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Abstract. The genome galaxy identified in bacteria is studied by expressing the reading frame
retrieval (RFR) function according to the Y Z-content (GC-, AG- and GT -content) of bacterial
codons. The classical GC-content is the best parameter for characterizing the upper arm, which
is related to bacterial genes with a low GC-content, and the lower arm, which is related to
bacterial genes with a high GC-content. The galaxy center has a GC-content around 0.5. Then,
these results are confirmed by expressing the GC-content of bacterial codons as a function of
the codon usage dispersion. Finally, the bacterial genome galaxy is better described with the
GC3-content in the 3rd codon site compared to the GC1-content and GC2-content in the 1st
and 2nd codons sites, respectively.
Whereas the codon usage is used extensively by biologists, its dispersion, which is an important
parameter to reveal this genome galaxy, is surprisingly little known and unused. Therefore, we
have developed a mathematical theory of codon usage dispersion by deriving several formulæ.
It shows three important parameters in codon usage: the minimum and maximum codon
probabilities and the number of codons with high frequency, i.e. with a probability at least 1/64.
By applying this theory to the evolution of the genetic code, we see that bacteria have optimised
the number of codons with high frequency to maximise the codon dispersion, thus maximising
the capacity to retrieve the reading frame in genes. The derived formulæ of dispersion can be
easily extended to any weighted code over a finite alphabet.

1. Introduction

Based on the circular code theory, a beautiful and intriguing “galaxy” structure has been identified
in the genomes of bacteria, as well as of eukaryota and archaea [20]. This genome galaxy has a
center and two arms, an upper one and a lower one, a structure that is identified for the three
kingdoms [20, Figures 5, 7 and 8]. The aim of this work is to characterise this genome galaxy for
bacteria.
The circular code theory has been initiated in 1996 by the identification in genes of bacteria and
eukaryotes, of a maximal C3 self-complementary circular code, a particular set called X of 20
trinucleotides with interesting mathematical properties allowing to retrieve the reading frame
and the two shifted frames in genes [1]. In 2017, it has been shown that this circular code X is
also found in genes of archaea, plasmids and viruses [12]. The historical context of this result is
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described in a recent article [13]. We also refer the reader to the reviews [9,11] for the biological
context and the main combinatorial studies of circular codes.
This unexpected biological result has led to several mathematical developments since 1996: (i) the
flower automaton [1]; (ii) the necklaces LDN (letter diletter necklace) and DLN (diletter letter
necklace) [17,18,23] extended to (n+1)LDCCN (letter diletter continued closed necklaces) [16];
(iii) the group theory [5]; and (iv) the recent and powerful approach based on graph theory in
2016 [8]. The graph approach has recently led to two important generalizations: mixed circular
codes [6] and k-circular codes [7,15,19].
These theoretical results have led to biological applications, to name a few recent ones: identi-
fication of “universal” circular code motifs in the ribosome leading to a model of genetic code
evolution associating codes, translation systems, and peptide products at different stages, from
the primordial translation building blocks to the ancestor of the modern ribosome present in
the Last Universal Common Ancestor (LUCA) [4]; identification of a circular code periodicity
(modulo 3) in a large region of the 16S rRNA including the 3’ major domain corresponding to
the primordial proto-ribosome decoding center, containing numerous sites that interact with the
tRNA and messenger RNA (mRNA) during translation and surrounding the mRNA channel [21];
potential role of the circular code X in the regulation of gene expression [27]; and characterization
of accessory genes in coronavirus genomes using the circular code information [14].
On the genetic alphabet, there are 264 −1 ≈ 1019 (non-empty) trinucleotide codes: 64 codes of car-
dinality 1 ({AAA}, . . . , {TTT}); 2016 codes of cardinality 2 ({AAA, AAC}, . . . , {TTG, TTT});
41664 codes of cardinality 3 ({AAA, AAC, AAG}, . . . , {TTC, TTG, TTT}); and so on up to 1
code of cardinality 64 (the genetic code {AAA, . . . , TTT}). The recent theory of trinucleotide k-
circular codes makes it possible to study the property of reading frame retrieval (RFR), called
circularity property, for any of these ≈ 1019 codes [15,19].
The genome galaxy of bacteria will be analysed by the RFR function f (see Definition 2.13) that
can be applied to the codon usage, and two codon parameters: dispersion (see Definition 2.7)
and Y Z-content (see Definition 2.9). The Y Z-content of codon is a simple extension of the GC-
content, a main parameter to study the codon usage bias (CUB) that influences different aspects
of protein production [10] and has effects at many biological stages, including transcription [28],
translation efficiency [25], mRNA stability [24], protein folding [3] and protein function [2]
(recent review in [22]). In addition, from a theoretical point of view, our work puts for the first
time the circular code theory with its RFR function f in relation to the codon usage with its
GC-content.
This article is organised as follows. The necessary definitions and notation of trinucleotide
codes, circular codes and their generalization to k-circular codes are gathered in Section 2.1.
Section 2.2 defines the dispersion function of codon usage and states a proposition about its
range. Section 2.3 defines the Y Z-content. Section 2.4 defines the reading frame retrieval (RFR)
function and states several propositions concerning its range and its particular value 1 associated
with a uniform codon usage. Section 2.5 defines the parameters involved in our mathematical
theory of codon usage dispersion. Section 2.6 describes the acquisition of codon usage for the
genomes of bacteria from the codon statistics database (CSD) [26].
The results are presented in two main parts parts. Section 3 presents new statistical results of
the bacterial genome galaxy. It is divided into three parts. Section 3.1 characterizes the genome
galaxy of bacteria with its center, its upper arm and its lower arm. Section 3.2 shows that one
parameter, the Y Z-content of codon, and mainly the GC-content, allows the identification of
the three structures of the genome galaxy. Section 3.3 demonstrates that the dispersion of codon
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usage is mainly related to the GC-content of codon and that the GC3-content in the 3rd codon
site is a main factor for the reading frame retrieval (RFR) function of genes.
Section 4 develops a mathematical study of codon usage dispersion, an analysis which, to our
knowledge, has never been carried out. It is divided into two parts. Section 4.1 derive several
formulæ of codon usage dispersion. Section 4.2 gives three applications of this mathematical study
to the evolution of the bacterial genetic code. The maximum dispersion of the current genetic
code at 64 codons is analysed as a function of its codon of maximum probability (Section 4.2.1)
and that of minimum probability (Section 4.2.2). Moreover, Section 4.2.3 studies the minimum
and maximum dispersions of the evolutionary genetic code as functions of its number of codons,
from 1 to 64.

2. Method

2.1. Definitions and notation. For the reader’s convenience, and to have this article self-
contained, we here recall the most relevant notions. The theoretical aspects, with computer results,
proofs, examples, remarks, illustrations and refinements are found in the articles [15,19,20].
We work with the genetic alphabet B := {A, C, G, T}, which has cardinality 4. An element N

of B is called nucleotide. A word over the genetic alphabet is a sequence of nucleotides. A
trinucleotide is a sequence of 3 nucleotides, that is, using the standard word-theory notation, an
element of B3. If w = N1 · · · Ns and w′ = N ′

1 · · · N ′
t are two sequences of nucleotides of respective

lengths s and t, then the concatenation w · w′ of w and w′ is the sequence N1 · · · NsN ′
1 · · · N ′

t

composed of s + t nucleotides.
Given a sequence w = N1N2 · · · Ns ∈ Bs and an integer j ∈ {0, 1, . . . , s − 1}, the circular j-shift
of w is the word Nj+1 · · · NsN1 · · · Nj . Note that the circular 0-shift of w is w itself. A sequence w′

of nucleotides is a circular shift of w if w′ is the circular j-shift of w for some j ∈ {0, 1, . . . , s − 1}.
The elements in B3 can thus be partitioned into conjugacy classes, where the conjugacy class of
a trinucleotide w ∈ B3 is the set of all circular shifts of w.

Definition 2.1. Let B be the genetic alphabet.
• A trinucleotide code is a subset of B3, that is, a set of trinucleotides.
• If X is a trinucleotide code and w is a sequence of nucleotides, then an X-decomposition

of w is a tuple (x1, . . . , xt) ∈ Xt of trinucleotides from X such that w = x1 · x2 · · · xt.

We now formally define the notion of circularity of a code, i.e. the property of reading frame
retrieval (RFR).

Definition 2.2. Let X ⊆ B3 be a trinucleotide code.
• Let m be a positive integer and let (x1, . . . , xm) ∈ Xm be an m-tuple of trinucleotides

from X. A circular X-decomposition of the concatenation c := x1 · · · xm is an X-
decomposition of a circular shift of c.

• Let k be a non-negative integer. The code X is (>k)-circular if every concatenation of
trinucleotides from X that admits more than one circular X-decomposition contains at
least k + 1 trinucleotides. In other words, X is (>k)-circular if for every m ∈ {1, . . . , k}
and each m-tuple (x1, . . . , xm) of trinucleotides from X, the concatenation x1 · · · xm

admits a unique circular X-decomposition. The code X is k-circular if X is (>k)-circular
and not (>k + 1)-circular.

• The code X is circular if it is (>k)-circular for all k ∈ N.

We recall the definition of the graph associated with a trinucleotide code [8].
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Definition 2.3. Let X ⊆ B3 be a trinucleotide code. We define a graph G(X) = (V (X), E(X))
with set of vertices V (X) and set of arcs E(X) as follows:

• V (X) :=
⋃

N1N2N3∈X

{N1, N3, N1N2, N2N3}; and

• E(X) := {N1 → N2N3 : N1N2N3 ∈ X} ∪ {N1N2 → N3 : N1N2N3 ∈ X}.
The graph G(X) is the graph associated with X.

The length of a directed cycle in a graph G is the number of arcs of the cycle. We note that
every arc of G(X) joins a nucleotide and a dinucleotide. Thus, the graph G(X) cannot contain a
directed cycle of odd length. A theorem [7, Theorem 3.3] implies that a cycle in G(X), if any,
must have length in {2, 4, 6, 8} and, in particular, that a trinucleotide (>4)-circular code must
be circular. As noted in a previous article [15], it follows that all trinucleotide codes over B can
be naturally partitioned into 5 classes using the following definition.

Definition 2.4. We define the circularity cir(X) of a non-empty trinucleotide code X to be the
largest integer k ∈ {0, 1, 2, 3, 4} such that X is (>k)-circular.

Thus, the possible values of cir(X) for a trinucleotide code X are 0, 1, 2, 3, 4, which determine
the 5 classes.
Next we introduce two functions, which turn out to be correlated. The first one deals with the
dispersion of the codon usage, and the second one, which uses the graph, deals with the property
of reading frame retrieval (RFR) of genes. These two functions are also analysed as a function of
the mean number of codons per gene in each genome.

2.2. Dispersion of codon usage. We recall the definition and the proposition of codon
usage introduced in a previous work [20]. A codon usage is uniform if every codon has the same
occurrence frequency. We shall introduce a function to measure the dispersion of codon usage
with respect to the uniform one. We write Xg for the genetic code of cardinality 64 (maximal
cardinality in B3).

Definition 2.5 (Codon usage). Given any trinucleotide code X, a weight function on X is a
function ω : X → [0, 1] such that

∑
x∈X ω(x) = 1.

Definition 2.6. A weighted trinucleotide code is a pair (X, ω) where X is a trinucleotide code
and ω is a weight function on X.

We can now define the dispersion of codon usage.

Definition 2.7 (Dispersion of codon usage, [20, Definition 2.8]). For every weight func-
tion ω : Xg → [0, 1], the dispersion of codon usage in (Xg, ω) is the function d given by

d((Xg, ω)) =
∑

x∈Xg

∣∣∣∣ω(x) − 1
64

∣∣∣∣ . (2.1)

The next proposition gives the extremal values taken by the function d.

Proposition 2.8 ([20, Proposition 2.9]). For every weight function ω : Xg → [0, 1], we have

0 6 d((Xg, ω)) 6 63
32 ≈ 1.97.

Moreover, d((Xg, ω)) = 0 if and only if ω(x) = 1
64 for each trinucleotide x ∈ Xg. The upper bound

is attained if and only if there is a trinucleotide x ∈ Xg such that ω(x) = 1 (and hence ω(x′) = 0
if x′ 6= x).
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2.3. Y Z-content.

Definition 2.9. Let nA, nC , nG and nT be the number of the nucleotide A, C, G and T of B
in the 3 codon sites. Let Y and Z be 2 different nucleotides of B. Then the Y Z-content is the
probability

Y Z-content = nY + nZ

N
(2.2)

where N = nA + nC + nG + nT .

Note that the number of codons is N/3. Obviously, Y Z-content = ZY -content and Y Z-content+
Y Z-content = 1 where the complementary nucleotide N of a nucleotide N ∈ B is given by A = T ,
T = A, C = G and G = C. The classical biological parameter is the GC-content. In this work,
we will also study the parameters AG-content and GT -content.
The definition of the Y Z-content can easily be generalized to Y Zk-content associated with the
kth codon site where k ∈ {1, 2, 3}. Note that, using the above notation, the normalisation factor
(i.e., the denominator) is not N but N/3, i.e. the number of codons. The classical biological
parameter is the GC3-content. In this work, we will also study the parameters GC1-content and
GC2-content.

2.4. Gene reading frame retrieval (RFR) function associated with a codon usage.
Theoretical considerations over trinucleotide codes led to the following definition [19, Defini-
tion 6.1] as a measure of the reading frame retrieval of genes. Indeed, the number and length of
cycles in the graph are associated with ambiguous sequences that do not retrieve the reading
frame. Short cycles are associated with short ambiguous sequences, i.e. the reading frame is lost
quickly (e.g., after 1 trinucleotide), in contrast to long cycles where the ambiguous sequences are
long, i.e. the reading frame is lost after several trinucleotides, up to 4 trinucleotides (see [15,19]
for details).

Definition 2.10 ([19, Definition 6.1]). The reading frame loss function f of a trinucleotide
code X is the mapping f : B3 → R given by

f(X) := q8(G(X)) + 4
3 q6(G(X)) + 2 q4(G(X)) + 4 q2(G(X)) =

4∑
i=1

4
i

· q2·i(G(X)) (2.3)

where qi(G) is the number of directed cycles of length i in the graph G for every positive integer i.

The next proposition gives the minimum and maximum values taken by f over all trinucleotide
codes.

Proposition 2.11 ([19, Proposition 6.2]). For every trinucleotide code X, we have 0 6 f(X) 6
301056. Moreover, f(X) = 0 if and only if X is a trinucleotide circular code, and f(X) = 301056
if and only if X is the genetic code Xg, where

q2(Xg) = 64, q4(Xg) = 1440, q6(Xg) = 26880, q8(Xg) = 262080.

The function f generalises to the codon usage, where each trinucleotide x has occurrence
frequency w(x).

Definition 2.12 ([20, Definition 2.12]). Let (X, ω) be a weighted trinucleotide code. The
weighted graph associated with ω is the pair (G(X), ω′) where G(X) is given by Definition 2.3
with respect to X, and ω′ is a function assigning to each of the two arcs of G(X) coming from a
trinucleotide N1N2N3 ∈ X the rational number ω(N1N2N3)

2 ∈ [0, 1].
In other words, the arcs of the weighted graph (G(X), ω′) can be written as follows:
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{
N1

ω(x)/2−−−−→ N2N3 : x = N1N2N3 ∈ X

}
∪
{

N1N2
ω(x)/2−−−−→ N3 : x = N1N2N3 ∈ X

}
.

The generalised function f associated with every weighted trinucleotide code that has identified
the genome galaxy in bacteria, archaea and eukaryota, has been defined as follows.

Definition 2.13 ([20, Definition 2.13]). Let (X, ω) be a weighted trinucleotide code and (G(X), ω′)
its associated weighted graph. Let C be the set of all directed cycles of G(X). The loss of reading
frame retrieval (RFR) function f of a (X, ω) is the mapping f given by

f((X, ω)) := 1
|C|
∑
c∈C

(2|X|)|c| ∏
a∈E(c)

ω′(a) (2.4)

where E(c) is the set of arcs of the directed cycle c.

For the convenience of the reader, we recall three propositions (without proof).

Proposition 2.14 (Uniform codon usage, [20, Proposition 2.14]). Let Xg be the genetic code
and let ω the uniform distribution over Xg, that is, ω : Xg → [0, 1] is constant and equal to 1

64 .
Then f((Xg, ω)) = 1.

The next proposition implies that for circular codes, the weight function ω has no significance
for f , in the sense that all distributions yield the same value as the uniform one, namely 0.

Proposition 2.15 (Circular code, [20, Proposition 2.15]). Let (X, ω) be a weighted trinucleotide
code. Then f((X, ω)) = 0 if and only if X is a circular code.

The function f seems to be maximised by codes obtained from a circular code of maximal size (20)
by adding a periodic trinucleotide x (i.e. AAA, CCC, GGG or TTT ), with a weight function
tending to 1 on x and 0 on all other trinucleotides, leading to the following observation.

Proposition 2.16 ([20, Proposition 2.16]). We have

sup{f(X, ω) : (X, ω) weighted trinucleotide code} > 441.

That is, for every ε > 0, there exists a weighted trinucleotide code (X, ω) such that f(X, ω) >

441 − ε.

2.5. Parameters of a codon usage. Given a codon usage, or equivalently a weighted
trinucleotide code W = (Xg, ω) over the genetic code Xg, we retain several parameters that seem
to influence in a non-trivial way the gene reading frame retrieval (RFR) function.
First, we discriminate between the trinucleotides that occur, and those that do not — or are so
rare that are considered not to occur. Second, over these trinucleotides, we retain the lowest and
the highest possible value of ω, and also the number of trinucleotides with “high frequency”.

Definition 2.17. Let W = (Xg, ω) be a trinucleotide code. We define

(1) pM(W) = max {ω(x) : x ∈ Xg};
(2) pm(W) = min {ω(x) : x ∈ Xg and ω(x) > 0};
(3) the number n(W) of trinucleotides x that occur, that is such that ω(x) > 0; and
(4) the number nh(W) of trinucleotides x of high frequency, that is such that ω(x) > 1

n(W) .
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2.6. Data. From the codon statistics database (CSD, http://codonstatsdb.unr.edu) [26],
we have extracted (July 2022) the codon usage of genomes of bacteria from the union of the 22
following bacterial classes: Acidobacteria (Id 57723), Actinobacteria (Id 201174), Aquificae
(Id 187857), Bacteroidetes (Id 976), Balneolia (Id 1853221), Chlamydiia (Id 204429), Chloroflexi
(Id 200795), Cyanobacteria (Id 1117), Deferribacteres (Id 68337), Deinococcus-Thermus (Id 1297),
Epsilonproteobacteria (Id 29547), Firmicutes (Id 1239), Fusobacteria (Id 32066), Mycoplasmatales
(Id 2085), Nitrospirae (Id 40117), Planctomycetes (Id 203682), Pseudomonadales (Id 72274),
Spirochaetes (Id 203691), Synergistetes (Id 508458), Thermodesulfobacteria (Id 200940), Ther-
motogae (Id 200918) and Verrucomicrobia (Id 74201). The few exceptional genomes in which
the codon usage of the stop codons is not given, are not considered. Thus, the bacterial kingdom
contains 8, 345 genomes, 34, 020, 997 genes and 11, 087, 876, 805 codons.
The calculus of the codon usage in this bacterial kingdom is given in Appendix Table 1.

3. Statistical study of the bacterial genome galaxy

3.1. Genome galaxy of bacteria identified by the gene reading frame retrieval
(RFR) function. By expressing the gene reading frame retrieval (RFR) function f (2.4)
according to the dispersion function d (2.1) of codon usage in the bacterial genomes, a “genome
galaxy” with a center and two arms has been identified in a previous work [20, Figure 5,
Section 3.2]. By using the linear regression y = −1.35881x + 1.37993 between d and f (with a
Spearman rank correlation coefficient ρ = −0.83 and p-value < 10−180), we characterize in this
work these 3 structures. The galaxy center GC is defined by the bacterial genomes such that

GC := d 6 0.6. (3.1)

The upper arm GUA is defined by the bacterial genomes such that

GUA :=


d > 0.6
f > y

f > 0.2
(3.2)

The lower arm GLA is defined by the bacterial genomes such that

GLA :=
{

f < y if d ∈]0.6, 0.9]
f < 0.2 if d > 0.9

(3.3)

Figure 1 describes this genome galaxy of bacteria with its center GC (3.1) in blue, its upper arm
GUA (3.2) in green and its lower arm GLA (3.3) in violet.
Several parameters are now investigated to analyse this codon dispersion. Surprisingly, in the
next section, one parameter, the Y Z-content of codon (Section 2.3), allows the identification of
the three structures of the genome galaxy.

3.2. Genome galaxy of bacteria identified by the GC-content of codon. By ex-
pressing the gene reading frame retrieval (RFR) function f (2.4) according to the GC-content of
codon, the 3 structures: center GC (3.1), upper arm GUA (3.2) and lower arm GLA (3.3) are
well characterized in Figure 2(A). The variation of the GC-content is important and in the inter-
val [0.2, 0.8]. Note that, AT being complementary to GC, the AT -content leads to a symmetrical
figure with respect to y = 0.5 (not shown). Thus, the upper arm is related to genomes with a
low GC-content while the lower arm is related to genomes with a high GC-content, the center
being related to genomes with a GC-content around 0.5.

http://codonstatsdb.unr.edu
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Figure 1. Genome galaxy of bacteria (8,345 genomes, 34,020,997 genes,
11,087,876,805 codons) with its center GC (3.1) in blue, its upper arm GUA (3.2)
in green and its lower arm GLA (3.3) in violet. Each point represents all the
genes of a bacterial genome. The x-axis shows the dispersion function d (2.1) of
codon usage. The y-axis shows the reading frame retrieval function f (2.4).

The variation of the AG-content (or equivalently GA-content as already mentioned) is restricted
to the interval [0.45, 0.60]. The upper and lower arms are still separated but to a lesser extent
(Figure 2(B)).
The variation of the GT -content is restricted to the interval [0.45, 0.55]. The upper and lower
arms are neighbours (Figure 2(C)). Thus, the GT -content is not a parameter for characterizing
the genome galaxy.

3.3. Dispersion of codon usage related to the GC-content of codon. According
to the previous results, it is natural to express the dispersion function d (2.1) of codon usage
in the bacterial genomes according to their Y Z-content of codon (Section 2.3). Figure 3(A)
confirms that the GC-content better identifies the three structures of the galaxy compared to
the AG-content (Figure 3(B)) and the GT -content (Figure 3(C)).
In order to further analyse the results with the GC-content, we express the gene reading frame
retrieval (RFR) function f (2.4) according to GC-content in each of the 3 codon sites. The three
galaxy structures are well characterized with the GC3-content in the 3rd codon site (Figure 4(C)).
The variation of the GC3-content covers almost the entire interval [0.1, 1]. The upper arm is
related to genomes with a low GC3-content while the lower arm is related to genomes with a
high GC3-content, the center being related to genomes with a GC3-content around 0.5.
The variation of the GC1-content is restricted to the interval [0.30, 0.80]. The upper and lower
arms are still separated but to a lesser extent (Figure 4(A)).
The variation of the GC2-content is restricted to the interval [0.25, 0.55]. The upper and lower
arms are separated but close (Figure 4(B)).
In summary, the genome galaxy of bacteria with its center GC, its upper arm GUA and its
lower arm GLA is mainly related to the GC-content of codon, compared to the AG-content
and the GT -content, and in particular to the GC3-content in the 3rd codon site, compared to
the GC1-content and GC2-content.
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Figure 2. Genome galaxy of bacteria (8,345 genomes, 34,020,997 genes,
11,087,876,805 codons) with its center GC (3.1) in blue, its upper arm GUA (3.2)
in green and its lower arm GLA (3.3) in violet, identified by the Y Z-content of
codon, and mainly by the GC-content. Each point represents all the genes of a
bacterial genome. The y-axis shows the reading frame retrieval function f (2.4).
The x-axis shows the Y Z-content of codon in the 3 cases: (A) GC-content;
(B) AG-content; (C) GT -content.
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Figure 3. Genome galaxy of bacteria (8,345 genomes, 34,020,997 genes,
11,087,876,805 codons) with its center GC (3.1) in blue, its upper arm GUA (3.2)
in green and its lower arm GLA (3.3) in violet, identified by the Y Z-content of
codon, and mainly by the GC-content. Each point represents all the genes of
a bacterial genome. The x-axis shows the dispersion function d (2.1) of codon
usage. The y-axis shows the Y Z-content of codon in the 3 cases: (A) GC-content;
(B) AG-content; (C) GT -content.
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Figure 4. Genome galaxy of bacteria (8,345 genomes, 34,020,997 genes,
11,087,876,805 codons) with its center GC (3.1) in blue, its upper arm GUA (3.2)
in green and its lower arm GLA (3.3) in violet, identified by the GC-content in
each of the 3 codon sites, and mainly by the GC3-content. Each point repre-
sents all the genes of a bacterial genome. The y-axis shows the reading frame
retrieval function f (2.4). The x-axis shows the GC-content in the 3 codon sites:
(A) GC1-content in the 1st codon site; (B) GC2-content in the 2nd codon site;
(C) GC3-content in the 3rd codon site.
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4. A mathematical study of codon usage dispersion

Codon usage, i.e. the association of probabilities (frequencies) (Definition 2.5) with the 64 codons,
is a biological parameter that has been the most widely studied and published. Surprisingly, the
dispersion of codon usage (Definition 2.7) is a basic statistical parameter which, as far as we
know, has been completely ignored in biology. This section is divided into two parts. In the first
part, we develop a mathematical theory of dispersion by deriving various formulæ. In the second
part, we apply this theory to the evolution of the genetic code. In particular, we address the
following problem. In the current genetic code, not all 64 codons code for amino acids. Indeed,
there are 3 unused codons, precisely the 3 stop codons {TAA, TAG, TGA}, with a probability
equal to (close to) 0. The hypothesis that the genetic code evolves with the appearance of codons,
i.e. with a non-zero probability, over time will therefore be studied.

4.1. Formulæ of codon usage dispersion. We study the dispersion of the weighted
trinucleotide codes W = (Xg, ω) over the genetic alphabet Xg that satisfy certain properties.
According to Definitions 2.6 and 2.17, we must have pM(W) > 1

n(W) and pm(W) 6 1
n(W) . To

ease the exposition, we consider an arbitrary enumeration x1, . . . , x64 of Xg, and set ωi = ω(xi).
Accordingly, any weighted trinucleotide code over Xg can be viewed as the data of 64 non-negative
real numbers summing to 1. We use this identification in the sequel.
We want to fix the number of trinucleotides that occur, the number of those of high frequency, and
bounds on the minimum and maximum frequencies. To this end, we fix integers n ∈ {1, . . . , 64}
and nh ∈ {1, . . . , n}, along with positive real numbers pm, pM such that pm 6 1

n 6 pM . Indeed, if
each of the n trinucleotides that occur has frequency at most pM , then n · pM > 1, since n · pM >∑64

i=1 ωi = 1. Similarly, if each of the n trinucleotides that occur has frequency at least pm, then
necessarily n · pm 6 1. Furthermore, at least one trinucleotide must have frequency at least 1

n , so
we always assume that nh > 1. We note that for every nh ∈ {1, . . . , n − 1},

n · pm 6 1 ⇔ pm 6
1
n

⇔ (n − nh) · pm 6
n − nh

n
⇔ nh

n
+ (n − nh) · pm 6 1.

We consider only trinucleotide codes satisfying the following three properties:
(1) for every i ∈ {1, . . . , nh} we have 1

n 6 ωi 6 pM ;
(2) for every i ∈ {nh + 1, . . . , n} we have pm 6 ωi 6 1

n ; and
(3) for every i ∈ {n + 1, . . . , 64} we have ωi = 0.

In other words, and referring to Definition 2.17, we require that

n(W) = n; nh(W) > nh; and pm 6 pm(W) 6 1
n
6 pM(W) 6 pM .

Another observation is that if pm = 1
n , then Conditions (2) and (3) totally determine a unique

weighted trinucleotide code, having wi = 1
n for i ∈ {1, . . . , n} and ωi = 0 for i ∈ {n + 1, . . . , 64}.

It is similar if pM = 1
n . We thus assume in the rest of this section that

pm <
1
n

< pM . (4.1)

We are interested in determining the minimum value and the maximum value taken by the
dispersion over all weighted trinucleotide codes satisfying Conditions (1)–(3). We derive closed
formulæ for these — along with weighted trinucleotides code attaining them.

Definition 4.1. Given Conditions (1)–(3) above and assuming (4.1), we define the maximum
dispersion dM and the minimum dispersion dm as follows:

dM = dM(n, nh, pm, pM ) = sup {d(W) : W = (ω1, . . . , ω64) satisfies (1)–(3)} ; (4.2)
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and
dm = dm(n, nh, pm, pM ) = inf {d(W) : W = (ω1, . . . , ω64) satisfies (1)–(3)} . (4.3)

The determination of the minimum dispersion dm is quick. It shows in particular that the value
of dm(n, nh, pm, pM ) does not depend on nh.

Proposition 4.2. Suppose that Conditions (1)–(3) as above and (4.1) are satisfied. Then

dm = 2
[
1 − n

64

]
. (4.4)

Proof. We start by defining a weighted trinucleotide code W = (ω1, . . . , ω64) that satisfies
Conditions (1)–(3) by setting ωi = 1

n if 1 6 i 6 n, and ωi = 0 if nh + 1 6 i 6 64. Then W
readily satisfies Conditions (1)–(3). Moreover, d(W) = 2 − n

32 . Indeed, if i ∈ {1, . . . , n}
then ωi = 1

n > 1
64 , so

∑n
i=1

∣∣∣ωi − 1
64

∣∣∣ = 1 − n
64 ; moreover if i ∈ {n + 1, . . . , 64} then ωi = 0

so
∑64

i=n+1

∣∣∣ωi − 1
64

∣∣∣ = 64−n
64 = 1 − n

64 .
It remains to show that if a weighted trinucleotide code W ′ = (ω′

1, . . . , ω′
64) satisfies Condi-

tions (1)–(3), then d(W ′) > d(W). First, note that if n = 64, then d(W) = 0, which is trivially
minimum. So we now assume that n 6 63, and we proceed as follows. Since the function dm is
the minimization of a convex function over a convex domain, it suffices to prove that d(W) is a
local minimum, that is, if a weighted trinucleotide code W ′ still satisfying Conditions (1)–(3) is
produced by small enough modifications of the values ω1, . . . , ω64, then d(W ′) > d(W) = 2 − n

32 .
Fix ε > 0 small enough that 1

64 + ε < 1
n , which is possible since n 6 63 by our assumption. Now,

if |ω′
i − ωi| 6 ε for i ∈ {1, . . . , 64}, then since W ′ satisfies Condition (1) we have ω′

i > ωi = 1
n > 1

64
if 1 6 i 6 nh, and ω′

i > ωi − ε = 1
n − ε > 1

64 if nh + 1 6 i 6 n. So
∣∣∣ω′

i − 1
64

∣∣∣ = ω′
i − 1

64
for i ∈ {1, . . . , n}. Consequently,

n∑
i=1

∣∣∣∣ω′
i − 1

64

∣∣∣∣ =
n∑

i=1

(
ω′

i − 1
n

)
+

n∑
i=1

( 1
n

− 1
64

)
. (4.5)

As a result, using that ω′
i = 0 = ωi if n + 1 6 i 6 64 since W ′ must satisfy Condition (3), we

infer from (4.5) that

d(W ′) =
n∑

i=1

(
ω′

i − 1
n

)
+ d(W)

=
(

n∑
i=1

ω′
i

)
− 1 + d(W)

= d(W).

This concludes the proof. �

The determination of the maximum dispersion dM is slightly more technical. We have the
following proposition.

Proposition 4.3. Suppose that Conditions (1)–(3) as above and (4.1) are satisfied. If

nh · pM + (n − nh) · pm > 1, (4.6)

then

dM =


2
[(

pm − 1
64

)
· nh + 1 − n · pm

]
if pm 6 1

64 , (4.7a)

2
[
1 − n

64

]
if pm > 1

64 . (4.7b)
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If (4.6) does not hold, then with

ε = 1 −
(
nhpM + (n − nh)pm

)
> 0, t0 =

⌊
ε

1/n − pm

⌋
, and z1 = ε − t0 ·

( 1
n

− pm

)
,

we have

dM =



2
[(

pM − 1
64

)
· nh + t0

( 1
n

− 1
64

)]
if pm + z1 6 1

64 , (4.8a)

2
[(

pm − 1
64

)
(nh + t0 + 1) + 1 − n · pm

]
if pm + z1 > 1

64 and pm 6 1
64 , (4.8b)

2
[
1 − n

64

]
if pm > 1

64 . (4.8c)

Proof. Suppose first that (4.6) holds. Let z0 = 1−n·pm

nh
, and note that z0 > 0 by (4.1).

We set

∀i ∈ {1, . . . , 64}, ωi =


pm + z0 if 1 6 i 6 nh,
pm if nh + 1 6 i 6 n,
0 otherwise.

Then W = (ω1, . . . , ω64) defines a weighted trinucleotide code, since it consists of non-negative
real numbers summing to 1. This code W does satisfy the required properties. The only
condition that could be violated is (1). However, (n−nh)pm

nh
> 1

nh
− pM by (4.6), so pm + z0 =

1−(n−nh)·pm

nh
6 pM on the one hand, and (n−nh)pm

nh
6 1

nh
− 1

n by (4.1) so pm + z0 > 1
n on the

other hand. Consequently, dM > d(W). Moreover, d(W) is equal to the right side of (4.7a)
if pm 6 1

64 , and to the right side of (4.7b) otherwise. To see this, we define d1 =
∑nh

i=1

∣∣∣ωi − 1
64

∣∣∣
and d2 =

∑n
i=nh+1

∣∣∣ωi − 1
64

∣∣∣. If i ∈ {1, . . . , nh}, then ωi = pm + z0 > 1
n > 1

64 so

d1 = nh ·
(

pm + z0 − 1
64

)
= 1 − (n − nh) · pm − nh

64 = 1 + nh ·
(

pm − 1
64

)
− n · pm; (4.9)

while if i ∈ {nh + 1, . . . , n}, then ωi = pm, so if pm 6 1
64 ,

d2 = (n − nh) ·
( 1

64 − pm

)
= n

64 + nh ·
(

pm − 1
64

)
− n · pm, (4.10)

and if pm > 1
64 ,

d2 = (n − nh) ·
(

pm − 1
64

)
= − n

64 − nh ·
(

pm − 1
64

)
+ n · pm; (4.11)

finally, if i ∈ {n + 1, . . . , 64}, then ωi = 0 and hence
∑64

i=n+1

∣∣∣ωi − 1
64

∣∣∣ = 1 − n
64 . Summing this

with (4.9) and either (4.10) or (4.11) yields (4.7a) or (4.7b), respectively.
It remains to prove that if a weighted trinucleotide code W ′ = (ω′

1, . . . , ω′
64) satisfies Condi-

tions (1)–(3), then d(W ′) 6 d(W). By Condition (3), it suffices to prove that
∑n

i=1

∣∣∣ 1
64 − ω′

i

∣∣∣ 6∑n
i=1

∣∣∣ 1
64 − ωi

∣∣∣. For convenience we set S1 =
∑nh

i=1 ωi and S2 =
∑n

i=nh+1 ωi. We similarly de-
fine S′

1, S′
2 as well as d′

1 and d′
2 with respect to W ′ instead of W. Our goal is thus to show

that d′
1 + d′

2 6 d1 + d2. Note that S1 + S2 = 1 = S′
1 + S′

2.
As ω′

i >
1
64 for i ∈ {1, . . . , nh}, we deduce that d′

1 = S′
1 − nh

64 = 1 − S′
2 − nh

64 , and hence (4.9)
implies that d′

1 − d1 = (n − nh) · pm − S′
2.

To express d′
2, let

I+
2 =

{
i ∈ {nh + 1, . . . , n} : ω′

i >
1
64

}
,
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and I−
2 = {nh + 1, . . . , n} \ I+

2 , thus
∣∣∣I+

2

∣∣∣ = (n − nh) −
∣∣∣I−

2

∣∣∣ and
∑

i∈I+
2

ω′
i = S′

2 −
∑

i∈I−
2

ω′
i.

Consequently,

d′
2 =

n∑
i=nh+1

∣∣∣∣ω′
i − 1

64

∣∣∣∣ =
∑

i∈I+
2

(
ω′

i − 1
64

)
+
∑

i∈I−
2

( 1
64 − ω′

i

)

= − 1
64 ·

(∣∣∣I+
2

∣∣∣− ∣∣∣I−
2

∣∣∣)+
∑

i∈I+
2

ω′
i −

∑
i∈I−

2

ω′
i

= − 1
64 ·

(
(n − nh) − 2

∣∣∣I−
2

∣∣∣)+ S′
2 − 2

∑
i∈I−

2

ω′
i

6 − 1
64 ·

(
(n − nh) − 2

∣∣∣I−
2

∣∣∣)+ S′
2 − 2

∑
i∈I−

2

pm

= 2
∣∣∣I−

2

∣∣∣ ( 1
64 − pm

)
+ S′

2 − n − nh

64 ,

where the inequality holds because ω′
i > pm for each i ∈ I−

2 . Furthermore, if pm > 1
64 ,

then d2 = (n − nh) · (pm − 1
64), and hence

d′
1 + d′

2 − (d1 + d2) = d′
1 − d1 + d′

2 − d2

= 2
∣∣∣I−

2

∣∣∣ ( 1
64 − pm

)
6 0,

since pm > 1
64 .

Finally, if pm 6 1
64 , then d2 = (n − nh) · ( 1

64 − pm), and therefore,

d′
1 + d′

2 − (d1 + d2) = d′
1 − d1 + d′

2 − d2

6 2(n − nh) ·
(

pm − 1
64

)
+ 2

∣∣∣I−
2

∣∣∣ · ( 1
64 − pm

)
= 2

(
pm − 1

64

)
·
(
(n − nh) −

∣∣∣I−
2

∣∣∣) .

It follows that d′
1 + d′

2 6 d1 + d2, because pm − 1
64 6 0 on the one hand, and (n − nh) −

∣∣∣I−
2

∣∣∣ > 0
on the other hand since I−

2 is a subset of {nh + 1, . . . , n}.

Suppose now that (4.6) does not hold, so

nh · pM + (n − nh) · pm < 1. (4.12)

(This implies that pm < 1
n .) As in the statement of the proposition, we set ε = 1− (nh ·pM + (n−

nh) ·pm) and t = ε
1/n−pm

, so ε and t are positive; and we also set t0 = btc and z1 = ε−t0 ·( 1
n −pm),

so z1 > 0. We note that nh + t0 + 1 6 n, for otherwise we infer that 1
n > pM , contrary to (4.1).

Indeed, if nh + t0 > n, then nh + t > n, that is,

nh + 1 − nhpM − npm + nhpm
1
n − pm

> n

so
nh

n
− nhpm + 1 − nhpM − npm + nhpm > 1 − npm,

which yields that nh
n − nhpM > 0 and hence 1

n > pM since nh > 0.
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Then setting

∀i ∈ {1, . . . , 64}, ωi =



pM if 1 6 i 6 nh,
1
n if nh + 1 6 i 6 nh + t0,
pm + z1 if i = nh + t0 + 1,
pm if nh + t0 + 2 6 i 6 n,
0 otherwise,

defines a weighted trinucleotide code, since the sequence W = (ω1, . . . , ω64) consists of non-
negative real numbers summing to 1. Conditions (1)–(3) can be violated only if pm + z1 > 1

n .
However, since t0 = btc > t − 1,

pm + z1 = pm + ε − t0

( 1
n

− pm

)
< ε − t

( 1
n

− pm

)
+ 1

n
= 1

n
. (4.13)

Moreover, if pm 6 1
64 then d(W) equals the right side of (4.8a) or of (4.8b), depending on

whether pm + z1 6 1
64 or not, while if pm > 1

64 then d(W) equals the right side of (4.8c). This
follows from the definitions by a direct computation, recalling that nhpM = 1 − (n − nh)pm − ε.
Indeed, if i ∈ {1, . . . , nh + t0} then

∣∣∣ωi − 1
64

∣∣∣ = ωi − 1
64 and hence

nh+t0∑
i=1

∣∣∣∣ωi − 1
64

∣∣∣∣ =
(

pM − 1
64

)
· nh +

( 1
n

− 1
64

)
· t0. (4.14)

If pm 6 1
64 , then for i ∈ {nh + t0 + 2, . . . , 64} we have

∣∣∣ωi − 1
64

∣∣∣ = 1
64 − ωi, and hence

64∑
i=nh+t0+2

∣∣∣∣ωi − 1
64

∣∣∣∣ = (nh + t0 + 1 − n)
(

pm − 1
64

)
+ 1 − n

64 , (4.15)

while if pm > 1
64 , then

∣∣∣ωi − 1
64

∣∣∣ = pm − 1
64 for i ∈ {nh + t0 + 2, · · · , n}, and

∣∣∣ωi − 1
64

∣∣∣ = 1
64

for i ∈ {n + 1, . . . , 64}, so that
64∑

i=nh+t0+2

∣∣∣∣ωi − 1
64

∣∣∣∣ = (nh + t0 + 1 − n)
( 1

64 − pm

)
+ 1 − n

64 . (4.16)

Now if pm + z1 > 1
64 then∣∣∣∣ωnh+t0+1 − 1

64

∣∣∣∣ = (nh + t0 + 1 − n) · pm − nh · pM − t0
n

+ 1 − 1
64 , (4.17)

so the sum of (4.14), (4.15) and (4.17) shows that d(W) equals the right side of (4.8b) if pm 6 1
64 ,

while the sum of (4.14), (4.16) and (4.17) shows that d(W) equals the right side of (4.8c)
if pm > 1

64 . Moreover, if on the contrary pm + z1 6 1
64 , and in particular pm 6 1

64 as z1 > 0, then∣∣∣∣ωnh+t0+1 − 1
64

∣∣∣∣ = −(nh + t0 + 1 − n) · pm + nh · pM + t0
n

− 1 + 1
64 , (4.18)

so the sum of (4.14), (4.15) and (4.18) shows that d(W) equals the right side of (4.8a).
We now prove that W has the largest dispersion among all weighted trinucleotide codes satisfying
Conditions (1)–(3). To this end, let W ′ = (ω′

1, . . . , ω′
64) be such a code, that moreover maximises

the dispersion over all weighted trinucleotide codes satisfying Conditions (1)–(3).
We first show that we can assume that ω′

i = pM for each i ∈ {1, . . . , nh}. Indeed, suppose
that there exists i ∈ {1, . . . , nh} such that ω′

i = pM − δ for some positive real δ. Because ω′
k 6

pM = ωk for any k ∈ {1, . . . , nh} and
∑n

i=1 ω′
i = 1 =

∑n
i=1 ωi, we infer the existence of a

set J ⊆ {nh + 1, . . . , n} such that
•
∑

j∈J ω′
j > δ +

∑
j∈J ωj ; and
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• ω′
j > ωj for each j ∈ J .

Since pm 6 ωj < ω′
j 6 1

n for j ∈ J , we can define a weighted trinucleotide code Z = (ζ1, . . . , ζ64)
satisfying Conditions (1)–(3) by setting ζi = pM , next ζk = ω′

k if k /∈ J ∪ {i}, and finally
defining ζj for j ∈ J such that ζj 6 ω′

j and
∑

j∈J ζj =
(∑

j∈J ω′
j

)
− δ. Now,

∑
k /∈J

∣∣∣ζk − 1
64

∣∣∣ =

δ +
∑

k /∈J

∣∣∣ω′
k − 1

64

∣∣∣ and
∑

j∈J

∣∣∣ζj − 1
64

∣∣∣ > −δ +
∑

j∈J

∣∣∣ω′
j − 1

64

∣∣∣, so that d(Z) is at least, and hence
equal to, d(W ′). Consequently, we can now assume that ω′

i = pM for i ∈ {1, . . . , nh}.
We similarly show that we can assume that ω′

i = 1
n if nh + 1 6 i 6 nh + t0. Indeed, suppose

that there exists i ∈ {nh + 1, . . . , nh + t0} such that ω′
i = 1

n − δ for some positive real δ.
Because ω′

k 6 1
n = ωk for k ∈ {nh + 1, . . . , nh + t0}, and ω′

k = pM = ωk if 1 6 k 6 nh, we infer
the existence of a set J ⊆ {nh + t0 + 1, . . . , n} such that

•
∑

j∈J ω′
j > δ +

∑
j∈J ωj ; and

• ω′
j > ωj for each j ∈ J .

As before, we can then define a weighted trinucleotide code Z = (ζ1, . . . , ζ64) satisfying Condi-
tions (1)–(3) and with dispersion at least d(W ′) by setting ζi = 1

n , next ζk = ω′
k if k /∈ J ∪ {i},

and finally defining ζj for j ∈ J such that ζj 6 ω′
j and

∑
j∈J ζj =

(∑
j∈J ω′

j

)
− δ. In total, we

can thus assume that ω′
i = ωi if 1 6 i 6 nh + t0.

We now conclude that d(W ′) = d(W). This is true if ω′
k = ωk for k ∈ {nh + t0 + 2, . . . , n},

since then W and W ′ must be equal as both sum to 1. Recalling that ω′
k > pm = ωk for

each k ∈ {nh + t0 + 2, . . . , n}, we can thus suppose that
∑n

j=nh+t0+2 ω′
k = δ +

∑n
j=nh+t0+2 ωk for

some positive real δ. Because, in addition ω′
k = ωk if 1 6 k 6 nh + t0, we infer that ω′

nh+t0+1 =
ωnh+t0+1−δ. Therefore, d(W ′) is most, and hence equal to, d(W). We have proved that W indeed
has the largest dispersion among all weighted trinucleotide codes satisfying Conditions (1)–(3).
This concludes the proof. �

Remark 4.4. One could want to insist that the number of codons of high frequency is precisely nh,
thereby, replacing Condition (2) by

(2’) for every i ∈ {nh + 1, . . . , n}, we have pm 6 ωi < 1
n .

The extremal values proved in Propositions 4.2 and 4.3 are left unchanged, under our assumption
that pm < 1

n < pM (for otherwise, as reported above, all n occurring codons must have
frequency 1

n). This clearly holds for (4.7a) and (4.7b), since the weighted trinucleotide code
provided in the proof already satisfies Condition (2’), as pm < 1

n .
The other weighted trinucleotide codes provided in the proofs of Propositions 4.2 and 4.3 can
be slightly modified to satisfy Condition (2’) instead of Condition (2), and have dispersion
arbitrarily close to the original one. Indeed, for Proposition 4.2, we can choose δ > 0 such
that fm := 1

n − δ > pm and fM := 1
n + n−nh

nh
δ 6 pM . We then change the value of ωi to fM

if 1 6 i 6 nh, and to fm if nh + 1 6 i 6 n. Note that the total sum remains 1, as

(n − nh)fm + nhfM = n − nh

n
− (n − nh)δ + nh

n
+ (n − nh)δ = 1.

Furthermore,
∣∣∣fM − 1

64

∣∣∣ =
∣∣∣ 1

n − 1
64

∣∣∣ + n−nh
nh

δ and
∣∣∣fm − 1

64

∣∣∣ 6
∣∣∣ 1

n − 1
64

∣∣∣ + δ. Therefore, the
obtained weighted trinucleotide code has dispersion at most 2 − n

32 + 2(n − nh)δ, which can
be made arbitrarily close to 2 − n

32 by choosing δ arbitrarily close to 0 (and positive). As a
side remark, if n 6 63 then δ can also be chosen small enough that fm > 1

64 , and then the
dispersion of the newly defined weighted trinucleotide code is again exactly 2 − n

32 . Indeed, we
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have
∣∣∣fm − 1

64

∣∣∣ =
∣∣∣ 1

n − 64
∣∣∣− δ, so that

(n − nh)
∣∣∣∣fm − 1

64

∣∣∣∣+ nh

∣∣∣∣fM − 1
64

∣∣∣∣ = (n − nh)
∣∣∣∣ 1n − 1

64

∣∣∣∣+ nh

∣∣∣∣ 1n − 1
64

∣∣∣∣ .
For the weighted trinucleotide code W = (ω1, . . . , ω64) provided to establish (4.8a)–(4.8c), first
recall that pm + z1 < 1

n by (4.13), and hence W satisfies Condition (2’) unless t0 > 1, in
which case the values ωnh+1, . . . , ωnh+t0 are all equal to 1

n . As already observed in the proof of
Proposition 4.3, it holds that nh + t0 6 n − 1. We can choose δ > 0 such that fm := 1

n − δ > pm

and pm + z1 + t0δ < 1
n , recalling that pm + z1 < 1

n . If pm + z1 < 1
64 , then up to further reducing

the value of δ, we can moreover suppose that pm + z1 + t0δ < 1
64 . We now change the value of ωi

to fm for i ∈ {nh + 1, . . . , nh + t0}, and to pm + z1 + t0δ if i = nh + t0 + 1. We note that the
obtained code satisfies Condition (2’) as well as Conditions (1) and (3), and one sees similarly as
before that its dispersion differs from that of the original code by at most 2t0δ, which can be
made arbitrarily close to 0 by choosing δ arbitrarily close to 0 (and positive). As a side remark,
if pm + z1 > 1

64 , then the dispersion of the newly defined code remains unchanged, thus attaining
the right side of (4.8b).

It is important to stress that this mathematical theory and its formulæ of dispersion, i.e.
Equations (4.4), (4.7a)–(4.7b) and (4.8a)–(4.8c), can be easily extended to any weighted codes
over a finite alphabet, e.g. the amino acid alphabet, by replacing 1/64 with the cardinality of
the code.

4.2. Application: evolution of the genetic code. In order to study the evolution of
the bacterial genetic code and to apply the mathematical theory developed in Section 4.1, three
parameters must be obtained from the bacterial codon usage (see Appendix Table 1): the
minimum probability, which is pm = 0.06%, given by the codon of lowest occurrence, i.e. TAG;
the maximum probability, which is pM = 4.32%, given by the codon of highest occurrence,
i.e. GCC; and the number of codons with high frequency, i.e. with a probability greater than 1

64 ,
which is nh = 25. Note that nh

n = 25
64 since there are n = 64 occurring codons in the bacterial

codon usage.
We start by studying the maximum dispersion of the current genetic code over 64 codons with
respect to the frequency of its codon of maximum and minimum probabilities.

4.2.1. Maximum dispersion of the current genetic code as a function of its codon of maximum
probability. Figure 5 gives the maximum dispersion dM of the current genetic code with 64 codons
as a function of its number nh of codons with high frequency, nh ∈ {1, . . . , 64}, i.e. codons x

with a probability at least 1
n = 1

64 (ω(x) > 1
64). The minimum probability is pm = 0.06%,

given by the codon of lowest occurrence in bacteria, i.e. TAG (see Appendix Table 1). We
considered 3 different values for the maximum probability pM : 4.32% associated with the codon
of highest occurrence in bacteria, i.e. GCC (see Appendix Table 1) (curve with green circles)
and 2 arbitrarily chosen surrounding values: 3% (curve with violet disks) and 6% (curve with blue
stars). Interestingly, for any maximum probability pM the maximum dispersion dM increases
to a maximum and then decreases to 0 at nh = 64. The curves have a common decreasing
slope of equation y = 1.9232 − 0.03005x (see Equation (4.7a), which does not involve pM ), but
different increasing slopes, and thus different maxima. The change occurs for nh =

⌈
1−64pm

pM −pm

⌉
(see Equation (4.6)), and the maximum is thus attained for nh =

⌊
1−64pm

pM −pm

⌋
or nh =

⌈
1−64pm

pM −pm

⌉
.

From Appendix Table 1, the number of codons with high frequency is nh = 25. The maximum
dispersion at nh = 25 is dM = 1.17. Very interestingly, this value dM = 1.17 is very close to the
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Figure 5. Maximum dispersion dM of the current genetic code with 64 codons
for three values of the codon of maximum probability pM , the minimum prob-
ability pm = 0.06% being that of the codon TAG in bacteria (see Appendix
Table 1). The x-axis shows the number nh of codons with high frequency in
the genetic code, nh ∈ {1, . . . , 64}, i.e. codons x with a probability at least 1

64
(ω(x) > 1

64). The y-axis shows the maximum dispersion dM of codon usage. Three
curves corresponding to different values of the codon of maximum probability are
displayed: pM = 4.32% associated with the codon GCC in bacteria (see Appendix
Table 1) (curve with green circles) and 2 arbitrarily chosen surrounding values,
namely pM = 3% (curve with violet disks) and pM = 6% (curve with blue stars).

maximum dM = 1.23 at nh = 23 of the curve with pM = 4.32% that is associated with bacteria
(see Figure 5). As a biological consequence, bacteria have optimised the number of codons with
high frequency in order to have a maximum of dispersion, and thus a maximum capacity to
retrieve the reading frame in genes.

4.2.2. Maximum dispersion of the current genetic code as a function of its codon of minimum
probability. Figure 6 gives the maximum dispersion dM of the current genetic code with 64
codons as a function of its number nh of codons with high frequency. The maximum probability
is pM = 4.32%, given by the codon of highest occurrence in bacteria, i.e. GCC (see Appendix
Table 1). We considered 3 different values for the minimum probability pm: 0.06% associated
with the codon of lowest occurrence in bacteria, i.e. TAG (see Appendix Table 1) (curve with
green circles) and 2 arbitrarily chosen surrounding values: 0 (curve with violet disks) and 0.5%
(curve with blue stars). The value 0 is seen as a sort of limiting case for codons with very small
frequencies, that is, when pm(W) is a very small positive real. In theory, setting pm = 0 amounts
to allowing the number of occurring codons to vary (case studied in Section 4.2.3), whereas we
keep n = 64 here. As in the previous case (Section 4.2.1), for any minimum probability pm the
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Figure 6. Maximum dispersion dM of the current genetic code with 64 codons for
three values of the minimum probability pm, the maximum probability pM = 4.32%
being that of the codon GCC in bacteria (see Appendix Table 1). The x-axis shows
the number nh of codons with high frequency in the genetic code, nh ∈ {1, . . . , 64},
i.e. codons x with a probability at least 1

64 (ω(x) > 1
64). The y-axis shows the

maximum dispersion dM of codon usage. Three curves corresponding to different
values for the minimum possible probability of a codon are displayed: pm = 0.06%
associated with the codon TAG in bacteria (see Appendix Table 1) (curve with
green circles) and 2 arbitrarily chosen surrounding values, namely pm = 0 (curve
with violet disks) and pm = 0.5% (curve with blue stars).

maximum dispersion dM increases to a maximum and then decreases to 0 at nh = 64. However,
the curves have a common increasing slope of equation y = 0.05515x (see Equation (4.8a)), but
different decreasing slopes, and thus different maxima.
The curve with pm = 0.06% and pM = 4.32% is obviously identical in the two Sections 4.2.1
and 4.2.2 and the two Figures 5 and 6. Very interestingly, with pM = 4.32%, the curve
with pm = 0.06% that is associated with bacteria is very close to the curve with pm = 0 giving
the highest value for dM . Indeed, at nh = 25 the maximum dispersion is equal to dM = 1.17
with pm = 0.06% and to dM = 1.22 with pm = 0. As previously, bacteria have optimised the
maximum dispersion, and thus a maximum capacity to retrieve the reading frame in genes.

4.2.3. Minimum and maximum dispersions of the evolutionary bacterial genetic code as a
function of its number of codons. Figure 7 gives the dispersion of the evolutionary bacterial
genetic code as a function of its number n of codons, n ∈ {1, . . . , 64}, i.e. codons x with a
probability ω(x) greater than 0. Since n varies from 1 to 64, and we must have 1

n 6 pM , the
parameter pM cannot stay equal to its original value of 4.32% from the bacterial genome with 64
codons: we normalise it by setting pM = 4.32

100 · 64
n . It then seems natural to similarly scale the
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minimum probability pm instead of keeping it at the bacterial value 0.06%, and we do so by
setting pm = 0.06

100 · n
64 . Analogously, we make the parameter nh vary with n, keeping the ratio nh

n

as close as possible to the bacterial value 25
64 ≈ 0.39. Formally, we set nh in {1, . . . , n} to be

either
⌊

25n
64

⌋
or
⌈

25n
64

⌉
, depending on which value is closer to 25n

64 (and discarding the value 0, i.e.,
setting nh = 1 when n = 1, since as reported earlier we can always assume that nh > 1.)
The dispersion function d (2.1) of codon usage ranges in the interval [0, 63

32 ] ≈ [0, 1.97] (Proposi-
tion 2.8). The minimum dispersion dm (curve with violet disks in Figure 7) has the maximum
value 63

32 ≈ 1.97 at n = 1 and the minimum value 0 at n = 64. It decreases along the straight
line with equation y = 2 − x

32 (see Equation (4.4)). The maximum dispersion dM (curve with
green circles in Figure 7) has the maximum value 63

32 ≈ 1.97 at n = 1, as dm, and the minimum
value 1.17195 at n = 64. It decreases with n, approximately along the straight line with equation
y = 1.948 − 0.012x (see Equation (4.7a), recalling that the values of pm and nh vary with n).
Thus, the dispersion difference ∆ = dM −dm has the minimum value 0 at n = 1 and the maximum
value 1.17195 at n = 64.
From a biological point of view, this theoretical result quantifies and explains that the more
codons a code contains, the greater the dispersion and the greater the capacity of genes to
retrieve the reading frame, or equivalently the lower the loss of reading frame retrieval (see the
RFR function f (2.4) in Figure 1).

5. Conclusion

The reading frame retrieval (RFR) function f of genes expressed as a function of the codon
usage dispersion d (from the uniform codon distribution 1/64), identifies a genome galaxy in
bacteria (Figure 1). This genome galaxy is studied by expressing the RFR function f according
to the Y Z-content (GC-, AG- and GT -content) of codon in bacteria (Figure 2). The classical
GC-content is the best parameter for characterizing the upper arm, which is related to genomes
with a low GC-content, and the lower arm, which is related to genomes with a high GC-content.
The galaxy center has a GC-content around 0.5 (Figure 2A). Then, these results are confirmed
by expressing the GC-content of codon as a function of the codon usage dispersion (Figure 3A).
Finally, the bacterial genome galaxy is better described with the GC3-content in the 3rd codon
site compared to the GC1-content and GC2-content in the 1st and 2nd codons sites, respectively
(Figure 4C).
Whereas the codon usage is used extensively by biologists, its dispersion is surprisingly little
known and unused, even though it is a classical parameter in basic statistics. With this in
mind, and also to study the genome galaxy, we have developed here a mathematical theory
of codon usage dispersion by deriving several formulæ. It shows three important parameters
that should be considered by biologists: the codon of highest frequency (i.e. the parameter pM ),
the codon of lowest frequency (i.e. the parameter pm) and the number of codons with high
frequency, i.e. greater than 100/64 = 1.5625% (i.e. the parameter nh). The derived formulæ of
dispersion can be easily extended to any weighted codes over a finite alphabet, e.g. the amino
acid alphabet. The theory developed shows that bacteria have optimised the codon dispersion to
be maximal, and thus a maximum capacity to retrieve the reading frame in genes, in two ways:
(i) the existence of stop codons with frequencies pm ≈ 0, e.g. the bacterial codon TAG of lowest
frequency pm = 0.06% (Figure 6); (ii) the number nh of codons with high frequency, e.g. nh = 25
is almost optimal with the bacterial codon GCC of highest occurrence pM = 4.32% (Figure 5).
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Figure 7. Dispersion of the evolutionary bacterial genetic code. From the
bacterial codon usage (Appendix Table 1), three parameters are used: the (nor-
malised) minimum probability is pm = 0.06 · 64

n %, based on the frequency of the
codon of lowest occurrence in the bacterial genome, i.e. TAG; the (normalised)
maximum probability is pM = 4.32 · 64

n %, based on the frequency of the codon
of highest occurrence, i.e. GCC; and the (normalised) number nh of codons
with high frequency, i.e. with a probability at least 1

64 , defined as the positive
integer that is closest to 25 · n

64 . The x-axis shows the number n of codons in the
genetic code, n ∈ {1, . . . , 64}, i.e. the codons x with a probability greater than 0
(ω(x) > 0). The y-axis shows the dispersion function d (2.1) of codon usage in
the range [0, 63

32 ] ≈ [0, 1.97] (Proposition 2.8): the curve with violet disks is the
minimum dispersion dm (see Proposition 4.2), the curve with green circles is the
maximum dispersion dM (see Proposition 4.3) and the curve with blue stars is
the dispersion difference ∆ = dM − dm.
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Appendix A. Codon usage of bacterial kingdom

Table 1. Codon usage of 34, 020, 997 genes of 8345 bacterial genomes
(11, 087, 876, 805 codons) obtained from the codon statistics database (CSD) [26].

AAA 2.37 CAA 1.20 GAA 2.91 TAA 0.12
AAC 1.80 CAC 1.27 GAC 3.42 TAC 1.56
AAG 2.00 CAG 2.16 GAG 3.22 TAG 0.06
AAT 1.64 CAT 0.78 GAT 2.25 TAT 1.35
ACA 0.93 CCA 0.63 GCA 1.43 TCA 0.64
ACC 2.56 CCC 1.39 GCC 4.32 TCC 1.25
ACG 1.51 CCG 2.14 GCG 3.22 TCG 1.23
ACT 0.76 CCT 0.67 GCT 1.30 TCT 0.67
AGA 0.54 CGA 0.43 GGA 1.39 TGA 0.15
AGC 1.28 CGC 2.26 GGC 3.63 TGC 0.53
AGG 0.38 CGG 1.64 GGG 1.43 TGG 1.31
AGT 0.69 CGT 0.80 GGT 1.54 TGT 0.29
ATA 0.82 CTA 0.45 GTA 1.05 TTA 1.25
ATC 2.76 CTC 2.23 GTC 2.66 TTC 2.11
ATG 2.15 CTG 3.86 GTG 2.66 TTG 1.21
ATT 1.91 CTT 1.01 GTT 1.20 TTT 1.61
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