
HAL Id: hal-04574181
https://hal.science/hal-04574181

Submitted on 14 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enhanced beams and plates models incorporating the
steel-concrete interface behavior for large-scale

reinforced concrete structural applications
Maryam Trad, Ibrahim Bitar, Stéphane Grange, Benjamin Richard

To cite this version:
Maryam Trad, Ibrahim Bitar, Stéphane Grange, Benjamin Richard. Enhanced beams and
plates models incorporating the steel-concrete interface behavior for large-scale reinforced con-
crete structural applications. Finite Elements in Analysis and Design, 2024, 237, pp.104170.
�10.1016/j.finel.2024.104170�. �hal-04574181�

https://hal.science/hal-04574181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Finite Elements in Analysis and Design 237 (2024) 104170

A
0
(

E
i
a
M
a

b

A

K
S
K
B
R
B
P

1

s
t
d
t
c

t
a
t

h
R

Contents lists available at ScienceDirect

Finite Elements in Analysis & Design

journal homepage: www.elsevier.com/locate/finel

nhanced beams and plates models incorporating the steel-concrete
nterface behavior for large-scale reinforced concrete structural
pplications
aryam Trad a,b,∗, Ibrahim Bitar a, Stéphane Grange b, Benjamin Richard a

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-EXP/SES/LMAPS, B.P. 17 - 92262 Fontenay-aux-Roses Cedex, France
INSA Lyon, GEOMAS, UR7495, 69621 Villeurbanne, France

R T I C L E I N F O

eywords:
teel-concrete interface model
inematic enhancement
ond model
einforced concrete structures
eam finite element
late finite element

A B S T R A C T

Considering the interaction between concrete and steel reinforcement in numerical simulations
of reinforced concrete structures is crucial for accurately capturing the concrete cracking pro-
cess. This is particularly interesting when studying structures fulfilling functions that go beyond
their simple mechanical resistance, such as waterproofing functions. While three-dimensional
(3D) volumetric finite element modeling offers detailed insights into structural behavior,
its computational intensity becomes prohibitive for large-scale structures. In such contexts,
adopting beam and plate elements formulations proves computationally more efficient, due
to their reduced number of degrees of freedom. This paper presents a kinematic enhancement
technique designed to integrate steel-concrete interface behavior into beam and plate finite
element formulations. The approach combines classical beam or plate elements representing
concrete behavior, conventional beam or truss elements modeling steel reinforcement, and the
incorporation of bond stresses at the interface. The paper provides comprehensive explanations
of this enhancement technique along with a curated selection of numerical validation and
application examples. These examples are supplemented by a comparison with experimental
data, illustrating the efficiency of the proposed enhancement approach.

. Introduction

The mechanical behavior of reinforced concrete relies on a stress transfer between steel and concrete, through their interface. As
oon as the first cracks appear in concrete, the steel tensile properties come into action, provided that the steel-concrete interface
ransmits the corresponding internal forces. Thus, cracking in reinforced concrete structures is significantly influenced by the stress
istribution at the steel-concrete interface. Taking this interface into account in numerical modeling has significant importance on
he cracking process of reinforced concrete structures and the spatial distribution of cracks. This is particularly important in case of
ivil engineering structures exhibiting waterproofing requirements [1].

Various experimental setups are used in the literature to understand and characterize the interface behavior. The most common
est types lie in pulling a steel bar out of a concrete specimen [2–7]. Nonetheless, push-in type tests can also be used to represent
compressed concrete state, similarly to its state in pre-stressed concrete structures [8]. In addition, some other tests aim to study

he interface in bending elements [9,10].
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Fig. 1. Beam configuration.

In parallel, several numerical models are proposed within different frameworks to describe the interface between steel and
oncrete (spring elements [2,11], 2D and 3D elements [12], joint elements [13–16], interface modeling within 2D and 3D
omogenized reinforced concrete elements [17], etc.). A large variety of these models is incorporated in 2D and 3D finite elements
nalysis. A description of the steel-concrete interface at the level of a large-scale structure is highly time-consuming when considering
hese approaches. In this case, employing semi-global beam and plate finite elements can be computationally more efficient. Several
tudies have proposed different development strategies to include the steel-concrete interface behavior within beam and plate
lements. Some models consider the effect of bonding implicitly by enhancing the steel fiber strain component within fiber-based
eam elements [18–20] or incorporating the interface behavior within homogenized reinforced concrete plate elements [21,22].
sing these techniques may be challenging to provide a detailed localized description of the concrete cracking around the steel

einforcement [21,23]. On the other hand, explicit bond-slip behavior modeling is possible with other modeling strategies, where
teel displacement degrees of freedom are defined independently of the concrete degrees of freedom, as conceived in [24–26] within
fiber beams framework. Moreover, multiscale modeling strategies have proven their numerical efficiency for a large variety of

pplications such as concrete damage [27] and steel-concrete composite components [28–31].
This paper proposes an extension of the displacement-based fiber element of [25] by creating a multiscale enhanced element

ormulation composed of an assembly of different finite elements representing: concrete (beam of plate concrete finite elements),
teel (bar or beam steel elements), and steel-concrete bond stresses. The number of assembled concrete and steel elements is a user
hoice. Similarly to [25], independent degrees of freedom for steel and concrete are integrated within a single finite element. In
ontrast, the proposed enhancement technique in this work adopts a sub-structured approach, combining existing bar, beam, and
late elements from the literature into a unified enhanced element. This multiscale method facilitates the efficient definition of
ifferent reinforced concrete beam or plate elements configurations that consider a nonlinear steel-concrete behavior, while one
ingle specific configuration of a reinforced concrete beam element is defined in [25].

This paper is organized as follows. Section 2 recalls the principles of classical beam and plate theories and details the formulation
f the proposed enhancement technique. Sections 3 and 4 present model verification and application examples. The presented
pplication of a four-point flexural beam test presents a comparison with experimental results to demonstrate the representativity
f the proposed enhancement approach. The paper ends with conclusions and perspectives in Section 5.

. Theoretical background

This section outlines the theoretical framework of classical beam and plate finite elements and introduces a novel enhancement
pproach. This approach involves an enhanced element that integrates contributions from standard finite elements representing
oncrete and steel, along with bond stresses between them.

.1. Beam elements

The literature offers diverse beam models, with varying levels of complexity [32]. Kinematic assumptions relate displacements
f point M of the beam to point G, the projection of M on the beam’s neutral axis (see Fig. 1):

𝒖M(𝑥) = 𝒖G(𝑥) + 𝜃(𝑥) ∧ ⃖⃖⃖⃖⃖⃖⃗GM =
[

𝑢 − y𝜃
𝑣

]

(1)

here 𝑢 and 𝑣 are the displacements of point G in the beam longitudinal and normal directions 𝑥 and 𝑦, respectively. 𝒖M(𝑥) and
G(𝑥) are the displacement vectors of points M and G. 𝜃 is the rotation of the beam section.

.1.1. Weak formulation
Let B be a beam of a length 𝑙 and a cross-sectional area 𝑆. Solving the beam boundary value problem lies in finding the generalized

isplacement vector 𝐮 =
[

𝑢 𝑣 𝜃
]𝑇 at each longitudinal position 0 ≤ 𝑥 ≤ 𝑙 of the beam, where 𝑇 stands for the transpose operator.

A generalized strain vector is defined at each beam section as follows:

𝜺 =
[

𝜕𝑢(𝑥) 𝛽 𝜕𝜃(𝑥)
]𝑇

(2)
2

𝜕𝑥 𝑦 𝜕𝑥
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Fig. 2. Plate configuration.

nowing that the shear strain 𝛽𝑦 is considered within the Timoshenko beam theory and neglected when following the Euler-Bernoulli
heory. A generalized forces and moments vector 𝐅 =

[

𝐹𝑥 𝐹𝑦 𝑀𝑧
]𝑇 is defined for each beam section. This section is subjected

o three types of loading: a normal force 𝐹𝑥, a shear force 𝐹𝑦, and a bending moment 𝑀𝑧:

𝐹𝑥 = ∫𝑆
𝜎𝑥𝑑𝑆, 𝐹𝑦 = ∫𝑆

𝜏𝑥𝑦𝑑𝑆, 𝑀𝑧 = −∫𝑆
y𝜎𝑥𝑑𝑆 (3)

𝜎𝑥 and 𝜏𝑥𝑦 are the normal and shear stresses of the beam. The shear stresses 𝜏𝑥𝑦 are not considered in the Euler-Bernoulli theory.
The virtual power principle is presented as follows:

∫𝑥
𝜺∗𝑇𝐅d𝑥 = 𝐮∗𝑇𝐅𝒆𝒙𝒕 (4)

𝜺∗𝑇 et 𝐮∗𝑇 are two strain and displacement virtual fields, respectively. 𝐅𝒆𝒙𝒕 is the assembly of the external beam volumetric and
boundary forces. The strain field 𝜺 derives from the displacement field, so 𝜺(𝑥) = 𝑩𝐮. Eq. (12) is then simplified and expressed as
follows:

∫𝑥
𝑩𝑇𝐅d𝑥 = 𝐅𝒆𝒙𝒕 (5)

where 𝐅𝒊𝒏𝒕 = ∫𝑥 𝑩
∗𝑇𝐅d𝑥 is the internal forces vector of a beam element. The tangent operator of a beam element is deduced by

deriving its internal forces vector 𝐅𝒊𝒏𝒕 with respect to its degrees of freedom vector 𝐮:
𝜕𝐅𝑖𝑛𝑡
𝜕𝐮

= ∫𝑥
𝑩𝑇 𝐤𝑩 d𝑥 (6)

here 𝐤 is the derivative of 𝐅𝒊𝒏𝒕 with respect to 𝜺. The literature offers more developed beam theories such as fiber beams where a
iscretization is applied to the beam section [33–39].

.2. Plate elements

Kinematic assumptions relate displacements of point M of the plate to point G, the projection of M on the plate’s reference plane
(see Fig. 2):

𝐮
(

𝐱, zM
)

=

⎡

⎢

⎢

⎢

⎣

u𝑥
(

𝐱, zM
)

v𝑦
(

𝐱, zM
)

w𝑧
(

𝐱, zM
)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑢𝑥(𝐱)
𝑣𝑦(𝐱)
𝑤𝑧(𝐱)

⎤

⎥

⎥

⎥

⎦

+ zM

⎡

⎢

⎢

⎢

⎣

0 1 0
−1 0 0
0 0 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜃𝑥(𝐱)
𝜃𝑦(𝐱)
𝜃𝑧(𝐱)

⎤

⎥

⎥

⎥

⎦

(7)

𝑥, 𝜃𝑦, and 𝜃𝑧 represent the rotation of the plate section with respect to 𝑥, 𝑦, and 𝑧 axes. 𝐱 is the position vector of G in the plate
id-plane.

.2.1. Weak formulation
Solving the plate boundary value problem lies in finding the generalized displacement vector

=
[

𝑢𝑥(𝐱) 𝑣𝑦(𝐱) 𝑤𝑧(𝐱) 𝜃𝑥(𝐱) 𝜃𝑦(𝐱) 𝜃𝑧(𝐱)
]𝑇 at each position of the plate mid-plane (𝑧 = 0).

A generalized plate strain vector is defined as 𝜺 =
[

𝐞 𝒌 𝜸
]𝑇 , where:

𝐞 =

⎡

⎢

⎢

⎢

⎢

𝑒𝑥 = 𝜕𝑢𝑥
𝜕𝑥

𝑒𝑦 =
𝜕𝑣𝑦
𝜕𝑦

𝜕𝑢𝑥 𝜕𝑣𝑦

⎤

⎥

⎥

⎥

⎥

,𝒌 =

⎡

⎢

⎢

⎢

⎢

𝜅𝑥 = 𝜕𝜃𝑦
𝜕𝑥

𝜅𝑦 = − 𝜕𝜃𝑥
𝜕𝑦

𝜕𝜃𝑦 𝜕𝜃𝑥

⎤

⎥

⎥

⎥

⎥

, 𝜸 =
⎡

⎢

⎢

⎣

𝛾𝑥 = 𝜕𝑤𝑧
𝜕𝑥 + 𝜃𝑦

𝛾𝑦 =
𝜕𝑤𝑧
𝜕𝑦 − 𝜃𝑥

⎤

⎥

⎥

⎦

(8)
3

⎣

2𝑒𝑥𝑦 = 𝜕𝑦 + 𝜕𝑥 ⎦ ⎣

2𝜅𝑥𝑦 = 𝜕𝑦 − 𝜕𝑥 ⎦
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𝒆 represents the membrane strains vector, and 𝒌 is the vector of bending strains. 𝜸 components are shear strains, neglected by
the Kirchhoff-Love plate theory and taken into account in the Mindlin-Reissner theory. The stress vector 𝝈 is composed of two
components: 𝝈𝒎 representing membrane stresses, and 𝝈𝒇 representing bending stresses:

𝝈 = [ 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑥𝑦
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝝈𝑇𝒎

𝜎𝑥𝑧 𝜎𝑦𝑧
⏟⏟⏟

𝝈𝑇𝒇

]𝑇 (9)

The generalized forces vector 𝐅 of the plate is defined as 𝐅 =
[

𝐍 𝐌 𝐓
]𝑇 , where:

𝐍 = ∫

h
2

− h
2

𝝈𝒎𝑑𝑧 , 𝐌 = ∫

h
2

− h
2

𝑧𝝈𝒎𝑑𝑧 , 𝐓 = ∫

h
2

− h
2

𝝈𝑓𝑑𝑧 (10)

The material behavior law of the plate links the stress 𝝈 to the strain 𝜺. Subsequently, the relationship between 𝐅 and 𝜺 is deduced.
The virtual power principle is presented as follows:

∫𝛺
𝜺∗𝑇𝐅d𝛺 = 𝐮∗𝑇𝐅𝒆𝒙𝒕 (11)

𝜺∗𝑇 et 𝐮∗𝑇 are two strain and displacement virtual fields, respectively. 𝐅𝒆𝒙𝒕 is the assembly of the external plate mid-plane surfacic
and boundary forces. The strain field 𝜺 derives from the displacement field, so 𝜺(𝐱) = 𝑩𝐮. Eq. (11) is then simplified and expressed
as follows:

∫𝛺
𝑩𝑇𝐅d𝛺 = 𝐅𝒆𝒙𝒕 (12)

where 𝐅𝒊𝒏𝒕 = ∫𝛺 𝑩𝑇𝐅d𝛺 is the internal forces vector of the plate element. The tangent operator of a beam element is deduced by
deriving its internal forces vector 𝐅𝒊𝒏𝒕 with respect to its degrees of freedom vector 𝐮:

𝜕𝐅𝒊𝒏𝒕
𝜕𝐮

= ∫𝛺
𝑩𝑇 𝐤𝑩 d𝛺 (13)

where 𝐤 is the derivative of 𝐅𝒊𝒏𝒕 with respect to 𝜺. The literature offers more developed multilayered plate models including perfect
or imperfect interfaces between the different layers [40–42].

2.3. Kinematic enhancement technique

Beam and plate elements presented in Sections 2.1 and 2.2 can be enhanced in order to model reinforced concrete structural
elements, where the steel-concrete interface behavior is taken into consideration.

2.3.1. Principle
The proposed enhancement technique defines an enhanced element that assembles the following contributions:

• one or several beam or plate concrete finite elements;
• one or several truss or beam steel elements;
• steel-concrete bond stresses.

The assembly of the steel and the concrete elements creates one enhanced finite element, where inner bond stresses are considered
between steel and concrete. These stresses contribute to the internal forces vector of the enhanced element.

The main advantage of the methodology is that existing truss, beam, and plate elements are called within an assembly of one
enhanced element. The used beam or plate theory is a user choice. In addition, the composition of the enhanced element (the
number of assembled finite elements and the type of each element) is a user choice. For the compositions of the enhanced elements
defining inner nodes, a sub-structured resolution involving a static condensation technique is applied since these inner nodes are
not linked to other finite elements of the studied structure. This technique aims to condensate the enhanced element rigidity matrix
at the level of the outer nodes of this element [43]. Fig. 3 shows several enhanced concrete beams configurations with and without
the need for static condensation. Several concrete plate enhanced elements configurations are shown in Fig. 4.

2.3.2. Weak formulation
For an enhanced element with 𝑁𝑠 steel elements, and 𝑁𝑐 concrete elements, the virtual power principle is expressed as follows:

𝑁𝑐

𝗔
𝑒=1

𝐏𝒆∗
𝒊𝒏𝒕𝒄 +

𝑁𝑠

𝗔
𝑒=1

𝐏𝒆∗
𝒊𝒏𝒕𝒔 +

𝑁𝑠

𝗔
𝑒=1

𝐏𝒆∗
𝒊𝒏𝒕𝒈 =

𝑁𝑐

𝗔
𝑒=1

𝐏𝒆∗
𝒆𝒙𝒕𝒄 +

𝑁𝑠

𝗔
𝑒=1

𝐏𝒆∗
𝒆𝒙𝒕𝒔 (14)

where:

• 𝐏𝒆∗
𝒊𝒏𝒕𝒄 : is the virtual power of the internal forces of concrete elements (beam or plate elements);

• 𝐏𝒆∗
𝒊𝒏𝒕𝒔: is the virtual power of the internal forces of steel elements (truss or beam elements);
𝒆∗
4

• 𝐏𝒊𝒏𝒕𝒈: is the virtual power of the internal forces due to the interface bond stresses around the steel elements;
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Fig. 3. Enhanced concrete beams configurations with (a) and without (b) static condensation.

Fig. 4. Enhanced concrete plates configurations with (a) and without (b) static condensation.

• 𝐏𝒆∗
𝒆𝒙𝒕𝒄 : is the virtual power of the external forces applied to the concrete elements;

• 𝐏𝒆∗
𝒆𝒙𝒕𝒔: is the virtual power of the external forces applied to the steel elements.

t is possible to define an elementary degrees of freedom vector 𝒖𝒆𝒍 for the enhanced element. 𝒖𝒆𝒍 is the vector of the steel and the
concrete degrees of freedom. Eq. (14) is then written in a more condensed way as follows:

𝒖∗𝒆𝒍
𝑇𝐅𝒆

𝒊 (𝒖𝒆𝒍) = 𝒖∗𝒆𝒍
𝑇𝐅𝑒 (15)

𝒖∗𝒆𝒍 is a virtual elementary degrees of freedom vector. 𝐅𝒆
𝒊 (𝒖𝒆𝒍) is the vector that combines all internal forces (steel, concrete, and

internal forces due to steel-concrete interface behavior) of the enhanced element. 𝐅𝑒 represents the vector of external forces on the
nhanced element.

For enhanced elements assembly choices involving internal nodes and thus requiring a sub-structured resolution and a static
ondensation, 𝐅𝒆

𝒊 is condensed at the level of the enhanced element external nodes. These nodes are linked to the other finite
lements of the adopted structural mesh. Similarly, the stiffness matrix of the enhanced element is condensed at the level of its
uter nodes. Appendix A details the condensation technique formulation and the associated resolution.

The following subsections detail the formulation of three enhanced elements structures: two configurations of enhanced concrete
5

eams and one configuration of an enhanced concrete plate.
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Fig. 5. Enhanced concrete beam configuration (a) and degrees of freedom (b).

2.4. Enhanced element of a concrete beam and a steel truss

Fig. 5(a) describes the enhanced beam element composition with a concrete beam element, a truss steel element, and bond
stresses. Two nodes are defined, with four degrees of freedom each (three concrete degrees of freedom and one steel degree of
freedom), as shown in Fig. 5(b).

A steel truss element is selected, assigning one longitudinal degree of freedom per node (𝑢𝑠𝑖 for node 𝑖) for steel’s longitudinal
displacement. Alternatively, a steel beam element could be employed, which would involve defining three steel degrees of freedom
per node: two displacements and one rotation.

The elementary degrees of freedom vector 𝒖𝒆𝒍 of the enhanced element is defined as 𝒖𝒆𝒍 =
[

𝑢1 𝑣1 𝜃1 𝑢𝑠1 𝑢2 𝑣2 𝜃2 𝑢𝑠2
]𝑇 .

It is possible to identify a concrete degrees of freedom vector 𝒖𝒄 and a steel degrees of freedom vector 𝒖𝒔 such that:

𝒖𝒄 =
[

𝑢1 𝑣1 𝜃1 𝑢2 𝑣2 𝜃2
]𝑇 , 𝒖𝒔 =

[

𝑢𝑠1 𝑢𝑠2
]𝑇 (16)

where:

𝒖𝒄 =
⎡

⎢

⎢

⎣

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0

⎤

⎥

⎥

⎦

𝒖𝒆𝒍 = 𝑰𝒄𝒖𝒆𝒍 (17)

and:

𝒖𝒔 =
[

0 0 0 1 0 0 0 1
]

𝒖𝒆𝒍 = 𝑰𝒔𝒖𝒆𝒍 (18)

The degrees of freedom at a longitudinal position 𝑥 are interpolated using the matrix of shape functions 𝑵 as follows:

⎡

⎢

⎢

⎢

⎢

⎣

𝑢(𝑥)
𝑣(𝑥)
𝜃(𝑥)
𝑢𝑠(𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑵𝒖𝒆𝒍 =

[

𝑵𝒃𝒖𝒄
𝑵 𝒕𝒖𝒔

]

(19)

so:
⎡

⎢

⎢

⎢

⎢

⎣

𝑢(𝑥)
𝑣(𝑥)
𝜃(𝑥)
𝑢𝑠(𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

=

[

𝑵𝒃𝑰𝒄

𝑵 𝒕𝑰𝒔

]

𝒖𝒆𝒍 =

[

𝑵𝒄

𝑵𝒔

]

𝒖𝒆𝒍 (20)

𝑵𝒃 is the shape functions matrix of the used concrete beam element which can be a user choice (for example generalized or fiber
Timoshenko or Euler-Bernoulli beam). 𝑵 𝒕 is the shape functions matrix of the steel truss element. Similarly:

𝜺𝒄 =

⎡

⎢

⎢

⎢

⎣

𝑑𝑢
𝑑𝑥

𝛽𝑦
𝜕𝜃
𝜕𝑥

⎤

⎥

⎥

⎥

⎦

= 𝑩𝒃𝒖𝒄 (21)

and:

𝜀𝑠 =
𝜕𝑢𝑠(𝑥)
𝜕𝑥

= 𝑩𝒕𝒖𝒔 (22)

𝜺𝒄 is the generalized strain vector of the concrete beam (see Eq. (2)). 𝜀𝑠 is the steel longitudinal strain. 𝒃 and 𝒕 indices of 𝑩𝒃 and
𝑩𝒕 matrices stand for beam and truss. So:

𝜺 = 𝑩 𝑰 𝒖 = 𝑩 𝒖 (23)
6
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and:

𝜀𝑠 = 𝑩𝒕𝑰𝒔𝒖𝒆𝒍 = 𝑩𝒔𝒖𝒆𝒍 (24)

2.4.1. Steel-concrete slip evaluation
The slip 𝑢𝑔(𝑥) is computed as follows:

𝑢𝑔(𝑥) = 𝑢𝑠(𝑥) − 𝑢𝑐 (𝑥) (25)

Considering that 𝑢𝑐 (𝑥) represents the concrete displacement near the steel bar, calculated according to the beam kinematics (see
Eq. (1) and Fig. 1). Therefore:

𝑢𝑐 (𝑥) =
[

1 −y
]

⏟⏞⏟⏞⏟
𝒂𝒔

𝑵𝟏𝟑𝒖𝒆𝒍 (26)

where y is the eccentricity of the steel bar with respect to the concrete beam neutral axis. 𝑵𝟏𝟑 is the matrix that holds the first and
third rows of the shape functions matrix 𝑵 (see Eq. (19)). So:

𝑢𝑔(𝑥) = 𝑵𝒔𝒖𝒆𝒍 − 𝒂𝒔𝑵𝟏𝟑𝒖𝒆𝒍 = (𝑵𝒔 − 𝒂𝒔𝑵𝟏𝟑)𝒖𝒆𝒍 (27)

2.4.2. Weak formulation
The virtual power principle takes into account the behavior of concrete, steel, and bond stresses within the enhanced element

framework:

𝒖∗𝒆𝒍
𝑇𝐅𝒆

𝒊𝒏𝒕𝒄 + ∫

𝐿𝑠

0
𝜺∗𝑠𝜎𝑠(𝜀𝑠)𝑆𝑠𝑑𝑥 + ∫

𝐿𝑠

0
𝑢∗𝑔𝜏

(

𝑢𝑔
)

P𝑑𝑥 = 𝒖∗𝒆𝒍
𝑇𝐅𝒆 (28)

𝐅𝒆
𝒊𝒏𝒕𝒄 represents the internal forces vector of the concrete beam (see Eq. (13)). The length 𝐿𝑠 of the steel bar is equal to the length

𝑙 of the beam. The steel constitutive law links the steel stress 𝜎𝑠 to its strain 𝜀𝑠. 𝑢∗𝑔 is a virtual steel-concrete slip, and P is the steel
bar perimeter. The virtual power principle of the enhanced element as follows:

𝒖∗𝒆𝒍
𝑇𝐅𝒆

𝒊𝒏𝒕𝒄 + 𝒖∗𝒆𝒍
𝑇
∫

𝐿𝑠

0
𝑩𝒔

𝑇 𝜎𝑠(𝜀𝑠)𝑆𝑠 𝑑𝑥 𝒖𝒆𝒍 + 𝒖∗𝒆𝒍
𝑇
∫

𝐿𝑠

0

(

𝑵𝒔
𝑻 −𝑵𝟏𝟑

𝑻 𝒂𝒔𝑻
)

𝜏
(

𝑢𝑔
)

P𝑑𝑥 = 𝒖∗𝒆𝒍
𝑇𝐅𝒆 (29)

After simplifying Eq. (29) by 𝒖∗𝒆𝒍
𝑇 , the balance between internal and external forces of the enhanced element is described as

follows:

𝐅𝒆
𝒊 = 𝐅𝒆 (30)

The computation of the tangent operator of the enhanced element consists in calculating the derivative of its internal forces vector
𝐅𝒆
𝒊 with respect to the degrees of freedom vector 𝒖𝒆𝒍:

𝜕𝐅𝒆
𝒊

𝜕𝒖𝒆𝒍
= 𝒌𝒆𝒔𝒄 = 𝒌𝒆𝒄 + 𝒌𝒆𝒔 + 𝒌𝒆𝒈 (31)

𝒌𝒆𝒄 and 𝒌𝒆𝒔 represent the stiffness matrices of concrete and steel elements, respectively (classical beam and truss finite elements) and
𝒌𝒆𝒈 is the contribution of the interface bond behavior in the computation of the tangent operator 𝒌𝒆𝒔𝒄 for the enhanced element:

𝒌𝒆𝒄 = ∫

𝑙

0
𝑩𝒄

𝑻 𝐤𝑐𝑩𝒄 𝑑𝑥 (32)

𝒌𝒆𝒔 = ∫

𝐿𝑠

0
𝑩𝒔

𝑇 𝐤𝑠𝑆𝑠𝑩𝒔 𝑑𝑥 (33)

𝒌𝒆𝒈 = ∫

𝐿𝑠

0

(

𝑵𝒔
𝑻 −𝑵𝟏𝟑

𝑻 𝒂𝒔𝑻
)
𝜕𝜏

(

𝑢𝑔
)

𝜕𝒖𝒆𝒍
P𝑑𝑥 (34)

ith:
𝜕𝜏

(

𝑢𝑔
)

𝜕𝒖𝒆𝒍
=

𝜕𝜏
(

𝑢𝑔
)

𝜕𝑢𝑔
⏟⏞⏟⏞⏟

𝑘𝑖𝑛𝑡

𝜕𝑢𝑔
𝜕𝒖𝒆𝒍

= 𝑘𝑖𝑛𝑡(𝑵𝒔 − 𝒂𝒔𝑵𝟏𝟑) (35)

𝑐 and 𝐤𝑠 are concrete and steel constitutive laws matrices, respectively. 𝑘𝑖𝑛𝑡 is calculated due to the expression of a steel-interface
onstitutive bond law which links the bond stress 𝜏 to the steel-concrete slip 𝑢𝑔 .

Pull-out tests are usually adopted to identify and characterize the bond laws. Several analytical expressions for constitutive bond
aws are proposed in the literature [44–54]. The bond law of [54] is chosen for the numerical applications of this paper for its
implicity and its representativity for monotonic and cyclic bond behaviors, as shown in Fig. 6. Three parameters define this bond
aw: the maximum bond strength 𝜏1, the slip 𝑔1 for which 𝜏1 is reached, and the slip 𝑔3. For slip values bigger than 𝑔3 the total
7

tress of the monotonic version of the law remains constant.



Finite Elements in Analysis & Design 237 (2024) 104170M. Trad et al.

d
c
f
s
t
n

e
c

s

2

a
o
i

2

b
a

Fig. 6. Bond law proposed in [54]: monotonic envelope curve (a); cyclic response (b).

Fig. 7. Enhanced concrete beams configuration (a) and degrees of freedom (b).

It is important to note here that the presented enhanced element is equivalent to the displacement beam element of [24]
eveloped in a large displacement framework in [25]. However, the enhanced methodology of this work proposes a new way to
onstruct the enhanced element, by calling existing concrete and steel elements from a finite elements code library. This approach
acilitates the construction of the enhanced element and its implementation. In addition, it allows to assemble the concrete and
teel elements finite elements of the user’s choice. Moreover, considering large displacements can be done, in the framework of
he proposed approach, by calling co-rotational beam elements. These elements carry on the large displacement aspect without the
ecessity of complicating the enhanced element formulation.

A sub-structured resolution is possible using the enhanced element method of this paper, which allows the transition from an
nhanced element construction composed of a single concrete beam and a single steel truss to another one with two or multiple
oncrete beams or plates and steel bar or beam elements.

For applications where a higher interpolation degree is chosen for steel bars, the enhanced concrete beam element of the following
ubsection can be employed

.5. Enhanced element of two concrete beams and a three-node steel bar

Fig. 7(a) describes the enhanced beam element composition with two concrete beam elements, a three-node steel bar element,
nd bond stresses. Three nodes are defined, with four degrees of freedom each (arranged as follows: three beam concrete degrees
f freedom and one steel bar degree of freedom), as shown in Fig. 7(b). This enhanced element presents two external nodes and an
nternal one (see Fig. 7(b)). The formulation of this enhanced element is detailed in Appendix B.

.6. Enhanced element of a concrete plate and two steel trusses

Fig. 8 describes the enhanced plate element composition with one concrete plate element, two truss steel elements, and steel
ars-concrete bond stresses. Twelve nodes are defined: eight concrete nodes of six degrees of freedom each (three displacements
nd three rotations), and four steel nodes of one degree of freedom each (longitudinal displacement).

The elementary degrees of freedom vector 𝒖𝒆𝒍 of the enhanced element is defined as
𝒖𝑒𝑙 =

[

𝑢1 𝑣1 𝑤1 𝜃𝑥1 𝜃𝑦1 𝜃𝑧1 𝑢2 𝑣2 𝑤2 𝜃𝑥2 𝜃𝑦2 𝜃𝑧2 … 𝑢9 𝑢10 𝑢11 𝑢12
]𝑇 , such that:

𝒖𝒆𝒍 =
[

𝒖𝒄 𝒖𝒔𝒙 𝒖𝒔𝒚
]𝑇 (36)

where:

𝒖 =
[ ]𝑇 , 𝒖 =

[ ]𝑇 (37)
8
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Fig. 8. Enhanced concrete plate configuration: 3d configuration (a) and top view (b).

𝒖𝒄 represent the concrete elementary degrees of freedom vector. 𝒖𝒔𝒙 and 𝒖𝒔𝒚 are the two steel bars degrees of freedom vectors.
The concrete degrees of freedom at a position 𝐱 of the plate mid-plane are interpolated using the plate shape functions matrix

𝑵𝒑 as follows:
[

𝑢(𝐱) 𝑣(𝐱) 𝑤(𝐱) 𝜃𝑥(𝐱) 𝜃𝑦(𝐱) 𝜃𝑧(𝐱)
]𝑇 = 𝑵𝒑𝒖𝒄 (38)

where:

𝒖𝒄 =
[

𝑰𝒅𝟒𝟖×𝟒𝟖 𝟎𝟒𝟖×𝟒
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑰𝒄

𝒖𝑒𝑙 (39)

knowing that 𝑰𝒅𝒊×𝒊 is an 𝑖 × 𝑖 eye matrix and 𝟎𝒊×𝒋 is a 𝑖 × 𝑗 zero matrix. Hence:
[

𝑢(𝐱) 𝑣(𝐱) 𝑤(𝐱) 𝜃𝑥(𝐱) 𝜃𝑦(𝐱) 𝜃𝑧(𝐱)
]𝑇 = 𝑵𝒑𝑰𝒄𝒖𝑒𝑙 = 𝑵𝒄𝒖𝑒𝑙 (40)

The steel longitudinal displacement along the 𝑥 steel bar is interpolated as follows:

𝑢𝑠𝑥(𝑥) = 𝑵 𝒕𝒙𝒖𝒔𝒙 (41)

where:

𝒖𝒔𝒙 =
[

𝟎𝟐×𝟒𝟖 𝑰𝒅𝟐×𝟐 𝟎𝒅𝟐×𝟐
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑰𝒔𝒙

𝒖𝒆𝒍 (42)

Hence:

𝑢𝑠𝑥(𝑥) = 𝑵 𝒕𝒙𝑰𝒔𝒙𝒖𝒆𝒍 = 𝑵𝒔𝒙𝒖𝒆𝒍 (43)

Similarly, the steel longitudinal displacement along the 𝑦 steel bar is deduced as follows:

𝑢𝑠𝑦(𝑦) = 𝑵 𝒕𝒚𝑰𝒔𝒚𝒖𝒆𝒍 = 𝑵𝒔𝒚𝒖𝒆𝒍 (44)

where:

𝑰𝒔𝒚 =
[

𝟎𝟐×𝟓𝟎 𝑰𝒅𝟐×𝟐

]

(45)

𝑵 𝒕𝒙 and 𝑵 𝒕𝒙 are the shape functions of the 𝑥 and 𝑦 steel truss elements, respectively. The concrete and steel strain fields are derived
from the corresponding generalized displacements fields, so:

𝜺𝒄 = 𝑩𝒑𝒖𝒄 = 𝑩𝒄𝒖𝒆𝒍 with 𝑩𝒄 = 𝑩𝒑𝑰𝒄 (46)

𝜀𝑠𝑥 = 𝑩𝒕𝒙𝒖𝒔𝒙 = 𝑩𝒔𝒙𝒖𝒆𝒍 with 𝑩𝒔𝒙 = 𝑩𝒕𝒙𝑰𝒔𝒙 (47)

𝜀𝑠𝑦 = 𝑩𝒕𝒚𝒖𝒔𝒚 = 𝑩𝒔𝒚𝒖𝒆𝒍 with 𝑩𝒔𝒚 = 𝑩𝒕𝒚𝑰𝒔𝒚 (48)

𝜀𝑠𝑥 and 𝜀𝑠𝑦 are the longitudinal strains of the steel bars. 𝜺𝒄 is the generalized concrete plate strain vector (see Eq. (8) that defines
the terms of 𝜺 ).
9
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2.6.1. Steel-concrete slip evaluation
The longitudinal slips of the two steel bars are independently calculated with respect to concrete. For the 𝑥 bar:

𝑢𝑔𝑥(𝑥) = 𝑢𝑠𝑥(𝑥) − 𝑢𝑐𝑥(𝑥) (49)

where:

𝑢𝑐𝑥(𝑥) =
[

1 0 0 0 z𝑎𝑥 0
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒂𝑥

𝑵𝒑𝒖𝒄 = 𝒂𝑥𝑵𝒄𝒖𝑒𝑙 (50)

which gives:

𝑢𝑔𝑥(𝑥) = 𝑵𝒔𝒙𝒖𝒆𝒍 − 𝒂𝑥𝑵𝒄𝒖𝑒𝑙 =
(

𝑵𝒔𝒙 − 𝒂𝑥𝑵𝒄
)

𝒖𝑒𝑙 (51)

Similarly, the 𝑦 steel bar longitudinal slip with respect to concrete is evaluated as follows:

𝑢𝑔𝑦(𝑦) = 𝑢𝑠𝑦(𝑦) − 𝑢𝑐𝑦(𝑦) =
(

𝑵𝒔𝒚 − 𝒂𝑦𝑵𝒄
)

𝒖𝑒𝑙 (52)

with:

𝒂𝑦 =
[

0 1 0 −z𝑎𝑦 0 0
]

(53)

2.6.2. Weak formulation
The virtual power principle of the enhanced plate element is expressed as follows:

𝒖∗𝒆𝒍
𝑇𝐅𝒆

𝒊𝒏𝒕𝒄 + ∫

𝐿𝑥

0
𝜀∗𝑠𝑥𝜎𝑠𝑥

(

𝜀𝑠𝑥
)

𝜀𝑠𝑥𝑑𝑥 + ∫

𝐿𝑦

0
𝜀∗𝑠𝑦𝜎𝑠𝑦

(

𝜀𝑠𝑦
)

𝜀𝑠𝑦𝑑𝑦

+ ∫

𝐿𝑥

0
𝑢∗𝑔𝑥𝜏𝑥

(

𝑢𝑔𝑥
)

P𝑥𝑑𝑥 + ∫

𝐿𝑦

0
𝑢∗𝑔𝑦𝜏𝑦

(

𝑢𝑔𝑦
)

P𝑦𝑑𝑦 = 𝒖∗𝒆𝒍
𝑇𝐅𝑒

(54)

which gives after a simplification with respect to 𝒖∗𝒆𝒍
𝑇 , the following expression:

𝐅𝒆
𝒊𝒏𝒕𝒄 + ∫

𝐿𝑥

0
𝑩𝑇

𝒔𝒙𝜎𝑠𝑥
(

𝜀𝑠𝑥
)

𝜀𝑠𝑥𝑑𝑥 + ∫

𝐿𝑦

0
𝑩𝑇

𝒔𝒚𝜎𝑠𝑦
(

𝜀𝑠𝑦
)

𝜀𝑠𝑦𝑑𝑦

+ ∫

𝐿𝑥

0

(

𝑵𝑇
𝒔𝒙 −𝑵𝑇

𝒄 𝒂
𝑇
𝑥
)

𝜏𝑥
(

𝑢𝑔𝑥
)

𝒖𝑒𝑙P𝑥𝑑𝑥 + ∫

𝐿𝑦

0

(

𝑵𝑇
𝒔𝒚 −𝑵𝑇

𝒄 𝒂
𝑇
𝑦

)

𝜏𝑥
(

𝑢𝑔𝑦
)

𝒖𝒆𝒍P𝑦𝑑𝑦 = 𝐅𝑒

(55)

where 𝜏𝑥 and 𝜏𝑦 are the bond stresses around the 𝑥 and 𝑦 bars of perimeters P𝑥 and P𝑦, respectively. The entirety of the expression
on the left-hand side of Eq. (55) denotes for the internal forces vector 𝐅𝑖

𝑒 of the enhanced plate element. Its derivation with respect
to 𝒖𝒆𝒍 gives the tangent operator of the enhanced element:

𝜕𝐅𝒆
𝒊

𝜕𝒖𝒆𝒍
= 𝒌𝒆𝒔𝒄 = 𝒌𝒆𝒄 + 𝒌𝒆𝒔𝒙 + 𝒌𝒆𝒔𝒚 + 𝒌𝒆𝒈𝒙 + 𝒌𝒆𝒈𝒚 (56)

𝒆
𝒄 is the tangent operator of the concrete plate element. 𝒌𝒆𝒔𝒙 and 𝒌𝒆𝒔𝒚 are the tangent operators of the two steel bars. 𝒌𝒆𝒈𝒙 and 𝒌𝒆𝒈𝒚
re the tangent operators due to the steel-concrete bond of the two steel bars, calculated as follows:

𝒌𝒆𝒈𝒙 = ∫

𝐿𝑥

0

(

𝑵𝑇
𝒔𝒙 −𝑵𝑇

𝒄 𝒂
𝑇
𝑥
)
𝜕𝜏𝑥

(

𝑢𝑔𝑥
)

𝜕𝒖𝑒𝑙
P𝑥𝑑𝑥 (57)

𝒌𝒆𝒈𝒚 = ∫

𝐿y

0

(

𝑵𝑇
𝒔𝒚 −𝑵𝑇

𝒄 𝒂
𝑇
𝑦

) 𝜕𝜏𝑦
(

𝑢𝑔y
)

𝜕𝒖𝑒𝑙
Py𝑑𝑦 (58)

where:
𝜕𝜏𝑥

(

𝑢𝑔𝑥
)

𝜕𝒖𝑒𝑙
=

𝜕𝜏𝑥
(

𝑢𝑔𝑥
)

𝜕𝑢𝑔𝑥

𝜕𝑢𝑔𝑥
𝜕𝒖𝑒𝑙

=
𝜕𝜏𝑥

(

𝑢𝑔𝑥
)

𝜕𝑢𝑔𝑥

(

𝑵𝒔𝒙 − 𝒂𝑥𝑵𝒄
)

(59)

𝜕𝜏𝑦
(

𝑢𝑔y
)

𝜕𝒖𝑒𝑙
=

𝜕𝜏𝑦
(

𝑢𝑔y
)

𝜕𝑢𝑔y

𝜕𝑢𝑔y
𝜕𝒖𝑒𝑙

=
𝜕𝜏𝑦

(

𝑢𝑔y
)

𝜕𝑢𝑔y

(

𝑵𝒔𝒚 − 𝒂𝑦𝑵𝒄
)

(60)

knowing that 𝜕𝜏𝑥
(

𝑢𝑔𝑥
)

𝜕𝑢𝑔𝑥
and 𝜕𝜏𝑦

(

𝑢𝑔y
)

𝜕𝑢𝑔y
are the slopes of the bond laws considered for bond stresses around two steel bars. The formulation

llows the utilization of two distinct laws.

. Verification tests

.1. Pull-out test

In this subsection, the pull-out experimental test of [55] is modeled.
10
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Fig. 9. Normalized pull-out test.

Table 1
Material properties for the pull-out model.
Parameter Description Value Unit

𝐸𝑐 Concrete Young’s modulus 28 GPa
𝐸𝑠 Steel Young’s modulus 200 GPa
𝜏1 Input parameter of the bond law (Fig. 6(a)) 22.5 MPa
𝑔1 Input parameter of the bond law (Fig. 6(a)) 1.45 mm
𝑔3 Input parameter of the bond law (Fig. 6(a)) 10 mm

3.1.1. Test description
The test setup consists of a concrete cube with a single steel reinforcement bar passing through it. The cube’s movement is

estricted by a metal plate. A Teflon support ensures proper alignment between the steel bar and the direction of movement,
reventing bending. Two LVDT (Linear Variable Differential Transformer) are used to measure the steel-concrete slip at the two
ar edges. The contact length is 5 times the steel bar’s diameter, a value recommended in [56]. The bond stress 𝜏 along the steel

bar is estimated as follows:

𝜏 = 𝐹
𝑑𝑎𝐿𝜋

(61)

where 𝐹 is the measured reaction, 𝐿 is the steel-concrete contact length, and 𝑑𝑎 is the steel bar diameter. The experimental bond
law is defined as the evolution of the calculated bond stress value 𝜏 with respect to the slip measured at the unloaded edge of the
teel bar (see Fig. 9).

.1.2. Material properties
Linear elastic constitutive laws are assigned to both steel and concrete, intentionally focusing on the pull-out nonlinearities at the

nterface. The only source of non-linearity in this scenario arises from the non-linear expression of the bond law at the steel-concrete
nterface.

The bond law of [54] is used (see Fig. 6). Table 1 sums up the used material properties. It has to be noted that the bond law
arameters are chosen to best describe the experimental bond law curve of [55] (see Fig. 10).

.1.3. Finite elements mesh
The central part of the pull-out test where a bond contact links steel and concrete is represented with a bond length equal to five

imes the bar diameter. Fig. 11 shows the mesh and the boundary conditions. Three enhanced beam elements are used to construct
he mesh. Each enhanced element is an assembly of: two Euler-Bernoulli concrete beams, one three-node steel bar element, and
ond stresses.

Monotonic and cyclic load configurations are tested. The boundary conditions of Fig. 11 are adopted for a monotonic loading
ath. For the cyclic case, boundary conditions are modified every time the sign of the imposed displacement changes, by switching
he boundary conditions of nodes 1 and 7 of Fig. 11.

.1.4. Results
Fig. 12 illustrates the imposed displacement and the reaction curves for the monotonic applied load path. Steel and concrete

odes displacements for the different time steps are presented in Fig. 13. The displacements of Fig. 13 show that the steel bar is
uccessfully being pulled with respect to concrete. Even though no experimental result is given in [55] for cyclic pull-out tests, the
aw of [54] can reproduce the cyclic behavior with no additional input parameters. Fig. 14 shows a cyclic applied displacement
ath and the resultant reaction curve.
11
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3

Fig. 10. Analytical and experimental bond laws.

Fig. 11. Considered mesh and boundary conditions for the pull-out model.

Fig. 12. Monotonic 1D pull-out: imposed displacement (a) and reaction (b).

.1.5. Discussion
The reaction force curves show that the constitutive expression that links the reaction force 𝐹 to the bond stress 𝜏 (Eq. (61)) is

fulfilled, which validates the enhancement approach.
12
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Fig. 13. Concrete (a) and steel (b) nodes displacements with respect to their longitudinal position, for the used time steps.

Fig. 14. Cyclic pull-out test: imposed displacement (a) and reaction (b).

Both steel-concrete slip interpolation methods presented in Section 2.5 were tested, producing the same results, for this specific
application. Using three-node steel bars instead of regular truss elements usually allows for better interpolation of the steel-concrete
slip field due to their nonlinear shape functions, which are of higher order compared to two-node bars.

Furthermore, the enhancement methodology that assembles distinct finite elements for steel and concrete gives the possibility
the impose a steel displacement, independently of the concrete displacement, which is the case for this pull-out test.

3.2. Enhanced plate membrane behavior test

This test examines the membrane behavior of a reinforced plate element, which includes an eight-node plate concrete element
and a truss steel bar element in the direction of the 𝑥 axis. The bond between the steel bar and concrete is duly incorporated within
the enhanced element.

3.2.1. Test description
A concrete square plate with dimensions 10 × 10 m2 and a thickness of 0.25 m is considered. The steel bar, with a diameter of

16 mm, is situated in the plate’s mid-plane. The focus of this study is on the plate membrane behavior.

3.2.2. Material properties
A linear behavior is attributed to both the steel and the concrete, with the properties outlined in Table 2.

3.2.3. Finite elements mesh
The mesh is composed of a single enhanced element. The boundary conditions described in Fig. 15 are considered, where an

imposed displacement is applied to the edge of the steel bar. A linear steel-concrete bond law is considered.
13



Finite Elements in Analysis & Design 237 (2024) 104170M. Trad et al.

3

d
1

3

p

Table 2
Steel and concrete Parameters of the enhanced plate membrane test.
Parameter Description Value Unit

𝐸𝑐 Concrete Young’s modulus 30 GPa
𝐸𝑠 Steel Young’s modulus 210 GPa
𝜈𝑐 Concrete Poisson’s ratio 0.22 -

Fig. 15. Boundary conditions of the enhanced plate membrane test.

Fig. 16. Deformed enhanced plate shape for different stiffness values of the linear bond law: (a) 105 Pa/m, (b) 1010 Pa/m, (c) 1020 Pa/m.

3.2.4. Result
A parametric study is conducted to examine the variation in stiffness of the bond law, with the aim of observing its impact on

the deformed shape of the plate, as shown in Fig. 16.

3.2.5. Discussion
The deformed plate shapes observed in Fig. 16 align with theoretical expectations. Indeed, an increase in the slope of the bond

law leads to a diminished sliding of the steel with respect to concrete, resulting in a decrease in the relative displacement between
the two materials. Consequently, by imposing a displacement at the steel edge, a higher slope of the bond law facilitates a more
pronounced carrying effect of the concrete by the steel (resulting in a smaller sliding motion).

3.3. Enhanced plate flexural behavior test

This test aims to analyze the flexural behavior of a concrete plate reinforced with steel bars aligned in both the 𝑥 and 𝑦 directions.

.3.1. Test description
The considered test is illustrated in Fig. 17. The plate has a thickness of 0.2 m. All the bars are eccentrically positioned in the

ownward direction along the 𝑧 axis by a distance of 0.05 m, with respect to the concrete plate mid-plane, and have a diameter of
6 mm.

.3.2. Material properties
A linear behavior is assigned to steel and concrete, with the parameters of Table 3. The bond law of [54] is used, with the

arameters of Table 4.
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Table 3
Steel and concrete material parameters for the plate bending test.
Parameter Description Value Unit

𝐸𝑏 Concrete Young’s modulus 30 GPa
𝐸𝑎 Steel Young’s modulus 210 GPa
𝜈𝑏 Concrete Poisson’s ratio 0.2 -

Table 4
Bond law parameters for the plate bending test.
Parameter Value Unit

𝜏1 10 MPa
𝑔1 1 mm
𝑔3 8 mm

Fig. 17. Finite elements mesh of the plate bending test.

Fig. 18. Plate bending test reaction curve (a) and corresponding deformed shape (b).

3.3.3. Finite elements mesh
The considered mesh is composed of 10 × 10 enhanced plate elements, composed each of: an eight-node concrete plate element,

two steel truss elements along 𝑥 and 𝑦, and steel-concrete bond stresses. The plate is simply supported (in the 𝑧 direction) along its
4 edges. A displacement in the 𝑧 direction (downward) is applied at the central node of the plate.

3.3.4. Results
Fig. 18(a) shows the plate reaction curve and Fig. 18(b) illustrates the corresponding deformed shape of the plate mid-plane.
15
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Fig. 19. Slip values of 𝑥 (a) and 𝑦 (b) steel bars, for the different time steps of the solution.

Fig. 20. Configuration of the four-point beam test of [57].

Fig. 19 shows the slip values of the steel bars along the 𝑥 and 𝑦 directions, with respect to concrete, for the different time steps
of the solution.

3.3.5. Discussion
The slip values are equal in both 𝑥 and 𝑦 directions, and they are symmetrical with respect to the plate mid-plane central axes. This

observation is consistent, considering that the plate geometry, the boundary conditions, and the applied loading are symmetrical.
This test validates the out-of-plane behavior of the enhanced plate formulation, which is reinforced with steel bars capable of sliding,
in both plate directions, with respect to concrete.

4. Numerical application

4.1. Four-point beam bending test

A four-point bending test of a reinforced concrete beam conducted in [57] is considered.

4.1.1. Test description
The considered test is described in Fig. 20.
Two distinct modeling options are chosen for this test using enhanced plate and beam elements. The modeling option with

enhanced concrete beams defines each enhanced element as a combination of three contributions: one concrete Timoshenko fiber
beam element, one steel truss element, and steel-concrete bond stresses. The modeling option with enhanced concrete plates defines
each enhanced element as a combination of three contributions: a Mindlin-Reissner concrete plate element, one steel truss element,
and steel-concrete bond stresses.

4.1.2. Material properties
An elastic plastic behavior with a linear strain hardening is considered for the steel behavior, with the parameters of Table 5.
For the enhanced concrete beam elements modeling choice, a 1D traction damage law is accorded to the concrete beam fibers.

This law is detailed in Appendix C. The parameters of the law are presented in Table 6.
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Table 5
Steel parameters: four-point flexural beam test.
Parameter Description Value Unit

𝐸𝑎 Young’s modulus 210 GPa
𝑓𝑦 Limit of elasticity 450 MPa
𝐸ℎ Hardening slope 2100 MPa

Table 6
Concrete nonlinear parameters: enhanced beams model of the four-point bending test.
Parameter Description Value Unit

𝐸𝑐 Young’s modulus 28 GPa
𝑓𝑡 Tensile strength 3.2 MPa
𝜀𝑑0 Damage threshold 𝑓𝑡

𝐸𝑐
= 1.1429 × 10−4 -

𝐵 Parameter of the damage law 1340 -
𝐺𝑓 Fracture energy 150 N/m

Table 7
Concrete nonlinear parameters: enhanced plates model of the four-point bending test.
Parameter Description Value Unit

𝑓𝑡 Tensile strength 2.6 MPa
𝑓𝑐 Compressive strength 56.9 MPa
𝜀t0 Revised Mazars’ model input 𝑓𝑡

𝐸𝑐
= 1.1429 × 10−4 -

𝜀c0 Revised Mazars’ model input 𝑓𝑐
𝐸𝑐

= 1.9 × 10−3 -
𝐴𝑡 Revised Mazars’ model input 0.99
𝐵𝑡 Revised Mazars’ model input 8000 -
𝐴𝑐 Revised Mazars’ model input 1.2 -
𝐵𝑐 Revised Mazars’ model input 400 -
𝛽 Revised Mazars’ model input 1.06 -

For the enhanced concrete plate elements modeling choice, a revised Mazars’ law is considered for concrete [58,59] (see
ppendix D) with the parameters of Table 7.

The bond law of [54] is used. In order to determine the parameters of this law, the failure mode of the interface is predicted
ccording to the criterion of [55]. Using this criterion, the ratio 𝑐

𝑑 is calculated, where 𝑐 and 𝑑 represent the concrete cover and the
teel bar diameter, respectively. This ratio is then compared to the value of 0.39 𝑓𝑐

𝑓𝑡
− 0.24. In this case study, one can say:

𝑐
𝑑

< 0.39
𝑓𝑐
𝑓𝑡

− 0.24 ∶ so concrete cover splitting failure (62)

nowing that 𝑓𝑐 is the concrete compressive strength. Since the predicted failure mode is by concrete splitting, the parameters 𝜏1
and 𝑔1 of the bond law, that represent the maximum bond stress and the corresponding slip, are estimated as follows:

𝑔1 = 0.17 𝑐
𝑑

= 0.17 × 2.5 = 0.425 mm (63)

𝜏1 = 𝑓𝑡
(

1.53 𝑐
𝑑
+ 0.36

)

= 3.2(1.53 × 2.5 + 0.36) = 13.392 Pa (64)

Since the work of [55] does not provide specifications about the calculation of the third defining parameter 𝑔3 of the bond law,
he recommendations of [60] are followed for the identification of this parameter. For unconfined concrete around the steel (which
s the case for this test that does not include steel stirrups in the beam volume), 𝑔3 is estimated to be equal to 1.2𝑔1, so for this
xample it is equal to 0.51 mm.

.1.3. Finite elements mesh
Fig. 21(a) illustrates the various fibers that constitute the concrete mesh of the enhanced fiber beams. The boundary conditions

f the enhanced fiber beams are detailed in Fig. 21(b).
The finite elements mesh and boundary conditions of the modeling choice carried out with enhanced plates are illustrated in

ig. 22. This modeling choice focuses on the membrane plate elements behavior. The mesh construction is done using enhanced
lates at the level of the steel bar. The rest of the structure is meshed with standard concrete plate elements with no enhancement.

.1.4. Results
Fig. 23 illustrates the reaction curves for both modeling choices (enhanced beams and plates) with: a perfect steel-concrete bond,

nd a non-linear interface behavior (imperfect bond). These curves are compared to the experimental reaction curve. These reaction
urves are compared to the numerical curves of [25] where this same test is modeled.
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Fig. 21. Concrete fibers mesh (a) and boundary conditions: four-point bending test model with enhanced concrete beams.

Fig. 22. Finite elements mesh and boundary conditions: four-point bending test model with enhanced concrete plates.

Fig. 23. Reaction curves of the four-point bending beam test with enhanced beams (a) and plates (b).
18
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Fig. 24. Numerical damage field distributions compared to the experimental cracking pattern.

Considering the nonlinear behavior of the interface does not significantly impact the reaction curve. Nevertheless, accounting for
a nonlinear interface behavior leads to a more accurate representation of the experimental concrete cracking pattern, as depicted
in Fig. 24. Specifically, in the vicinity of the steel, the simulations that incorporate a nonlinear interface behavior show improved
detection of the concrete cracks localization and spacing. A maximum of 15 and 16 iterations are needed for beam and plate models
respectively, while considering an imperfect bond condition. For perfect bond simulations, a maximum of 20 and 35 iterations is
respectively needed. These iterations numbers are less than those typically seen in other models discussed in the literature, such
as [25]. Indeed, the number of iterations needed in [25] is between 200 and 1100 iterations.

4.1.5. Discussion
Fig. 24 reveals a notable difference in the damage patterns with and without considering the steel-concrete interface behavior

for the enhanced beams modeling choice. This contrast is subdued when using enhanced plate elements. Indeed, the assumption
of a beam plane section that remains plane after deformation, adopted for concrete beam elements, spreads the damage within
the concrete beam volume. Considering the nonlinear interface behavior helps overcome this limitation of beam elements. The
kinematics of plates are less constrained compared to beam kinematics, resulting in a less significant difference in damage patterns
with and without considering the interface nonlinear behavior.

The local description of the concrete cracking process is characterized by a steel stress localization and a discontinuity in the slip
field, as shown in Figs. 25 and 26 that present the steel stress and the slip values for the resolution time steps. The sliding in these
figures is calculated at the nodes of the steel truss elements. The steel stresses are calculated at the Gauss points of these elements.
These figures show the progressive apparition of the concrete cracks, detect by the time steps where a steel stress concentration and
a steel-concrete slip occur at the crack position, near the steel reinforcement.

5. Conclusive remarks and perspectives

This paper proposes a modeling method for steel-concrete interface behavior in semi-global beam and plate finite elements. It
involves creating an enhanced element gathering concrete and steel elements, along with steel-concrete bond stresses, allowing the
use of existing finite elements library components by defining additional steel degrees of freedom. The static equilibrium of the
enhanced element is performed in the framework of principle of virtual work. The methodology allows the construction of a variety
of enhanced elements configurations, knowing that for configurations where inner nodes are defined a static condensation technique
is applied to the enhanced element.

The paper’s modeling technique draws inspiration from prior literature that focused on modeling interface behavior in fiber beam
elements [25,26]. In contrast, this paper presents a versatile approach that leverages existing classical finite elements for plates and
beams. These elements are assembled to form a single enhanced reinforced concrete element, simplifying both formulation and
implementation.

Three distinct examples of enhanced elements assemblies are presented with: one beam concrete element and one truss steel
element, two beam concrete elements and one three-node steel bar element, and one concrete plate element with two steel bar
elements. This paper presents three validation examples testing the behavior of enhanced beams and plate elements (membrane
and out-of-plane plate behaviors). These tests are followed by an application example where a four-point beam bending test is
independently modeled with enhanced beam and plate elements. The numerical results show a good agreement with experimental
and numerical results of the literature. The different shown applications allow a quantitative evaluation of steel-concrete slip and
bond stress values.

The perspectives of future research is toward testing more capabilities of the enhancement approach, by upgrading its current
version. More specifically, using an assembly of multilayered concrete plate elements will allow the study of the out-of-plane
19



Finite Elements in Analysis & Design 237 (2024) 104170M. Trad et al.
Fig. 25. Local cracking description of the four-point beam test: enhanced beams modeling choice.

nonlinear behavior of concrete. In addition, considering large displacements can be done by assembling co-rotational beams or
plates. Assembling higher-order layered kinematic elements can be examined, to create one enhanced multiscale element [31].
Finally, considering steel-concrete interactions in the normal direction with respect to the steel can be considered, by integrating
normal stresses between steel and concrete (see [61]) in the enhanced elements.
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Fig. 26. Local cracking description of the four-point beam test: enhanced plates modeling choice.
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Appendix A. Static condensation

The degrees of freedom vector of one enhanced element 𝒖𝒆𝒍 is described as follows:

𝒖𝒆𝒍 =
[

𝒖𝒆 𝒖𝒊
]𝑇 (A.1)

𝒖𝒆 et 𝒖𝒊 refer to the external (boundary) and internal degrees of freedom, respectively. The linearization of Eq. (15) gives:

𝒌𝒔𝒄𝒅𝒖𝑒𝑙 = 𝒅𝐅𝒆
𝒊 (A.2)

𝒌𝒔𝒄 represents the stiffness matrix of the enhanced element. The vector 𝒅𝒖𝒆𝒍 represents the incremental values of the total degrees
of freedom of the enhanced element (internal and external degrees). 𝒅𝐅𝒆

𝒊 is the vector of incremental values of the resisting forces
of this element, where 𝒅𝐅𝒆

𝒊
𝑇 =

[

𝒅𝒇 𝒆 𝒅𝒇 𝒊
]𝑇 . 𝒅𝒇 𝒆 represents the incremental values of resisting forces at the external nodes of the

enhanced element. On the other hand, 𝒅𝒇 𝒊 represents the incremental values of resisting forces at the internal nodes. At convergence,
the static condensation imposes that 𝒅𝒇 𝒊 is equal to zero (internal equilibrium). Thus, Eq. (A.2) is expressed in an expanded form
as follows:

[

𝒌𝒆𝒆 𝒌𝒆𝒊
𝒌𝒊𝒆 𝒌𝒊𝒊

] [

𝒅𝒖𝒆
𝒅𝒖𝒊

]

=
[

𝒅𝒇 𝒆
0

]

(A.3)

Consequently, static condensation provides a link between the incremental vectors 𝒅𝒖𝒆 and 𝒅𝒇 𝒆 such that:
(

𝒌𝒆𝒆 − 𝒌𝒆𝒊𝒌−1𝒊𝒊 𝒌𝒊𝒆
)

𝒅𝒖𝒆 = 𝒅𝒇 𝒆 (A.4)

In a more condensed form, Eq. (A.4) is expressed as follows

𝒌𝒆𝒏𝒅𝒖𝒆 = 𝒅𝒇 𝒆 (A.5)

𝒌𝒆𝒏 is the condensed stiffness matrix of the enhanced element.
Enhanced beam and plate elements that require static condensation involve the use of a local Newton-Raphson algorithm

(algorithm 1) at the level of each enhanced element, in addition to the Newton-Raphson standard global algorithm used to solve the
overall reinforced concrete structure equilibrium. 𝑐𝑜𝑛𝑣𝑖 used in algorithm 1 is as a convergence indicator, and 𝑘𝑖 is a local iterations
counter.

A sub-structured resolution is performed where the local algorithm solves the inner equilibrium equation of one enhanced element
(𝒇 𝑟 = 0). It is called by the global algorithm whenever the internal forces vector or the rigidity matrix of one enhanced element is
calculated.

Algorithm 1 Local resolution algorithm of one enhanced element
𝑐𝑜𝑛𝑣𝑖 ← 0
𝑘𝑖 ← 0
𝒖𝑇𝒆𝒍 =

[

𝒖𝒆 𝒖𝒊
]𝑇 . 𝒖𝒆 is provided by the global algorithm. It remains constant in this local one. An initial estimate of 𝒖𝒊 is its

value at the last converged time step.
while 𝑐𝑜𝑛𝑣𝑖 =0 do

Compute 𝐅𝒆
𝒊 (𝒖𝒆𝒍) and 𝒌𝒔𝒄 . 𝒌𝒔𝒄 is the rigidity matrix of the enhanced element equal to 𝑑𝐅𝒆𝒊

𝑑𝒖𝒆𝒍
.

Compute 𝒇𝒊 = 𝐅𝒆
𝒊 𝒊 (the part of 𝐅𝒆

𝒊 at the internal nodes).
Compute 𝑹𝑘𝑖 = −𝒇𝒊 .
if 𝑹𝑘𝑖 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then
𝑐𝑜𝑛𝑣𝑖 ← 1
Static condensation: 𝐤𝐞𝐧 = 𝒌𝒆𝒆 − 𝒌𝒆𝒊𝒌−1𝒊𝒊 𝒌𝒊𝒆 (see Eq. (A.4)) and 𝒇𝒆 = 𝐅𝒆

𝒊 𝒆 (the part of 𝐅𝒆
𝒊 at the external nodes). 𝐤𝐞𝐧 and

𝐟𝒆 represent the condensed stiffness matrix and the internal forces vector of the enhanced element to be returned to the global
algorithm.

else
𝒖𝒊𝒌𝒊+𝟏

= 𝒖𝒊𝒌𝒊 + 𝒌𝒊𝒊−1𝑹𝑘𝑖
𝑘𝑖 ← 𝑘𝑖 + 1

Appendix B. Enhanced element formulation: two concrete beams and one steel bar

The elementary degrees of freedom vector 𝒖𝒆𝒍 of the enhanced element is defined as
𝒖𝒆𝒍 =

[

𝑢1 𝑣1 𝜃1 𝑢𝑠1 𝑢2 𝑣2 𝜃2 𝑢𝑠2 𝑢𝑖 𝑣𝑖 𝜃𝑖 𝑢𝑠𝑖
]𝑇 , such that:

𝒖𝒆𝒍 =
[

𝒖𝒆 𝒖𝒊
]𝑇 (B.1)

with:
[ ]𝑇 [ ]𝑇 (B.2)
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𝒖𝒆 and 𝒖𝒊 are the external and the internal degrees of freedom, respectively.
The steel and concrete degrees of freedom and strain vectors are assessed similarly to the previous subsection, utilizing the shape

unctions of the steel and concrete elements and their derivatives.

.0.1. Steel-concrete slip evaluation
Eq. (25) can be here used to evaluate the slip, where:

𝑢𝑠(𝑥) = 𝑵𝒃𝒖𝒔 (B.3)

knowing that 𝒖𝒔 = 𝑰𝒔𝒖𝑒𝑙, which gives:

𝑢𝑠(𝑥) = 𝑵𝒃𝑰𝒔𝒖𝑒𝑙 = 𝑵𝒔𝒖𝑒𝑙 (B.4)

where:

𝑰𝒔 =
⎡

⎢

⎢

⎣

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0

⎤

⎥

⎥

⎦

, 𝒖𝒔 =
⎡

⎢

⎢

⎣

𝑢𝑎1
𝑢𝑎𝑖
𝑢𝑎2

⎤

⎥

⎥

⎦

(B.5)

𝑵𝒃 is the shape functions matrix of the three-node steel bar element. Two methods are here proposed for the calculation of 𝒖𝒄 (𝑥).
The first one is as follows:

𝑢𝑏(𝑥) =
[

1 −y
]

⏟⏞⏟⏞⏟
𝑎𝑠

[

𝑢(𝑥)
𝜃(𝑥)

]

(B.6)

𝑢(𝑥) and 𝜃(𝑥) are the concrete beam longitudinal displacement and section rotation. For a longitudinal position 0 ≤ 𝑥 < 𝑙
2 , the shape

functions of concrete beam 1 are used to evaluate 𝑢(𝑥) and 𝜃(𝑥). The shape functions of beam 2 are otherwise used (see Fig. 7(a)).
This first method involves a node-to-beam association for slip calculation. Hence, a second method, which bypasses this

identification step, is proposed. It consists of calculating 𝒖𝒇 , which is the vector of concrete longitudinal displacement near the
steel bar at the beam nodes:

𝒖𝒇 =
⎡

⎢

⎢

⎣

1 −y 0 0 0 0
0 0 1 −y 0 0
0 0 0 0 1 −y

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢1
𝜃1
𝑢𝑖
𝜃𝑖
𝑢2
𝜃2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.7)

so:

𝒖𝒇 =
⎡

⎢

⎢

⎣

1 0 −y 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −y 0
0 0 0 0 1 0 −y 0 0 0 0 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑰𝒇

𝒖𝒆𝒍 (B.8)

Then the concrete longitudinal displacement at the longitudinal position 𝑥 is interpolated. The shape functions of a three-node bar
element considered for the steel bar are used:

𝑢𝑏(𝑥) = 𝑵𝒃(𝑥)𝒖𝒇 = 𝑵𝒃(𝑥)𝑰𝒇𝒖𝒆𝒍 (B.9)

Finally:

𝑢𝑔(𝑥) = 𝑵𝒔𝒖𝑒𝑙 −𝑵𝒃𝑰𝒇𝒖𝑒𝑙 = (𝑵𝒔 −𝑵𝒃𝑰𝒇 )𝒖𝑒𝑙 (B.10)

B.0.2. Weak formulation
The virtual power principle is expressed as follows:

𝒖∗𝒆𝒍
𝑻

2

𝗔
𝑒=1

𝐅𝒆
𝒊𝒏𝒕𝒄 + ∫

𝐿𝑠

0
𝜀∗𝑠𝜎𝑠

(

𝜀𝑠
)

𝑆𝑠𝑑𝑥 + ∫

𝐿𝑠

0
𝑢∗𝑔𝜏

(

𝑢𝑔
)

P𝑑𝑥 = 𝒖∗𝒆𝒍
𝑻 𝐅𝑒 (B.11)

which gives:
2

𝗔
𝑒=1

𝐅𝒆
𝒊𝒏𝒕𝒄 + ∫

𝐿𝑠

0
𝑩𝑇

𝑠 𝜎𝑠
(

𝜀𝑠
)

𝑆𝑠𝑑𝑥 + ∫

𝐿𝑠

0
(𝑵𝑇

𝒔 − 𝑰𝑇
𝒇𝑵

𝑇
𝒃 )𝜏

(

𝑢𝑔
)

P𝑑𝑥 = 𝐅𝑒 (B.12)

𝑩𝑠 matrix is deduced by deriving the interpolation matrix 𝑵𝑠 with respect to the enhanced element elementary degrees of freedom
𝒆

23

vector 𝒖𝒆𝒍. 𝐅𝒊𝒏𝒕𝒄 is an elementary internal forces vector of one of the two assembled concrete beams.
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The entirety of the expression on the left-hand side of Eq. (B.12) denotes for the internal forces vector 𝐅𝑖
𝑒 vector of the enhanced

beams element. Its derivation with respect to 𝒖𝒆𝒍 gives the tangent operator of the enhanced element:

𝜕𝐅𝒆
𝒊

𝜕𝒖𝒆𝒍
= 𝒌𝒆𝒔𝒄 = 𝒌𝒆𝒄 + 𝒌𝒆𝒔 + 𝒌𝒆𝒈 (B.13)

𝒌𝒆𝒄 is the assembly of the two concrete beams tangent operators. 𝒌𝒆𝒔 is the steel three-node bar element tangent operator. 𝒌𝒆𝒈 is the
ond tangent operator evaluated as follows:

𝒌𝒆𝒈 = ∫

𝑙

0
(𝑵𝑇

𝒔 − 𝑰𝑇
𝒇𝑵

𝑇
𝒃 )

𝜕𝜏
(

𝑢𝑔
)

𝜕𝒖𝒆𝒍
P𝑑𝑥 (B.14)

ith:
𝜕𝜏

(

𝑢𝑔
)

𝜕𝒖𝒆𝒍
=

𝜕𝜏
(

𝑢𝑔
)

𝜕𝑢𝑔
⏟⏞⏟⏞⏟

𝑘𝑖𝑛𝑡

𝜕𝑢𝑔
𝜕𝒖𝒆𝒍

= 𝑘𝑖𝑛𝑡(𝑵𝒔 −𝑵𝒃𝑰𝒇 ) (B.15)

here 𝑘𝑖𝑛𝑡 is the bond law slope. It is to be noted here that the second slip interpolation method of paragraph Appendix B.0.1 is
hosen in Eq. (B.14). Choosing the first method remains possible. For that, the integration of this equation would be divided into
he sum of two parts: an integration for 0 ≤ 𝑥 < 𝑙

2 and another one for 𝑙
2 ≤ 𝑥 ≤ 𝑙.

Appendix C. Regularized 1D damage law

The 1D damage law used in 4.1 defines a Mazars’ damage criterion [62]. Once the traction strain 𝜀𝑒𝑞 reaches the value of 𝜀𝑑0,
concrete starts to damage. An exponential evolution of the damage variable 𝐷𝑡 is described as follows:

𝐷𝑡 = 1 −
𝜀𝑑0
𝜀𝑒𝑞

exp
(

𝐵𝑡
(

𝜀𝑑0 − 𝜀𝑒𝑞
))

(C.1)

A Hillerborg regularization is applied to this law [59] [63]. With no other dissipative mechanisms, the area under the total stress-
train curve represents the volumetric cracking dissipated energy. The multiplication of this area by the width ℎ of the cracking

localization area represents the fracture energy 𝐺𝑓 .

𝐺𝑓 = ℎ∫

∞

0
𝜎𝑑𝜀 (C.2)

For the simple 1D case is it possible to express 𝐺𝑓 as:

𝐺𝑓 = ℎ∫

∞

0
𝐸
(

1 −𝐷𝑡
)

𝜀𝑑𝜀 = ℎ∫

∞

0
𝐸
𝜀𝑑0
𝜀𝑒𝑞

exp
(

𝐵𝑡
(

𝜀𝑑0 − 𝜀𝑒𝑞
))

𝜀𝑑𝜀 = ℎ
E𝜀2𝑑0
2

+ ℎ
E𝜀𝑑0
𝐵𝑡

(C.3)

hich leads to the regularized expression of 𝐵𝑡:

𝐵𝑡 =
ℎ𝐸𝜀𝑑0

𝐺𝑓 − ℎ
(

𝜀2𝑑0E
2

) (C.4)

𝐵𝑡 is calculated for each finite element. One simple way to calculate ℎ is to suppose that it is equal to the finite element size.

Appendix D. Revised and regularized Mazars’ constitutive law

The revised Mazars’s behavior law [58] defines a single damage variable 𝐷 such that:

𝐷 = 1 −
(1 − 𝐴)𝑌0

𝑌
− 𝐴 exp

(

−𝐵
(

𝑌 − 𝑌0
))

(D.1)

𝑌 is an internal variable introduced to the initial Mazars’ law [62] in order to improve its shear behavior:

𝑌 = 𝑟𝑌t + (1 − 𝑟)𝑌c (D.2)

uch as:

𝑟 =
∑3

𝑖=1 ⟨𝜎̄𝑖⟩+
∑3

𝑖=1
|

|

𝜎̄𝑖||
(D.3)

⟨𝜎̄𝑖⟩+ and |

|

𝜎̄𝑖|| represent respectively the positive part and the absolute value of the principal stress 𝜎̄𝑖. The effective stresses
atrix 𝝈̄ takes into account the damaged state of the material such that:

𝝈̄ = 𝝈 (D.4)
24
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Fig. D.1. Principe du calcul de l’énergie de fissuration.

where 𝝈 is the stress matrix of the undamaged material. The variables 𝑌𝑡 and 𝑌𝑐 of Eq. (D.2) are associated with the loading surfaces.
Two surfaces for tension and compression are defined such that:

𝑓t = 𝜀t − 𝑌t (D.5)

and:

𝑓c = 𝜀c − 𝑌c (D.6)

with:

𝜀t =
𝐼𝜀

2(1 − 2𝑣)
+

√

𝐽𝜀
2(1 + 𝑣)

(D.7)

and:

𝜀c =
𝐼𝜀

5(1 − 2𝑣)
+

6
√

𝐽𝜀
5(1 + 𝑣)

(D.8)

such that:

𝐼𝜀 = 𝜀1 + 𝜀2 + 𝜀3 (D.9)

𝐽𝜀 = 0.5
[

(

𝜀1 − 𝜀2
)2 +

(

𝜀2 − 𝜀3
)2 +

(

𝜀3 − 𝜀1
)2
]

(D.10)

where 𝜀1, 𝜀2, and 𝜀3 represent the principal values of the strain tensor 𝜺. 𝑌𝑡 and 𝑌𝑐 are defined as follows:

𝑌t = Sup
[

𝜀0t , 𝑚𝑎𝑥(𝜀t )
]

, 𝑌c = Sup
[

𝜀0c , 𝑚𝑎𝑥(𝜀c)
]

(D.11)

The symbol ‘‘Sup’’ denotes the greater value of the considered set. 𝜀0t and 𝜀0c are the associated threshold values to 𝜀t and 𝜀c,
respectively.

The parameters 𝐴 and 𝐵 of Eq. (D.1) define the shape of the law:

⎧

⎪

⎨

⎪

⎩

𝐴 = 𝐴t
(

2𝑟2(1 − 2𝑘) − 𝑟(1 − 4𝑘)
)

+ 𝐴c
(

2𝑟2 − 3𝑟 + 1
)

𝐵 = 𝑟
(

𝑟2−2𝑟+2
)

𝐵t +
(

1 − 𝑟
(

𝑟2−2𝑟+2
)
)

𝐵c
(D.12)

For a purely tensile behavior, 𝐴 is equal to 𝐴𝑡, and 𝐵 is equal to 𝐵𝑡. In pure compression, 𝐴 is equal to 𝐴𝑐 and 𝐵 is equal to 𝐵𝑐 .
The energy regularization of the tensile behavior of this revised Mazars’ law involves the identification of the regularized values

of 𝐴𝑡 and 𝐵𝑡. Eq. (C.2) defines the cracking energy as the crack localization width ℎ multiplied by the area under the 𝜎 - 𝜀 curve.
In 1D, it is possible to draw a triangle with the same area for the revised regularized Mazars’ law, as shown in Fig. D.1.

From Fig. D.1, one can deduce the following:

ℎ = 2
𝐺𝑓

𝑓 2
𝑡

(

1
𝐸

− 1
𝐸𝑡

)−1
(D.13)

ℎ can be considered equal to the size of the finite element. 𝐺𝑓 , 𝐸l, and 𝑓𝑡 are material parameters. Therefore, the value of 𝐸𝑡
can be deduced using Eq. (D.13). The regularization process involves plotting the equivalent-area triangle of the constitutive law
and determining suitable values for 𝐴 and 𝐵 of the regularized law. This is achieved by plotting the tensile behavior of the law
25
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for each pair of values (𝐴𝑡, 𝐵𝑡) and calculating the area under the law curve. The objective is to find the values of 𝐴𝑡 and 𝐵𝑡 that
ive the closest area to the area of the initially plotted triangle.

The value of 𝐴𝑡 defines the asymptote of the law of large strain values. 𝐴𝑡 = 1 is associated corresponds to an asymptote of
stress equal to zero. This value of 𝐴𝑡 gives the best representation of the experimental concrete behavior, but it may lead to

umerical convergence problems. In this case, a lower value is used. The value of 𝐴𝑡 is between 0 and 1.
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