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Abstract

A technique is proposed that uses a multi-scale approach to calculate transport properties of compressed felts using only image
analysis and numerical calculations. From the image analysis fiber diameter distribution and fiber orientation are determined. From
a known porosity and the latter two characteristics, two representative elementary volumes (REV) are constructed: one based on
the volume-weighted average diameter and one on an inverse volume-weighted average diameter. Numerical calculations on the
former showed that it correctly estimates viscous and thermal permeabilities, while the latter correctly estimates tortuosity and
viscous and thermal characteristic lengths. From these calculations, micro-macro analytical expressions are developed to estimate
the transport properties of polydisperse composite felts based solely on open porosity, fiber diameter polydispersity, and fiber
orientation. Good agreements are obtained between analytical predictions and measurements of transport properties. The predicted
transport properties are also used in the Johnson-Champoux-Allard-Lafarge (JCAL) equivalent fluid model to predict the sound
absorption coefficient of the felts. Excellent agreements are obtained with impedance tube measurements.
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compression effect
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1. Introduction

Nonwoven fabrics are some of the most widespread man-
made porous materials that are used in many engineering fields
including health and medical care, energy or sound proofing
applications. The main constituents of nonwoven are fibers that
are linked together by cohesive bounds induced by the manu-
facturing process in the form of fibrous networks with trans-
verse isotropy. Nonwoven fibrous media with a wide diversity
of physical and mechanical properties (Dirrenberger et al. [1],
Altendorf et al. [2], Bosco et al. [3]) can be manufactured by
tailoring the nature of the raw materials and the manufacturing
process conditions (e.g., type of geometry, bale opening and
weighting of the fibers, fibers web creation, thermal bounding
thickness adjustment and cutting). However, the links between
composite nonwoven manufacturing parameters, the resulting
fibrous microstructures, and the product performance are still
not fully evidenced. For example, the permeability k0 (Darcy
[4]) and the viscous characteristic length Λ (Johnson et al. [5])
of felts often follow a nonlinear evolution with their porosity,
the microstructural origins of which are still questioning. Thus,
the construction of the aforementioned links constitutes a sub-
ject of intense research. In particular, there is still a need for

relevant multiscale and multiphysics models that could (1) ac-
count for the complexity of composite felt microstructures and
related transport and sound absorbing properties and (2) be im-
plemented in numerical simulation tools for computer-aided de-
sign of composite felts applications or for monitoring of the
composite felts manufacturing process itself.

For that purpose, numerous theoretical studies have been
conducted in the last decades. In most cases, composite felts
are modeled as aligned fiber bundles (Berdichevsky and Cai
[6], Boutin [7], Thiery and Boutin [8], Piegay et al. [9], Tarnow
[10, 11, 12], Umnova et al. [13], Semeniuk and Goransson [14],
Semeniuk et al. [15]). These approaches often assume that the
representative elementary volume of a composite felt can be re-
duced to the most basic geometric information, that is, porosity
ϕ and fiber size, so that it is based on a bicomposite cylindri-
cal pattern made of an internal cylindrical fiber and an external
fluid shell that ensures fluid connectivity. The proposed analyt-
ical models are interesting because they encapsulate the essen-
tial parts of the physics and are easily configurable. However,
they do not account for the complexity of the geometry and the
combined effect that spatial randomness in the pore space has
on flow problems.
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To better understand the effects of visco-thermal micro-
mechanisms on the values of transport coefficients of compos-
ite felts, many fiber scale numerical studies were conducted
(Koponen et al. [16], Martys and Garboczi [17], Tomadakis
and Robertson [18, 19], Schladitz et al. [20], Umnova et al.
[13], Altendorf and Jeulin [21], Peyrega et al. [22], Luu et al.
[23, 24], He et al. [25], Soltani et al. [26], Tucny et al. [27]).
For example, Luu et al. [23, 24] performed numerical simula-
tions using networks of straight cylindrical fibers to investigate
the effect of porosity, fiber radius, and fiber orientation on the
in-plane and through-plane transport properties of fibrous me-
dia. Using random porous media from two-dimensional mod-
els, Martys and Garboczi [17] demonstrated the important ef-
fect that spatial randomness in the pore space has on flow prob-
lems. This analysis showed that, in a random pore structure
with a distribution of pore sizes, the viscous fluid flow will
tend to go through the largest pore necks, decreasing the im-
portance of the narrowest necks. They also highlighted that
the sizes of the dynamically connected pore regions were not
exactly the same for the electric and fluid flow cases (Martys
and Garboczi [17]). In particular, for a fibrous material made
of wood fibers with an open porosity ϕ = 0.64, Peyrega and
Jeulin [28] and Peyrega et al. [22] showed that the volume-
weighted average radius rv was an appropriate size of the fiber
radii to quantitatively predict its sound absorbing properties at
normal incidence. This approach assumed a two-dimensional
Boolean model of random cylinders composed of overlapping
fibers, where the locations of the centers of the discs were de-
termined according to a random Poisson point process. This
analysis was extended to three-dimensional models for glass
wool samples obtained with various processing parameters by
He et al. [25].

Keeping in mind that at fixed porosity, fewer fibers are in-
troduced into a given volume when the fiber radius is volume-
weighted, these results highlight that the rv length scale pro-
vides an effective way to reconstruct pore space. This space
encompasses the largest pores, forming a continuous path for
the flow of viscous fluids in actual fibrous media. These nu-
merical results confirm the trends reported in several comple-
mentary experimental and semi-empirical studies (Delany and
Bazley [29], Bies and Hansen [30], Miki [31], Garai and Pom-
poli [32], Manning and Panneton [33], Kerdudou et al. [34],
Xue et al. [35], Pelegrinis et al. [36]). Briefly, they highlight
(i) the central role of fiber distributions (in size and orientation)
and (ii) the need for a proper characterization of the geometry
and transport processes in polydisperse fiber structures. This is
particularly true for nonwovens that exhibit a wide distribution
of fiber diameters and lengths [22, 25].

On the one hand, noticeable progress has been achieved
in the purpose of characterizing the transport parameters of
porous materials thanks to dedicated testing devices (Stinson
and Daigle [37], Leclaire et al. [38], Ayrault et al. [39]). These
tests are interesting but still remain difficult to carry out, as they
require permeable porous media to enable the propagation of
ultrasonic waves through the thickness of the material. On the
other hand, significant progress has also been achieved to char-
acterize finely the microstructures of nonwoven fibrous media

with imaging techniques such as scanning electron microscope
images (Luu et al. [23]) and optical granulomorphometry (He
et al. [25]) or X-ray microtomography coupled with advanced
image analysis procedures (Lux [40], Peyrega et al. [41], De-
priester et al. [42]). For instance, He et al. investigated the
effect of fiber distributions (orientation, length, diameter) on
several transport parameters of low density glass wools from
optical granulomorphometry (length, diameter) and scanning
electron microscope images (orientation) for ten products pro-
vided with two different classes of surface densities. Angular
orientation and volume averaging of fiber diameters were used
to reconstruct virtual geometries and quantitatively predict the
viscous permeabilities k0 of the corresponding samples. How-
ever, they did not fully capture the overall transport properties,
in particular with respect to the high frequency parameters (vis-
cous Λ and thermal Λ′ characteristic lengths).

In light of the above, the objective of this study is to pro-
pose a multiscale model for the overall transport and long-
wavelength sound-absorbing properties of composite felts, tak-
ing into account the appropriate descriptors of the polydisperse
microstructure that can be obtained using images. For this pur-
pose, two types of composite nonwovens with several compres-
sion ratios were manufactured and thermobonded. Their mi-
crostructures were characterized using scanning electron micro-
scope images. We also characterized their transport and sound-
absorbing properties. The combination of these data makes
it possible to formulate relevant hypotheses for the architec-
ture of fiber networks and their transport processes on the fiber
scale. These features were then upscaled using homogenization
with multiple scale asymptotic expansions for periodic struc-
tures (Sanchez-Palencia [43], Bensoussan et al. [44], Auriault
et al. [45]). This method proposes a rigorous framework to de-
duce the effective coefficients of importance and the effective
equations that govern the macro-fields of the equivalent con-
tinuum media of composite felts. It also provides well-posed
boundary value problems to be solved on representative ele-
mentary volumes (REVs) to estimate their macroscale prop-
erties. These problems are first solved numerically using the
finite element method. Then, a second semi-analytical multi-
scale model is proposed, approximating the numerical results
obtained by curve fitting and yielding unified models which as-
sume the effective coefficients of importance as a function of
porosity, fiber orientations, and effective fiber radii. Predictions
of the numerical and semi-analytical models are compared with
experimental data and discussed.

2. Materials and experimental methods

2.1. Felts

Two nonwoven materials are investigated (Fig. 1): namely
“cotton felt” and “PET felt”. Raw materials entering into the
initial composition (Tab. 1) together with the corresponding
manufacturing process are discussed in the following. Note that
in the textile industry, the fineness (t) of the fibers is specified
by dtex, which enables a linear density estimate of the fiber size.
To calculate the diameter of the fiber from the fineness t (dtex)
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and the mass given by unit volume of the fiber material ρ f , the
following formula is used: D f =

√
4t/πρ f .

2.1.1. Cotton felt
The fabrication of the cotton felt uses an airlay process,

where the aerodynamic web forming is a dry procedure to form
a web out of a wide variety of staple fibers. The fibers leave
from a rotating drum into a turbulent air flow. Suctioning into
a perforated moving conveyor belt or a perforated drum leads
to the formation of a random three-dimensional web structure
(Handbook of nonwovens, Chap. 4 [46]; Gramsch et al. [47]).
The input fiber material is a mixture of 75% shoddy fibers and
25% bicomponent fibers in mass. The core of the bicomponent
is made of PET, and its surface is made of coPET in a 1:1 ratio.
The bicomponent fibers are homogeneous with circular cross
sections, whereas the shoddy fibers obtained after tearing of
textile waste are not homogeneous. This shoddy is made from
a mixture of 55% cotton and 45% PET. In post-processing, the
nonwoven material called felt is reinforced by thermobonding
with a chosen compression ratio. Here, the bicomponent fibers
have an adhesive effect.

2.1.2. PET felt
The input fiber material is a mixture of 60% PET fibers and

40% bicomponent fibers in mass. The same bicomponent fibers
are used as for cotton felts. The fibers are homogeneous with
circular cross sections and regular lengths. In web forming, the
web is formed by a roller card. Fiber tufts and bundles are dis-
entangled to form a parallel layer of fibers. The fibers in the
card web have a lengthwise orientation. Then, this card web is
laid in several layers on a take-off belt via a conveyor belt sys-
tem with an oscillating carriage movement. This take-off belt
moves 90 degrees to the cross-lapper. The fiber web is mechan-
ically bonded by needling through the use of barbed needles. A
portion of horizontal fibers are reoriented into the vertical plane
in the form of fiber tufts. This nonwoven material is called
needlefelt (Handbook of nonwovens, Chap. 8 [48]; Nonwoven
Fabric, Chap. 6 [49]). Finally, thermobonding reinforcement is
also applied along with the chosen compression ratio.

Figure 1: Felt samples thermobonded at different thicknesses (sample diame-
ter, 45mm).

2.2. Characterization of the microstructure
The microstructure of the non-woven fibrous media was first

characterized using Scanning Electron Microscope (SEM) im-
ages (Fig. 2). The reader is referred to Appendix A for a

c)

a)

b)

Figure 2: Example of SEM images of cotton felt F2 and dimensional measure-
ments of fibers (Fiji software). Measurement of: (a) fiber diameters (blue is
cotton fibers, red is bicomponent fiber) in the xy-plane; (b) azimuthal or hori-
zontal angle (φ) in the xy-plane, and (c) zenithal or vertical angle measurements
(θ) in the xz-plane.

detailed description of the preparation and cutting of samples
prior to acquisition of SEM images, and to Appendix B for
a discussion on the bias introduced by the projection process.
Based on these two-dimensional images, typical fiber diame-
ters were measured manually (Figs. 2a). To determine the in-
plane [respectively out-of-plane] orientation distributions of the
fibers, we superimposed straight segments on the fibers on the
surface of the fibrous materials and extracted the in-plane ori-
entation angle φ (Fig. 2b) [respectively out-of-plane orientation
angle θ (Fig. 2c)] for each segment of all identified fibers on or-
thogonal sections of the materials.

2.3. Characterization of transport and acoustic properties

The open porosity ϕ and true mass density ρwere determined
using the pressure / mass method (Salissou and Panneton [50]).
This method makes it possible to precisely determine the uncer-
tainty in porosity depending on the volume of samples tested.
This is important since open porosity will be a fundamental
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Cotton felt Thickness
(mm)

Compression ratio Density
(kg/m3)

Mass composition
Bicomponent Shoddy

F1 20.3 ± 0.3 1.0 ± 0.00 56.9 ± 5.5 25% 75%
F2 16.1 ± 0.6 1.3 ± 0.05 72.4 ± 10.6 25% 75%
F3 11.2 ± 0.2 1.8 ± 0.04 103.5 ± 10.8 25% 75%
F4 5.9 ± 0.2 3.4 ± 0.10 184.8 ± 27.9 25% 75%

PET felt Thickness
(mm)

Compression ratio Density
(kg/m3)

Mass composition
Bicomponent

4.4dtex
PET

6.7dtex
PET

17dtex
B1 10.3 ± 0.5 1.0 ± 0.00 141.0 ± 8.4 40% 30% 30%
B2 4.3 ± 0.1 2.4 ± 0.17 344.9 ± 15.5 40% 30% 30%

Table 1: Information of the cotton felts and PET felts

property for the proposed multiscale model to work properly.
For each felt family (cotton and PET) and each fibrous material
in a family (F1, F2, F3, F4, B1, B2), the density and poros-
ity were measured. To ensure sufficient precision of measure-
ments, for each fibrous material within a family, measurements
were performed in batches of 12 specimens of cylindrical sam-
ples with a diameter of 45 mm (repeated three times per batch).

The airflow resistivity σ was measured at a flow velocity
of 0.5 mm/s following the static airflow method described in
the ISO 9053-1:2018 standard. For each fibrous material, three
cylindrical samples with a diameter of 45 mm were cut and all
leaks were carefully avoided by adding petroleum jelly to the
circumference of the sample.

The torturosity α∞ was measured using the high-frequency
ultrasound transmission technique (Allard et al. [51]). Three
samples with a diameter of 100 mm for each fibrous material
were measured in air.

The thermal characteristic length Λ′ also known as the gen-
eralized hydraulic radius is defined as two times the ratio be-
tween the fluid volume over wetted solid surface area of the
porous material (Champoux and Allard [52]). The viscous char-
acteristic length Λ was introduced by Johnson et al. [5] as a
dynamically connected radius of the porous structure by intro-
ducing a weighting of both the numerator and denominator of
the generalized hydraulic radius by the squared velocity of a
non-viscous fluid. The viscous Λ and thermal Λ′ characteris-
tic lengths could not be validly measured with the two-gas ul-
trasound transmission technique (air and argon, Leclaire et al.
[38]). It was also impossible for us to obtain valid results with
the acoustic method of Panneton and Olny ([53], [54]). Indeed,
due to acoustic measurements limited to 4000 Hz and to vibra-
tion effects, the stationarity criterion of these methods was not
respected over the characteristic lengths. The same was true
for thermal static permeability k′0. Consequently, the Kozeny-
Carman formula approach, as described in Henry et al. [55],
was used to estimate the two characteristic lengths Λ and Λ′.
This approach involves using the directly measured values for
porosity ϕ, resistivity σ, and tortuosity α∞, as detailed in Ap-
pendix C.

For the same reason, only an estimate of the static thermal
permeability k′0 could be obtained. It used the following relation

between Λ′ and k′0 [54]:

k′0 = M′
ϕΛ

′2

8
. (1)

The coefficient M′ is the dimensionless thermal shape factor. It
differs from unity when the shape of the porous medium does
not consist of circular cylindrical pores arranged in a parallel
formation. From an educated guess based on the mean value
of the results found for fibers in Tab. II of [54], it was set to
M′ = 2.09. Therefore, an estimate of k′0 was obtained from this
equation using the measured porosity and the estimated thermal
characteristic length.

Finally, the sound absorption coefficient (hard-backed) of
each felt was measured at normal incidence in an acoustic
impedance tube of 44.44 mm in diameter. The incident acous-
tic plane wave traveled along the z-axis and excited the front
(or rear) face of the felt in the xy-plane (refer to Fig. 2). The
three-microphone method described in the ISO 10534-2:2023
standard was used. The microphone spacing and tube diameter
allowed valid measurements in the frequency range 45 to 4300
Hz. Three samples per felt were measured on both faces to cap-
ture variations from one specimen to another and to verify how
symmetric the felts were in thickness. The side of the specimen
that is not facing the sound excitation is in contact with a hard
reflective backing. To prevent air leakage between the tube wall
and the specimens, a thin layer of Teflon was applied around the
sample.

3. Experimental results and discussion

3.1. Characterization of the microstructure

The SEM images shown in Fig. 2 give typical features of the
studied nonwoven fibrous media, fibers and fiber connections.
From these images and the corresponding measurements, sev-
eral important remarks can be made.

3.1.1. Fiber network
Figure 2 shows that the nonwoven fibrous medium consisted

of a more or less densely connected fibrous network through the
heat bonding process. It shows a generally uniform fiber orien-
tation distribution φ in the xy-plane (Fig. 3c). The standard
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Figure 3: (a) The orientation of a fiber in three-dimensional space in spherical coordinates. The estimated probability density functions of (b) the fiber diameter; (c)
the azimuthal angle φ; (d) the zenithal angle θ as plotted using a non-parametric kenel method.

Diameter Zenith angle θo

Samples Number of measurements Dm(µm) Nb of measurements θo

F1 2386 13.5 ± 5.6 823 91.9 ± 36.2
F2 2086 14.1 ± 5.8 850 94.1 ± 28.9
F3 2389 13.8 ± 6.2 803 85.9 ± 18.9
F4 2214 13.7 ± 5.6 864 87.3 ± 8.6
B1 2131 23.6 ± 6.9 727 87.9 ± 18.6
B2 1780 24.3 ± 8.4 644 87.7 ± 5.3

Table 2: Statistics related to fiber diameters and angular orientation of fibers as experimentally determined from SEM images

deviation on the out-of-plane angle θ decreases as the compres-
sion ratio increases (Fig. 3d, Tab. 2). For all compression ratios
(from F1 to F4 and B1 to B2), the average value of θ remains
close to 90o. These features reveal a transversely isotropic fiber
orientation (see the corresponding second-order fiber orienta-
tion tensor in Advani and Tucker [56]), which could be ob-
tained using the numerical generation process parameterized
with a preferred fiber alignment along the Oz direction. More-
over, the observation regarding fiber connections tends to show
that fibers can intersect; which could be considered in further
simulations.

3.1.2. Fibers
Figure 2 reveals that the fibers exhibited a rather small ra-

dius of curvature at the scale of a few hundred micrometers so
that each fiber i could generally be ascribed a mean tangent unit
vector −→pi to characterize its orientation (Fig. 3a). Furthermore,

the fibers exhibited a more or less cylindrical shape with pos-
sible intersections due to the manufacturing process (Fig. 2c).
The fibers had a mean diameter Dm = 13.78 µm for the cotton
felts (F1-F4) and Dm = 23.95 µm for the PET felts (B1-B2),
see Tab. 2. For each family of felts, these parameters were
practically constant regardless of the compression ratio. In ad-
dition, the fiber diameter distributions were nearly the same for
the cotton felt family (F1-F4), Fig. 3b. Finally, a small peak
can be distinguished at Dm = 20.1 µm that corresponds to the
bicomponent fibers and a second peak at Dm = 39.5 µm that
corresponds to the second population of PET fibers (17 dtex).
The first population of PET fibers (6.7 dtex) does not appear
clearly due to the fact that it is embedded in the central peak of
PET felts.

It should be mentioned that the thermocompression process
on PET fibers had the effect of spreading the distributions of
fiber diameter populations (Fig. 3b, B1, and B2). This was not
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expected. This may be because B1 was not heat-bonded, un-
like B2, and the fibers were deformed in B2 after heat-bonded.
Also, additional inaccuracy can be attributed to the manual
measurement procedure. However, the two fiber diameter dis-
tributions were relatively similar at the end.

3.2. Characterization of the transport properties
The transport properties, including the open porosity ϕ, static

airflow resistivity σ (or alternatively static viscous permeability
k0 = η/σ, where η is the dynamic viscosity of the air), tortu-
osity α∞, viscous Λ and thermal Λ′ characteristic lengths, and
static thermal permeability k′0, are expected to be predicted us-
ing analytical expressions as a function of the morphological
parameters. For example, Tarnow [10] proposed an equation
to determine the airflow resistivity for 2D cylinders of equal
radii distributed in a square or random lattice. Modifications of
Tarnow’s equations were suggested by Xue et al. [35] for situa-
tions in which a fibrous medium comprises more than one fiber
component and when the radius of each fiber component varies
within a certain range. Furthermore, Tamayol and Bahrami [57]
used a scale analysis technique (or semi-empirical approach) to
determine the transverse permeability of various fibrous matri-
ces, including square, staggered and hexagonal arrangements of
aligned fibers, as well as simple two-directional mats and sim-
ple cubic structures. Umnova et al. [13] proposed an analytical
method to predict the tortuosity, the characteristic lengths, and
the static thermal permeability of a regular array of rigid par-
allel cylinders parallel or perpendicular to the flow direction.
Pompoli and Bonfiglio [58] provided a modification of existing
formulations of transport parameters based on numerical simu-
lations for two-dimensional random structures considering fiber
diameters with symmetric and asymmetric distribution. Luu
et al. [24] proposed a microstructural model for the transport
parameters of three-dimensional networks of rectilinear fiber
with constant diameter allowing for possible intersections. The
equations were derived from rationalized numerical simulations
in the form of master curves expressed as functions of porosity
ϕ, mean fiber radius rm, and Ωzz an effective parameter that pa-
rameterizes the angular orientation of the fibers.

For fibrous materials manufactured by thermo-compression
with different thicknesses, Lei et al. [59] assumed that the trans-
port parameters can be separated into two groups, depending
(ϕ, Λ′, k′0) or not (σ, α∞, Λ) on the orientation of the fibers.
In their approach, porosity depends on the compression rate n
according to Castagnède et al. [60] formula; and Λ′ and k′0
are determined as analytical functions of porosity ϕ (Umnova
et al. [13]) as predicted by the Castagnède et al. [60] formula.
Then, the model allowing prediction of σ is an extension of the
Tarnow [10] model by considering averaging over an angular
distribution function. The same principle is used to predict α∞
and Λ, where this time the Umnova formula [13] is used be-
fore performing the angular averaging. We note, however, that
Lei et al. [59] model requires prior knowledge of the transport
properties value before compression, which supposes available
initial experimental measurements.

To compare the prediction of these models with our exper-
imental data as a function of the compression ratio for cotton

felts (F1-F4), we propose a standard dimensionless representa-
tion. Here, the average fiber diameter Dm is used to make all the
dimensions of the transport properties dimensionless. When fi-
brous materials are characterized by a wide distribution of fiber
diameters (here the cotton-felt family, F1-F4), Fig. 4 shows that
the aforementioned models do not provide a relevant prediction
for the transport parameters of the nonwoven fibrous materials
studied. The model of Lei et al. [59] predicts the correct evo-
lution of the transport parameters with the compression ratio
when the experimental data are known at n = 1. Hence, Fig. 4
suggests that the transport behavior of the considered polydis-
perse fibrous media is ruled by representative volume elements
different from those often assumed in previous models. In par-
ticular, we formulate the hypothesis that these models do not
adequately account for the contribution of the polydispersity of
fiber diameters and the particular physics induced by these ge-
ometries (Fig. 3b).

6



Figure 4: Comparison between experimental estimates of the transport parameters on cotton felts F1 to F4 and the corresponding predictions with literature models
(Lei et al. [59], Xue et al. [35], Luu et al. [23], Umnova et al. [13], Tarnow [10], Pompoli and Bonfiglio [58]). Note that the compression ratio of 1 refers to F1.
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4. New microstructural model focusing on fiber character-
istic sizes

The experimental data collected in the previous section and
the comparisons with literature models showed the difficulty
of classical analytical microstructural models in predicting the
transport properties of nonwoven fibrous media with large fiber
diameter polydispersity. Furthermore, these models do not al-
ways succeed in predicting transport properties as a function
of the compression ratio. Consequently, this section presents
the development of two three-dimensional (3D) microstructural
models in the porosity range 0.65 ≤ ϕ ≤ 0.99. These models
take into account, in particular, the polydispersity of the fiber
diameter and the fiber angular orientation. They are built on
several assumptions related both to the fibrous microstructures
and to fiber-scale thermoviscous dissipation mechanisms of lo-
cally heterogeneous fibrous materials in the long-wavelength
regime. The approach assumes that the local characteristic sizes
governing the transport phenomena within a polydisperse ran-
dom fibrous microstructure depends on the time scale range
of interest. This leads to the introduction of two specific di-
ameters into the reconstruction procedure of two idealized 3D
microstructures from which an upscaling technique is applied,
namely the numerical homogenization method in the low- and
high- frequency asymptotic regimes. Finally, additional equa-
tions are proposed to rationalize the results into compact ana-
lytical estimates for the dimensionless transport parameters of
polydisperse fibrous structures.

4.1. Idealized microstructures
The typical Representative Elementary Volume (REV) of the

nonwoven fibrous materials studied is seen as a 3D random fi-
brous network with N straight cylindrical fibers. A fiber i in
the REV is of diameter Di and defined by its center location
Mi and its orientation vector −→pi. The fibrous medium studied
exhibits a structure with transverse isotropy. Compressing the
medium causes anisotropy. Following Schladitz et al. [20], this
anisotropy can be described by a density function of the direc-
tional distribution pβ(θ, φ) (Stoyanet al. [61]). For the materials
studied, with isotropy in the xy-plane, the function is:

pβ(θ) =
1

4π
βsin(θ)

(1 + (β2 − 1)cos2θ)
3
2

, (2)

where β > 0 is the anisotropy parameter.
Furthermore, it is assumed that there is a good scale separa-

tion between the size L of the reconstructed domain (REV size)
and the smallest size between the macroscopic size of the non-
woven fibrous test samples (cylindrical samples with a diameter
of 45 mm) and the macroscopic size of the acoustic compres-
sion wave L = λ2π (of wavelength λ). Note that the order of
magnitude of size L is given by the ratio L/Dm. This magni-
tude is chosen so that the porosity of the REV is equal to the
experimental value within 0.1% of the relative difference. In
addition, for the sake of simplicity, fibers are allowed to inter-
sect during construction of a REV, which is consistent with the
bounds visible on SEM images due to the thermo-compression
process.

Samples CV(%) Dv(µm) Div(µm) β Ωzz

F1 40.3 19.5 ± 0.3 8.9 ± 0.4 1.4 0.22
F2 39.8 18.7 ± 0.2 9.1 ± 0.3 1.7 0.21
F3 41.9 19.1 ± 0.2 9.3 ± 0.2 3 0.12
F4 38.9 18.5 ± 0.2 9.5 ± 0.2 6.5 0.04
B1 26.6 26.7 ± 0.2 19.8 ± 0.3 3.5 0.09
B2 33.1 31.2 ± 0.2 18.6 ± 0.3 12 0.01

Table 3: Estimated microstructural descriptors of the studied materials. Ωzz is
the angular orientation parameter [24].

4.2. Idealized transport phenomena
In order to accurately upscale the transport and sound ab-

sorption phenomena of the fibrous media being studied, the di-
ameters of the fibers are weighted according to their volume at
low frequencies and inversely weighted according to their vol-
ume at high frequencies. These weighted diameters are given,
respectively, by:

Dv =
1∑N f

i=1 Vi

N f∑
i=1

ViDi, (3)

and

Div =
1∑N f

i=1
1
Vi

N f∑
i=1

1
Vi

Di, (4)

where Vi is the volume of fiber i. For the samples studied, these
diameters are given in Tab. 3.

This apparently strong assumption is supported by the fact
that the viscous boundary layer δv scales as

√
η/(ωρ0), in which

η is the dynamic viscosity of the fluid, ρ0 is its density at rest
and ω is the angular frequency of the sound wave. Indeed, due
to the large viscous boundary layer δv at low frequencies and
the local heterogeneities in the fiber network, the flow will tend
to pass more through the largest pore necks. On the other hand,
at high frequencies, inertial forces associated with fluid density
dominate fluid motion, increasing the importance of the nar-
rowest necks (see Appendix D). The reader is also referred to
Martys and Garboczi [17] for a basic description of these trans-
port phenomena supplemented by computer simulation studies.
Consequently, when the considered nonwoven fibrous materials
are subjected to a macroscopic long-wavelength plane compres-
sional wave, the elementary transport parameters corresponding
to the propagation of the sound wave through the materials are
mostly influenced by the largest fibers at low frequencies and
the smallest fibers at high frequencies. Note that more small-
volume fibers can be introduced into a REV of fixed volume
and porosity than large-volume fibers. Therefore, REV con-
taining small-volume fibers will contain narrower constrictions
than REV filled with large-volume fibers.

It should be noted that a volume-weighted average diame-
ter was previously introduced by Peyrega et al. [22] and He
et al. [25] to predict with success the permeability of heteroge-
neous fibrous materials. Here, we extend this idea to the inverse
volume-weigthed average diameter. Physically, Div is thought
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to be the counterpart of Dv to create the pore space that contains
the smallest pores that form a continuous pathway through the
fibrous polydisperse material in the high-frequency regime. It is
easy to see that these arguments can be generalized to thermal
effects.

4.3. Theoretical upscaling

Under an harmonic excitation, at angular frequency ω, the
local fluid velocity is governed by the linearized Navier-Stokes
equations. At low frequencies, the viscous drag forces dom-
inate, and the Navier-Stokes equations simplify to the Stokes
equations where the fluid is incompressible. At high frequen-
cies, inertial forces dominate, and there is a strong analogy be-
tween the inertial flow problem and the electrical conduction
problem (Brown [62], Johnson et al. [5]). In this case, the
Navier-Stokes equations can be replaced by the electric conduc-
tion problem. In this high-frequency analogy, the solid phase
acts as an insulator and the fluid phase as a conductor (Johnson
et al. [63], Zhou and Sheng [64]).

Therefore, using this analogy together with theoretical de-
velopments (Auriault et al. [45], Lévy [65]), from the homoge-
nization method for periodic structures with multiscale asymp-
totic expansions (Bensoussan et al. [66], Sanchez-Palencia
[67]), several interesting results can be mentioned. Among
them, it is possible to show that the macroscopic transport prop-
erties of interest (k0;α∞,Λ) derive from generic boundary value
problems (Stokes problem; electric conduction problem). Fur-
thermore, an approximate but robust function k(ω) can be pro-
vided that predicts the dependence of visco-inertial effects us-
ing the low (k0) and high (α∞,Λ) frequency properties as input
to the model. Finally, an analog frequency-dependent descrip-
tion k′(ω) of the thermal exchanges between the frame and the
saturating fluid involving two macroscopic transport properties
(k′0;Λ′) can also be introduced (Lafarge et al. [68]).

4.4. Estimates of the transport properties

4.4.1. Numerical homogenization
Taking advantage of the analogy mentioned above and the-

oretical developments, the transport properties of the random
fibrous microstructures of the model were determined using a
finite element method to solve Stokes, Laplace, and Poisson
equations in the pore space. The transport properties of the
nonwoven fibrous materials are then calculated by (i) generat-
ing for each studied nonwoven fibrous material two REVs, one
for each asymptotic regime; (ii) solving the local partial differ-
ential equations which govern the phenomena at low and high
frequencies, and (iii) computing the resulting transport param-
eters thanks to spatial averaging of the resulting fields.

For step (i), two series of numerical REVs, one with a mean
volume-weighted diameter Dv and one with a mean inverse
volume-weighted fiber diameter Div, were generated to mimic
the fibrous microstructures of the manufactured nonwoven seen
by the sound wave in the low- and high-frequency regimes, re-
spectively. Briefly, for each series, N straight fibers i of diame-
ter Di, with orientation vector −→pi, were generated within many
REVs of volume L3. Following Schladitz et al. [20], Altendorf

and Jeulin [21], Chapelle et al. [69], a stationary Poisson line
process is defined with a one-parametric directional distribution
pβ(θ, φ). This parameter captures the degree to which the non-
woven is pressed. Practically, the values of L were set such that
the relative difference between the porosity of the geometric
model and the measured porosity of the corresponding nonwo-
ven fibrous material is less than 0.1%; for 100 realizations of
the geometrical model. Figure 5 presents a convergence study
on L, for the materials studied, in terms of ratio L/Dm. One can
note that a ratio greater than 20 meets this porosity requirement.

Thus, fiber networks were generated in REVs with various
porosities ϕ, ranging from 0.76 to 0.948, a fiber diameter dis-
tribution based on Gamma law, and a density function of di-
rectional distribution pβ(θ, φ), see Eq.2. The Gamma law and
the parameter β were determined by fitting the experimental re-
sults obtained from the SEM images. An example for material
F2 is shown in Fig. 6. The figure shows the best-fit Gamma
law and directional distribution. The figure also shows that the
generation procedure allowed fibrous networks to be obtained
with fiber diameter and orientation distributions close to those
measured experimentally. The best-fit β values for each mate-
rial samples are given in Tab.3. Figure 7 shows six examples of
idealized monodisperse fibrous networks with isotropic (or un-
compressed) (β = 1), strechted (β = 0) and compressed (β > 1)
structures to show the influence of the parameter β.

For step (ii), periodic boundary conditions were ascribed to
solve the boundary value problems on a REV. For a given fiber
in contact with a couple of bounding surfaces, a point of the
fiber was randomly determined along its length. The fiber was
cut at this point so that one segment of the fiber could be trans-
lated to maintain continuity at the boundaries. A visual descrip-
tion of this process is given in Appendix E.

Figure 8 shows the periodic microstructural models recon-
structed for material F2. Figure 8a shows detailed informa-
tion on the polydispersity of the fiber diameters and the di-
rectional distribution that accounts for the compression ratio.
Three monodisperse models of the same medium are also pre-
sented: one with a mean fiber diameter Dm (Fig. 8b), one with a
volume-weighted average diameter Dv (Fig. 8c)), and one with
an inverse volume-weighted average diameter Div (Fig. 8d).

Assuming that all diameters follow a Gamma law, the poly-
dispersity is easily quantified by the coefficient of variation CV .
This coefficient is defined as the ratio of the standard deviation
on the fiber diameters to the mean value Dm. For the materi-
als studied, the values of CV are given in Tab. 3. Figure 8
underlines the inequality Dv ≥ Dm ≥ Div and the interest in us-
ing the two different microstructural descriptors Dv and Div to
predict the transport properties corresponding to, respectively,
low-frequency (k0, k′0) and high-frequency (Λ, Λ′, α∞) trans-
port phenomena at known porosity.

4.4.2. Semi-analytical model
To build compact analytical expressions for the transport

properties of nonwoven fibrous materials with relevant mi-
crostructural parameters, additional assumptions were stated on
both the fibrous microstructures and the expected structures of
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Figure 5: Evolution of porosity ϕ of the simulated three-dimensional random fibrous microstructures as a function of the size of the cubic box L/Dm, and comparison
with the characterized value of porosity.

the laws. Their relevance was checked using the microstruc-
ture generator and finite element simulations in the next section.
The assumptions and main expressions of the semi-analytical
model are detailed in the following.

1. The Gamma distribution offers a proper description of the
distribution of fiber diameters. One characteristic of this
fiber diameter polydispersity is the coefficient of variation
CV .

2. A stationary Poisson line process with a one-parametric
directional distribution pβ(θ, φ) captures the angular ori-
entation of a transversely isotropic fibrous medium and the
degree to which the nonwoven was pressed.

3. The model should capture the geometry of the samples for
a wide range of possible porosities (0.65 ≤ ϕ ≤ 0.99) and
anisotropic parameters (0 ≤ β ≤ 20).

4. A systematic mapping can be found by simulations in re-
alizations of the geometric model. On the one hand, this
mapping allows us to define rv and riv as functions of rm

and CV , which are easily measurable microstructure de-
scriptors. Here r stands for radius. On the other hand,
there is a mapping between the anisotropy parameter β and
the orientation tensor governed by Ωzz (Tab. 4).

5. The fibers could intersect so that Λ′/riv, the dimension-
less ratio of two times the pore volume Vp to pore surface
area S p divided by inverse volume-weigthed average ra-
dius, can be written as given by Luu et al. [24]:

Λ′

riv
=

ϕ

1 − ϕ + c
, (5)

where c is a constant accounting for the effects of fiber
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Figure 6: Illustration of a comparison between the distributions of fiber diameters and orientations as determined experimentally and from the corresponding models,
also shown are the distributions after reconstruction.

Figure 7: Various configurations corresponding to the variation of fiber orientation states with β ranging from 0 to 100, respectively.

intersections on this high-frequency property.
6. Archie’s law [70] that relates porosity to tortuosity holds.

This law is given by:

α∞ = (1/ϕ)γ, (6)

where γ is a constant that can vary between porous ma-
terials. This relation is defined for a series of materials
from the same formation or manufacturing process. The
detailed information on the pore structure is contained in
the exponent γ. Theoretical studies have shown that γ
depends on the shape of the structuring element. When
the microstructure is modeled as being built up of straight
cylinders with mainly different orientations, a variable ex-
ponent could be used to handle the details of the pore space
taken as a function of the angular orientation (β or Ωzz)

α∞z = (
1
ϕ

)Q(Ωzz), (7)

where Q(Ωzz) is function of angular orientation (β or Ωzz).

7. The relation between the characteristic lengths derived by
Johnson et al. [5] holds. This relation can be written as

Λ′

Λ
= 1 −

ln(α∞)
ln(ϕ)

, (8)

This relation holds for the felts studied in which the poros-
ity decreases by uniform growth of the insulating (solid)
phase into the pore space. With Eq.7, the previous relation
becomes

Λ′

Λ
= 1 + P(Ωzz). (9)

In principle, the function of angular orientation is the same
as the one of Eq.7 but its fitted values could fluctuate to try
to compensate for the oversimplifications of Eqs. 6 and 8.
This is why Q(Ωzz) is replaced by a new function P(Ωzz).

8. Several classical models aim to represent the dependence
of permeability on the geometric characteristics of the
fiber network. The most classical model is the Kozeny-
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Figure 8: Randomly overlapping fiber periodic structures of cotton felt F2; (a) polydisperse fibrous media; (b) monodisperse fibrous media with mean fiber diameter,
Dm; (c) monodisperse fibrous media with volume-weighted mean diameter, Dv; (d) monodisperse fibrous media with inverse volume-weighted mean diameter, Div.

Carman equation (see Eq. (16) of [71]) given by:

k0

r2
v
= ζ

ϕ3

(1 − ϕ)2 , (10)

where ζ is the Kozeny “constant” which depends on the
particle shape and size forming the solid skeleton. It can
be shown that the through-plane normalized permeability
k0/r2

v also depends on the fiber orientations (β or Ωzz).
Indeed, the ratio k0/r2

v increases significantly for larger
fiber alignment in the direction of the macroscopic pres-
sure gradient. It is assumed that a simple expression to
estimate the normalized permeability k0/r2

v as a function
of ϕ3/(1 − ϕ + m)2 and fiber orientation (Ωzz) can take the
form

log10

(
k0z

r2
v

)
= A log10

(
ϕ3

(1 − ϕ + m)2

)
+ S (Ωzz), (11)

where A and S (Ωzz) are parameters to be calibrated by sim-
ulation for obtaining a general form.

9. Because diffusion of heat does not provide any preferred
direction (spatially uniform heating), static thermal per-
meability k′0, normalized by the square of the volume-
weighted fiber radius r2

v , can generally be written as a func-
tion independent of fiber orientation. In addition, the re-
lation between k′0 and Λ′ was introduced in Eq. 1. Then,
combining Eqs.1 and 5, the normalized thermal permeabil-
ity as a function of the open porosity can be expressed as

k′0
r2

v
= m1

ϕ3

(1 − ϕ + m2)2 , (12)

where m1 and m2 are calibration constants. It should
be noted that this relation is normalized by the volume-
weighted fiber radius rv, as k′0 is a low-frequency parame-
ter. The value of m1 accounts for the shape of the porous
network, while m2 may be different from c as the effects of
the fiber intersections may be different at low frequencies.

Equations 5, 7, 9, 11 and 12 form the semi-analytical model
(or micromacro relationships) for transversely isotropic poly-
disperse nonwoven fibrous media. They depend only on the
open porosity ϕ, the angular orientation (β or Ωzz), and the
coefficient of variation CV . The main equations of the semi-
analytical model are summarized in Tab. 4, where the constants
and polynomials were determined with the numerical results
presented in the following section.
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Parameter Equation R-squared
(a) Thermal length Λ′

riv
=

ϕ
1−ϕ+0.00073 0.999

(b) Viscous length Λ′

Λ
= 1 + P(Ωzz) 0.996

(c) Tortuosity α∞ = ( 1
ϕ

)Q(Ωzz) 0.977

(d) Viscous permeability log10 ( k0

r2
v
) = 0.7501 log10 ( ϕ3

(1−ϕ+0.0038)2 ) + S (Ωzz) 0.996

(e) Thermal permeability k′0
r2

v
= 0.08 ϕ3

(1−ϕ+0.0173)2 0.988
(f) Coefficient Ωzz Ωzz = 0.8564e−0.8927β + 0.02163 0.981

(g) Weighted radii
rv
rm
= 0.0002CV2 − 0.00014CV + 1.003 0.999

riv
rm
= 0.909e−(

CV−4.742
31.97 )2

+ 0.417e−(
CV−42.37

25.92 )2

0.999

(h) Polynomials
P(Ωzz) = −0.158Ω2

zz − 0.666Ωzz + 0.925
Q(Ωzz) = −0.0914Ω2

zz − 0.341Ωzz + 0.495
S (Ωzz) = 0.1313Ω2

zz + 0.1755Ωzz − 1.13

Table 4: Semi-analytical model equations to predict the transport properties of a fibrous material.

5. Model prediction and discussion

5.1. Numerical results

By taking advantage of two specific weighted fiber diame-
ters, we have proposed that the studied polydisperse fibrous
microstructures subjected to several compression rates and
thermo-mechanical bounding could be modeled by two dif-
ferent REVs (i.e., volume weighted rv and inverse volume
weighted riv fiber radii) corresponding to the transport phe-
nomena than can be simulated in the low and high frequency
regimes. Therefore, it was possible to extract from three ele-
mentary boundary value problems (Stokes, Laplace, Poisson),
and from the computation of the corresponding solution fields
(Figs. 9 and 10), the expressions of the through-plane static vis-
cous k0 and thermal k′0 permeabilities of the nonwoven fibrous
medium, as well as their through-plane viscous characteristic
length Λ and tortuosity α∞. For its part, the thermal character-
istic length Λ′ was calculated directly by twice the ratio of pore
volume to surface area in each REV mesh. Figure 11 shows
the evolution of k0/r2

v , k′0/r
2
v , Λ/riv, Λ′/riv, and α∞ with the

porosity ϕ, for nonwovens with transverse isotropy and with a
preferred orientation (Fig. 7). These predictions were obtained
with a domain size L/D allowing for convergence on porosity
by taking five realizations for each porosity. From this figure,
several remarks can be drawn:

• The through-plane viscous permeability k0/r2
v increases

non-linearly with the porosity and diverges as the porosity
ϕ is approaching unity (∼ ϕ3/(1 − ϕ)2). At high porosi-
ties, the effect of preferred fiber orientation (induced by
compression or manufacturing process) is strong and can-
not be ignored. Lower viscous permeabilities are observed
for in-plane fiber orientations than for out-of-plane fiber
orientations, in agreement with previous results (Tarnow
[10]) . In contrast, the static thermal permeability k′0/rv is
independent of fiber orientation at a constant porosity. It
is noteworthy that, as shown by the results of Fig. 11a, the
formal inequality k′0 ≥ k0 is also clearly apparent (Avel-
laneda and Torquato [72]).

• Similarly, the viscous Λ and thermal Λ′ characteristic
lengths also increase non-linearly with the porosity (∼
ϕ/(1 − ϕ)) [Fig. 11c-d] but to a lesser content than for the
viscous k0 and thermal k′0 permeabilities (∼ ϕ3/(1 − ϕ)2)
[Fig. 11a-b]. We also checked the following inequality,
1 ≤ Λ′/Λ ≤ 2, available for fibrous media in the dilute
limit (ϕ → 1) [52] ; with Λ′/Λ = 1 in the limit of in-
plane orientation distributions of fibers and Λ′/Λ = 2 for
fully aligned fibers (Fig. 11e). This observation implies
that the ratio Λ′/Λ increases with the compression rate.
The results of Λ′/Λ were relatively independent of poros-
ity [Eq. 9]. Increasing the fiber alignment significantly
increases the viscous characteristic length [Fig. 11c], the
effect is larger for high porosities (Λ′ ∼ ϕ/(1 − ϕ) and
Λ′/Λ = 1 + P(Ωzz)) which occurs physically because Λ
is weighted by the scalar product of the local electric field
solution E ·E (in plane orientation of fibers creates smaller
channels for the preferential fluid flow).

• The tortuosity α∞ decreases with increasing porosity
(Archie’s law; α∞ → 1 when ϕ → 1). However, apart
from this limit ϕ → 1), the tortuosity α∞ was shown to
increase at constant porosity when the fibers are perpen-
dicular to the potential flow direction. This situation cor-
responds to a more tortuous path (Fig. 11f) for which a
larger dispersion of the microscopic velocities is obtained
(Eq. F.9).

5.2. Comparison between finite element simulations and the
semi-analytical model

Fig. 11 shows the five correlation functions k0/r2
v (ϕ,Ωzz),

k′0/r
2
v (ϕ), Λ/riv (ϕ,Ωzz), Λ′/riv (ϕ), α∞ (ϕ,Ωzz) with porosity,

over a wide range of porosities (0.65 ≤ ϕ ≤ 0.99). The dashed
lines in Fig. 11 are drawn from the results of curve fitting to the
simulation data; the analytical expressions are those of Eqs. (5,
7, 9, 11, 12) and the fitted coefficients reported throughout Tab.
4. Good agreement with the simulation data is seen in all five
cases, confirming the above initial law derivations. The square
of the correlation coefficient gives R-squared ≥ 0.977. The fact
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Figure 9: Typical meshes of the fluid phase in a periodic REV of fibrous medium F2. The meshes are used to perform finite element simulations on: a) structure
with inverse volume-weighted diameter with 947,011 tetrahedral elements, and b) structure with volume-weighted diameter with 1,042,941 tetrahedral elements.

that R-squared is less than one indicates that at some porosi-
ties, there is a small proportion of Sum of Squared Errors (SSE)
that is not accounted for by the regression. The coefficient of
determination (R-squared) of the fit was 0.999 for the thermal
characteristic length, 0.977 for the tortuosity, 0.996 for the ratio
of the thermal over viscous characteristic lengths, 0.996 for the
viscous permeability and 0.988 for the thermal permeability.
The proportionate amount of variation in the response variable
(dimensionless transport parameter) that is explained by the in-
dependent variables (porosity ϕ and orientation of fibers Ωzz)
was therefore always very close to one.

The residual analysis enables a local quantitative apprecia-
tion of the adequacy of the fitted model (Fig. 12). The resid-
uals from a fitted model are defined as the differences between
the response data (simulations) and the fitting to the response
data (model) at each predictor value. The largest differences
are obtained for the tortuosity α∞, as ϕ → 0.65 and Ωzz → 1.
In this situation, the tortuosity values should correspond to the
upper bound [Eqs. 6 and 7] of a solid fibrous network with
lower porosities. But if simulations are performed in opposite
fiber orientations, from Ωzz = 0 for in-plane fibers to Ωzz = 1
for unidirectionally aligned fibers, a large variation of tortuos-
ity values should be observed which is somehow contradictory
with the initial choice of an Archie’s law [Eq. 6]. The presence
of these contradictory behaviors (α∞ increases with decreasing
ϕ, α∞ decreases with increasing Ωzz) can be used to explain the
higher sensitivity of the model to geometrical parameters and
the larger proportion of numerical results not entirely present
in the model. Similar arguments can be given to quantify the
differences between the finite element simulations and the ana-
lytical model for the static thermal permeability k′0: as ϕ → 1,
the value of k′0 diverges as (∼ ϕ3/(1 − ϕ)2) [Eq. 5] which sta-
tistically increases the proportion of SSE that is not completely
explained by the regression.

Our results suggest that a better fit would require an increase
in the domain size L/Dm, which is important to ensure a lower
relative difference between the porosities of the generated mi-
crostructures and the porosity that serves as the target, as ϕ
approaches one. i.e., if ϕ target = 0.99 with err = 0.01%,
L/Dm = 55; if ϕ target = 0.99 with err = 0.001%, L/Dm = 140

(see Figs. E.20 and 5).
Finally, in this section, we presented a comparison between

the analytical result and the numerical finite element solution.
We saw, through a detailed analysis of the residues, that the
comparison between finite element simulations and the analyt-
ical model (Figs. 11 and 12, Tab. 4) revealed that the analytical
expressions [Eqs. 5, 7, 9 11, 12] fit well with the trends gained
from the finite element simulation when the same microstruc-
ture parameters are used as input. Hence, analytical estimates
can be considered to be accurate enough predictors of the trans-
port properties of nonwoven fibrous materials.

5.3. Comparisons with experimental results

Two different types of comparisons are presented to validate
the semi-analytic model in Tab. 4. The first type of compar-
isons, shown in Fig. 13, concerns the transport properties pre-
dicted by the model and their experimental measurements or
estimates, presented in Section 3.2. The second type of com-
parisons, shown in Fig. 14, concerns the sound absorption co-
efficient predicted by the model for each felt and its impedance
tube measurement obtained from the method presented in Sec-
tion 2.3. From these comparisons, several important results can
be drawn. They are listed below.

• From the comparisons shown in Fig. 13, one can con-
clude that the proposed semi-analytical model allows nice
quantitative predictions of the measured transport proper-
ties k0, k′0, Λ, Λ′, and α∞. The comparison is good for
a wide range of open porosities (0.760 ≤ ϕ ≤ 0.948)
[Tab. 5] and for different fiber orientation distributions
(0.01 ≤ Ωzz ≤ 0.22) [Tab. 3]. It is recalled that fiber ori-
entation is related to the compression ratio that varies in
the range (1 ≤ n ≤ 3.4) for the two families of composite
nonwoven fibrous materials (F and B, Tab. 1). These two
families have a different fiber diameter polydispersity con-
tent (CV ∼ 40% for F and CV ∼ 30% for B, Fig. 3b and
Tab. 3). Consequently, the overall agreement between the
analytical and experimental results supports the validity
of the semi-analytical model within, at least, the degrees
of fiber diameter polydispersity and orientation studied.
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Figure 10: Asymptotic fields of velocity and temperature computed on the discretized REVs of Fig.9 for material F2: (a) scaled velocity field expressed as local
permeability (k0) [m2] corresponding to Stokes flow in the z direction with the REV reconstructed by volume-weighted diameter; (b) scaled heat diffusion field
expressed as local static thermal permeability (k′0) [m2] with the REV reconstructed by volume-weighted diameter, and (c) scaled velocity field expressed as
tortuosity α∞ [−] corresponding to potential flow in the z direction with the REV reconstructed by volume inverse weighted diameter.

Moreover, this proves that the fiber diameter polydisper-
sity and, to a lesser extent, the orientation of fibers play
a leading role in the transport properties of these fibrous
composites.

• Despite a relatively good overall comparison, a few differ-
ences are worth discussing. First, for k′0, we recall here
that it was not possible to have a direct measurement of k′0.
Its value is estimated from the identification of Λ′ (Eq. 1),
which is in turn estimated from other measured properties
thanks to the Kozeny-Carman formula (Eq.: C.2). Con-
sequently, we must look at the trend of its evolution more
than its values. The same holds for Λ′ and Λ. Second, the
predicted value of k0 for F1 departs from the measurement.
As explained previously (Section 5.2), the model diverge
for high porosity values approaching.

• We next explored the sound absorbing behavior at normal
incidence in an analytical way using the predicted trans-
port parameters in a JCAL model (Appendix F) that al-
lowed us to generate the sound absorption coefficient that
could be compared directly with experiments (Fig. 14).
This analysis shows that the sound absorption coefficients
at normal incidence that are predicted are comparable to
those measured experimentally. Together with a close
match between the transport parameter values in the ex-
periments and in the models, this and the above results
confirm the accuracy of the numerical models and indi-
cate that they capture the essential physics of the viscous

fluid-flow, excess temperature, and potential flow velocity
field in a polydisperse nonwoven composite and the corre-
sponding transport and sound absorbing properties.
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Results ϕ σ(N.s.m−4) α∞ Λ(µm) Λ′(µm) k′0 × 10−10(m2)

F1 Model 0.948 ± 0.005 38358 ± 1612 1.022 ± 0.002 48 ± 5 84 ± 8 12.1 ± 1.6
Exp 0.948 ± 0.005 28684 ± 3664 1.023 ± 0.003 46 ± 3 74 ± 5 13.6 ± 1.7

F2 Model 0.941 ± 0.009 47235 ± 3191 1.026 ± 0.004 42 ± 7 74 ± 12 9.9 ± 2.1
Exp 0.941 ± 0.009 45716 ± 2553 1.035 ± 0.007 35 ± 1 59 ± 2 8.6 ± 0.4

F3 Model 0.914 ± 0.006 87776 ± 2818 1.042 ± 0.003 25 ± 2 47 ± 4 5.1 ± 0.5
Exp 0.914 ± 0.006 76479 ± 20416 1.042 ± 0.015 27 ± 4 46 ± 6 5.1 ± 1.3

F4 Model 0.856 ± 0.007 242696 ± 5784 1.078 ± 0.005 15 ± 1 28 ± 2 1.6 ± 0.1
Exp 0.856 ± 0.007 235845 ± 105324 1.074 ± 0.008 17 ± 4 28 ± 6 1.7 ± 0.8

B1 Model 0.887 ± 0.001 65456 ± 2770 1.057 ± 0.006 42 ± 4 79 ± 8 6.3 ± 0.8
Exp 0.888 ± 0.001 52018 ± 4732 1.089 ± 0.005 34 ± 2 57 ± 3 7.5 ± 0.6

B2 Model 0.764 ± 0.022 246602 ± 12283 1.144 ± 0.021 15 ± 2 29 ± 4 1.18 ± 0.1
Exp 0.760 ± 0.022 213834 ± 44998 1.175 ± 0.02 22 ± 2 32 ± 4 1.1 ± 0.2

Table 5: Comparison of semi-analytical (Model) and experimental (Exp) estimates of the transport parameters of cotton and PET felts
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a) b)

c) d)

e) f)

Figure 11: Normalized transport parameters as a function of porosity ϕ. The symbols indicate the statistically averaged orientation of fibers as determined by value
of β or Ωzz: Ωzz = 0 (⋆), Ωzz = 0.11 (◁), Ωzz = 0.19 (△), Ωzz = 0.30 (⋄), Ωzz = 0.39 (×), Ωzz = 0.49 (□), Ωzz = 0.61 (∗), Ωzz = 0.71 (▽), Ωzz = 0.81 (+), Ωzz = 0.91
(▷), Ωzz = 1 (◦). The dashed lines are estimates obtained by the semi-analytical model derived from the numerical simulations (Tab. 4).
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Figure 12: Map fittings and residual plots of dimensionless transport parameters (semi-analytical model derived from the numerical simulations).
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a) b)

c) d)

e) f)

Figure 13: Evolution of the transport patameters k0, k′0, Λ, Λ′, α∞ with the porosity ϕ for three-dimensional random fibrous materials with transversely isotropic
structure and a preferred angular orientation Ωzz depending on the compression rate n. Comparison between the predictions of the semi-analytical models Tab.
4 and the data obtained from experiments (symbols). These predictions are obtained using the average microstructurals descriptors in Tab. 3 for the cotton felts
(Dv = 18.95 ± 0.5µm; Div = 9.20 ± 0.26µm; Ωzz = 0.15 ± 0.09; CV = 40.2 ± 1.2%) and for the PET felts (Dv = 28.95 ± 3.25µm; Div = 19.20 ± 0.85µm;
Ωzz = 0.05 ± 0.05; CV = 29.9 ± 4.6%) The thick lines correspond to the deviation of either cotton felts (orange) or PET felts (grey).
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F1 F2

F4F3

B1 B2

Figure 14: Comparison between measurements and predictions of the sound absorption coefficient at normal incidence. Sample thickness: F1 - 20.3 mm; F2 - 16.1
mm; F3 - 11.2 mm; F4 - 5.9 mm; B1 - 10.3 mm; B2 - 4.3 mm.
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6. Conclusions

The objective of this study was to link the macroscale trans-
port and sound absorbing properties of nonwoven fibrous com-
posites with their polydisperse fibrous microstructures and the
related visco-thermal dissipation mechanisms. For that pur-
pose, two families of composite nonwovens were manufac-
tured using a thermo-compression process, from either recycled
cotton and co-PET fibers or a mix of recycled PET and Co-
PET fibers with different classes of fineness, and further com-
pacted with several compression rates. SEM images showed
that their random fibrous microstructures exhibited well known
transverse isotropy with a preferential orientation of fibers that
depended on the compression rate. In addition, regardless of
the family of the composite nonwovens, the fibers originating
from a recycling process were characterized by a wide distri-
bution of diameters which could be modeled as a Gamma-law,
a trend already observed for glass and stone wools. From the
fiber scale images of their microstructures, we also saw that the
radius of curvature of the fibers was large when compared to
the fiber radii, so that the individual fibers could be considered
as straight cylinders. The connectivity between two adjacent
fibers due to the thermo-compression bounded co-PET process
was also visible so as to reasonably assume that fibers could in-
tersect.
From these experimental data obtained at fiber scale, fiber net-
work models were proposed to predict the through-plane trans-
port properties of the considered polydieperse nonwoven com-
posites. Two microscale models were established. The first one
used volume weighted fiber diameter and the second inverse
volume weighting as mean diameters to perform finite element
simulations. The results were rationalized in the form of ana-
lytical laws that can be easily used for engineering purposes,
e. g., to optimize polydisperse fibrous media. The model-
ing approach emphasised the leading roles of the fiber content,
polydispersity and orientation on the macroscale transport and
sound absorbing properties of the considered nonwovens. The
modeling approach quantitatively well predicted the transport
and sound absorbing properties characterized at macro-scale.
If the porosity and distributions of fiber diameters and orienta-

tions are provided as inputs, we have shown that the predictions
of the numerical and analytical models can nicely estimate the
transport and sound absorbing properties at normal incidence
of random and transversely isotropic polydisperse fibrous me-
dia for a large range of porosities and without any adjusted pa-
rameter. The identified micro-structural descriptor of the low
frequency behavior is in accordance with literature data, i. e.,
at low polydispersity content, only one fiber diameter is nec-
essary to derive the overall transport parameters characteriz-
ing both low and high frequency behaviors, thus suggesting a
switch from mono disperse to poly disperse fiber distribution
as a new lever to understand and optimize transport and sound
absorbing properties. The developed model should be tested ac-
cordingly for fiber diameter distributions characterized by very
large coefficient of variations.
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Appendix A. Protocol of preparation and cutting of sam-
ples prior to the acquisition of SEM images

For non-conductive materials like cotton and PET felts, a
high performance metallizer by cathode sputtering was used,
coupled with a magnetron source (Cressington sputter coater
208HR); which made it possible to deposit a conductive film of
a few nanometers (controlled by a quartz probe, here a Cress-
ington MTM 20) on the surface of the samples. To verify
the homogeneity of the microstructure, specifically in terms of
fiber diameters, two cubic specimens with dimensions of 10
mm were taken randomly from different locations of the stud-
ied panels (provided with dimensions of 210 mm x 297 mm).
On each extracted cubic specimen, SEM images were then ac-
quired to fully scan two horizontal and two vertical planes (sit-
uated on opposite faces of the cubic specimens), using a mag-
nification factor of 100 times. For each plane (four planes of
interest on each cubic sample), 10 sub-images were randomly
extracted to directly measure the morphological parameters of
interest in the fibrous network, using the FiJi software [73] with
a resolution of 0.56 µm per pixel. These parameters include the
diameters of the fibers and their orientation angles in the hori-
zontal and vertical planes, as shown in Fig. 2.
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Appendix B. Evaluation of the bias induced from the pro-
jection process

Let us analyze the differences between the orientation of a
fiber given by its vector p in a three-dimensional space and
the corresponding projected information collected on projected
plans [(Ox,Oy), (Oy,Oz)]. Obviously, there is no bias on the
determination of φ from the projection of −→p on (Ox,Oy), since
φ is already defined on this plan. The reverse is not true re-
garding the characterization of θ from two-dimensional images
: there is a difference between θ defined by the angle between
Oz and −→p ; and θ′ defined by the angle between Oz and the pro-
jection of −→p over (Oy,Oz), say

−→
p′ (Fig. B.15). To gain in-

sight into the bias introduced by our characterization process,
we need to further study the differences statistically obtained
through this projection procedure. Recall that the vector −→p in
defined in a three-dimensional coordinate system as

−→p =

p1
p2
p3

 =
p sin θ cosφ

p sin θ sinφ
p cos θ

 . (B.1)

The projection
−→
p′ of the vector −→p on OyOz has the following

coordinates

−→
p′ =

p′1
p′2
p′3

 =
 0

p′ sin θ′

p′ cos θ′

 , (B.2)

where we identified the equality, p3 = p′3 (Fig. B.15), leading
to the following equation:

p cos θ = p′ cos θ′, (B.3)

p′ = p
cos θ
cos θ′

. (B.4)

Also noticeable is the following equality, p2 = p′2 (Fig. B.15),
from which we get using Eqs. B.1 and B.2

p sin θ sinφ = p′ sin θ′. (B.5)

By using Eq. B.4, it follows that

p sin θ sinφ = p
cos θ
cos θ′

sin θ′ (B.6)

⇔ p
sin θ
cos θ

sinφ = p
sin θ′

cos θ′
(B.7)

⇔ tan θ sinφ = tan θ′ (B.8)

We therefore obtained the relationship sought between θ′ and θ
quantifying the bias introduced by the projection process over
OyOz :

θ′ = tan−1(tan θ sinφ). (B.9)

Let us now quantify in a systematic manner the differences
obtained between θ and θ′ for a three-dimensional fibrous
network characterized by an isotropic structure. The corre-
sponding angular distributions (φ, θ) are provided throughout

Fig. B.16, together with an illustration of the geometry of the
fibrous microstructure throughout Fig. B.17.
Quantitatively, we recall that the differences between of θ and
θ′ emerge from the projection process and can be determined
from Eq. B.9. In Fig. B.18, we display and compare the
original angular distribution θ and the one corresponding to
θ′ obtained after projection of −→p over the OyOz plan. From
Figs. B.17-B.18 and the afore mentioned calculations, we
see that the projection process tends to slightly overesti-
mate the determination of the zenithal angle in the angular
ranges [0o, 32.5o] and [141.2o, 180o]; while the zenithal angle
might be underestimated in the remaining angular domain
[32.5o, 141.2o] with a maximum statistical deviation typically
observed for horizontal fibers lying in the OxOy plan. Both of
these tendencies are reflected by a projection bias which tends
to artificially verticalize the reconstructed microstructures
(horizontal fibers are slightly underrepresented while there is
a small overrepresentation of vertical fibers). A procedure is
under development to avoid such a bias, and will be the purpose
of a future communication. Let us mention however that the
angular orientation of fibers seems relatively well captured in
general.

Appendix C. Experimental approach used to estimate the
viscous and thermal characteristic lengths

The so-called Kozeny-Carman resistivity formula, intro-
duced by Henry et al. [55] in their Eq. (15), is given by:

σKC =
8α∞η
ϕΛ

′2
est
, (C.1)

where Λ′est is a characteristic dimension. Typically, we can as-
sume that the value ofΛ′est is betweenΛ andΛ′, and that σKC is
an estimate of σ. From the Kozeny-Carman formula, a value of
Λ′est could be obtained using experimental measurements of ϕ,
σ, and α∞. Therefore, Λ′est corresponds to the following equa-
tion:

Λ′est =

√
8α∞η
ϕσ
. (C.2)

For a typical porous material, assuming macroscopic homo-
geneity, the following inequality Λ ≤ Λ′est ≤ Λ

′ is expected. As
a first approximation, the simulated ratio r = Λ′/Λ can be used
to deduce Λ′est from Λest. The following formula is applied:

Λest =
Λ′est

r
, (C.3)

Here, we used r = 1.61, 1.69, 1.70, 1.65, 1.68 and 1.45 corre-
sponding to the simulated values for F1, F2, F3, F4, B1, and
B2, respectively.

Appendix D. Smallest channels in polydisperse fibrous
structures

As the frequency increases to the point where the viscous
skin depth, δv, becomes small compared to the pore dimensions,
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Figure B.15: Three-dimensional representation of a vector p characterizing the angular orientation of a fiber (φ, θ) and its projection over orthogonal plans (Ox,Oy)
and (Oy,Oz) with, as a result, apparent angular orientation (φ, θ′).

Figure B.16: Angular distributions φ and θ of a reference configuration generated in a three-dimensional space before any projection process.

the microscopic fluid-flow pattern crosses over to potential-flow
except within a boundary layer of thickness δv at the pore walls
and it has been shown that [Johnson et al. [5]; Johnson et al.
[63]]

lim
ω→∞

k̃(ω) =
iηϕ
α∞ρ0ω

1 − (
iη
ρ0ω

)1/2 2
Λ

 . (D.1)

We emphasize that this result, which determines the high-
frequency acoustics behavior of fluid-saturated solid mi-
crostructures, involves parameters α∞ and Λ which derive from
the solution of the microscopic potential-flow equations F.7.
In practice, α∞ ≈ 1 for fibrous media, a simple array of thin
solid fibers (ϕ → 1) does not lead to a significant dispersion of
the microscopic potential-flow velocities [⟨E ·E⟩ f ≥ ⟨E⟩ f ·⟨E⟩ f ,
but ⟨E · E⟩ f ≈ ⟨E⟩ f · ⟨E⟩ f ; in Eq. F.9].
Λ is essentially the pore-to-surface volume ratio of the
pore-solid interface in which each area or volume element
is weighted according to the local value of the microscopic
potential-flow velocity E. The volume flow rate having an
imposed value, Λ is obviously dominated by the smallest
channels where the microscopic potential-flow velocities reach
the larger values.

Therefore, an experimental measure of the high-frequency
acoustic behavior of a locally heterogeneous fibrous medium
is expected to be dominated by the Λ parameter which is
very sensitive to the smallest channels of the polydisperse
microstructure.
One may expect the local characteristic size of these smallest
channels to be captured, at least approximately, by the recon-
struction of a REV which promotes the smallest fibers of the
network [Eq. 4] at known and given porosity ϕ.

Appendix E. Geometrical reconstruction

Based on the results of microstructure characterization, a ran-
dom fibrous network is reconstructed as follows :

1. A random point is chosen in a unit cube of known size L
(the unit cell).

2. From this random point Mi, a vector −→p is determined,
which passes through this random point (having as
zenithal θ and azimuthal φ angles, randomly selected val-
ues from the measured probability density functions).
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Figure B.17: Comparison between an isotropic fibrous structure (left panel) with Ωzz = 0.34 and the corresponding microstructure obtained after characterization
(right panel) using two-dimensional orthogonal images [(Ox,Oy) and (Oy,Oz)] with Ωzz = 0.49.

Figure B.18: Comparison between the angular distribution θ of an isotropic fibrous microstructure and the approximate distribution θ′ obtained after characterization
using two-dimensional orthogonal images [(Ox,Oy) and (Oy,Oz)].

3. Based on the knowledge of −→p , the coordinate of the inter-
secting points P1P2 with the unit cube are derived.

4. Next, the segment P1P2 is cut at Mi, from which one can
obtain continuity of the solid phase on the opposite faces
of the unit cube. This is done by translation of a sub-
segment MiP2. For instance, Fig. E.19a illustrates this
procedure. Here, MiP2 is translated to ensure continuity
of P1 and P2 (by horizontal translation of the unit cube).

5. Knowing the fiber diameter distribution obtained from
measurements, a fiber radius is then randomly drawn from
the corresponding Gamma fit distribution (Fig. E.19b).

The algorithm which is reported in Fig. E.20 allows iterative
alteration of the fiber number N f and the domain size Li until
porosity is converged towards the experimentally determined
value. By applying the algorithm with 100 iterations for each
domain size L/Dm, the result displayed in Fig. 5 shows that it
is possible to control both the average porosity and the standard
deviation of a reconstructued three-dimensional fibrous struc-
ture. Li was chosen to ensure that the ratio ϵ of the standard
deviation over the mean value of the targeted porosity is less

than 0.1%.
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Figure E.19: Illustration of some important steps by which a representative
volume element with periodic boundaries can be constructed.
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Figure E.20: Algorithm used to calculate the domain size in order to reconstruct microstructures of the random fibrous materials under study with periodic boundary
conditions.
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Appendix F. Elementary transport processes and acousti-
cal macro-behavior

Elementary transport processes
In this section, we focus on identifying macroscopic trans-

port properties by addressing local equations with adequate
boundary conditions. These equations are classically derived
from an asymptotic analysis.
Note that, the open porosity ϕ and the thermal characteristic
length Λ′ are purely geometric parameters that can be directly
calculated from the microstructure and determined by integra-
tion:

ϕ =

∫
Ω f

dV∫
Ω

dV
, (F.1)

Λ′ = 2

∫
Ω f

dV∫
∂Ω

dS
, (F.2)

where Ω is the volume element (VE), Ω f is the fluid volume
and ∂Ω denotes the solid border of a solid element.
The remaining transport parameters are determined numerically
by applying spatial averaging to the solution fields correspond-
ing to the problems mentioned below.

1. Viscous permeability
At low frequencies, also known as the static regime, vis-
cous forces are dominant. The low Reynolds number flow
of an incompressible Newtonian fluid in this regime is
governed by the steady-state Stokes equation:

η∆v − ∇p = −∇pm in Ω f ,

∇ · v = 0 in Ω f ,

v = 0 on ∂Ω,

v and p areΩ − periodic;

(F.3)

where v, p, and η are the velocity, pressure, and viscosity
of the fluid, respectively. The term ∇pm is a macroscopic
pressure gradient acting as a driving force, ∂Ω is the fluid-
solid interface. The macroscopic pressure gradient is spec-
ified in the form,

∇pm = |∇pm|e. (F.4)

Since the Eq. F.3 is linear, it can be shown that

ϕ ⟨v⟩ = −
K
η
· ∇pm, (F.5)

where K is a positive-definite symmetric tensor, the sym-
bol ⟨•⟩ indicates a fluid-phase averaging, that is

⟨•⟩ =
1
Ω f

∫
Ω f

• dV .

The static permeability k0 along the direction specified by
the unit vector is calculated as,

k0 = (K · e) · e = −
ηϕ

|∇pm|
⟨v⟩ · e. (F.6)

2. Viscous characteristic length and tortuosity
At high frequencies, when ω is large enough, inertial
forces dominate over viscous forces. The fluid tends to be-
have as an ideal fluid, having no viscosity. In this case, the
inertial flow problem is analogue to the problem of electric
conduction of a conducting fluid saturating an insulating
porous structure :

E = e − ∇φ in Ω f ,

∇ · E = 0 in Ω f ,

E · n = 0 on ∂Ω,

φ isΩ − periodic,

(F.7)

where e is a global unit electric field, while E is the
electric field solution of the boundary problem, −∇φ is
the scalar electrostatic potential and n is local unit normal
vector directed into the pore space.
Then, the components of the high frequency tortuosity
tensor α∞i j can be obtained from

ei = α∞i j

〈
E j

〉
. (F.8)

In the case of isotropy, the components of the tensor sim-
plify to the diagonal form α∞i j = α∞δi j. The tortuosity can
also be determined by calculating the mean square value of
the local electric field through

α∞ =
⟨E · E⟩
⟨E⟩ · ⟨E⟩

. (F.9)

The viscous characteristic lengthΛ can also be determined
(for an isotropic medium) by

Λ = 2

∫
Ω f

E · E dV∫
∂Ω

E · E dS
. (F.10)

3. Thermal permeability
Under the excitation of an external, harmonic source, with
perfect absorbing conditions at the fluid-solid interface,
the static thermal permeability is obtained from the equa-
tion

k′0 = ϕ ⟨u⟩ , (F.11)

where the scaled, Ω-periodic temperature field u, is the
solution to the Poisson equation

∆u = −1 in Ω f ,

u = 0 on ∂Ω.
(F.12)

Here u is presumed to be periodic with a period Li across
the three spatial directions. The parameter k′0 is a positive
definite scalar that is solely dependent on the geometry of
the medium.
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Acoustical macro-behavior

Significant semi-phenomenological models with visco-
thermal dissipation mechanisms were developed by Johnson et
al. [63] and Lafarge et al. [68]. In these works, the assump-
tion of a rigid solid skeleton was made apriori. Johnson et
al. and Lafarge et al. proposed that two general expressions
for the frequency-dependence of the visco-inertial and thermal
exchanges between the frame and the saturating fluid can be es-
tablished with two sets of parameters (Λ, k0, α∞, ϕ) and (Λ′, k′0,
ϕ). The model is consistent with the frequency dependence of
the first two leading terms of the exact result for high frequen-
cies, but only one term for low frequencies. Both numerical
simulations and experiments have demonstrated that the model
by Johnson et al. and Lafarge et al., known as the JCAL model,
is very robust (although not exact). In this section, we provide
a summary of the JCAL model, as a mean of prediction of the
sound absorption of polydisperse fibrous media.
For porous materials having a rigid and motionless skeleton,
the equivalent dynamic mass density ρ̃eq(ω) and the equivalent
dynamic bulk modulus K̃eq(ω) of the material are computed as

ρ̃(ω) =
α∞ρ0

ϕ

1 + ϕσ

iωα∞ρ0

√
1 + i

4α2
∞ηρ0ω

σ2Λ2ϕ2

 , (F.13)

and

K̃eq(ω) =
γP0/ϕ

γ − (γ − 1)

1 − i ϕκ
k′0Cpρ0ω

√
1 + i 4k′20 Cpρ0ω

κΛ′2ϕ2

−1 . (F.14)

In these equations, σ = µ/k0 is the (through plane) airflow
resistivity, ρ0 is the density of air, P0 the atmospheric pres-
sure, γ = Cp/Cv the ratio of heat capacities at constant pres-
sure and volume, i the imaginary unit and ω = 2π f the angu-
lar frequency. The wave number k̃eq(ω) and the characteristic
impedance Z̃eq(ω) are then given by:

k̃eq(ω) = ω
√
ρ̃eq(ω)/K̃eq(ω), (F.15)

Z̃eq(ω) =
√
ρ̃eq(ω)K̃eq(ω). (F.16)

The normal incidence surface impedance is expressed by

Z̃s = −iZ̃eq cot (k̃eqLs). (F.17)

The sound absorption coefficient at normal incidence of thick-
ness Ls follows:

S ACNI = 1 −
∣∣∣∣∣ Z̃s − Z0

Z̃s + Z0

∣∣∣∣∣2, (F.18)

where Z0 = ρ0c0 is the impedance of the air, c0 is the sound
speed in air.

Appendix G. Characteristic transition frequencies

The viscous transition frequency fv characterises the transi-
tion between the high and low frequency limits of the dynamic
viscous permeability k(ω) (Johnson et al. [5]). One could esti-
mate fv using the following simple formula

fv =
ϕσ

2πρ0α∞
, (G.1)

where ρ0 = 1.213 × 103(kg/m3) is the density of air at rest
and normal conditions. Here, low frequency means f ≪ fv,
whereas high frequency corresponds to f ≫ fv.
As a thermal counterpart of fv, thermal transition frequency
ft characterises the transition between high and low frequency
limits of the dynamic thermal permeability k′(ω) (Lafarge et al.
[68]):

ft =
ϕκ

2πk′0Cp
, (G.2)

where κ = 2.5 × 10−2(W/m · K) is the air heat conductivity,
Cp = 1.219 × 103(J/K) is the Isobaric heat capacity of air.
Low frequencies refers to f ≪ ft whereas high frequencies
must be understood as f ≫ ft.
From these simple equations [Eqs. (G.2)-(G.1)] and the results
in Tab. 5, the characteristic transition frequencies of the mate-
rials studied are calculated and reported throughout Tab. G.6.
These values are useful to show that the high frequency behav-
ior is barely measurable with a standard impedance tube.

Samples fv(Hz) ft(Hz)
F1 3488 ± 446 4761 ± 610
F2 5454 ± 312 7491 ± 439
F3 8802 ± 2353 12431 ± 333
F4 24664 ± 11018 34925 ± 11908
B1 5565 ± 510 8051 ± 750
B2 18147 ± 3867 49614 ± 10766

Table G.6: Estimation of the characteristic transition frequencies of cotton felts
and PET felts.
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