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Résumé. Le système Pl@ntNet collecte des données à l’échelle mondiale en permettant
aux utilisateurs de télécharger et d’annoter des observations de plantes. Les étiquettes ainsi
obtenues bruitées en raison des compétences diverses des utilisateurs. L’obtention d’un con-
sensus est cruciale pour entraîner des modèles d’apprentissage, mais l’échelle des données
collectées rend les stratégies traditionnelles d’agrégation des étiquettes difficiles à mettre en
œuvre. En outre, comme de nombreuses espèces sont rarement observées, l’expertise des util-
isateurs ne peut pas être évaluée comme un accord entre utilisateurs : sinon, les experts en
botanique auraient un poids plus faible dans l’étape d’apprentissage que l’utilisateur moyen
de part leur participation moindre mais plus ciblée. La stratégie d’agrégation d’étiquettes
que nous proposons vise à entraîner de manière coopérative des modèles d’apprentissage au-
tomatique pour l’identification des plantes. Cette stratégie estime l’expertise des utilisateurs
sous la forme d’un score de confiance par travailleur, basé sur leur capacité à identifier des
espèces végétales à partir de données collectées par la foule. Le score de confiance est es-
timé récursivement à partir des espèces correctement identifiées compte tenu des étiquettes
estimées actuelles. Ce score interprétable exploite les connaissances des experts en botanique
et l’hétérogénéité des utilisateurs. Nous évaluons notre stratégie sur un large sous-ensemble
de la base de données Pl@ntNet axée sur la flore européenne, comprenant plus de 6 000 000
d’observations et 800 000 utilisateurs. Nous démontrons que l’estimation des compétences des
utilisateurs basée sur la diversité de leur expertise améliore la performance de l’étiquetage.

Mots-clés. Apprentissage coopératif, aggrégation d’étiquettes, annotation de données,
écologie

Abstract. The Pl@ntNet system enables global data collection by allowing users to
upload and annotate plant observations, leading to noisy labels due to diverse user skills.
Achieving consensus is crucial for training, but the vast scale of collected data makes tra-
ditional label aggregation strategies challenging. Additionally, as many species are rarely
observed, user expertise can not be evaluated as an inter-user agreement: otherwise, botan-
ical experts would have a lower weight in the training step than the average user as they
have fewer but precise participation. Our proposed label aggregation strategy aims to coop-
eratively train plant identification models. This strategy estimates user expertise as a trust
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score per worker based on their ability to identify plant species from crowdsourced data.
The trust score is recursively estimated from correctly identified species given the current
estimated labels. This interpretable score exploits botanical experts’ knowledge and the het-
erogeneity of users. We evaluate our strategy on a large subset of the Pl@ntNet database
focused on European flora, comprising over 6 000 000 observations and 800 000 users. We
demonstrate that estimating users’ skills based on the diversity of their expertise enhances
labeling performance.

Keywords. Crowdsourcing, label aggregation, data annotation, ecology

1 Introduction

Computer vision models are a great aid in plant species recognition in the field [20, 1]. How-
ever, to train them we need large annotated datasets. These datasets are often created thanks
to citizen science approaches, collecting both reliable and useful information [2]. Among ex-
isting plant recognition applications, the Pl@ntNet system enables global data collection by
allowing users to upload and annotate plant observations.

User  expertise from
label aggregation strategy

Figure 1: Pl@ntNet system for plant species recognition. Users take their plant observations
in the Pl@ntNet application. A prediction is output by the neural network model. Users
can validate the prediction or propose another species. The whole votes collection is used to
evaluate user expertise (see Algorithm 1) and actively revise observations identifications.

At the time of writing, this participatory approach has resulted in the collection of over
20 million observations (image or group of images of a same plant), belonging to almost
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46 000 species, by more than 6 million observers worldwide. The collaborative process of
Pl@ntNet is described in Figure 1. The model interacts with the human decision by proposing
possible species given an observation. For each returned species, using a similarity search, the
Pl@ntNet system also shows similar pictures from the database. This lets users to visually
check that their observation is likely to belong to a predicted species given the most similar
observations. Such a visual control can be of help when flowering is not yet complete to
compare two plants at similar growth stages. Plant species identification is a task that
requires skills to recognize morphological traits (shapes, measurements, environments and
specific characteristics). A large number of users with diverse skills have participated in
gathering plant observations and helped improve the training dataset of our computer vision
model. Their participation is based on votes that they can cast on others observations, or
by the initial species determination of their observation. The quality of each vote is then
processed by the algorithm presented in Section 2.2.

Other citizen science projects such as iNaturalist [19] or eBird [18] use a similar approach
to collect data. However, each platform has its own label aggregation strategy. The iNat-
uralist project, with more than 2.5 million users, records the votes at different taxonomic
levels. The resulting label is the aggregation of at least two votes on a species-level iden-
tification (or coarser or finer taxonomic level) and the taxon needs at least two-thirds of
identifier agreements – in particular, all users have the same weight in the decision-making.
Over time, a taxon can be further refined by the community or revoked. eBird handles taxon
quality control by using a checklist in each region for observers. Quality verifications on
the checklist are performed and, combined with user knowledge – the number of species and
checklist submitted, number of flagged observations, further discussions with local experts –
the observation taxon is accepted. The eBird project also showed that monitoring species
accumulation from observers can help to sort their skills [10]. While they consider the species
accumulation by hours spent on each collected observation, we propose a strategy that takes
into account the entire history of observations of the observer.

In this article, we present the Pl@ntNet label aggregation strategy. Using a large-scale
dataset of more than 6 million observations and 800 thousand users, we show that our strategy
can improve the quality of the collected data, without removing every observation that was
only labeled by single users. This work is ongoing and the dataset will be released with codes.

2 Methods

2.1 Dataset and notation

To compare the different label aggregation strategies on large-scale datasets, we consider
a subset of the Pl@ntNet database focused on Southwestern European flora observations
– Baleares, Corsica, France, Portugal, Sardegna and Spain – from 2017 to October 2023.
In total, 9 005 108 votes are cast by nuser = 823 251 users on 6 699 593 observations after
cleaning steps. Those cleaning steps include filtering out identification votes with proposed
plant species not available in the World Checklist of Vascular Plants (WCVP) [6]. Thanks
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to Kew’s Royal Botanical Garden, we adopted the Plants of the World Online [15] system
with the k-southwestern-europe. Within this taxonomic checklist, we removed synonyms.
However, there are plant species listed in k-southwestern-europe POWO that are not in the
WCVP checklist. As there is a possible taxon ambiguity in this case – multiple species
possible for a given synonym depending on the referential – we leave the proposed label
untouched.

Notation In the following, denote K = 11 425 the number of species within the dataset.
We index the observations by i ∈ [n•] = {1, . . . , n•} where D• is the considered dataset
composed of n• observations and their associated votes. For example, the full south-western
european flora dataset from Pl@ntNet of 6 699 593 observations is denoted DSWE. Other
subsets are presented in Section 2.3. We write U the set of users. Each user u has a unique
identifier used as an index, and we denote Ui the set of users that have voted on observation
i – i.e. U = ∪i∈[nSWE]Ui. The vote of user u on observation i is denoted yui ∈ [K]. Each
observation i is created by an author u stored in Author(i).

2.2 Proposed label aggregation strategy

Pl@ntNet label aggregation strategy relies on estimating the number of correctly identified
species for each user. Similar to other strategies, we rely on an EM based iterative procedure
[5] to estimate consecutively the users’ skills and each observation’s species. As the collected
data is used to train the model, the label aggregation strategy also generates a trust indicator
on the observation. This quality indicator reveals if the observation is valid or not. The AI
model is then only trained on valid observations. This operation is done monthly to keep
the system up-to-date with the latest observations. The more users vote on observations,
the more valid observations are identified and the better the model. Notice that proposing
a species as author of the observation weighs ten times more than voting by click in Algo-
rithm 1. Indeed, being on the field leads to more information on the environment and a
better determination of the species. Finally, note that species are unequivocally identified as
author’s (nauthor

u in Algorithm 1) or as votes on other’s observations (nvote
u ) in the aggregation

strategy. The final number of species identified by users is the aggregation of these two terms:
nu = Round

(
nauthor
u + 1

10
nvote
u

)
.

From Algorithm 1, we see that a user becomes self-validating (i.e. trusted enough so
that their label checks observations as valid identifications) when their weight wu is greater
than the level θconf. In practice, this means that an experienced user who has collected
enough weight can validate any observation without any other user’s vote. Note that this
identification can later be invalidated by other users with enough weight thanks to the accu-
racy threshold θconf. Moreover, the weight function f shown in Figure 2 is a non-decreasing
function that maps the number of identified species nu to a trust score in the form of:

wu = f(nu) = nα
u − nβ

u + γ , (1)

where α, β ∈ R?
+ are hyperparameters that were calibrated internally to fit prior knowledge

and γ > 0 is the constant representing the initial weight of each user. In practice, we use
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Algorithm 1 Pl@ntNet label aggregation strategy
Input: Votes as (u, yui )i∈[nSWE],u∈[nuser] for each observation i and user u answering the voted

species yui , accuracy threshold θacc, confidence threshold θconf, weight function f , initial
weight γ > 0

Output: Estimated labels ŷi for each observation i
1: Initialize ŷi = MV ({yui }u) for each observation i ∈ [nSWE]
2: Initialize user weights as wu = γ for each user u ∈ [nuser]
3: while not converged do
4: for each observation i ∈ [nSWE] do
5: Compute label confidence: confi(ŷi) =

∑
u∈Ui

wu1(y
u
i = ŷi)

6: Compute label accuracy: acci(ŷi) = confi(ŷi)/
∑

k∈[K] confi(k)

7: Compute validity indicator: si = 1(acci(ŷi) ≥ θacc and confi(ŷi) ≥ θconf)
8: end for
9: for each user u ∈ [nuser] do

10: Compute the number of valid identified species for authoring observations:

nauthor
u = |{yui ∈ [K] | yui = ŷi, si = 1,Author(i) = u}|

11: Compute the number of identified species by voting on other’s observations:

nvote
u = |{yui ∈ [K] | yui = ŷi,Author(i) 6= u}|

12: Compute the rounding number of identified species per user:

nu = Round

(
nauthor
u +

1

10
nvote
u

)
13: Transform number of estimated species per user into trust score: wu = f(nu)
14: end for
15: Update estimated labels with a weighted majority vote

∀i ∈ [nSWE], ŷi = argmax
k∈[K]

∑
u∈Ui

wu1(y
u
i = k)

16: end while

α = 0.5, β = 0.2 and γ = log(2.1) ' 0.74 in the weight function. As for the two thresholds
that control the level of uncertainty accepted for a given label, they are set to θconf = 2 to
control the total weight on an observation and θacc = 0.7 to control the agreement between
users given their expertise.

2.3 Evaluation against other aggregation strategies

Existing aggregation strategies Plant species label aggregation is a challenging task due
to the large number of species K. Hence, many classical strategies in the label aggregation
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Figure 2: Weight function (Equation (1)) used to map the number of identified species to
a trust score in the Pl@ntNet label aggregation strategy. The user confidence threshold
θconf = 2 requires a user to have identified at least nu = 8 species to become self-validating.
A new user starts with a weight of f(0) = f(1) = γ ' 0.74.

literature such as Dawid and Skene’s [4] and other variations [14, 17] are not applicable as
they require estimating a K2 matrix for each worker. This would result, in the considered
dataset DSWE as 11 4252 × 823 251 ≈ 1014 parameters to estimate. Similar issues occur
for other label aggregation strategies [21, 8, 13]. We do not consider deep-learning based
crowdsourcing strategies as Rodrigues and Pereira [16] and Chu, Ma, and Wang [3] or Lefort
et al. [11] as they train a model from crowdsourced labels but do not output aggregated
labels on the training set. In the Pl@ntNet application, we need to propose one or multiple
species for each observation to users. To overcome these issues, we consider the following
label aggregation strategies that can scale to large K and number of users:

• Majority Vote (MV)[9]: Certainly the most common aggregation strategy, the ma-
jority vote selects the most answered label. In the case of equalities, a random draw is
performed – creating sometimes some variability in the labeling process. More formally,
given an observation i:

MV(i, {yui }u) = argmax
k∈[K]

∑
u∈Ui

1(yui = k) .

• Worker agreement with aggregate (WAWA) [12]: Also known as the inter-rater
agreement, this strategy weights each user by how much they agree with the MV labels
on the images they annotated. More formally, given an observation i:

WAWA(i,DSWE) = argmax
k∈[K]

∑
u∈Ui

wu1(y
u
i = k)

with wu =
1

|{yui′}i′|

nSWE∑
i′=1

1 (yui′ = MV({yui′}u)) .
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• iNaturalist [19]: The iNaturalist platform generates a label for observations with at
least two votes. The estimated label represents the one with at least two-thirds of
the majority in agreement. Every user has the same weight in the aggregation. More
formally:

iNaturalist(i, {yui }u) =

{
MV(i, {yui }u) if si = 1

undefined otherwise

with si = 1

(
max
k∈[K]

1

|Ui|
∑
u∈Ui

1(yui = k) ≥ 2

3

)
.

As there is no observation filter for the MV and WAWA, we consider that for all obser-
vation i, si = 1 for these two strategies. Experiments were completed using the peerannot
library (https://github.com/peerannot/peerannot).

Creation of an evaluation set in a crowdsourcing setting To evaluate the perfor-
mance of a label aggregation strategy, it is necessary to know the ground truth. However, in
the context of crowdsourced data, there is no known truth for the observations. The sheer
volume of data makes it impossible to ask botanical experts to create such ground truth for
the whole database.

Instead of asking such experts to label a subset of the data, we identified botanical experts
in our users database. From within the Pl@ntNet team, we referenced well-known botanists
to start a list of expert users. To these we have added TelaBotanica [7] users with registered
confirmed botanical experience from their directory and that are also Pl@ntNet users that
participated to the South-Western Europe flora subset. Among the users, 98 are identified
as botanical experts by the Pl@ntNet team and Telabotanica platform. The answers of these
experts are considered as ground truth labels and used to evaluate strategies performance.
Despite our selection process of supposedly ”indisputable” experts, a few observations in the
test set denoted Dexpert still end up with contradictory labels (4 observations in total). As
they represent a very small percentage, we simply removed them from Dexpert.

Our evaluation set Dexpert is finally composed of 26 811 observations. Of these evaluation
data, 17 125 received more than two identifications and are stored in Dmultiple votes; 1 263 have
more than two votes with at least one disagreement between users are stored in Ddisagreement.
Figure 3 shows the distribution of observations from DSWE to the finer and more ambiguous
Ddisagreement.

Unfortunately, the demand for multiple labels on observations is not being met, despite
the large number of users. Indeed, 310 564 users were single time voters (meaning they
interacted with the system only once).

Evaluation metric To evaluate the label aggregation strategies, we use the following
accuracy metrics computed on valid observations (si = 1):

Acc(ŷ, y;D•) =
1

n•

n•∑
i=1

1(ŷi = yi)1(si = 1) ,
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Figure 3: Log-scales distribution of the observations in the South-West European Flora subset
from the Pl@ntNet database.

with ŷ = (ŷi)i the estimated labels on the considered set D• ⊂ Dexpert, y = (yi)i the associated
experts labels, considered as ground truth. When the aggregation strategy indicates the
observation as invalid (si = 0 for Pl@ntNet and iNaturalist), we consider the label as incorrect
in the performance measure as an expert was able to decide on a species. Finally, we also
consider the proportion of species retrieved by the aggregation strategies. This is important
as if a species identified by the experts disappears during the aggregation, the model trained
from this aggregated data can no longer predict this species.

We evaluate the label recovery of each strategy on three subsets visualized in Figure 3:
the full test set where experts have voted a species, the subset of observations with at least 2
votes and the subset of observations with at least 2 votes and one disagreement. The latter
subset is the most challenging as it contains the observations with the most ambiguity. We
selected these subsets to investigate the label aggregation strategies’ performance depending
on the ambiguity level.

3 Results

Accuracy of the aggregation strategies We evaluate the accuracy of the strategies on
the set of tasks labeled by our experts. Figure 4 shows how many predicted labels match
our experts answers on Dmultiple votes and Ddisagreement. More importantly, we compare this
quantity with the volume of class retrieved by the aggregation strategy. We observe that
the data filtering from the iNaturalist strategy impacts its performance. On Dexpert, MV
reaches 97% of accuracy, WAWA 98%, iNaturalist 60% and Pl@ntNet 99%. To differentiate
between the best performing strategies, we need to look at more ambiguous observations like
those in Dmultiple votes and Ddisagreement. In high ambiguous frameworks, the WAWA strategy
outperforms the MV one. However, overall the Pl@ntNet aggregation is more often in ade-
quation with the experts and retrieves almost 90% of plant species identified by experts in
high ambiguous datasets against 73% for WAWA, 71% for MV and only 41% for iNaturalist.
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(a) Accuracy on Dmultiple votes against volume of
species recovered

(b) Accuracy on Ddisagreement against volume of
species recovered

Figure 4: Accuracy of the aggregation strategies against the volume of class retrieved on
subsets with at least two votes – either agreeing (A) or with at least one disagreeing vote
(B). The Pl@ntNet aggregation is more accurate especially in a highly ambiguous setting
(B). The iNaturalist data filter highly impacts how many classes are kept in the dataset and
the overall accuracy in both settings. WAWA and MV perform similarly with a benefit for
WAWA when skill evaluation is needed.

4 Conclusion

We demonstrated that collaborative identification of plant species can effectively be used to
obtain expert levels labels. Using a large subset of millions of observations and thousands of
users from the Pl@ntNet organization, we investigate a label aggregation strategy that weighs
user answers based on their estimated number of species correctly identified without using
prior expert knowledge. Many strategies used previously either do not scale to the magnitude
of the current databases – either Pl@ntNet, iNaturalist or eBird – or are outperformed by our
aggregation. Our strategy weighs users based on the number of correctly identified species.
This weight is interpretable and shows the diversity of the user’s skillset. It can be directly
applied on other crowdsourced frameworks with a high number of classes like iNaturalist’s.
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