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Methods of local topology are introduced to the field of protein physics. This is achieved by
explaining how the folding and unfolding processes of a globular protein alter the local topology
of the protein’s Cα backbone through conformational bifurcations. The mathematical formulation
builds on the concept of Arnol’d’s perestroikas, by extending it to piecewise linear chains using
the discrete Frenet frame formalism. In the low-temperature folded phase, the backbone geometry
generalizes the concept of a Peano curve, with its modular building blocks modeled by soliton
solutions of a discretized nonlinear Schrödinger equation. The onset of thermal unfolding begins
when perestroikas change the flattening and branch points that determine the centers of solitons.
When temperature increases, the perestroikas cascade, which leads to a progressive disintegration
of the modular structures. The folding and unfolding processes are quantitatively characterized by
a correlation function that describes the evolution of perestroikas under temperature changes. The
approach provides a comprehensive framework for understanding the Physics of protein folding and
unfolding transitions, contributing to the broader field of protein structure and dynamics.

I. INTRODUCTION

Local topology aims to understand the local and small-
scale properties of a space in terms of the immediate sur-
roundings of its points, using the rules and concepts of
topology. Bifurcation theory is designed to describe phe-
nomena where a small continuous change in the param-
eter values of a system can cause a sudden change in its
local topological structure. Both local topology and bi-
furcation theory have a significant role in the mathemati-
cal study of dynamical systems and differential equations,
with applications that range from chaos theory and phase
transitions to chemical reactions and evolutions between
different states of biological function [1].

At a technical level, the way how a bifurcation changes
the local topology of a system is exemplified by the fol-
lowing elemental evolution equation:

dφ(t)

dt
≡ φt = mφ− φ3 . (1)

Here φ(t) is a real valued function that describes the
state of a system as a function of the variable t, and m
is called the bifurcation parameter that acts as a control
parameter. When m > 0, there is an unstable fixed point
at φ = 0 and two stable fixed points at φ = ±

√
m. As

m → 0, the system undergoes a supercritical pitchfork
bifurcation, causing the fixed points to coalesce so that
for m < 0, there exists only a single stable fixed point at
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φ = 0. In this way, by changing the number and char-
acter of its fixed points, the bifurcation also changes the
local topology of the system. Familiar physical scenarios
where a pitchfork bifurcation described by an equation
such as (1) can be encountered include the Landau theory
of superconducting and ferromagnetic phase transitions.
Directly relevant to us in the sequel, the following ex-

ample provides a more elaborate physical example of the
effect of the pitchfork bifurcation. Here, the state of the
system varies locally according to a function φ(s) that
solves the equation.

d2φ

ds2
≡ φss = φ3 −mφ , (2)

describing the critical points of the free energy

F (φ) =

∫
ds

{
1

2
(φs)

2 +
1

4
(φ2 −m)2

}
. (3)

When the control parameter m > 0, the equation (2)
is solved by the following topological soliton [2]:

φ(s) = ±
√
m tanh

[√
m

2
(s− s0)

]
. (4)

It has the profile of a domain wall that interpolates be-
tween the two attractive fixed points of (1), i.e. minima
of the potential in Eq. (3), as shown in Figure 1. Its topo-
logical stability derives from the boundary conditions at
s → ±∞ that can not be changed by any local, finite
energy deformation of φ(s).
When m → 0 the pitchfork bifurcation takes place,

and for m < 0 a single topological soliton can no longer
exist.
Proteins are examples of linear polymers that can un-

dergo such changes in their local topology, often with
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FIG. 1. The soliton (4) is a topologically stable domain wall
that interpolates between the two ground states at φ = ±

√
m

of the potential V (φ) of (3) as s → ±∞.

important biological ramifications. Here, we introduce
and develop the relevant concepts of local topology and
bifurcation theory to explain how proteins fold by tran-
siting between different phases, from random chains to
biologically active and structured conformations. More
generally, we propose to use local topology and bifurca-
tion theory to understand the dynamics and the physical
functioning of proteins within living organisms: While
artificial intelligence algorithms such as AlphaFold [3]
are highly successful in predicting the final folded pro-
tein structures, thus far, these approaches have not been
extended to describe the dynamical aspects and details
how protein folding progresses. We trust that by re-
vealing deep connections between protein (un)folding, lo-
cal topology and bifurcation dynamics, we also provide
an impetus to develop machine-learning approaches that
model protein function.

Our starting point is Arnol’d’s generalization of bifur-
cation theory. In a series of seminal articles [4–6] Arnol’d
extended bifurcation theory to elucidate complex and in-
tricate changes that can take place in the local topology
of function families as their parameters vary. Central to
his approach is the concept of a ‘perestroika’ – a term
that he coined to describe certain topological reorgani-
zations that can occur in complex systems that are more
general than those governed by canonical bifurcation the-
ory. Specifically, he categorized those perestroikas that
influence local topology changes in the case of smooth
space curves [6–8].

We shall adapt Arnol’d’s perestroikas to describe pro-
tein folding and unfolding transitions. However, since the
Cα backbone of a protein is a piecewise linear polygonal
chain rather than a continuously differentiable function,
we first need to extend and modify Arnol’d’s framework,
so that we can address local topology and its changes by
perestroikas in the case of discrete chains.

The literature [9, 10] usually assigns four distinct struc-
tural states, or phases, to a linear heteropolymer such
as the protein Cα backbone. The details of a phase
diagram and the conditions that determine the phase
where a given Cα backbone resides depend on many fac-
tors, such as chemical composition, temperature, pres-
sure, and the quality of solvent. Each of the different
phases has its own universal geometric characteristics
that are grounded in fractal geometry and considered to

be largely independent of the atomic level details of the
protein. To determine the phase of a given Cα back-
bone, one commonly inspects its radius of gyration Rg

as a reaction coordinate, also called an order parameter
in statistical physics. In the general case of a discrete
point set ri (i = 1, . . . , N) such as the vertices of a dis-
crete piecewise linear chain, the radius of gyration is

Rg =

√√√√ 1

2N2

N∑
i,j=1

(ri − rj)2 . (5)

Its scaling properties determine the phase of the chain as
follows: In the limit where the number of vertices N is
very large, Rg has the asymptotic expansion [10, 12]

Rg

N large

−−−−−−→ R0N
ν(1 +R1N

−δ1 + . . . )

∼ R0N
ν + . . . . (6)

The exponent ν governs the large-N asymptotic, the
Kuhn length R0 is the average distance between the
neighboring vertices, and the R1, δ1 etc. characterize
finite-size corrections. The numerical values of the expo-
nents ν and δ1 etc. have a universal character that is in-
dependent of the atomic level structure [9–12], and often
ν is also interpreted as the inverse Hausdorff dimension
of the backbone even though the two measure somewhat
different properties of a point set. On the other hand,
the pre-factors R0, R1, etc. are non-universal quantities,
with values that can, in principle, be computed from
atomic-level details such as temperature, pressure, and
chemical composition of the solvent.

In the case of a given protein Cα backbone the number
of amino acids N is fixed, so that the limit (6) can not be
directly considered. However, one can still estimate the
value of ν [13] by comparing the radius of gyration of a
given protein to statistical average values in the Protein
Data Bank (PDB) [14]. The following mean field values
are commonly assigned to the value of ν, in the case of a
protein Cα backbone [9–13]:

ν =


1/3
1/2
3/5
1

folded
molten globule
self−avoiding
quasilinear

(7)

Under poor solvent conditions or at low temperatures, a
protein collapses into a folded conformation [15, 16] that
can be characterized by the mean-field value ν = 1/3.
Biologically active globular proteins are often assigned
this value. Notably, its inverse coincides with the Haus-
dorff dimension DH = 3 of space-filling curves such as
the three-dimensional Peano curve and its various gen-
eralizations [17]. When the ambient conditions are such
that the attractive and repulsive forces between different
backbone segments become balanced, the protein resides
in the molten globule phase, which is characterized by
the mean-field value ν = 1/2. This is also the inverse
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value of the Hausdorff dimension in the case of a three-
dimensional Brownian random walk, even though the two
are different geometrical structures as we shall demon-
strate. The molten globule separates the space-filling
folded phase from the fully unfolded, high-temperature
self-avoiding random walk (SARW) phase for which the
mean field Flory value ν = 3/5 is found. Finally, when
ν = 1, the backbone chain loses its inherently fractal
structure and adapts to a quasilinear, filamental geome-
try. Biologically active collagen, which is the most abun-
dant protein in mammals, provides an example of a pro-
tein that resides in this phase. It has also been argued
that this value of ν relates to the phenomenon of cold
denaturation of a protein [18].

We begin with a concise survey of Arnol’d’s pere-
stroikas in the case of differentiable curves. We then pro-
ceed to extend this mathematical formalism to piecewise
linear chains, which is the case that is relevant to protein
Cα backbones. Using a crystallographic myoglobin struc-
ture as a representative example of a folded globular pro-
tein, we analyze the local topology and bifurcations that
govern its folding and unfolding dynamics. For quanti-
tative analysis, we introduce a novel correlation function
that describes how bifurcation dynamics proceed as the
ambient temperature changes. Since our focus lies on
topological characteristics that are quite universal and
insensitive to detailed backbone geometry that depends
on specifics of chemical composition, the insights that we
gain from the myoglobin case study can be extended in-
tactum to other globular proteins and, more broadly, to
linear polymers.

II. METHODS

A. The Frenet-Serret frames

We begin with a brief review of the standard differ-
ential geometry of curves in R3, a classical subject com-
monly found in textbooks, for example [19]. We consider
a length-L space curve x(s) with s ∈ [sA, sB ] the arc-
length parameter so that sB − sA = L and ||ẋ(s)|| = 1.
We assume that the curve does not self-intersect, and for
technical reasons, we take x(s) to be at least four times
continuously differentiable if not smooth. We focus on
local aspects so that the curve can be open or closed,
the shape is generic, and it can change freely by local
deformations. We are interested in local topological in-
variants, those properties of the curve that are robust
against smooth shape deformations when we observe the
curve at a small enough scale.

By shifting each point x(s) of the curve by a very short
distance ϵ(s) at that point, we obtain a framing of the
curve. The self-linking number of x(s) is a quantity that
measures how many times the curve x(s) winds, or links,
around its shifted version x(s) + ϵ(s). Since the self-
linking number takes into account the entire structure of
the curve rather than just the properties of a small neigh-

borhood around any point on the curve, it appears to be
more like a global than a local topological invariant. But
the value of the self-linking number depends on the choice
of the framing vector ϵ(s), and if we allow ϵ(s) to vanish
at a point along the curve, the self-linking number can
change. The framing then becomes a local topological in-
variant, that remains intact only under those continuous
changes that retain ϵ(s) non-vanishing.

In classical differential geometry of a curve, the fram-
ing is commonly determined by Frenet frames [19]. At
a generic point x(s) of the curve, the right-handed or-
thonormal Frenet frame is defined by three vectors, the
unit length tangent vector:

t =
dx(s)

ds
≡ ẋ(s) , (8)

the unit length binormal vector

b =
ẋ× ẍ

||ẋ× ẍ||
, (9)

and the unit length normal vector

n = b× t , (10)

and we may choose either b(s) or n(s) or their linear
combination ϵ(s) = ε1b + ε2n as a framing vector to
promote the curve x(s) into a framed curve. The ambient
geometry of the curve is then determined uniquely by two
scalar functions. The first function is the positive valued
curvature,

κ(s) =
||ẋ× ẍ||
||ẋ||3

. (11)

It is inversely proportional to the radius of the osculating
circle, describing how the curve bends along its osculating
plane. The second function is the real-valued torsion ϑ(s)

ϑ(s) =
(ẋ× ẍ) · ...x
||ẋ× ẍ||2

. (12)

It measures the rate at which the curve twists i.e. ro-
tates out of its osculating plane. For a curve with a
non-vanishing curvature κ(s) > 0, the interrelations be-
tween the framing and the geometry are summarized by
the Frenet-Serret equation [19]:

d

ds

n
b
t

 =

 0 ϑ −κ
−ϑ 0 0
κ 0 0

n
b
t

 . (13)

The fundamental theorem of space curves states that
the solution of (13) defines the curve completely and
uniquely, up to a global rotation and a global transla-
tion.



4

B. Inflection points

At an inflection point where κ(s) = 0, the Frenet
frames can not be determined. For that reason, differ-
ential geometry textbooks [19] commonly assume that
the curvature (11) is non-vanishing, κ(s) > 0. Since
we are interested in the local topology of the curve and,
in particular, those continuous shape variations that can
change it, we need to develop an appropriate extension of
the traditional textbook presentation of the Frenet frame
formalism to include inflection points where κ(s) van-
ishes.

Thus, we consider a curve with N isolated and non-
degenerate inflection points x(sn) with parameter values
s = sn (n = 1, . . . , N) between the endpoints sA and sB :

sA < s1 < · · · < sN < sB .

For clarity, we assume that in the limit, when we ap-
proach an inflection point sn from either direction along
the curve s → s±n , the left and the right derivatives of
κ(s) are non-vanishing and equal in magnitude but with
opposite signs:

lim
s→s−n

dκ(s)
ds

= − lim
s→s+n

dκ(s)
ds

̸= 0 .

We may then extend the piecewise-defined non-negative
geometric curvature κ(s) into a real-valued, signed cur-
vature κ(s) that is defined on the entire segment s ∈
[sA, sB ] as a continuously differentiable function,

κ(s) = κ(s) exp
{
iπ

N∑
n=1

(−)n+1θ(s− sn)
}
, (14)

where θ(s) the Heaviside step-function. In particular, at
non-degenerate inflection points, one finds:

dκ

ds

∣∣∣∣
s=sn

̸= 0 .

To deduce the effect of the presence of the inflection point
on torsion, we start with a general rotation of n(s) and
b(s) around t(s) by an arbitrary angle η(s). The result
is another orthonormal pair e1(s), e2(s):(

n
b

)
→

(
cos η(s) − sin η(s)
sin η(s) cos η(s)

)(
n
b

)
≡

(
e1
e2

)
. (15)

This transformation converts the original Frenet-Serret
equation into

d

ds

e1
e2
t

 =

 0 (ϑ− η̇) −κ cos η
−(ϑ− η̇) 0 −κ sin η
κ cos η κ sin η 0

e1
e2
t

 .

(16)
Comparison of (14) and (16) shows that a transition from
the non-negative, geometric curvature κ(s) to the con-
tinuously differentiable signed curvature κ(s) sends the

torsion ϑ(s) into

τ(s) = ϑ(s)− η̇(s) = ϑ(s) + π
d

ds

N∑
n=1

(−)nθ(s− sn)

= ϑ(s) + π

N∑
n=1

(−)nδ(s− sn) . (17)

Thus, whenever the curve passes an inflection point, the
Frenet framing undergoes an instantaneous rotation by
an angle ±π around its tangent vector t(s), with the
choice of sign determined by the sign of torsion. In partic-
ular, the self-linking number determined by Frenet fram-
ing is a local topological invariant. Its value changes
under those shape changes that engage inflection points.
Finally, in the generic frame Frenet equation (16), we

identify the gauge structure of an Abelian Higgs model,
widely encountered in high energy and condensed matter
physics. This structure comes out when we combine the
positive valued Frenet curvature κ(s) together with the
angle η(s) into a complex-valued function akin to the
Higgs scalar and extend the torsion ϑ(s) similarly into
an analogy of an Abelian gauge connection as follows,

κ(s) → eiη(s)κ(s) & ϑ(s) → ϑ(s)− dη(s)

ds
. (18)

In this parlance, a frame rotation corresponds to a U(1)
gauge transformation, with the Frenet framing corre-
sponding to the unitary gauge in the Abelian Higgs
model. In particular, the following combination of Frenet
frame curvature and torsion remains intact under frame
rotations,

ϕ(s) = κ(s) exp
{
i

∫ s

sA

ds′ ϑ(s′)
}
. (19)

C. Local topology and perestroikas

There are circumstances when even small changes in
the shape of a curve can alter its local topology. This
effect occurs when a shape change gives rise to a bifurca-
tion that Arnol’d called a perestroika [4–8]. In particular,
he showed that in the case of one-parameter families of
shape-changing curves, there are only two perestroikas
where the local topology of a generic curve can change.
These were called the inflection point perestroika and
the bi-flattening perestroika by Arnol’d. To identify and
describe them, we use the Frenet equation to Taylor-
expand the curve coordinate around an ordinary point
x(s), where we, for clarity, choose s = 0. With t,κ, ϑ etc.
now denoting the corresponding quantities when evalu-
ated at s = 0, the expansion in powers of s proceeds as
follows:

x(s) = x(0) + ts +
1

2
κn s2

+
1

6

(
κϑb+ κsn− κ2t

)
s3
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+
1

24

[
(2κsϑ+ κϑs)b+ (κss − κϑ2 − κ3)n

− 3κκst] s
4

+
1

120

[(
κϑss + 3κsϑs + 3κssϑ− κ3(κϑ3 + ϑ)

)
b

+
(
κ3 − 3κsϑ

2 − 6κ2κs − 3κϑϑs

)
n

+
(
κ2ϑ2 + κ4 − 3κ2

s − 4κκss

)
t
]
s5 +O

(
s6
)
.

(20)

The various special points of the curve where either the
curvature, the torsion, or their derivatives vanish can
then be assigned a symbol consisting of three positive
integers a1 < a2 < a3, with ai ∈ N for i = 1, 2, 3, and
chosen to be the smallest possible natural numbers in
powers of s that represent the point in terms of the basis
(t,n,b). For example, in the case of an ordinary point,
the symbol is (a1, a2, a3) = (1, 2, 3) since these are the
leading powers of s in (20) in terms of the basis vectors.

There are three special points that are of interest to us.
The first is a simple inflection point, i.e. a point where
κ = 0 but κs ̸= 0, and from (20) we read that it has the
symbol (1, 3, 4). Similarly, (20) reveals that the second is
a simple flattening point with ϑ = 0 but both ϑs ̸= 0 and
κ ̸= 0 so that the symbol is (1, 2, 4). Finally, the third is
a bi-flattening point with ϑ = ϑs = 0 but κ ̸= 0 and the
symbol is (1, 2, 5). We analyze how they affect the local
topology using the expansion (20).

We first assume that x(0) is a single inflection point in
a parameter segment [sa, sb] under consideration. From
its symbol (1, 3, 4), we conclude that the co-dimension
of an inflection point is two. Thus, if we deform the
curve around x(0) in a manner that retains the osculating
plane, the inflection point can move along the curve. But
if, instead, we lift the curve off its osculating plane the in-
flection point becomes removed. In particular, a generic
space curve does not have any inflection points, and a
generic one-parameter family of curves can only have iso-
lated parameter values at which an inflection point ap-
pears. When this situation occurs, the curve undergoes
a bifurcation that is called an inflection point perestroika
[4–6] where the local topology changes. Specifically, the
Frenet self-linking number of the curve changes in the
process.

To further illustrate the properties of inflection-point
perestroika, we consider two a priori generic curves x1(s)
and x2(s) with no inflection points so that they both have
their respective Frenet framings with ensuing self-linking
numbers. We also assume that the curves are in the
vicinity of, and isotopic to, a third curve x(s) that has
an inflection point x0 with corresponding discontinuity
in its Frenet framing. Furthermore, we assume that the
two curves are located on the opposite sides of the hy-
persurface, which is defined by all those curves that have
an inflection point, including x0. Even though the two
curves x1(s) and x2(s) are mutually isotopic and located
in the vicinity of each other since they are separated by
a curve with an inflection point, their Frenet self-linking
numbers are different, and any on-parameter family of

curves that interpolates between x1(s) and x2(s) under-
goes an inflection point perestroika.
Unlike an inflection point, we conclude from its sym-

bol (1,2,4) that the co-dimension of a flattening point
is one. Thus, a flattening point is generic, and at least
one flattening point is ordinarily present along a typi-
cal curve. Moreover, since the torsion changes sign at a
flattening point, a flattening point is a local topological
invariant that can not be removed by small local defor-
mations. A small local deformation of a curve can only
transport an isolated flattening point to another place
along the curve. But when the shape of a curve changes
so that a pair of flattening points come together, they
combine into a single bi-flattening point, with the sym-
bol (1,2,5). This bi-flattening point can then be removed
by a further, generic local deformation of the curve: A
bi-flattening point is not a local topological invariant.
Similarly, a bi-flattening point can first be created by an
appropriate local deformation of a curve, and when the
curve is further deformed, the bi-flattening point can be-
come resolved into two separate flattening points. When
either of these two events occurs, the curve undergoes a
bifurcation that is called a bi-flattening perestroika [4–6].
The number of flattening points and the self-linking

number that is determined by the Frenet framing are the
only two curve-specific, mutually independent local topo-
logical invariants that can be assigned to a differentiable
curve. Furthermore, the inflection point perestroika and
the bi-flattening perestroika are the only two bifurcations
where the number of flattening points can change [4–8].
In the presence of an inflection point, the two can also
interfere with each other. For example, when a curve is
deformed so that two simple flattening points come to-
gether and disappear in a bi-flattening perestroika, the
self-linking number, in general, does not change. But if
the bi-flattening perestroika occurs in combination with
an inflection point perestroika, the self-linking number,
in general, does change.

D. A limiting case

We conclude our survey of differentiable curves by
drawing attention to the following limit, which becomes
relevant in the sequel of a very small but non-vanishing
curvature so that ∣∣∣∣κ(s)ϑ(s)

∣∣∣∣ → 0 .

In this limit, the Frenet-Serret equation gives

d

ds
(n+ ib) ≈ − iϑ(n+ ib) ,

d

ds
t ∼ 0 .

(21)

This equation describes a (almost) straight line with a
framing that spirals around it at a rate and with a hand-
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edness that is determined by the torsion ϑ(s). At a sim-
ple flattening point the torsion changes its sign, and the
handedness of the spiraling also changes.

E. The discrete Frenet frames

Our focus is on piecewise linear chains. In that case,
the Frenet framing does not exist, and both the differ-
ential geometry described by the Frenet-Serret equation
(13) and the concepts of local topology and perestroikas
that we have presented need to be adapted. The dis-
crete Frenet frame formalism introduced in [20] provides
the appropriate framework. It describes the geometry of
a piecewise linear chain with vertices ri (i = 1, . . . , N).
The links connecting two neighboring vertices determine
the unit tangent vectors

ti =
ri+1 − ri
|ri+1 − ri|

. (22)

The unit binormal vectors are

bi =
ti−1 × ti
|ti−1 × ti|

, (23)

and the unit normal vectors are

ni = bi × ti . (24)

Together, the orthonormal triplet (ni,bi, ti) defines the
discrete Frenet frame at each vertex ri of the chain.
The protein Cα backbone structure is an important

biophysical example of such a piecewise linear discrete
chain. The vertices correspond to the positions of the
Cα-atoms, and the links coincide with the diagonals of
the peptide planes; these diagonals have a length that
is very close to 3.7 Å. Following [20], we now outline
and systematically tailor the formalism of discrete Frenet
frames for applications related to the local topology of
protein Cα backbones.

In the case of a discrete chain, in lieu of the continuum
curvature κ(s) and torsion ϑ(s) the ambient geometry
is governed by their discrete variants, the bond angles
κi and the torsion angles τi. The values of these angles
are computed from the discrete Frenet frames as follows.
The bond angles are

κi ≡ κi+1,i(ri, ri+1, ri+2) = arccos (ti+1 · ti) (25)

and the torsion angles are

τi ≡ τi+1,i(ri−1, ri, ri+1, ri+2)

= sign{bi × bi+1 · ti} · arccos (bi+1 · bi) (26)

Notably, the bond angle κi is evaluated from three, and
the torsion angle τi is evaluated from four consecutive
vertices.

Conversely, when the values of the bond and torsion
angles are all known, the discrete Frenet equation [20]ni+1

bi+1

ti+1

 =

cosκ cos τ cosκ sin τ − sinκ
− sin τ cos τ 0

sinκ cos τ sinκ sin τ cosκ


i+1,i

ni

bi

ti


(27)

computes the discrete Frenet frame at the vertex ri+1

from the frame at the preceding vertex ri. The chain
from the initial position r0 to the given vertex rn can
then be constructed iteratively using [20]

rn =

n−1∑
i=0

|ri+1 − ri| ti (28)

and in the case of a protein Cα backbone we may set
|ri+1 − ri| = 3.7Å. The initial vertex can be chosen as
the origin r0 = 0, the first vertex r1 can be placed on the
positive z-axis and the second vertex can be placed on
the positive quadrant of the xy plane. The Figure 2 sum-
marizes the discrete Frenet framing. Notably, in a limit

FIG. 2. The bond angle κi is the angle between the two
vectors ri+1 − ri and ri+2 − ri+1. The torsion angle τi is the
angle between the planes defined by vertices ri−1, ri, ri+1 and
vertices ri, ri+1, ri+2.

where the bond length goes to zero the discrete Frenet
equation (27) becomes the continuum Frenet equation
(13) [20].
The fundamental range of a bond angle is κi ∈ [0, π],

and in the case of a torsion angle, it is τi ∈ [−π, π).
Thus, these angles can be interpreted geometrically as
latitude and longitude angles, respectively, on a (Frenet)
two-sphere S2i that is centered at the ith vertex ri. But, as
in the continuum case, there is an advantage to extending
the range of the bond angles to κi ∈ [−π, π], while the
range of the torsion angle remains τi ∈ [−π, π) (mod(2π).
This becomes substantiated when we observe that the
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following discrete Z2 transformation

κk+1,k → − κk+1,k for all k ≥ i
τi+1,i → τi+1,i − π mod (2π)

(29)

leaves the chain (28) intact.

F. Projective Frenet plane for discrete chains

For visualization purposes, following [21], we stereo-
graphically project the Frenet sphere S2i to its tangent
plane at the north pole, as depicted in Figure 3a. For
this, we first orient the Frenet sphere that is centered
at vertex ri so that the position ri+1 of the next vertex
coincides with the north pole of S2i where the ensuing
bond angle κi has the value κi = 0. The torsion angle
τi now measures the longitude of the sphere S2i so that
τi = 0 on the great circle that passes through the north
pole and through the tip of the binormal vector bi. The
stereographic projection of the Frenet sphere with coor-
dinates (κ, τ) to the tangent (Frenet) plane at the north
pole with Cartesian coordinates (x, y) is then computed
as follows, see Figure 3a.

x+ iy = tan
(κ
2

)
· e−iτ . (30)

FIG. 3. a) Stereographic projection (30) of Frenet sphere to
its tangent plane at the north pole from the south pole S. b)
The stereographically projected map of backbone Cα-atoms
in Protein Data Bank (PDB). The PDB data concentrates on
an annulus A with color coding corresponding to the number
of entries in PDB from red large to blue small and white is
none. Major secondary structures are identified, with loops
distributed widely over A. The stereographically projected
latitude κ measures the distance from center (κ = 0) and
the longitude τ is angle around the center of A. The line of
flattening is τ = 0, and τ = ±π is the branch cut.

We specify the vector ti+1 in terms of coordinates on
the preceding Frenet sphere S2i as follows: We first paral-
lel translate the vector ti+1 so that its base coincides with
the vertex ri. We then record the coordinates (κi, τi)
that correspond to the tip of ti+1 on the surface of S2i ,
and we stereographically project them onto the tangent
plane. These coordinates describe to an observer at ri
how the backbone turns at vertex ri+1 to continue to-
wards the vertex ri+2. When we repeat this construction
for all Frenet spheres in the case of Cα backbones in

PDB, we obtain the statistical distribution of (κ, τ) val-
ues that are highly concentrated inside the annulus A on
the tangent plane that we show in figure 3b; the annu-
lus A is located approximatively between latitude angle
values 0.57 < κ < 1.82 (radians). The color intensity
characterizes the statistical occurrence of (κ, τ) values in
PDB, decreasing from red and yellow to blue and white.
The region that falls exterior to A is sterically limited,
while the interior is sterically allowed but with very few
entries. The major secondary structure regions, includ-
ing α-helices, β-strands and left-handed αL-helices are
identified in the Figure 3b. For example, repeated (κ, τ)
values with {

κi ≈ π
2

τi ≈ 1
(31)

correspond to right-handed α-helices, and repeated val-
ues just below the branch cut of the torsion angle, with{

κi ≈ 1
τi ≈ ±π

(32)

correspond to β-strands that are stabilized through hy-
drogen bonding interactions. Similarly, all the other reg-
ular secondary structures, such as 3/10 helices, αL helices
etc. correspond to localized regions around fixed values
of bond and torsion angles on A.

G. Local topology and perestroikas in discrete
chains

In the case of a regular space curve, the curvature
and torsion are real-valued differentiable functions. The
points where the local topology can change by perestroika
are identified in terms of their zeroes or the zeroes in their
derivatives. Similarly, in the case of a discrete chain, we
can have vertices and links where the local topology can
change by appropriate perestroikas. For example, in line
with differentiable curves, an inflection point occurs when
two consecutive tangent vectors ti and ti+1 become par-
allel, and in Figure 3b, this takes place at the center of
the annulus A where κi = 0. Similarly, a discrete variant
of a flattening point occurs when two consecutive binor-
mal vectors bi and bi+1 become parallel so that τi = 0;
the flattening line where this can take place is shown in
Figure 3b. Moreover, unlike the Frenet torsion, which is
a R1-valued function, the torsion angle is a multivalued
variable taking values on S1, and we have a branch cut
at τ = ±π shown in Figure 3b. A branch point is then a
point along the branch cut where two neighboring binor-
mal vectors bi and bi+1 become antiparallel. Notably,
the values (32) of the β-strand region are located in the
vicinity of the branch cut.
We may think of the small curvature and large tor-

sion limit that we have described in subsection IID as a
continuum analog of the branch cut.
In the sequel, whenever we relate the present formal-

ism of local topology and ensuing perestroikas to actual



8

experimentally measured protein structures, it is essen-
tial to keep in mind that in the case of observational data
such as crystallographic protein structures, the positions
of the Cα-atoms are only known with some experimen-
tal precision. Thus, in the case of protein structures,
a precise identification of an actual vertex where pere-
stroika occurs may not be practical, not even possible.
Accordingly, to account for the experimental uncertain-
ties, we consider any data point in Figure 3b with a very
small value of κi ≈ 0 to be a putative inflection point,
any data point with τi ≈ 0 to be a putative flattening
point and any data point with τi ≈ ±π to be a puta-
tive branch point. We observe from Figure 3b that PDB
data in the immediate vicinity of an inflection point is
absent, and data near the flattening line is rare, but data
near the branch cut is relatively common, reflecting the
abundance of β-strands.

The Figures 4a and 4b exemplify short protein Cα
backbone segments, depicted as piecewise linear chains
on the annulus A of Figure 3b; the vertices are the (κi, τi)
values of the protein’s Cα-atoms, that we connect by
straight links on A.
Note that a straight link between two Cα-vertices on A

traverses over a range of bond and torsion angle values.
It does not directly describe the diagonal line of the pep-
tide plane that bonds the Cα-atoms in the physical R3

space. Nevertheless, we find the representation of a pro-
tein Cα backbone in terms of a piecewise linear chain on
the annulus A, with vertices corresponding to the (κ, τ)
values of the Cα-atoms, to be very informative. It en-
ables us to conveniently extend Arnol’d’s perestroikas to
piecewise linear chains, as demonstrated by the three ex-
amples shown in Figures 4.

The Figure 4a depicts a short peptide chain on A, start-
ing at vertex 1 and ending at vertex 8.

FIG. 4. Panel a: A generic example of a discrete Cα-chain
depicted as a trajectory on the annulus A of Figure 3a. Panel
b: Two generic examples of a discrete Cα-chain depicted as
trajectories on the annulus. The red-colored chain starts and
ends in the α-helical region, the blue-colored chain starts and
ends in the left-handed α-helical region.

• The first link connects vertex 1 to vertex 2, proceed-
ing across the flattening line τ = 0. Clearly, this crossing
across the flattening line persists when vertices 1 and 2
move around on A, as long as there is no change in the

sign of τ1 and τ2. Thus, the presence of a flattening point
along a link that connects two vertices on the annulus A
is a local topological invariant of the chain.

• The vertex 3 with small positive torsion angle τ3
is connected to vertices 2 and 4 by links that both cross
the flattening line. Now, a small change in the position
of vertex 3 can change the sign of its torsion angle if the
vertex crosses the flattening line. If this occurs, we rec-
ognize the structure of a bi-flattening perestroika, which
removes two flattening points along the chain.

• Next, we focus on vertices 4, 5, 6, and 7 in Figure 4a.
There are now two branch points; one is along the link
from vertex 5 to vertex 6, and the other is along the link
between vertices 6 and 7. If the vertex 6 with τ6 > 0
initially crosses the branch cut so that its torsion an-
gle becomes negative, we have a bi-branching perestroika
akin to the bi-flattening perestroika where τ3 changes sign
with vertex 3 moving across the flattening line. If, in-
stead, the torsion angle at vertex 5 crosses the branch
cut, and τ5 becomes positive, there is no perestroika of
the chain; the two branch points simply move apart from
each other along the chain.
Due to the ubiquity of β-strands, a conformation where

two neighboring vertices are located in the immediate
vicinity of the branch cut, even on opposite sides of it,
like vertices 5 and 6 in Figure 4a, can be expected to be
commonplace in the case of protein backbones.

• The link connecting vertices 7 and 8 crosses the
branch cut so that we have a branch point along the
link. Like a flattening point between vertices 1 and 2,
the presence of a branch point along the chain is a local
topological invariant.

• Notably, neither a bi-flattening point nor a bi-
branching point is a local topological invariant: When
the shape of the chain changes so that either a pair of
flattening points or a pair of branch points come together,
they combine either into a single bi-flattening point or a
single bi-branching point. Both the bi-flattening point
and the bi-branching point can then be removed by a
further local deformation of the chain.

In Figure 4b, we have two (essentially) closed chains
on the annulus A. This motivates us to introduce the
concept of a Folding Index [22]. It is a local topological
invariant that can be used to analyze and classify both
chain segments and entire chains. To define this quantity,
we consider a chain segment between two vertices, n1 and
n2. Its folding index Indf is then evaluated as follows,

Indf =

[
Γ(n1, n2)

π

]

Γ(n1, n2) =

n2−1∑
i=n1


τi+1 − τi − 2π if τi+1 − τi > π

τi+1 − τi + 2π if τi+1 − τi < −π

τi+1 − τi otherwise

(33)
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Here [x] denotes the integer part of x, and Γ(n1, n2) is
the total rotation angle (in radians) that the chain seg-
ment winds around the inflection point i.e. the center of
the annulus as it proceeds from vertex n1 to vertex n2. A
clockwise winding is positive, and winding in the coun-
terclockwise direction is negative, and the value of the
folding index is equal to twice the net number of times a
chain encircles the center of the annulus A.

• In Figure 4b, we first consider the red-colored chain
starting from vertex 1 and ending in vertex 5, both in the
α-helical region. The chain depicts a protein loop struc-
ture from vertex 1 through vertex 2 to vertex 3 that is
located in the β-stranded region, representing an α-helix
- loop - β-strand supersecondary structure. The link be-
tween vertices 2 and 3 proceeds through the branch cut,
and the link between vertices 3 and 4 passes through the
center of the annulus, i.e. there is an inflection point be-
tween vertices 3 and 4. Note that a slight move of either
vertex 3 or vertex 4 horizontally removes this inflection
point, and we are left either with a flattening point or
a branch point along the link between vertices 3 and 4.
In the first case, the folding index of the segment would
obtain the value +2, while in the second case, the folding
index would vanish.

In general, if the torsion angles at the endpoints of a
one-parameter family of chains are kept fixed, the value of
the folding index can only change at an inflection point
perestroika, i.e. when the chain is deformed so that a
link passes over the center of the annulus A. When this
occurs, the folding index changes by ±2, and a flatten-
ing point becomes converted into a branch point or vice
versa. In particular, an inflection point is not a local
topological invariant.

• The blue chain in Figure 4b shows an example of
a loop structure starting and ending in the left-handed
α-helical region. The chain closes, but since it does not
cross the flattening line nor the branch cut, and in par-
ticular, it does not wind around the inflection point, its
folding index vanishes.

III. LOCAL TOPOLOGY OF MYOGLOBIN

A. Proteins and fractals

Topology characterizes the overall shape of a protein
Cα backbone, usually in a manner that is quite inde-
pendent of the individual atom positions that govern the
backbone geometry. For this reason, it is possible to de-
scribe general topological aspects of globular proteins us-
ing a generic example, and we chose the crystallographic
myoglobin structure with Protein Data Bank accession
code 1ABS. It comes from a sperm whale, has 154 amino
acids, and has been measured at about 20 Kelvin. This
ultra-low temperature setting significantly minimizes the
experimental errors in the measured coordinates of indi-
vidual atoms, ensuring high precision at the level of the

geometric data. Our description of 1ABS builds partly
upon previous theoretical investigations of its structure
in [23, 24].

FIG. 5. a) Cartoon representation of 1ABS Cα backbone,
with repetitive helical segments replaced by linear segments
for visual clarity. b) First (red) and second (yellow) iterations
of the space-filling Hilbert curve.

Figure 5a shows the 1ABS Cα backbone in a car-
toon representation where we have removed the atoms
along the helices in order to visually enhance the back-
bone’s repetitive propagation through its regular sec-
ondary structures. The Figure identifies a key feature
of globular proteins: They are commonly made up of
building blocks called super-secondary motifs, consist-
ing of regular secondary structures such as α-helices and
β-strands together with their interconnecting turns and
loops that appear irregular. The fact that globular pro-
teins are often built in a modular fashion is supported
by the success of protein structure classification schemes
like CATH [25] and SCOP [26]. The modularity can also
be considered as one of the explanations why artificial
intelligence programs such as AlphaFold [3] can predict
folded protein structures.

The modularity of globular protein Cα backbones in
their cartoon representation is in a striking resemblance
to the modular topology of space-filling Peano curves
[17]. We illustrate this in Figure 5b, where we display
the first (red) and second (yellow) iteration steps of the
Hilbert curve. The first step is a combination of alter-
nating linear segments connected by turns, akin to a pro-
tein super-secondary motif, and the second step is a self-
similar iteration of the first step together with an overall
scaling transformation. In the limit of an infinite num-
ber of iterations, a Peano curve becomes a space-filling
chain with Hausdorff dimension DH = 3, and several
analyses based on investigations of the radius of gyration
(5) propose that folded proteins share this Hausdorff di-
mension [13]. The apparent similarity between globular
proteins and Peano curves, with a topology of linear seg-
ments that are connected by loops and turns, leads us to
propose that the modular framework of Peano curves is
the appropriate setting for understanding the rationale
in the modularity of protein Cα backbone structures, ex-
plaining their space-filling character.
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FIG. 6. a) Discrete Frenet frame bond angles (black) and
torsion angles (red) along the 1ABS Cα backbone b) Fold-
ing index along 1ABS Cα backbone c) Z2 transformed bond
angles and d) Z2 transformed torsion angles, with Z2 trans-
formations determined by minimization of (34). The panel c)
also identifies the common assignment of the eight helices A,
. . . , H along the backbone.

B. The Z2 transformation

To quantify the modular building blocks of globular
proteins, in Figure 6a, we present the spectrum of the
discrete Frenet frame bond angles (25) and torsion angles
(26) of the 1ABS Cα backbone. This figure corroborates
the well-established observation that the bond angles in
protein Cα backbones exhibit significantly more rigidity
than the torsion angles.

In Figure 6b we show the accumulation of the fold-
ing index along the 1ABS backbone, starting from the
N-terminus. The final value is Indf = +4 so that the
entire backbone trajectory encircles twice the center of
the annulus A in Figure 3b in the clockwise direction.
A segment where the folding index along the chain does
not change is the hallmark of a regular secondary struc-
ture such as α-helix and β-strand, while the segments
where the folding index changes identify loop structures.
Notably, there are four segments in Figure 6b where we
observe the change ∆Indf = ±2, implying that there is
a complete encirclement of the center of the annulus A;
one of these occurs at the C-terminal.

Next, we consider the consequences of the Z2 trans-
formation (29); recall that this transformation is a sym-
metry of the discrete Frenet equation (27) that does not
affect the three-dimensional shape of the chain. At the
same time, it turns out to be a key to understanding the
origin of modularity in protein structure and its connec-
tion to the local topology of the backbone. By extending
the bond angles to negative values, the Z2 transforma-
tion also entails an extension of the annulus A into its
two-sheeted covering space.

As a methodology to select the way how to implement
the Z2 transformation, we consider the following metric

that measures distances in the space of torsion angles
between a vertex n1 and a vertex n2 (with |τi+1 − τi| ≤
2π)

δτ (n1, n2) =

n2−1∑
i=n1

δτ,i

where

δτ,i =


|τi+1 − τi − 2π|2 if τi+1 − τi > π

|τi+1 − τi + 2π|2 if τi+1 − τi < −π

|τi+1 − τi|2 otherwise

(34)

Unlike the folding index that does not admit any practi-
cal analog in the continuum limit, as there is no branch
cut, the continuum limit of the metric (34) corresponds
to the elastic torsion energy

Eτ =

s2∫
s1

ds (∂sϑ)
2

Since the metric (34) does not remain invariant under
the Z2 transformation, we can consider the minimiza-
tion of δτ over all possible Z2 transformations. In Figure
6c and 6d, we show the results of the minimization for
the bond and torsion angles, respectively, in the case of
1ABS. At the minimum of δτ , there are a total of 13
bond angle domain walls that separate regions with pos-
itive and negative κi values when we include the two that
are right next to the N and C terminals. As expected,
the profile of the Z2 transformed bond angles correlates
with the folding index profile in Figure 6b.

Structural biology textbooks commonly identify eight
helices (A, B, C, D, E, F, G, H) along the myoglobin back-
bone. These helices are interconnected by seven loops,
and in addition, there are the unstructured N and C ter-
minals. The eight standard helices are identified in Fig-
ure 6c, and they also appear as helices in our approach.
In the textbook assignment of helices and loops, the short
segment between helices C and D is interpreted as a single
loop. But in our refined approach, based on minimization
of (34), this loop becomes resolved into three adjoining
domain walls. Furthermore, the two loops between he-
lices F and G, and G and H both become resolved into
combinations of two domain walls each in our approach.

More generally, in the case of globular proteins, long
loops become commonly resolved into combinations of
multiple individual domain walls when we minimize the
torsion distance (34).

C. Free energy for local topology

All-atom molecular dynamics simulation techniques,
such as GROMACS [30], could be used to explore the role
of local topology and perestroikas in protein dynamics
and folding processes. These techniques are designed to
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capture the intricate geometrical details of protein struc-
ture and dynamics at the level of individual atoms, and
for this, they require significant computational resources
that are not widely available. Therefore, a more efficient
approach is to adopt a physics-based model that focuses
on the structure and dynamics of a protein Cα backbone,
directly employing variables that are pivotal for under-
standing its local topology. Furthermore, since topology
is hardly sensitive to an individual atom precision, this
is the approach that we adopt.

The Z2-transformed κi domain walls, depicted in Fig-
ure 6c, exhibit a profile reminiscent of a discretized topo-
logical soliton akin to that shown in Figure 1a. This
proposes to model the Cα backbone as a multi-soliton
system using a suitably defined discrete version of the
free energy (3). Indeed, such a framework has been intro-
duced in references [27, 28], and its applicability in mod-
eling the 1ABS Cα backbone has been demonstrated in
[23, 24, 29]. Moreover, in combination with stereochem-
ical considerations [31], the approach can reach a sub-
Ångström precision even in the case of all-atom struc-
tures, matching the accuracy that can be obtained by
direct minimization of the potential energy in all-atom
force fields.

The starting point in the construction of the free en-
ergy [27] is the observation that a complex variable such
as (19) also appears as the dynamical variable in nonlin-
ear Schrödinger equation [2], supporting a dark soliton
solution with the hyperbolic tangent profile (4). This
motivated the introduction of the following discretized
nonlinear Schrödinger (DNLS) free energy for protein Cα
backbones [27]

F (κ, τ) =−
N−1∑
i=1

2κi+1κi +

N∑
i=1

{
2κ2

i + λ (κ2
i −m2)2

+
d

2
κ2
i τ

2
i − b κ2

i τi − a τi +
c

2
τ2i

}
. (35)

The numerical values of the parameters (λ,m, d, b, a, c)
in (35), that are specific for each individual soliton pro-
file, are determined by demanding that the minimum of
(35) describes the given protein Cα backbone, in our case
1ABS, as a critical point with the desired precision [28];
less than 1.0Å root-mean-square-distance (RMSD) in the
case of 1ABS.

To solve for the appropriate minimal energy critical
point of (35), we note that the bond angles are rela-
tively rigid and slowly varying while the torsion angles
are quite flexible and with rapid variations. Thus, we
may construct the free energy minimizer in the adiabatic
approximation, by first eliminating the torsion angles in
terms of the bond angles,

∂F

∂τi
= dκ2

i τi − bκ2
i − a+ cτi = 0 (36)

from which

τi[κ] =
a+ bκ2

i

c+ dκ2
i

(37)

We substitute this in (35) and find for the bond angles
the following free energy

F [κ] = −
N−1∑
i=1

2κi+1κi +

N∑
i=1

(
2κ2

i + V [κi]
)
, (38)

where

V [κ] = λκ4 −
(
b2 + 8λm2

2b

)
κ2 −

(
bc− ad

d

)
1

c+ dκ2
.

(39)
The minimum energy critical point of (38) is a solution
of the equation

κi+1 = 2κi − κi−1 +
dV [κ]

dκ2
i

κi (i = 1, . . . , N) . (40)

with κ0 = κN+1 = 0. We identify here a discrete vari-
ant of (2), with an additional contribution due to torsion
variables; in the case of Cα backbones the torsion con-
tribution in (39) commonly has a small numerical value
in comparison to the first two terms in (39). As a conse-
quence the appropriate solution of (40), while not known
in analytic form, is very close to a combination of the
topological soliton profiles (4) along the Cα backbone.
After solving (40) the corresponding torsion angle val-

ues are evaluated from (37) and the space coordinates
of the Cα backbone are then computed using the dis-
crete Frenet equation (27), (28). In [28] it has been ex-
plained in detail how the multi-soliton and the ensuing
Cα backbone can be numerically constructed. The in-
dividual solitons describe the super-secondary motifs, in
the case of generalized Peano curves they would corre-
spond to the modular building blocks.

D. Myoglobin as a multi-soliton

As shown in Figure 6c in the case of 1ABS the mini-
mization of (34) results in 11 solitons, excluding those at
the flexible termini, with the loop between C and D seg-
mented into three individual solitons. But the 10-soliton
energy minimum of (35) constructed in [23, 24, 29] that
combines the soliton pair around site 45 into a single soli-
ton, already represents the 1ABS backbone with a RMSD
of 0.8 Å i.e. well below the experimental resolution of
1.5 Å. Since these 10 solitons suffice for accuracy that
surpasses experimental resolution, there is no need to in-
troduce an additional one, and in line with [23, 24, 29],
we adopt the 10-soliton representation of 1ABS.
To exemplify how a soliton describes the local topology

of the Cα backbone, we proceed to describe in detail the
soliton that models the segments 75-85 between helices
E and F, and the two-soliton that models the segments
115-126 between G and H. In Figures 7a and b, we show
these segments as trajectories on the annulus A.
The single soliton profile that models the segment 75-

85 between helices E and F is centered near site i = 80,
and as seen in Figure 6a the folding index for the soliton
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FIG. 7. a) The segment 75-85 of 1ABS, shown as a trajectory
on the annulus A. b) The segment 115-126 of 1ABS. The black
dots denote the positions of the remaining Cα atoms on A.

segment has the value Indf = +2. The Figure 7a shows
that the trajectory encircles the center of the annulus
with a branch point along the link connecting vertices
78 and 79 and a flattening point along the link between
sites 80 and 81. After site 81, there is also a short loop
segment with two entries with τ ≈ 3π/4 prior to the
trajectory proceeding to helix F in the α-helical region.

The segment 115-126 between helices G and H consists
of a soliton pair, one centered near site i = 121 and the
other near site i = 125. Figure 6b shows that the folding
index of the entire segment has the value Indf = +2.
Indeed, as seen in Figure 7b, between vertices 123-126,
the trajectory encircles once the center of the annulus
in the clockwise direction. The first soliton starts in the
α-helical region (helix G), and proceeds to β-stranded
region. There is a branch point both along link 119-
120 and along link 120-121; topologically, the segment
between vertices 119 and 121 is similar to the segment
between vertices 6-7 in Figure 4a. Furthermore, the link
between vertices 119 and 120 passes very close to an in-
flection point. Thus, with τ120 persisting negative value,
a small decrease in the τ119 value can bring about an in-
flection point perestroika that changes the folding index
of the segment 115-126 into Indf = 0 by conversion of
a branch point into a flattening point along the link be-
tween i = 119 and i = 120. This flattening point then
moves to the link between i = 118 and i = 119, provided
the value of τ119 decreases further so that it becomes
negative. Similarly, with the vertex 119 intact, a small
increase in the τ120 value can also bring about an in-
flection point perestroika that changes the folding index
of the segment into Indf = 0 by converting the branch
point into a flattening point on the link between vertices
i = 119 and i = 120.

IV. THERMAL DYNAMICS AND LOCAL
TOPOLOGY

A. Glauber dynamics

Using the ambient temperature as a control parame-
ter, we investigate changes in the local topology of the
1ABS backbone during thermal folding and unfolding;
the ambient temperature then has the same role as the
parameter m in the example (1)-(3). We simulate ther-
mal effects using the Glauber algorithm [34]. It models
pure relaxation dynamics so that a Cα backbone evolv-
ing according to the Glauber algorithm approaches the
instantaneous Gibbsian thermal equilibrium state at an
exponential rate. We realize Glauber dynamics using
a Monte Carlo algorithm that evaluates the transition
probability from a conformational state a to a conforma-
tional state b using the following probability density [35],

P(a → b) =
1

1 + eFba/T
. (41)

The parameter T in (41) is the Monte Carlo tempera-
ture factor that acts as our control parameter. The ac-
tivation energy Fba in (41) is the difference between the
corresponding free energies (35) between the two states,
augmented as follows:

F (κ, τ) → F (κ, τ |r) = F (κ, τ)+
∑

|i−j|≥2

V (ri−rj) . (42)

The two-body potential V (ri − rj) can include various
contributions, from the short-distance excluded volume
interaction to the long-range Coulomb interaction, and
we refer to [32] for a discussion on different two-body po-
tentials in the present context. In our simulations, with
focus on local topology and not on geometric atomic level
details, it is sufficient to account for only the excluded
volume repulsion that we model using the hard-core po-
tential

V (ri − rj) =

∞ if |ri − rj | ≤ ∆
0 if |ri − rj | > ∆

|i− j| ≥ 2

0 |i− j| < 2

(43)
and we choose ∆ = 3.7Å that coincides with the diag-
onal length of the peptide plane, ensuring that the dis-
tance between any two Cα atoms that are not nearest
neighbours along the backbone can never be less than the
distance between two neighboring Cα atoms. The units
in (41) are set by the overall scale of (35), and we refer
to [29] for a detailed relation between T and the phys-
ical temperature factor kBTK with kB the Boltzmann
constant and TK the ambient temperature measured in
Kelvin.
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B. Geometric order parameters

First, we analyse thermal effects on the protein back-
bone in terms conventional, geometry based order pa-
rameters a.k.a. reaction coordinates. We start with the
radius of gyration (5). The Figure 8a shows its evolu-
tion as a function of the temperature factor T with three
different values of ∆ in (43). The results for the 1ABS

FIG. 8. a) The radius of gyration Rg as a function of the
Monte Carlo temperature factor T for ∆ = 3.7(Å) that is used
in our 1ABS simulations, ∆ = 2.0(Å) as a generic example of
a small ∆, and ∆ = 0 that approaches random walk in the
high-T limit. b) The Binder cumulant of Rg with ∆ = 3.7 as
a function of T . c) The susceptibility of Rg with ∆ = 3.7 as a
function of T . d) The helicity together with its susceptibility
as a function of T , with ∆ = 3.7.

simulations i.e. with ∆ = 3.7(Å) are shown using pur-
ple data points. At low T values, when log10 T < −14
we have Rg ≈ 15(Å). This coincides with the radius
of gyration of the crystallographic 1ABS in the folded,
space-filling (Peano) phase; see (7). The low-temperature
phase is followed by a transition regime around values
log10 T ∈ [−15,−13], where the radius of gyration in-
creases to Rg ∼ 24(Å). This interval of temperatures
corresponds to the experimentally measured Rg in the
molten globule phase (7) [29]. The molten globule phase
persists until the system enters a second transition regime
with log10 T ∈ [−10,−8] where the radius of gyration in-
creases to Rg ∼ 34. We observe no change in Rg when
T increases further; note that in the high-T limit, only
the excluded volume condition (43) persists. Thus, in
the large-T regime, the backbone is in the phase of self-
avoiding random walk (SARW); see (7).

The simulation results for the value ∆ = 2.0(Å) are
presented by the green data points in Figure (8)a. This
value of ∆ is chosen to exemplify the effects of the self-
avoiding condition in terms of a generic non-vanishing
but small ∆ value. However, it is important to keep
in mind that in the case of an actual protein backbone,
any distance less than ∆ = 3.7(Å) between any two Cα
atoms along the backbone chain is normally sterically
excluded [31]. For low temperatures, up until log10 T ≈

−9, the Rg values are quite similar to those with ∆ =

3.7(Å); the difference can be interpreted as an effective
∆-dependence of the Kuhn length R0 in (6). When T
increases to log10 T ∈ [−9,−8] the value of Rg decreases

slightly and then stabilizes to Rg ≈ 28(Å) which is the

high temperature SARW value for ∆ = 2.0(Å).
For comparison, the light-blue data in Figure (8)a de-

scribes the case ∆ = 0, with no self-avoidance. Up to
log10 T ≈ −9 the values of Rg evolve in line to ∆ = 3.7

and ∆ = 2.0 reaching Rg ≈ 25(Å); the difference to
∆ = 3.7 and 2.0 can again be interpreted in terms of
an effective ∆-dependency of the Kuhn length (6). But
after log10 T > −9 the value of Rg starts decreasing until

log10 T ≈ −7, after which it stabilizes to Rg ≈ 20(Å).
Since neither excluded volume repulsion nor the free en-
ergy contributes in the large-T limit, with ∆ = 0, the
large-T regime describes a chain that resides in the fully
flexible, Brownian random walk phase.
Remarkably, in the case of ∆ = 0, even though the

radius of gyration values in the intermediate log10 T ∈
[−12.5,−10] regime and in the large-T regime are the
same, these two regimes clearly represent two differ-
ent phases that are separated by a transition region of
variable Rg, peaked at around log10 T ≈ −9. Since
the log10 T ∈ [−12.5,−10] regime of ∆ = 0 connects
smoothly to the molten globule phase of 1ABS, as shown
by the ∆ = 2 intermediate, we also conclude that in
the case of myoglobin, the molten globule phase is differ-
ent from the random walk phase, even if the two share
the same scaling exponent ν of (5): The molten globule
phase describes a self-avoiding walk with scaling expo-
nent ν ≈ 1/2.
In summary, from the results of Figure 8a, we de-

duce that myoglobin (∆ = 3.7) has three geometrically
distinct phases that are separated by two intermediate
transition regimes as follows: There is the low-T folded
phase. There is an intermediate-T molten globule phase
where the radius of gyration has the same value as in the
random walk phase, but the two phases are different. Fi-
nally, there is the high-temperature self-avoiding random
walk phase.
We have also investigated the phase structure using

the lowest order Binder cumulant BQ [33]. In the case of
a quantity Q, this Binder cumulant is defined as follows:

BQ =
⟨Q4⟩
⟨Q2⟩2

− 3 , (44)

The Binder cumulants are commonly employed to iden-
tify different phases and phase transitions in statistical
systems. These cumulants are especially useful in the
case of finite systems, such as a protein in our case, as
they can often identify phase transitions and describe
critical phenomena without a need for an extensive finite-
size scaling analysis. With the normalization of Eq. (44),
in the case of an ordered phase such as the ferromag-
netic phase in a magnetic system, this Binder cumulant
tends towards BQ = −2 while in a disordered phase it
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approaches zero; a higher value of BQ generally indicates
a higher degree of disorder.

In Figure 8b, we show the T -evolution of the Binder
cumulant BR evaluated for the radius of gyration Rg,
in the case of myoglobin. The figure confirms the exis-
tence of the three distinct phases that we have identified
in Figure 8a, as the three (approximate) constant valued
levels of Rg. In the collapsed low-temperature phase,
the Binder cumulant has the value BR = −2 confirm-
ing that this is an ordered phase. In the intermediate
molten globule phase, the value of Binder cumulant is
BR ≈ −1.93, and in the high temperature self-avoiding
random walk phase BR ≈ −1.85. Notably, in these two
apparently disordered phases we still have relatively low
Binder cumulant values so that there is a degree of order
present.

Besides the radius of gyration, there are also other ge-
ometric order parameters that can be introduced, and as
an example we consider the helicity H that we define as
follows: A Cα atom is in a helical position if the value of
its bond angle is within the range κ ∈ [1.29, 1.78], and the
value of its torsion angle is in the range τ ∈ [0.5, 1.27].
These values are selected to cover the α-helical region
on the annulus A in Figure 3b; other values could also
be considered. The helicity H is then the ratio in the
number of those Cα atoms that have (κ, τ) values in the
above region over the number of all Cα atoms along the
entire backbone – 154 in the case of 1ABS. Figure 8d
shows the thermal dependence of the helicity H. Again,
the result shows that there are three different phases in
myoglobin as a function of T , matching those shown in
the other panels in Figure 8.

We also introduce the susceptibility SQ of a quantity
Q, defined as follows,

SQ = ⟨Q2⟩ − ⟨Q⟩2 . (45)

In the thermodynamic limit of a second-order phase tran-
sition, the susceptibility diverges at the critical temper-
ature. However, in a finite system, this divergence is
replaced by a peak located near the putative transi-
tion point. If the maximum value of the peak does not
increase with the volume, it signals the presence of a
smooth crossover transition, while a peak that grows in
proportion to the volume of the system is a character-
istic of a discontinuous, first-order phase transition. A
second-order transition then lies in between these two
extremes.

Figures 8c and 8d show the temperature evolution of
both the radius of gyration susceptibility SRg

and the he-
licity susceptibility SH . Both identify the three distinct
phases of myoglobin, but their behaviors at the transi-
tion regimes are different: In the case of SRg

shown in
Figure 8c, there is no peak. Thus, either the transitions
are not of second order, or the radius of gyration Rg does
not couple to critical fluctuations. In the case of helic-
ity susceptibility SH , we observe (slight) peaks at both
transition regions, implying that the respective thermo-
dynamic transitions do take place. Thus, in terms of

susceptibility, the fluctuations in helicity better reflect
the difference in the nature of the phases than the radius
of gyration.

C. Local topology and perestroikas in myoglobin

The radius of gyration and the helicity are both ge-
ometrically determined order parameters. Neither can
reveal the role of local topology and perestroikas in the
transitions between the different phases that we have dis-
played in Figures 8. To disclose how thermal dynamics
can affect the local backbone topology, we start with two
examples, both of them focusing on the local topology
around the F-helix that is located between sites 86 and
95. We have chosen this segment since the F-helix is pre-
sumed to have an important role in ligand entry and exit.
Moreover, the F-helix is known to be the first helix that
is affected when the temperature starts increasing, which
is also observed in the Glauber dynamics simulations of
(42) in [24, 29].
In Figure 7a, we have already presented the loop seg-

ment 75-85 on the annulus A in the case of the crys-
tallographic 1ABS. In Figure 9a-f, we show, in terms of
instantaneous snapshots along a Glauber dynamics tra-
jectory, how this loop segment evolves on A as a function
of T .

FIG. 9. Instantaneous snapshots of the trajectory 75-85
at different Glauber temperature factor values. In panel a)
T ≈ 10−13, in panel b) T ≈ 10−12, in panel c) T ≈ 10−10,
in panel d) T ≈ 10−9, in panel e) T ≈ 10−8, and in panel f)
T ≈ 10−5.

It should be kept in mind that Figures 9 are instan-
taneous snapshots along a thermal trajectory. As such,
the results we present are subject to thermal fluctuations
with amplitudes that increase with increasing T . While
the changes in local topology are representative, the ge-
ometric details are not.
Starting from the crystallographic structure, the T -

value where we first start observing clearly visible tem-
perature effects is T ≈ 10−13, shown in Figure 9a. This
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T -value corresponds to the end of the molten globule
phase in terms of the geometric order parameters of Fig-
ure 8. In the snapshot Figure 9a, the vertex 84 has moved
from the vicinity of the α-helical region to the vicinity
of the flattening line, and the vertex 85 has similarly
moved from the vicinity of α-helical region to τ ≈ 2π/3.
There is no perestroika, and the local topology has re-
mained intact. But since these thermal changes in the
Cα-geometry occur in the vertices that are proximal to
the F-helix, this helix is starting to melt. This is in line
with Figure 8d showing that helicity starts diminishing
for T -values above T ≈ 10−14.

Otherwise, there are only minor, local geometry chang-
ing movements in the remaining vertices along the back-
bone, as can be seen by comparing the placement of black
dots in Figures 7a and 9a, denoting the remaining Cα
atoms of myoglobin. Thus, the original shape of the crys-
tallographic structure remains largely intact.

In Figure 9b, the temperature factor has increased to
T ≈ 10−12, which is in the middle of the molten globule
phase, according to Figures 8. Except for the vertices
84 and 85, located right before the F-helix, the loop re-
gion between E and F helices remains largely intact. But
there is now a branch point along the link connecting
vertices 83 and 84, and the flattening line needs to be
crossed between vertex 85 and the α-helical region. This
increases the folding index by +2, and we conclude that
inflection point perestroikas, in combination with either
a bi-flattening or a bi-branching perestroikas, can take
place. The value of the folding index starts fluctuating.

In Figure 9c, we have a snap-shot at T ≈ 10−10, which
corresponds to the beginning of the transition regime
between molten globule and self-avoiding random walk
phases. Additional perestroikas have taken place, affect-
ing both the folding index between helices E and F and
the positions of the vertices 84 and 85. We also observe
an increase in backbone vertices (black dots in the figure)
in the quadrant between the branch cut and τ = −π/2,
which proposes that perestroikas are indeed more com-
mon. There is also a slight widening in the geometry
of vertices around the α-helical region, showing that at
these T -values, there is an onset of rapid decrease in he-
licity, consistent with Figure 8d. But by and large, the
distribution of vertices on the annulus A in Figures 9a
and 9c are still quite similar, suggesting that the changes
in the overall shape of the backbone remain minor.

Figure 9d is a snap-shot at T ≈ 10−9, in the transition
region between molten globule and self-avoiding random
walk phases. We observe the presence of several per-
estroikas that affect the structure of the loop, and the
spreading of vertices around the α-helical region contin-
ues, including those next to the E-helix. This is consis-
tent with the increasing melting of helical regions, also
observed in Figure 8d.

Figure 9e is a snap-shot at T ≈ 10−8, which is the
low-temperature limit of the self-avoiding random walk
phase, according to Figures 8. The melting of the loop
close to the E-helix has continued, and closer toward the

F-helix, there are several additional perestroikas, includ-
ing inflection point perestroikas affecting the folding in-
dex. The vertices (black dots) are spreading more widely
around the annulus A.
Finally, in Figure 9f, we have T ≈ 10−4 corresponding

to the self-avoiding random walk regime. The vertices are
distributed quite randomly over the annulus A, causing
cascading of perestroikas.
In summary, the examples in Figures 9 suggest the fol-

lowing relation between the different phases and regimes
in Figures 8, local backbone topology, and its pere-
stroikas.

• In the transition regime between collapsed and
molten globule phases, the thermal fluctuations of the
individual vertices start increasing, and the backbone
chains swell; the changes are geometric with perestroikas
rarely occurring, so that the shape of the backbone re-
mains largely intact.

• In the molten globule phase, helices start melting,
and local topology occasionally changes by occasional
perestroikas.

• During the transition from molten globule to self-
avoiding random walk, the perestroikas become more
common and start cascading. This causes the melting
of helices and a decay of super-secondary structures.

• The self-avoiding random walk phase is dominated
by frequent, cascading perestroikas and an increasingly
random distribution of the bond and torsion angles on
the annulus A.

D. Order parameters for local topology and
perestroikas

The previous example describes how temperature-
driven transitions between the different phases correlate
with the frequency of perestroikas, changing the num-
ber of flattening and branch points and the folding in-
dex along the backbone trajectory on A. We now intro-
duce a novel order parameter, appropriate for estimating
the T -evolution of perestroikas in terms of local topol-
ogy changes. We start with the observation that when-
ever either bi-flattening or bi-branching perestroika takes
place, there is an accompanied change in the sign of the
torsion angle at a corresponding vertex. Thus, we assign
the following quantity to each link, connecting a pair of
neighboring vertices along the backbone,

bi =

{
1 if τiτi+1 ≤ 0

0 if τiτi+1 > 0
(46)

and we define the following correlation function withN =
154 in the case of 1ABS

C(k) =
1

N − k

〈
N−k∑
i=1

bibi+k

〉
(47)
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where the average is taken over the thermal ensemble.
Note that only links that cross either the flattening line
or the branch cut can contribute to (47). In particular,
when bi and bi+k are both located along the same reg-
ular secondary structure, such as an α-helix, there is no
contribution from bibi+k to (47).
The Figure 10 shows the T -dependence of C(k) for

several different T -values, extending over the same range
as Figure 9. In the collapsed phase up until T ≈ 10−14

FIG. 10. Temperature factor dependence of the correlation
function (47). In panel a) T ≈ 10−14, in panel b) T ≈ 10−13,
in panel c) T ≈ 10−11, in panel d) T ≈ 10−9, in panel e)
T ≈ 10−8, in panel f) T ≈ 10−5. The arrows show the value
of C(0). All values are the averages over all values in the
ensemble, at the given temperature.

that we show in Figure 10a, we observe no change in
C(k); note that this is also the value of T where, ac-
cording to Figure 7a, the backbone enters the transition
regime between the collapsed phase and molten globule.
Remarkably, for these low-T values, the values of C(k)
oscillate between the following level curves

Fn(s) =
n

N − s
(48)

The levels n = 0, . . . , 5 are observed, with only one entry
for n = 5 in the case of 1ABS. Furthermore, the contribu-
tions to the level n = 0 come primarily from helices and,
more generally, from regular secondary structures and
segments that do not contain any flattening or branching
points.

The only exception to the level sets (48) is the value of
C(0) that we identify with an arrow in all the Figures 10.

The value of C(0) counts the number of those links along
the backbone that cross either the flattening line or the
branch cut. Thus, any change in the value of C(0) is a
direct measure of perestroikas taking place. Since C(0)
has the constant value C(0) ≈ 0.13 for all values below
T ≈ 10−14, bi-flattening and bi-branching perestroikas
are practically absent for these low-T values.
When T increases so that the backbone chain enters

the molten globule phase, the C(k) starts to have values
between the level sets (48). This feature is shown in
Figure 10b with T ≈ 10−13.
Here, and in the sequel, the entries show the corre-

sponding thermal average values.
We observe that the n = 0 level curve has become

less occupied, proposing that the melting of helices is in
progress. It is also notable that the value of C(0) has
slightly increased, from C(0) ≈ 0.130 at T ≈ 10−14 to
C(0) ≈ 0.138 at T ≈ 1013 implying that perestroikas are
starting to take place.
When the temperature factor increases to T ≈ 10−11

shown in Figure 10c, which is the upper limit of the
molten globule phase, C(k) is no longer organized along
the level curves, and both n = 0 and n = 1 level curves
are empty except for large k values. The occupation of
level n = 2 has also become quite sparse for smaller values
of k. The values of C(0) have also grown to C(0) ≈ 0.168
so that perestroikas are occurring more frequently.

In Figure 10d, we show the result for T ≈ 10−9, which
is in the transition regime between the molten globule
phase and the self-avoiding random walk phase. The val-
ues of C(k) are starting to re-organize linearly around
the value ∼ 0.025, except for larger k-values where we
still observe the remnants of the n = 0 level. The value of
C(0) has also increased, but only slightly, to C(0) ≈ 0.172
so that there is no significant increase in the frequency
of perestroikas.

Figure 10e shows the values of C(k) for T ≈ 10−8,
which places us at the beginning of the self-avoiding ran-
dom walk phase. The values of C(k) are increasingly
approaching a constant value, close to ∼ 0.05, except
for the large-k where we still observe remnants of the
level structure. The value of C(0) grows somewhat more
rapidly; the value is now around ∼ 0.21.
Finally, in Figure 10d, we are in the self-avoiding ran-

dom walk phase. The C(k) is now essentially constant
valued, C(k) ≈ 0.2 (for s ̸= 0), and there has been a
rapid growth in frequency of perestroikas, and C(0) has
grown more rapidly to C(0) ≈ 0.44. We propose that
both of these values are close to the universal values for
a self-avoiding random walk chain. Notably, in the case
of the ideal random walk, we would expect the value
C(0) = 0.5. This is because the probability for any ver-
tex to have a positive value equals the probability for it
to have a negative value so that, on average, every other
bond will cross either the flattening line or the branch
cut. By similar reasoning, we expect to get C(k) = 1/4
for k > 0 in the random walk phase.
Figure 11a summarizes the T -dependence of C(0) in
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the different phases and transition regimes, comparing its
value to the T -dependence of the radius of gyration. The

FIG. 11. a) Comparison of the radius of gyration Rg (purple)
and C(0) (green), which counts the relative number of flatten-
ing and branch cut points as a function of temperature factor
T . The labels I-V are the three phases (collapsed I, molten
globule III, and SARW V) and the two transition regimes (II
and IV) as they are identified by C(0). b) Binder cumulant of
C(0) (purple) and susceptibility of C(0) (green) as a function
of T . The Binder cumulant clearly identifies the two transi-
tion points, between the folded phase and the molten globule,
and between the molten globule and SARW, respectively.

figure demonstrates how both the phases and the tran-
sitions between them are detected in a much more clear
manner by the topological order parameter C(0) for pere-
stroikas, than by geometric order parameters such as Rg:
The three phases become much more clearly recogniz-
able, with transitions between them much more abrupt
than in terms of Rg. The transitions are also occurring
at somewhat higher values of T . Indeed, since C(0) has a
topological origin unlike Rg it is not sensitive to changes
such as swelling that affect only geometrical details, while
leaving the topology, i.e. the overall shape of the protein,
largely intact.

In Figure 11b we show the T -dependence of both the
Binder cumulant (44) and the susceptibility (45) of C(0).
The Binder cumulant, in particular, marks the phase
transition between the folded state and the molten glob-
ule, and the transition between the molten globule and
the self-avoiding random walk phase in a visible manner,
much more clearly than in the case of Rg shown in Figure
8b. It displays two clear peaks. The first peak at around
T ≈ 10−13 coincides with the decay of the level struc-
tures (48) as shown in Figure 10b and the second peak
at around T ≈ 10−8 coincides with the process of re-
arrangement of the correlation function along a constant
value as shown in Figure 11b. Notice that the positions
of the second peaks in susceptibility and the Binder cu-
mulant do not coincide. This is a characteristic behavior

of a so-called pseudo-critical transition, in the case of a
statistical finite-volume system.
By combining the information from C(0) and Rg and

their Binder cumulants and susceptibilities, i.e. topo-
logical and geometrical information, we obtain a more
complete, refined picture of the thermal evolution with
the three-phase and their transition regimes clearly iden-
tified. For example, the transition between the collapsed
phase to the molten globule phase starts with an ini-
tial swelling of the backbone that is detected by Rg.
When Rg reaches a value that corresponds to the molten
globule, there is a rapid change in the frequency of per-
estroikas that change the local topology, as described
by C(0) and its Binder cumulant. Remarkably, within
the molten globule phase, the frequency of perestroikas
barely changes.
Similarly, the transition from molten globule to SARW

is initiated by an increase in the swelling, with local
topology largely intact. When the radius of gyration has
reached the value that characterizes the SARW phase,
there is a topological transition with a large increase in
the value of C(0) signaling a phase transition due to cas-
cading perestroikas; in this case, the Binder cumulant
detects the transition as the inception of break-up in the
molten globule phase.

V. SUMMARY

We have introduced the concept of local topology into
protein research and we have developed the ensuing bi-
furcation theory as a methodology to understand and
describe the phase structure and thermally driven dy-
namics of protein Cα backbones. To achieve this, we
have adapted and expanded Arnol’d’s perestroikas to
create a framework suitable for discrete piecewise linear
chains, such as the Cα backbone. As a specific example,
we have investigated myoglobin, modelling it as a topo-
logical multi-soliton solution to a discretized nonlinear
Schrödinger equation (DNLS). Unlike all-atom molecular
dynamics, which aims to provide detailed geometrical de-
scriptions of an entire protein with individual atom-level
precision, our adapted approach focuses on the back-
bone’s local topology, and how it changes.
We have combined the DNLS free energy with the

Glauber algorithm to simulate the phase structure and
thermal dynamics of myoglobin, at the level of local
topology changes. Our findings indicate that within a
specific phase, the local topology of a Cα backbone shows
minimal dependence on its detailed geometry, such as the
precise positioning of individual atoms. Therefore, when
concentrating on local topology and its alterations, our
results obtained from studying myoglobin are not limited
to this protein alone but possess much broader applica-
bility to globular proteins.
We have identified three perestroikas that are signifi-

cant for Cα backbones and their topological phase transi-
tions: Bi-flattening perestroika, bi-branching perestroika,



18

and inflection point perestroika. We have demonstrated
how each contributes to the phase structures and the
transitions between the different phases in the case of
globular proteins. Specifically, each phase of a protein
backbone possesses a distinctive local topology with a
corresponding perestroika pattern.

We have introduced a novel correlation function to
analyze the local topology of a Cα backbone, enabling
the detection of perestroikas and their cascading. By
combining this correlation function with traditional geo-
metric order parameters, such as the radius of gyration,
we have developed more comprehensive analytical tools.
By utilizing both geometric and topological perspectives,
our approach unveils new insights into the protein phase
structure and thermal dynamics.

We are confident that the concepts of local topol-
ogy and perestroikas, previously unexplored in protein
research, will prove to be invaluable tools, even more

widely, in the physical analysis of string-like objects.
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