methods that
use PLS, as PLS benefits greatly from the initial DoE information to find the most
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interesting search directions. This explains why PLS methods are performing better
with a 10 point DoE than with a 5 point DoE.

(a) Convergence curves: medians of 20 runs. (b) Boxplots after 25 evaluations.

Fig. 4: Optimization results for the Toy function [58] for 20 DoE of 5 points.

Table 5: Results of the Toy problem optimization (5 point DoE and 55
infill points).

Kernel number of hyperparameters optimization duration (s)

GD 2 315

CR 11 503
CR+PLS 2 320

HH 46 1983
HH+PLS 2 646

EHH 46 2086

(a) Convergence curves: medians of 20 runs. (b) Boxplots after 25 evaluations.

Fig. 5: Optimization results for the Toy function [58] for 20 DoE of 10 points.
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Table 6: Results of the Toy problem optimization (10 point DoE and
55 infill points).

Kernel number of hyperparameters optimization duration (s)

GD 2 314

CR 11 479
CR+PLS 2 326

HH 46 2142
HH+PLS 2 662

EHH 46 2079

4.3.2 Multidisciplinary design optimization for a green aircraft
(n = 10, m = 0, l = 2, L1 = 17 and L2 = 2)

For the core MDO application, we apply the Future Aircraft Sizing Tool with Over-
all Aircraft Design (FAST-OAD) [6] on “DRAGON” (Distributed fans Research Aircraft
with electric Generators by ONera), an innovative aircraft currently under develop-
ment. The “DRAGON” aircraft concept in Fig. 6 has been introduced by ONERA in
2019 [60] within the scope of the European CleanSky 2 program3 which sets the objec-
tive of 30% reduction of CO2 emissions by 2035 with respect to 2014 state-of-the-art.
A first publication in SciTech 2019 [60] was followed by an up-to-date report in SciTech
2020 [61]. In response to this ambitious goal, ONERA introduced a concept for a dis-
tributed electric propulsion aircraft that makes significant strides in enhancing fuel
efficiency by optimizing propulsive performance. This is realized by an increase in the
bypass ratio through a strategic placement of numerous compact electric fans on the
wing pressure side, as an alternative to the use of larger turbofans. This design deci-
sion effectively resolves the challenges associated with large under-wing turbofans and
grants the aircraft the capability to operate at transonic speeds. Consequently, the
primary design objective for the “DRAGON” revolves around accommodating a passen-
ger capacity of 150 individuals and facilitating travel over a range of 2750 Nautical
Miles at a speed of Mach 0.78.

Fig. 6: “DRAGON” aircraft mock-up.

The integration of distributed propulsion in an aircraft introduces certain trade-
offs. It necessitates the use of a turbo-electric propulsion system to provide the
necessary power to drive the electric fans, which, in turn, contributes to increased
intricacy and added weight. Typically, this power is generated onboard by coupling
turboshafts to electric generators. The generated electrical power is subsequently
transmitted to the electric fans through an electric architecture designed to ensure
resilience in the face of potential single component failures. This safety feature is

3https://www.cleansky.eu/technology-evaluator

SMO_https://www.cleansky.eu/technology-evaluator
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achieved through the deployment of redundant components, as illustrated in Fig. 7.
The initial setup comprises two turboshafts, four generators, four propulsion buses
with cross-feed capabilities, and 40 fans. This configuration was selected during the
preliminary study phase due to its compliance with safety standards. Nevertheless,
it was not specifically tailored for optimizing weight. Given that the turboelectric
propulsion system significantly contributes to the overall weight of the aircraft, there
is a specific interest in optimizing this system, especially concerning the number and
type of individual components, each characterized by discrete or categorical values.

Fig. 7: Turboelectric propulsive architecture.

This time, as the evaluations are expensive, we are doing only 10 runs instead of
20. Also, to have realistic results, the constraints violation will be forced to be less
than 10−3. From now on, let MAC denote the Mean Average Chord, VT, the Vertical
Tail, HT, the Horizontal Tail and TOFL, the Take-off Field Length. The optimizations
are realized with SEGOMOE.

In [1, 62], the “DRAGON” configuration has been already optimized to attain such
goals. In particular, in [1], the model has been updated based on the results obtained
in [62] that display limitations based on the turboshaft layout with the turbogenerators
at the rear of the fuselage so it would be advantageous to locate the turbogenerator
below the wing. Nonetheless, adopting this approach would impose constraints on
the available space allocated for the electric fans. Consequently, it would restrict the
maximum achievable propulsive efficiency. To address the inherent trade-off between
a lighter propulsion system and an enhanced propulsive efficiency, we integrated the
layout as a categorical variable within the optimization problem of Fig. 7. Finally, five
constraints are considered on this optimization problem. Among these constraints, the
TOFL, climb duration, and the top of climb slope angle exert a significant influence on
the design of the hybrid electric propulsion system. Additionally, a portion of the wing
trailing edge near the wingtip must be kept unobstructed to accommodate ailerons,
thus limiting the available space for the electric fans. Lastly, compliance with wingspan
limits is mandated by airport regulations.

To know how optimizing the fuel mass will impact the aircraft design, we are
considering the optimization problem described in Table 7. We can now solve a con-
strained optimization problem with 10 continuous design variables and 2 categorical
variables with 17 and 2 levels respectively, for a total of 12 design variables. For the
optimization, this new problem is a hard test case involving 29 relaxed variables and
5 constraints. The definition of the architecture variable is given in Table 8 and the
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definition of the turboshaft layout is given in Table 9. For modeling electric archi-
tectures, it is more efficient to represent the architectural choices using two integer
variables instead of one categorical variable. However, taking this approach expands
the range of potential architectures beyond the initial 17 configurations. Yet, there are
two important constraints to consider for these possible setups. The first constraint
relates to the electrical connections between components: ensuring a certified electric
architecture is crucial, and figuring out how to connect, for example, 8 motors to 6 gen-
erators is not straightforward. The second constraint is connected to the distributed
propulsion system, especially the numerous propellers. Managing this system involves
addressing a substantial number of potential failures in the electro-mechanical archi-
tecture as for both stability and redundancy, not all electric connections are allowed.
Consequently, to simplify the optimization problem and avoid introducing many con-
straints, the model uses a single categorical variable to represent the various feasible
architectures.

Note that a simplified analysis has been done in a conference paper [1], the latter
was an optimization of the same aircraft configuration but with simpler methods, both
HH and HH with PLS had never been tested before. The relaxed dimension used to
construct the GP model using the CR method is 29 as indicated in Table 7, while the
relaxed dimension for the most general GP model employing the HH method is 137.

Table 7: Definition of the “DRAGON” optimization problem.

Function/variable Nature # Range

Minimize Fuel mass cont 1
w.r.t Fan operating pressure ratio cont 1 [1.05, 1.3]

Wing aspect ratio cont 1 [8, 12]
Angle for swept wing cont 1 [15, 40] (◦)
Wing taper ratio cont 1 [0.2, 0.5]
HT aspect ratio cont 1 [3, 6]
Angle for swept HT cont 1 [20, 40] (◦)
HT taper ratio cont 1 [0.3, 0.5]
TOFL for sizing cont 1 [1800, 2500] (m)
Top of climb vertical speed for sizing cont 1 [300, 800] (ft/min)
Start of climb slope angle cont 1 [0.075, 0.15] (rad)
Total continuous variables 10
Architecture (levels) cat 17 {1,2, . . . ,16,17}
Turboshaft layout (levels) cat 2 {1,2}
Total categorical variables 2
Total number of relaxed variables 29

subject to Wing span < 36 (m) cont 1
TOFL < 2200 (m) cont 1
Wing trailing edge occupied by fans < 14.4 (m) cont 1
Climb duration < 1740 (s) cont 1
Top of climb slope > 0.0108 (rad) cont 1
Total number of constraints 5

To validate our method, we compare the 7 methods described in Table 10 on the
optimization of the “DRAGON’ aircraft concept with 5 and 10 points for the initial DoE
as before. As mentioned above, we are doing 10 runs for every method based on 10
starting DoE sampled by LHS to quantify the methods randomness. For every method
and every starting DoE, we are running the method for a budget of 150 infill points,
hence evaluating the black-box 155 times for the 5 point DoE and 160 times for the 10
point DoE. The results are given on Fig. 8 for the 5 point DoE and on Fig. 9 for the 10
point DoE. More precisely, Fig. 8a and Fig. 9a display the convergence curves for the
7 methods and, to visualize the data dispersion, the boxplots of the 10 best solutions
after 100 evaluations are shown in Fig. 8b and Fig. 9b. This computer experiments
setup and figures are similar to what can be found in [1]. We note also that for this
study, the computational cost of building the GP model is assumed to be negligible
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Table 8: Definition of the architecture variable and its 17 associated levels.

Architecture number number of motors number of cores and generators

1 8 2
2 12 2
3 16 2
4 20 2
5 24 2
6 28 2
7 32 2
8 36 2
9 40 2
10 8 4
11 16 4
12 24 4
13 32 4
14 40 4
15 12 6
16 24 6
17 36 6

Table 9: Definition of the turboshaft layout variable and its 2 associated levels.

Layout position y ratio tail VT aspect ratio VT taper ratio

1 under wing 0.25 without T-tail 1.8 0.3
2 behind 0.34 with T-tail 1.2 0.85

Table 10: The various kernels compared on the MDO of “DRAGON”.

Name # of cat. params # of cont. params Total # of params
GD 2 10 12
CR 19 10 29

CR with PLS 3D Not applicable Not applicable 3
HH 137 10 147

HH with PLS 3D 2 1 3
HH with PLS 12D 2 10 12

NSGA-II Not applicable Not applicable Not applicable

compared to the cost of evaluating the objective and the constraints at a given point.
In fact, one simulation related to DRAGON is taking 2 to 5 minutes, which means
half a day for a total of 150 simulations and around 60 days of computational time
for running all the optimizations related to test case in this section.

These results confirm the previous analyses made on the analytic test cases. First,
the methods without PLS (GD, CR and HH) converge slightly better with a 5 point
DoE, although this effect is less significant in this case because 5 or 10 points are
both small quantities compared to 150 iterations and also because the search space
is larger than before. Second, the methods with PLS (CR-PLS, HH-PLS 3D and HH-
PLS 12D) greatly benefit from a bigger starting DoE because the more representative
the initial data, the more relevant the computed principal components. We note that
a small DoE could lead to have PLS methods stuck in irrelevant zones as it might
not be well-posed. In fact, in the case where an important part of the design space
is not featured in the DoE, the available data will not be able to learn on this zone
and thus the approximate representative space (computed by the PLS) will be sub-
optimal. The results show that for an initial DoE of 5 points, the methods without
PLS are both faster and more consistent than their equivalent with PLS whereas
the opposite is observed with the DoE of 10 points. The 10 point DoE results also
display that the HH model is costly and too complicated to be used efficiently with
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small DoE and that simpler methods like CR-PLS or GD are most effective at the
start of the optimization process. Based on this observation, it seems that combining
models is the overall best method to tackle whatever black-box optimization problem
beforehand. These results also display that BO is more fitted to tackle such problems
than evolutionary algorithms and that a small DoE could lead to have PLS methods
stuck in irrelevant zones which, once again favors the alternative method of combining
models for future works.

(a) Convergence curves: medians of 10 runs. (b) Boxplots after 100 evaluations.

Fig. 8: Optimization results for the “DRAGON” aircraft [1] for 10 DoE of 5 points.

(a) Convergence curves: medians of 10 runs. (b) Boxplots after 100 evaluations.

Fig. 9: Optimization results for the “DRAGON” aircraft [1] for 10 DoE of 10 points.

In terms of aircraft design, the ideal configuration was determined with an esti-
mated fuel consumption of 10,809 kilograms against 11,248 kilograms for the original
reference configuration. This configuration corresponds to option 10, featuring fewer
engines (8 in total), but incorporating 4 cores and electric generators. The most advan-
tageous layout positions the turbo-generators at the rear. This choice is influenced by
the increased lever arm between the wing and the horizontal tail, which results from
the maximum sweep angle applied to the horizontal tail. However, it is worth noting
that the combination of high sweep and high aspect ratio is not adequately considered
from a structural standpoint, leading to unrealistically heavy weights for the horizontal
stabilizer. Despite this limitation, the optimization process yields a suitable trade-off
based on the models used in FAST-OAD. The optimum found in the previous study
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of [1] was 10,816 kilograms which show that our new algorithms are more efficient.
Still the new aircraft configuration is really close to the previous one, the changes are
on the wing taper ratio reduced from 0.235 to 0.22, the TOFL for sizing which is now
at the lower bound of 1800 m and not at 1803 m and to finish with, the start of climb
angle was slightly reduced from 0.104 rad to 0.1035 rad.

5 Conclusion

In this work, we proposed mixed-categorical metamodels based on GP for high-
dimensional structural and multidisciplinary optimization. Our research was driven
by the increasing complexity of engineering systems, which involve various disciplines
and require optimization involving numerous design variables that could be either
continuous, integer, and categorical. Our key findings center on the development of a
more efficient approach for building surrogate models for large-scale mixed-categorical
inputs. In [16], we introduced a mixed categorical kernel (EHH), a powerful tool for
handling mixed-categorical variables which combine the matrix-based HH approach
with the exponential kernel. However, we identified that the EHH and HH kernels
effectiveness came at the cost of a significant increase in hyperparameters related to
the GP surrogate model. To address this issue, we devised a novel approach by extend-
ing the partial least squares regression method as developed in [17] for continuous
kernels, to reduce the number of hyperparameters while maintaining accuracy.

The significance of our research extends to both researchers and practitioners. For
researchers, our work contributes to the evolving field of surrogate modeling for MDO.
It offers a valuable solution to the challenge of high-dimensional mixed-categorical
optimization, opening doors for further exploration in this domain. Practitioners in
engineering and optimization fields will find our findings beneficial as they provide
a practical and efficient toolset for handling complex optimization problems. Our
approach, implemented in the open-source software SMT [35, 45], has been demon-
strated effectively in structural and multidisciplinary applications, showcasing its
real-world applicability.

Further works may include combining the several methods that now exist in the
literature to have surrogate models that increase automatically in complexity when
the size of the dataset increases along the optimization process. Also, the surrogate
models can be coupled to any surrogate-based optimization algorithm. In particu-
lar, in [63], SEGOMOE has been extended to multi-objective optimization and we
also consider extending high-dimensional GP models to both mixed and hierarchical
variables to tackle technological choices and variable-size problems [35, 64]. Future
performance benchmarks on industrial test cases should include comparisons with the
Maximum Likelihood Estimation (MLE) approach for latent space identification, as
demonstrated in latent map Gaussian process [55].
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and packages numpy 1.20.1, SciPy 1.6.2, pymoo 0.5.0, scikit-learn 1.0.2 and SMT: Sur-
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Appendix A Analytical modeling problem

This Appendix gives the detail of the categorical cosine test case of Section 4.2.1. This
test case has one categorical variable with 13 levels and one continuous variable in
[0, 1] [12]. Let w = (x, c) be a given point with x being the continuous variable and c
being the categorical variable, c ∈ {1, . . . , 13}.

f(w) = cos

(
7π

2
x+

(
0.4π +

π

15
c
)
− c

20

)
, if c ∈ {1, . . . , 9}

f(w) = cos

(
7π

2
x− c

20

)
, if c ∈ {10, . . . , 13}

The reference landscapes of the objective function (with respect to the categorical
choices) are drawn on Fig. A1.

Fig. A1: Landscape of the cosine test case from [12].

The DoE is given by a LHS of 98 points. Our validation set is a evenly spaced grid
of 1000 points in x ranging for every of the 13 categorical levels for a total of 13000
points.

Appendix B Analytical optimization problem

This Appendix gives the detail of the toy function of Section 4.3.14. First, we recall
the optimization problem:

min f(w) = f(x, c1)

w.r.t. c1 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
x ∈ [0, 1]

4https://github.com/jbussemaker/SBArchOpt

https://github.com/jbussemaker/SBArchOpt
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The objective function f is defined as

f(x, c1) =1c1=0 cos(3.6π(x− 2)) + x− 1

+1c1=1 2 cos(1.1π exp(x))− x

2
+ 2

+1c1=2 cos(2πx) +
1

2
x

+1c1=3 x(cos(3.4π(x− 1))− x− 1

2
)

+1c1=4 − x2

2

+1c1=5 2 cos(0.25π exp(−x4))2 − x

2
+ 1

+1c1=6 x cos(3.4πx)−
x

2
+ 1

+1c1=7 − x(cos(3.5πx) +
x

2
) + 2

+1c1=8 − x5

2
+ 1

+1c1=9 − cos(2.5πx)2
√
x− 0.5 ln(x+ 0.5)− 1.3
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