
HAL Id: hal-04574030
https://hal.science/hal-04574030

Submitted on 13 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Estimating the vertical direction in a photogrammetric
3D model, with application to visualization

Maxime Lhuillier

To cite this version:
Maxime Lhuillier. Estimating the vertical direction in a photogrammetric 3D model, with ap-
plication to visualization. Computer Vision and Image Understanding, 2023, 236, pp.103814.
�10.1016/j.cviu.2023.103814�. �hal-04574030�

https://hal.science/hal-04574030
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Estimating the vertical direction in a
photogrammetric 3D model, with

application to visualization

Maxime Lhuillier
Université Clermont Auvergne, CNRS, Institut Pascal,

F-63000 Clermont Ferrand, France

The reference of this paper is: Maxime Lhuillier, Es-
timating the vertical direction in a photogrammetric 3D
model with application to visualization, Computer Vision
and Image Understanding, 236:1-13, 2023.

This is the accepted manuscript version that is available
at the webpage of the author. The published version (DOI:
10.1016/j.cviu.2023.103814) is available at Elsevier via
https://doi.org/10.1016/j.cviu.2023.103814

Highlights

• Start from a triangulated surface computed by pho-
togrammetry

• Estimate the vertical direction by a 3D PCA and a
2D Hough transform

• Experiment on both man-made and natural environ-
ments reconstructed from 360 videos

• Build a VR viewer from a surface and its vertical
direction thanks to a game engine

• Visualize and move in large environments thanks to
VR viewers (available online)

Abstract

The process of building a Virtual Reality (VR) environ-
ment from images involves several steps: choose exper-
imental conditions (scene, camera, trajectory, weather),
take the images, reconstruct a textured 3D model thanks
to a photogrammetry software, and import the 3D model
into a game engine. This paper focuses on a postpro-
cessing technique for the photogrammetry step, mostly
for outdoor environments that cannot be reconstructed us-
ing an unmanned aerial vehicle. As visualization appli-
cations (including VR) need a 3D model with a known
vertical direction, a method is introduced to compute it.
The method is based on 3D principal component analysis
and a 2D Hough transform. In the experiments, we first
reconstruct both man-made and natural immersive envi-
ronments using a helmet-held 360 camera, then we import
the 3D models in good coordinate systems (i.e. with a ver-
tical axis and a plausible scale) into Unity, and finally we
use VR headsets to explore the scenes like a pedestrian.
We also experiment on scanner data and show that our
method is competitive with previous work.

Keywords: Vertical Direction, Photogrammetry, Virtual
Reality, Hough Transform, Principal Component Analy-
sis, 360 camera.

1. Introduction

Knowledge of the vertical direction (or gravity direc-
tion) is very useful for visualization of a reconstructed
environment: it needs to be known for drawing as ver-
tical lines, in a screen or a head-mounted display, vertical
lines in 3D when the user looks the reconstruction with
usual poses of the head. Otherwise vertical scene com-
ponents such as walls and facades appear to be oblique,
which makes the result unrealistic. The orientation of the
vertical (upward or downward) is also needed to visualize
the reconstruction without switching its top and its bot-
tom.

Visualization applications like Google Earth and
Sketchfab enforce a zero-roll and vary the yaw-pitch of
the camera that draws a 3D model. They need a reference
upward vertical direction to define the roll-pitch-yaw an-
gles. The game engines used to build VR applications
need a 3D model in a good coordinate system: one of the

Preprint submitted to Elsevier

three coordinate axes has to be upward vertical and the
scale has to be plausible. If the vertical direction is in-
accurate, the risk of VR sickness (e.g. nausea) increases
since there is a sensor conflict between the vertical seen
by the eyes and the vertical detected by the vestibular sys-
tem of the VR user ([Tian20]). A plausible scale is also
useful for stereoscopic rendering and for moving in the
VR scene at a realistic speed.

Unfortunately, the Structure-from-Motion step typi-
cally included in photogrammetry software to reconstruct
a 3D model does not provide a vertical direction and does
not provide a good coordinate system. Indeed this step
can only reconstruct a scene up to a similarity transform
of the 3D space, if the acquisition camera has only one
center like a pinhole camera ([Hartley00]). If the acqui-
sition camera has several centers, like most 360 cameras
composed of several monocular cameras, and if the base-
line between the component cameras is known, the scene
can only be reconstructed up to an Euclidean transform.

In practice, the vertical direction is estimated manually
using a graphical user interface, e.g. that of game engines
like Unity. But it is difficult to obtain an accurate verti-
cal for large environments by this way. Alternatively, the
vertical can be computed up to orientation by assuming
that the camera motion is on a horizontal plane during the
acquisition of the images. The orientation then becomes
easy to define either manually or by an additional assump-
tion (e.g. the ground is projected in the bottom of the im-
ages) by multiplying the vertical vector by -1 if needed.
This often gives a satisfactory render, but there are scenes
where the vertical estimation thus estimated is too inaccu-
rate.

The paper mainly focuses on a simple new method to
compute the unoriented vertical direction in the 3D model
(the photogrammetric output) thanks to three assumptions

• A0: the vertical direction does not vary in the 3D
model

• A1: the height of the camera (with respect to the
ground) during acquisition is roughly constant

• A2: the density of the surface normal is higher at
horizontal directions and near the vertical direction
than elsewhere.

We need A0 to define the oriented vertical by a single
3D vector. A0 is common in the Computer Vision lit-

erature involving the vertical direction. It is met if both
rotation drift (due to Structure-from-Motion) and diam-
eter of the input model (relative to the whole Earth) are
small enough. A1 is met in terrestrial acquisition settings,
e.g. a helmet-held or car-mounted camera. We justify A2,
the anisotropy assumption, as follows. The ground has a
large area and its slope is moderated. Other scene com-
ponents, such as facades in man-made scenes, have sub-
stantial vertical areas. So the most probable normals of
the input surface are therefore near the vertical direction
and at horizontal directions, respectively. A2 looks like
the Atlanta world assumption for normals ([Joo18]) but is
different: unlike the Atlanta world assumption, we do not
assume that the ground surface is horizontal.

The paper also summarizes the build of VR viewers
based on photogrammetric models of environments re-
constructed by a helmet-held 360 camera. This is use-
ful for applications such as virtual tourism ([Poux20]),
games ([Dhanda19]) and Metaverse ([Wikipedia22]). It
may also interest researchers who want to use common
VR headsets to display photogrammetric reconstructions
but don’t know how to do this. Surprisingly, this use of
VR remains rare, despite the fact that VR headsets now
deliver good performances at relatively affordable price.
The advantage of a 360 camera is an acquisition with a
minimal effort to reconstruct complete environments, but
other camera setups are possible.

2. Previous work

Photogrammetry software provides neither vertical di-
rection nor scale, unless its Structure-from-Motion step
integrates measurement input from an additional sensor
(Sec. 2.1). Furthermore, previous methods estimate the
vertical from a cloud of points or normals (Sec. 2.2).
Other methods also estimate directions in 3D by using 2D
Hough transforms (Sec. 2.3). Last we briefly summarize
the workflow from photogrammetry to VR (Sec. 2.4).

2.1. Additional sensors

Measures from other sensors like GPS and IMU can
be integrated with both terrestrial ([Klingner13]) and
aerial ([Grayson18]) imagery, if these sensors are rigidly
fixed to the camera. Bundle adjustment ([Triggs99]) si-
multaneously refines parameters of both camera poses and

2

3D points by minimizing a sum of reprojection errors,
which can be augmented by a GPS term ([Lhuillier11])
and an IMU term ([Michot10]). Bundle adjustment needs
a parameter initialization, which can also be done thanks
to GPS ([Crandall11]) and IMU ([Klingner13]). GPS pro-
vides georeferenced reconstruction, which implies that
both vertical direction and scale are known. Unfortu-
nately, GPS gives unreliable measures in cluttered-scene
terrestrial locations where GPS satellites are occluded.
IMU measures both translation acceleration (including
gravity) and angular velocity. A heuristic is to compute
the vertical by the direction of this acceleration if its mod-
ulus is that of gravity ([Lobo03, LaValle20]). [Dai17] first
compute a rough vertical direction from the IMU mea-
sures of a iPhone/iPad, then refine it for a Kinect-like
RGB-D capture system applied to indoor scenes. Note
that our method presented here does not require additional
sensors.

2.2. Estimating the vertical from a cloud of points or nor-
mals

The estimation of the vertical direction is also the first
step of methods that align several point clouds acquired by
a scanner. These methods assume that the ground is hor-
izontal, as in indoor scenes ([Alnuaimi17]), or that there
are vertical walls as in urban environments ([Avidar18]).
In the work of [Alnuaimi17], the vertical is initialized by
the third principal component of the point cloud. Then
it is refined as a median vector of the normals that are
close to the initialization. The method of [Avidar18] starts
from an initial estimate of the vertical, then detects walls
with points whose normals are roughly orthogonal to the
initial vertical, and finally applies a RANSAC procedure
on pairs of normals of detected walls. In a recent de-
velopment, [Liu22] compute the vertical using the At-
lanta world assumption. They estimate an unit vector
that is parallel or orthogonal to a maximum number of
normals, up to a given angular tolerance. They intro-
duce several methods, including RANSAC and Branch-
and-Bound. These works can be applied to our prob-
lem after a conversion of the input (a triangulated sur-
face). Nevertheless, they also have drawbacks: no distinc-
tion (e.g. weight) between the normals, strong assump-
tions ([Alnuaimi17, Avidar18]), or no prior on the vertical
direction ([Liu22]). To the best of our knowledge, there is

no deep learning method that predicts the vertical direc-
tion of a triangulated surface or a cloud of points/normals.

2.3. Estimating directions using Hough transforms
Although the Hough transform classically

computes lines from edges detected in im-
ages ([Mukhopadhyay14]), it can be adapted to compute
directions in the unit sphere of R3. [Rabbani05] estimate
cylinders from a cloud of 3D points obtained by a 3D
scanner in an industrial site. The first step is a 2D Hough
transform that computes potential directions of the cylin-
ders. Here we also use a 2D Hough transform but with
differences: there is only one direction to compute (the
vertical), we do not assume a set of circular cylinders in
the scene, the input is a triangulated surface, the votes are
weighted. Hough transforms are also used by [Lutton94]
to estimate the three main orthogonal directions of a
man-made scene, from edges detected in an image taken
by a calibrated perspective camera. The first step is a
2D Hough transform that computes potential vanishing
points. In the work of [Lutton94] and [Rabbani05], the
sampled parameter space of the directions (or Hough
space) is an approximate uniform sampling of the unit
(hemi)sphere obtained from spherical coordinates. This
is adequate enough to obtain directions with a similar
accuracy and if the potential directions are equiprobable.

In a previous conference version ([Lhuillier21]) of our
work, the sampled parameter space is obtained by the
backprojection of a perspective camera. The current ver-
sion adds new content: comparisons with work of [Liu22,
Alnuaimi17, Avidar18] and with a parameterization based
on the spherical parameterization of [Lutton94], compar-
isons with other sensors, experiments on a greater pho-
togrammetric dataset and a new scanner dataset, more
details on the method (parameter tuning, sampling and
voting) and the VR viewers, and accuracy improvement
thanks to smoothing.

2.4. Workflow from photogrammetry to VR
Building of a VR application (here, a viewer) from

a textured and triangulated surface computed by pho-
togrammetry is not a straightforward task, for several rea-
sons. The surface has to be simplified and optimized
with its texture for real-time rendering. A manual clean
up is useful in order to remove errors or to select seg-
ments of interest in the reconstructed surface. Both

3

[Obradovic20] and [Valve21] describe this kind of work-
flow and the tools available. The textured 3D model is
then imported in a game engine like Unity ([Mel19]),
Unreal ([Obradovic20]) or SteamVR ([Valve21]). The
game engine includes a graphic user interface to define
the upward vertical direction and the scale. It also serves
to build VR applications that have to deal with several
things. The VR user needs to have a strong spatial aware-
ness (or wayfinding) and a little risk of VR sickness while
moving in the VR environment ([LaValle20]). The former
implies the ability to find its way and the latter includes
nausea and headaches. Motion must be possible even if
the VR environment is greater than the tracking area. The
VR applications also need to be compatible with several
headsets and controllers.

3. Reset the coordinate system

Let v ∈ R3 be the upward vertical direction in the
photogrammetric coordinate system. First, Sec. 3.1 de-
fines a search space S for v. Second, Sec. 3.2 estimates
v up to its orientation, i.e. it estimates a εv ∈ S where
ε ∈ {−1,+1}. Finally, Sec. 3.3 finds the good orientation
of v and Sec. 3.4 updates the coordinate system of the 3D
model.

3.1. Search space for unoriented vertical direction
Thanks to the Structure-from-Motion step, the loca-

tions li ∈ R3 of the camera during the image acquisi-
tion process are known in the photogrammetric coordi-
nate system. We first obtain a rough estimate v0 of εv by
a principal component analysis (PCA): v0 is the singular
vector with the smallest singular value of the covariance
matrix of the li. We have v ∈ {+v0,−v0} if the camera mo-
tion is planar and horizontal. The search space S of εv is
a subset of the unit sphere of R3: the unit vectors forming
an angle with v0 that is less than a threshold α, i.e.

S = {u ∈ R3, ||u|| = 1, v>0 u ≥ cos(α)}. (1)

Since we would like to deal with ground surfaces with
moderate slope angles, we need a large enough α. For ex-
ample, if the ground is planar with a slope angle γ and if
the camera is at a constant height above the ground (A1),
then the camera motion is also planar with the same slope
angle and we need α > γ to have εv ∈ S . (See the left

of Fig. 1.) Furthermore, α ≤ π/2 since a hemisphere con-
tains all unoriented directions.

Figure 1: Ground surfaces and search spaces S (α, v0) for the unoriented
vertical direction. Left: planar ground with slope angle γ. Right: non-
planar ground with v0 ≈ v and slope angle less than a threshold γ (ev-
erywhere on the ground). In both cases, the vertical in 3D is vertical in
the figure.

3.2. Unoriented vertical direction

The vertical direction is computed by a 2D Hough
transform. First, S is sampled in a finite set of vertical
candidates. The sampling process is detailed latter (in
Sec. 4) for purposes of clarity and readability. Then, ev-
ery triangle of the surface votes for all vertical candidates
that are almost parallel to the triangle. In other words, the
triangle normal n and the vertical candidate are orthogo-
nal (up to sampling). The vertical candidates of a triangle
thus approximate a segment of a great circle Cn in the unit
sphere, such that

Cn = {u ∈ R3, ||u|| = 1,nT u = 0}. (2)

At first glance, the votes of each triangle are weighted by
the triangle area such that the vote result is invariant by
mesh subdivision. Nevertheless, this is not robust to the
few bad triangles that have a very large area due to pho-
togrammetry errors. We reduce this problem by damping
the vote weight: a triangle with area A votes with weight
min{A, βA∞} where 0 < β ≤ 1 and A∞ is the largest area
of the triangles. Finally, εv is the vertical candidate that
maximizes the votes.

Here we explain how this method provides the expected
result thanks to the anisotropy assumption (A2). On one
hand, an important area of the surface is formed by verti-
cal triangles. Each vertical triangle votes for a segment of

4

a great circle, and all these great circles have exactly two
common points: the vertical v up to its orientation. (Since
the i-th great circle is in a vertical plane {z ∈ R3,nT

i z = 0}
where ni is horizontal and v is ±n1 ∧ n2). Thus the votes
near εv are high. On the other hand, the votes near the
horizontal directions can also be high, as the ground has
a large area too. If the ground is planar with a slope angle
γ and normal nγ, every triangle in the ground votes for all
directions that are orthogonal to nγ. There is therefore a
risk of getting a bad εv if the sum of votes for a ground
direction is greater than the sum of votes for the vertical.
Summed votes for the vertical and a (horizontal) ground
are also shown in Fig. 2. However, the angle between v0

Figure 2: Horizontal and vertical votes in great circles. From left to
right: a scene with one horizontal and two vertical rectangles (without
plotting a triangle subdivision), their vertical or horizontal normals in
the unit sphere (with dotted equator), their horizontal or vertical (voted)
great circles in the unit sphere. Horizontal directions can have the largest
votes.

and every ground direction is greater than the angle be-
tween v0 and the vertical, since v0 is approximately ver-
tical and the ground is approximately horizontal. Thus
there are values of α between these two angles, such that
S (α, v0) is small enough to ignore the ground votes but
also large enough to retain the vertical votes.

Fig. 1 details two base examples for setting α. If the
ground is planar with slope angle γ, π/2 > α > γ. If the
ground is not planar, but v0 ≈ v and the slope angle is less
than a threshold γ everywhere on the ground, π/2 − γ >
α > 0. Thus

π/2 − γ > α > γ. (3)

We choose α = π/4 to deal with plausible values γ < π/4.

3.3. Oriented vertical direction
Here we introduce additional assumptions to compute

the oriented vertical from the unoriented vertical if a
360 camera is used

• A3: the surface reconstructed by photogrammetry is
complete and closed: its triangles cover both ceiling
(in a broad sense, i.e. foliage or tree canopy, sky, and
so on) and ground.

• A4: we know whether the ground-to-camera dis-
tance, i.e. the height, is lower than the ceiling-to-
camera distance (in most outdoor scenes, it will be).

A3 requires that the ceiling triangles are not removed by
the photogrammetry software, even if they are in the sky.
If the images are taken at ground level with a 360 cam-
era, 3D points are reconstructed all around the camera,
and the camera is in the convex hull of the points. In this
case, the surface reconstructed by standard methods based
on 3D Delaunay triangulation and visibility constraints
(as [Vu12, Lhuillier18]) is closed. This also implies that
A4 is true for most outdoor scenes thanks to high-scene
components such as buildings and trees.

Now εv is known but both ε and v are unknown. Thus
we know the function ε 7→ vε . For each possible value of
ε ∈ {−1,+1}, we examine the triangles that are “below”
the camera trajectory (during the acquisition) in the sense
of vε . In details, for each camera location li, we collect
in a list Li the few triangle(s) that intersect(s) the half-line
hli started at li with direction −vε . Then we compute a
mean mε of the distance between li and the intersection(s)
between hli and every triangle in Li (for all i). Thanks
to A3, m−1 and m+1 are camera-to-ground or camera-to-
ceiling distances, but we don’t know which is which. Ac-
cording to A4, the smallest distance is camera-to-ground.
We obtain v = vε such that ε meets mε < m−ε .

There are alternatives to A3 and A4, e.g. if sky removal
by the photogrammetry software cannot be disabled. We
can assume that a main part of the ground is reconstructed
and a main part of the sky is not, and then redefine mε

by the sum (for all i) of the numbers of intersection(s)
between hli and every triangle in Li, to finally obtain v =

vε such that ε meets mε > m−ε .

3.4. Scale and change of the coordinate system
We assume that

• A1’: mean of the height of the camera is known

to obtain the scale. A1’ is easy to meet for terrestrial
setup: add an offset to the height of a person/vehicle tak-
ing the images.

5

We rotate the 3D model such that the z-axis has the
same direction as v: using a rotation with axis r/||r|| and
angle arcsin(||r||) where r = v ∧ (0 0 1)>. We also
rescale it by multiplying all vertices by h/min{m−1,m+1}

where h is the height of the acquisition camera in meters,
which we get from A1’.

4. Sample the search space and vote

Sec. 4.1 provides details on the sampling induced by
parameterizing S with a perspective camera. Sec. 4.2
adapts to S the sampling of [Lutton94] based on spher-
ical coordinates.

4.1. Sampling using a perspective camera
We sample S by a parameterization that is defined by

the backprojection of a perspective camera. This camera
has an image I with s × s pixels. Its principal direction is
v0, its field-of-view is 2α, its center is 0. Thus it projects
u ∈ S to p(u) = π(KRT u) where R is a rotation matrix
whose third column is v0 and

K =

 f 0 s/2
0 f s/2
0 0 1

 , f =
s

2 tanα
, π(

c1
c2
c3

) =

(
c1/c3
c2/c3

)
. (4)

Furthermore, p(S) is the disc inscribed in I and p(Cn) is
the projection of the plane {z ∈ R3,nT z = 0}, i.e. the line

P0
n = {

(
x
y

)
∈ I,

(
x y 1

)
l = 0} where l = K−TRT n. (5)

The triangle with normal n adds its vote to the accumula-
tor of every pixel that discretizes the line P0

n. Voting for a
pixel (x, y) is voting for a vertical candidate u obtained by
backprojection:

u = n(RK−1

x
y
1

) where n(

u
v
w

) =
1

√
u2 + v2 + w2

u
v
w

 . (6)

After all votes have been cast but before computing the
maximizer, we reduce the noise by smoothing I using the
3× 3 Gaussian kernel, i.e. (1/16)

(
1 2 1

)
⊗

(
1 2 1

)
.

Now we examine consequences in S of the voting in
I. A pixel in I is a 1 × 1 square that backprojects to a
surface element in S whose area is || ∂u

∂x ∧
∂u
∂y ||. There is

only one vertical candidate u for each surface element.
Furthermore, its area depends on x and y (with integer
values in [0, s] for pixels). Appendix A shows that

||
∂u
∂x
∧
∂u
∂y
|| =

f
((x − s/2)2 + (y − s/2)2 + f 2)3/2 (7)

and we see that the pixels near I’s borders have smaller
surface elements than the pixels near I’s center. This im-
plies that the sampling distribution of the vertical candi-
dates is not uniform in S . The expected accuracy of the
estimated vertical thus depends on the location of its pixel.
Nevertheless, the area range of the surface elements (and
thus the accuracy range) is moderated in our application
for usual values α ≤ π/4. Indeed, for all pixels in p(S),

1
f 2 ≥ ||

∂u
∂x
∧
∂u
∂y
|| ≥

1
f 2 (1 + tan2 α)−3/2 ≥

1

2
√

2 f 2
. (8)

4.2. Sampling using spherical coordinates
Here we parameterize S by using spherical coordinates:

u = R
(
sin φ cos θ sin φ sin θ cos φ

)T
(9)

where θ ∈ [0, 2π], φ ∈ [0, α] and R is defined in Sec. 4.1.
We also use the sampling developed by [Lutton94]: using
a regular quantization in φ and an irregular quantization in
θ such that a parameterization cell ∆φ × ∆θ has a surface
element in S with constant area ∆S = ∆θ∆φ sin φ.

First, we go onto detail. Let N ∈ N∗ be the number of
φ quantizations. We have ∆φ = α/N and φk = k∆φ where
k ∈ {1, 2, · · ·N}. Furthermore, the θ quantization depends
on k since sin φk∆θk is constant. The number nk of cells in
the k-th layer is

nk =
2π
∆θk

= integer(
2π sin(kα/N)

∆θN sinα
. (10)

For each k, the θ quantization is obtained by θk
0 = 0 and

θk
j+1 = θk

j + ∆θk where j ∈ {0, 1, · · · , nk − 1}.
Then we set N and nk to obtain a segmentation of S into

cells that is “similar” to that in Sec. 4.1. This is useful in
order to obtain fair comparisons in the experiment. We
would like a similar number of cells in the border of S
in both cases: nN is also the circumference (measured in
pixels) of the disc p(S) with diameter s, i.e.

nN = integer(πs). (11)

6

Thanks to Eqs. 10 and 11 and by removing the integer
truncation, we obtain ∆θN ≈ 2/s. We also would like a
similar number of cells in S in both cases:

πs2

4
≈

N∑
k=1

nk ≈

N∑
k=1

2π sin(kα/N)
(2/s) sinα

. (12)

Now we multiply Eq. 12 by (α sinα)/(Nπs):

α

N
s sinα

4
≈
α

N

N∑
k=1

sin(k
α

N
) ≈

∫ α

0
sin(x)dx. (13)

We obtain

N = integer(
sα sinα

4(1 − cosα)
). (14)

Thus we set N and nN from s and α using Eqs. 14 and 11,
then obtain nk using Eq. 10 (with ∆θN = 2π/nN) if k < N.

In a final substep, we detail the voting of triangle with
normal n. Let (φn, θn) be the spherical coordinates of n
using Eq. 9. We assume that φn ≤ π/2 by multiplying n
by −1 if needed. (This does not change Cn.) The spherical
coordinates (φ, θ) of u ∈ Cn (using Eq. 9) meet

0 = nT u = cos φ cos φn + sin φ sin φn cos(θ − θn). (15)

We obtain a parameterization of Cn:

θ(φ) = θn ± acos(−
cos φ
sin φn

cos φn

sin φ
),
π

2
− φn ≤ φ <

π

2
. (16)

The triangle with normal n votes for every cell [φk−1, φk]×
[θk

j , θ
k
j+1] that includes a point (φ, θ(φ)+ modulo 2π). After

all votes have been cast but before computing the maxi-
mizer, we reduce the noise using a smoothing process that
is an adaptation of the 3 × 3 Gaussian kernel: first apply
the smoothing (1/4)

(
1 2 1

)
to the votes with same φ,

then to the votes with similar θ.

5. Experiments

5.1. Notations for experimented methods
There are four variants of the Hough transform:

• H1: Sec. 4.1 without smoothing ([Lhuillier21])

• H1’: Sec. 4.1 with smoothing

• H2: Sec. 4.2 (i.e. like [Lutton94]) without smoothing

• H2’: Sec. 4.2 with smoothing.

We use α = π/4 for the search space S (Eq. 1) and s =

100 for the resolution of S as in [Lhuillier21]. A pixel of
image I (Sec. 4.1) thus has a backprojected cone of about
0.9◦ by 0.9◦. This is enough for the VR application, since
the human vestibular system detects the vertical direction
with an accuracy of about 1.5◦ ([Lobo03]). We also use
β = 0.1 (Sec. 3.2).

Other methods estimate a vertical direction from nor-
mals:

• R: the RANSAC method developed by [Liu22] with
an additional and rough approximation v0 of the ver-
tical

• BnB: the Branch-and-Bound method developed
by [Liu22] (with the exponential mapping)

• Urban: the gravity vector estimation of [Avidar18]

• PCA2: a robust version of a method developed
by [Alnuaimi17].

The methods of [Liu22, Alnuaimi17, Avidar18] are
briefly summarized in Sec. 2.2. The angular tolerance of
R and BnB is τ = 1◦ like [Liu22]. BnB is the only method
that does not use v0. Here we improve R by using v0 to
avoid spurious verticals. (For each random sample nor-
mals n1 and n2, the vertical candidate that counts inliers
is the vector among {n1,n2, (n1∧n2)/||n1∧n2||}whose an-
gle with ±v0 is the smallest.) PCA2 first selects normals
that are parallel to v0 up to a tolerance error (15◦), then
computes the vertical as the first principal component of
the selected normals.

5.2. Experiments using a synthetic dataset

We first compare accuracies of unoriented verticals es-
timated by eight methods (Sec. 5.1) for a synthetic envi-
ronment.

5.2.1. Dataset
The synthetic environment is implicitly defined by

{
(
x y z

)T
∈ R3, x2p + y2p + (z − x tan γ)2p = 1}, (17)

7

with p ∈ N∗ and γ ∈ [0, π/2]. It approximates the border
of the cube [−1,+1]3 for γ = 0 and a large enough p. If
γ , 0, we obtain a smoothed version of cube whose up-
face and down-face (near planes z = ±1) are slanted: their
slope angle is about γ with (unoriented) normal

nγ =
(
− sin γ 0 cos γ

)T
. (18)

One of these two faces plays the role of a slanted ground
and four others are approximately vertical and orthogonal
walls. The search space S (Eq. 1) meets v0 = nγ, as if the
rough estimate v0 of the vertical is computed by PCA of a
camera motion whose height is constant (A1). The ground
truth of the vertical is (0 0 1)T . The triangulated surface is
defined by a regular sampling of the spherical coordinates
(60 longitudes, 30 latitudes plus two poles). Furthermore,
we disrupt this surface using a noise δ: add to every co-
ordinate of every vertex an uniformly distributed random
value in [−δ,+δ].

5.2.2. Experiments #1: comparisons between Hough
variants

The top of Tab. 1 shows accuracies of the Hough vari-
ants (Sec. 5.1) for the synthetic environment using p = 3,
γ = 5◦ and several values of δ. As expected, the lower
the noise δ, the better the accuracy. Note that the smooth-
ing in H1’ and H2’ greatly improves the accuracy of H1
and H2, respectively. We also see that the methods based
on spherical coordinates (H2-H2’) are less accurate than
the methods based on perspective camera (H1-H1’). The
parameterization of S by a perspective camera introduces
a bias in favor of the vertical candidates close to v0, i.e.
that correspond to pixels near the center of image I. Since
these pixels have greater surface elements in S than the
pixels near the border of I (Eq. 7), the pixels near the
center are more likely to be voted by an uniform distri-
bution of triangle normals than the pixels near the border.
In short, the bias toward v0 is beneficial to estimate the
vertical direction since v0 is a rough value of the vertical.

Fig. 3 shows the votes in the Hough space for all vari-
ants and for two noises. There are two dark strips in all
cases. Each strip corresponds to the votes of the great
circles of a pair of vertical and parallel faces of the syn-
thetic environment. Strip thickness increases by noise,
and noise perturbs the vote maximizer in the intersection
of the strips.

Figure 3: Votes in the Hough space for the synthetic experiments. From
left to right: Hough variants H1, H1’, H2, and H2’. There are two noises:
δ = 0.003 (top) and δ = 0.01 (bottom). In the perspective cases H1-H1’,
votes for image I are shown in greyscale. The darker the gray level, the
greater the vote. In the spherical cases H2-H2’, the votes are mapped to
I for visual comparison only.

5.2.3. Experiments #2: comparisons with other methods
We also estimate the vertical direction using other

methods (bottom of Tab. 1). BnB has the worst results due
to a spurious solution: all normals are inlier of (0 1 0)T if
we neglect noise. Indeed, the spurious solution (0 1 0)T is
parallel to the slanted ground (with normal nγ) and paral-
lel or orthogonal to the four vertical faces (with normals
(1 0 0)T or (0 1 0)T) of the synthetic environment. R does
not have this problem thanks to v0. Urban is more ac-
curate than R, but is less accurate than the Hough trans-
forms. PCA2 has nearly a constant error γ = 5◦. This is
not surprising since it computes the vertical as a normal
of the ground.

5.3. Experiments using a photogrammetric dataset
Here we provide detailed experiments on two 3D

models reconstructed from videos taken by helmet-held
360 cameras: a tourist-attraction city build on an inclined
ground and a basalt canyon with a strongly non-planar
ground. The experiments include comparisons of vertical
directions computed by our method against other verti-
cal directions computed by previous methods or different
sensors.

5.3.1. Dataset (Basalt and City)
The 3D model “Basalt” is reconstructed from a 360

video taken using a helmet-mounted GoPro Max cam-
era while walking for 27 minutes around a geological-
interest site. (See Fig. 4.) The two sides of the path are

8

δ 0.002 0.004 0.006 0.008 0.010
nδ 1.15 2.31 3.48 4.67 5.84
H1 0.44/0.06/0.71 0.63/0.29/1.56 1.00/0.52/2.92 1.40/0.73/4.37 1.70/0.89/4.82
H1’ 0.42/0.00/0.42 0.48/0.13/1.34 0.69/0.36/2.16 1.04/0.56/2.94 1.43/0.78/4.02
H2 0.70/0.44/2.24 1.32/0.63/3.61 1.93/0.89/6.02 2.60/1.06/6.40 3.07/1.25/7.39
H2’ 0.41/0.23/1.28 0.84/0.44/2.36 1.48/0.66/3.62 2.13/0.89/6.40 2.65/1.06/7.05
R 2.93/14.9/88.9 3.74/16.1/88.4 7.30/22.3/89.3 8.08/23.0/89.8 12.3/28.1/89.9

BnB 89.9/0.11/89.9 89.3/1.04/89.9 88.2/1.79/89.9 87.4/5.83/90 87.2/4.31/89.9
Urban 0.46/0.19/1.26 2.87/11.6/90.0 5.76/16.3/90.0 7.60/19.0/90.0 10.3/22.0/90.0
PCA2 5.20/0.02/5.26 5.20/0.06/5.37 5.19/0.10/5.50 5.17/0.14/5.59 5.15/0.17/5.69

Table 1: Accuracy of the (unoriented) vertical for the synthetic environment. For each method and noise, we have a tuple of values: mean, standard
deviation and maximum of angles between estimated and ground-truth verticals (computed from 500 estimates). Also see nδ: the noise of triangle
normals (the mean of angles between triangle normals with noise δ and triangle normals without noise). All values, except δ, are angles in degrees.

Figure 4: A Gopro Max 360 camera and a cubemap image.

composed of basalt prisms that range from 5m to 20m in
height and that have been eroded and degraded by vegeta-
tion and high humidity. The texture is favorable for pho-
togrammetry, except at a few locations with low light due
to narrow canyon (less than 1m) or where the vegetation
is very close to the camera. The path is mostly composed
of rocks, that can be slippery and are bordered by small
vegetation. Its slope angle is less than π/4, except at a
few small sections where walking is replaced by climbing
with hands or by sliding on the buttocks. This path was
thoughtfully selected before the acquisition as it offers a
complicated test (a kind of labyrinth with obstacles and
dangerous sections) and as the trajectory has to include
closed loops for the Structure-from-Motion step to reduce
the drift. (A small drift is useful for A0.)

The 3D model “City” is reconstructed from 360 videos
taken using two GoPro Max cameras (only one fisheye
per GoPro is useful) rigidly mounted on either side of the
head (at ear level) while walking for 21 minutes around
the streets of a local city (Collonges-la-Rouge). This

Name #tri #loc h length slope-length
Basalt 2.9M 3840 1.8m 819m >30%,496m
City 3.4M 3132 1.55m 1.6km >10%,240m

Table 2: Characteristics of Basalt and City: number of triangles, number
of camera locations li (selected by Structure-from-Motion), camera-to-
ground distance (i.e. camera height) h, trajectory length, slope-length
(e.g. at least 10% slope along 240m of the acquisition trajectory).

model is interesting for experimenting our method on a
more standard ground surface with a moderated slope.
It includes small castles, a church, trees and medieval
porches. The path was chosen before acquisition using
a map to ensure that it includes several closed loops. Both
day and hour of acquisition were purpose-chosen to re-
duce the number of tourists in the streets. As in the
first model, the weather was chosen to ensure there was
enough light and to ensure that surrounding vegetation
stayed still.

Tab. 2 shows characteristics of Basalt and City, includ-
ing trajectory lengths and slope angles which are esti-
mated thanks to our 3D coordinate system change. Note
that these environments are not trivial: they are several
hundred meters long and feature millions of triangles and
non-negligible slope angles. They are reconstructed using
the work of [Lhuillier18] and [Lhuillier19]. Fig. 5 illus-
trates global and top-down views of reconstructed points.

9

Figure 5: Global and top-down views of the reconstructed points of City
(top) and Basalt (bottom). The darker the gray level, the greater the point
density. The trajectory of the acquisition camera is also shown in black
for Basalt.

5.3.2. Experiments #1: is the Hough step really useful ?

Here we compare methods that compute the vertical
direction up to its orientation, i.e. the PCA method in
Sec. 3.1 and the Hough method in Sec. 3.2 (H1’). We
remind that the former initializes the latter, and the for-
mer is enough for an acquisition trajectory that is almost
horizontal. Their estimates are v0 and εv, respectively.

First the comparison is done by orthogonal projections
of the reconstructed cloud of points such that the projec-
tion direction is v0 or εv, and by examining the scene
components that have vertical surfaces. These compo-
nents have to be projected into lines or curves. Fig. 6
shows the projections for Basalt, which is composed of
corridors (or canyons) whose sides are mostly vertical.
The direction estimated by the Hough transform is more
parallel to the corridor sides than the direction estimated
by PCA, since new dark curves appear with εv. The com-
parison is less easy for City because we must to zoom in to
see a difference between PCA and Hough results (Fig. 7).
We see that the line segments are less noisy and darker
for εv than for v0. Furthermore, there are other line seg-

(a) Projection parallel to v0 (PCA)

(b) Projection parallel to εv (Hough)

Figure 6: Top-down views of reconstructed points of Basalt. The direc-
tion estimated by the Hough transform is more parallel to the canyon
sides than the direction estimated by PCA.

ments (or curves for Basalt) that have a smaller thickness
for εv than for v0. The lower the thickness, the more ac-
curate the vertical. We thus arrive at the same conclusion
for both City and Basalt: εv is better than v0. The angle
between v0 and εv is equal to 14◦ for Basalt and 4◦ for
City. This explains why this comparison is easier to make
for Basalt than for City.

Second we run a further comparison to show that εv
is better than v0. In Fig. 8, each image of the City’s 3D
model is drawn by a pinhole camera ([Hartley00]) that has
zero pitch and zero roll angles (and square pixels) with re-
spect to a vertical direction of reference among v0 and εv.
Then all vertical lines in 3D are projected to vertical lines
in 2D, if the vertical direction of reference is an accurate
estimation of the true vertical. They are if the vertical di-
rection of reference is εv, but they are not if this direction
is v0.

Third we discuss the votes in the Hough space of Basalt
and City thanks to Fig. 9. The dark spots suggest that the
computation of εv is more reliable in City than in Basalt.
This confirms the observation that the natural (Basalt)

10

(a) Projection parallel to v0 (PCA)

(b) Projection parallel to εv (Hough)

Figure 7: Top-down views of reconstructed points of City. The direction
estimated by the Hough transform is more parallel to walls and facades
than the direction estimated by PCA.

walls are less vertical than the man-made (City) walls.

5.3.3. Experiments #2: orientation and scale
Now we use Tab. 3 to detail the estimations of the

orientation and scale in Sec. 3.3. Again, note that we
distinguish camera-to-ground and camera-to-ceiling dis-
tances in {m−1,m+1} by comparing m−1 and m+1. Since
m+1 < m−1 for both City and Basalt, m+1 is the camera-
to-ground distance and the 3D models will be rescaled to
make m+1 equal to h. The table also provides the standard
deviation σε associated to mε . We see that the assump-
tion of constant camera height (A1) is better for City than
for Basalt, which is confirmed by observation: the person
who takes the images in the City case is always standing,
while in the Basalt case he sometimes walks squatting to
pass under obstacles (e.g. tree branches).

5.3.4. Experiments #3: other methods
We compare H1’ with other methods. Let a(M) be the

angle in degrees between the vertical estimated by H1’
and the vertical estimated by another method M. For City,
a(R) = 0.723, a(BnB) = 0.509, a(Urban) = 0.413 and
a(PCA2) = 4.547. For Basalt, a(R) = 3.84, a(BnB) =

Figure 8: Views of City with zero pitch and zero roll. The vertical lines
in 3D are projected to vertical lines in 2D, if the reference vertical direc-
tion is εv (bottom). They are not, if the reference vertical direction is v0
(top).

Name m−1 σ−1 m+1 σ+1 σ+1/m+1

Basalt 28.2 15.1 5.6 0.99 0.177
City 24.7 11.0 7.71 0.23 0.0298

Table 3: Mean and standard deviations of ground-to-camera and ceiling-
to-camera distances in the photogrammetric coordinate system.

5.49, a(Urban) = 7.52, and a(PCA2) = 15.9. H1’ takes
less than 3 seconds with one core of a Laptop. Its time
complexity is O(sN + s2) where s is the Hough resolu-
tion and N is the number of input triangles. BnB is the
slowest method: 25 minutes for City and 102 minutes for
Basalt. Its runtime not only depends on N but also on the
shape complexity of its score function. Since all methods
(except PCA2 which computes a normal of the ground)
provide similar results for City, we are more confident in
these results than in the results for Basalt.

5.3.5. Experiments #4: toward limits of our method
Here we compare the methods based on transforma-

tions of the dataset to make it more difficult to estimate the

11

Figure 9: Hough space of Basalt (left) and City (right) using H1’ with
α = π/4 and s = 100. The white cross shows εv. The center of the space
is v0.

unoriented vertical direction than in Sec. 5.3.2. Let CityR
be a set of 100 sub-models of City with R a real number.
A sub-model is the part of City (both triangles and trajec-
tory) inside a sphere whose radius is R and whose center
is a camera location li. (i is evenly spread in its range.)
We define several datasets, as follows: City20, City50,
City100, Basalt50, Basalt100 and Basalt200.

According to Tab. 4, for each scene and each method,
the rule is: the smaller the radius of a dataset, the greater
the degradation of the estimated verticals. Degradation is
measured by the angle between a vertical estimated for a
sub-model and the vertical estimated by PCA+H1’ for a
complete model. For our PCA+H1’ experiment, the rule
can be explained as follows. If PCA is applied on a cam-
era trajectory that is a line segment, the rough estimate v0
of the vertical can be every vector that is orthogonal to
the segment. Thus the search space can exclude the tar-
get vertical and H1’ fails. Other failures are due to scenes
whose vertical components have a single unoriented nor-
mal, e.g. a straight road with only walls parallel to the
road. In this case, the maximizer of the votes is not well-
defined, and the vertical estimation can be every vector
that is orthogonal to this normal. The probability of such
failures increases as sphere radius decreases.

For the Hough methods, Tab. 4 shows that the degra-
dation is reduced by smoothing or if the sampling of the
search space is based on a perspective camera. Further-
more, the degradation is greater for the natural environ-
ment (Basalt) than for the man-made environment (City).
H1’ is the best for City. BnB has the worst results for
City but also has the most best results for Basalt. The

results for City have similarities with the synthetic ex-
periments (City can be locally approximated by a slanted
ground plane and vertical-orthogonal walls). The results
for Basalt are due to the fact that Basalt has a different
structure to City, i.e. the ground is strongly nonplanar and
the canyon sides are not limited to two orthogonal verti-
cal walls. PCA+R gives some of the best results for both
Basalt (since it has the same score function as BnB) and
City (thanks to our v0). Nevertheless, vertical estimates of
small 3D models can be too inaccurate for a visualization
application. Here a degradation of 4◦ is not acceptable for
City according to Fig. 8.

5.3.6. Experiments #5: comparisons with other sensors
Basalt and City are reconstructed from images taken by

a 360 camera, whose firmware also estimates a vertical di-
rection for each image. These estimates are produced us-
ing measurements coming from built-in sensors detailed
by [Kirschenbaum19]: accelerometer, gyroscope, GPS,
magnetometer. They are used by applications like hori-
zon leveling and image stabilization. Here we aim to find
out the discrepancy between verticals estimated by our
method versus the firmware.

Nevertheless, there are two problems. First, the esti-
mations of the vertical direction are not in a same coor-
dinate system. Since an estimation done by the firmware
is in a camera coordinate system Fm chosen by the man-
ufacturer, we need to compute the change of coordinate
system toward the coordinate system Fg of the 3D model.
This is the composition of two rotations: between Fm and
the camera coordinate system Fp of the photogramme-
try software, and between Fp and Fg. The latter depends
on the image (It is computed by Structure-from-Motion.)
and the former is constant. Second, the vertical estimation
by the firmware is not unique after the coordinate change
for several reasons ([Lobo03]) including: drift error due
to time integration of inertial measurements, a heuristic to
separate gravity and linear acceleration, incremental com-
putations. Therefore, here we do not report a single angle
discrepancy a between two estimated verticals, but the
mean ā and standard deviation σa and maximum max a
of angle discrepancy.

The angle discrepancies, in degrees, between the
firmware verticals and our vertical (using H1’) are as fol-
lows. For City, the first Gopro has ā = 2.24, σa = 0.85,
max a = 4.39 and the second Gopro has ā = 1.29,

12

Dataset City20 City50 City100 Basalt50 Basalt100 Basalt200
PCA+H1 6.20/14.1/81.1 1.34/4.33/43.8 0.86/0.28/1.86 14.3/22.0/104. 8.97/14.0/104. 2.00/2.96/8.29
PCA+H1’ 3.77/11.5/81.1 0.75/0.44/2.49 0.71/0.24/1.36 13.4/20.3/104. 8.90/16.3/120. 1.63/2.74/8.68
PCA+H2 12.9/14.9/71.3 6.66/13.1/50.3 3.60/7.99/39.5 14.7/20.7/119. 10.4/7.90/42.3 13.3/5.87/37.7
PCA+H2’ 9.22/12.2/51.6 3.20/7.82/43.4 1.65/2.49/19.0 13.2/18.3/109. 11.3/7.49/32.7 8.83/2.09/18.7
PCA+R 6.15/19.7/92.9 4.38/17.3/91.3 1.56/8.97/90.7 6.31/10.6/77.7 4.71/2.90/22.3 4.61/1.34/7.79

BnB 71.7/35.6/94.8 46.1/45.7/97.2 27.8/41.9/94.9 4.31/2.70/9.97 4.27/1.45/6.35 5.52/0.41/6.35
PCA+Urban 21.9/20.6/87.6 14.8/18.2/77.2 7.45/11.1/56 32.0/26.7/111. 25.0/30.5/123. 11.0/8.44/47.6
PCA+PCA2 6.02/4.85/26.7 4.55/2.66/17.7 4.06/1.45/10.5 26.4/32.0/136. 20.4/29.8/137. 17.6/4.76/33.8

Table 4: Degradation of the vertical direction as a function of radius of sub-models in City and Basalt. For each model (City or Basalt) and radius,
we have a tuple of values, i.e. the mean, standard deviation and maximum of angles (in degrees) between estimated and reference verticals.

σa = 0.60, max a = 3.54 (remember that two Gopro Max
are used for City.) For Basalt, ā = 3.94, σa = 2.16,
max a = 11.4. We also examine how far ā can be min-
imized by updating the rotation between Fm and Fp: with
rotation changes of about 2 degrees, we obtain ā = 1.45,
ā = 1.16, ā = 3.64, respectively, for the three above cases.

5.3.7. Discussion on parameter tuning
The estimation of the vertical direction depends on α,

β and s, which are described in Sections 3.1, 3.2 and 5.1.
Note, again, that the value of β ∈]0, 1] is a trade-off: it
must be large enough to get invariant votes by subdivision
of the input triangulation, but also small enough to get
robustness with respect to the large spurious triangles. In
our experiments on photogrammetric 3D models, β = 0.1.
If photogrammetry software removes spurious triangles,
the invariance can be improved by increasing β.

Furthermore, α is an upper bound for the angle be-
tween the rough-initialized vertical (using PCA) and the
refined vertical (using Hough transform). It is also an up-
per bound of the slope angle of the ground surface. In our
experiments, α = π/4 to deal with a lot of ground sur-
faces including the disrupted Basalt ground surface. If we
know a tight upper bound of the slope angle, e.g. 10 de-
grees for usual environments, then we can set α with this
value. Then the Hough space is reduced, which in turn
implies a decreased risk of a bad maximiser.

Finally, note again that s is the image size (i.e. the res-
olution of the Hough space) that needs to be large enough
to provide an accurate vertical, but not be too large, oth-
erwise the votes for the true vertical would get spread
across several pixels (instead of a single one in the ideal

case) due to noise, which in turn would corrupt the vote
maximizer and thus the computation of the vertical. Here
s = 100 for an accurate-enough vertical for our VR appli-
cation. The noise is that of triangle’s normals, which are
computed from the reconstructed 3D points. The lower
the reconstruction noise, the greater the possible values of
s.

5.4. Experiments using a scanner dataset

Although scanner input is not within the main scope
of the paper, it is interesting to experiment with it and
compare our method against previous ones that were in-
troduced purposely for this input.

5.4.1. Dataset (Bremen and Kapelle)
Two point clouds ([Osnabruck]), Bremen and Kapelle,

are taken by a scanner (Riegl VZ400) and shown in
Fig. 10. Since they have high numbers of points (about
200M) without normals, we first downsample them and
then compute normals (by PCA of 6 nearest points) in a
similar way to [Liu22]. Bremen is an urban environment
that meets the Atlanta world assumption. It has 1.8M nor-
mals and a vertical of about gT =

(
0 0 1

)
. Kapelle

is a mixture of natural and man-made environments: a
small chapel surrounded by trees, cultures and a town in
the background. It has 1.6M normals and a vertical of
about gT =

(
0 1 0

)
.

In this context, the H1’ method is limited to the com-
putations in Sec. 3.2 and it takes these normals that share
a same vote weight directly as input, as in [Liu22].

13

Figure 10: Top-down views of the scanner dataset: Bremen center (left)
and Maria-Schmerz-Kapelle Randersacker (right).

Dataset Bremen30 Kapelle30 Kapelle5
H1’ 0.62/0.26/1.10 2.82/0.32/3.43 2.90/0.34/3.50
R 0.86/0/0.86 5.40/10.9/81.8 3.84/0/3.84

BnB 0.74 80.7 80.7
Urban 0.69/0.25/1.47 4.36/9.58/75.5 2.90/0.32/3.74
PCA2 2.92/2.65/12.4 9.02/3.16/17.0 2.04/0.91/3.61

Table 5: Discrepancies in vertical direction on the scanner dataset us-
ing noisy v0. For each model (Bremen or Kapelle) and noise, we have
a value or a tuple of mean/standard deviation/maximum of angles (in
degrees) between estimated and reference verticals.

5.4.2. Experiments
Tab. 5 compares the vertical directions estimated by

100 runs of each method applied on the scanner dataset
with noisy initialization v0. The Bremen30 notation (and
likewise Kapelle30 and Kapelle5) means that we experi-
ment on Bremen with a noise such that the angle between
v0 and g is less than 30◦. For Bremen30, all verticals (ex-
cept that of PCA2) are similar to g with discrepancies be-
low 1◦ in most cases. H1’ gives some of the best results
among methods R-BnB-Urban methods that are purpose-
designed for this kind of dataset. For Kapelle, a small-
enough noise of v0 is needed to obtain discrepancies of
about 2◦ − 3◦ (except BnB which fails). Fig. 11 shows the
votes of H1’ for Bremen30 and Kapelle5 using α = π/4
and s = 100 (β is unused).

5.5. VR for the extended photogrammetric dataset

Sec. 5.5.1 summarizes the extended photogrammetric
dataset, which includes Basalt and City, and its VR ap-
plications (viewers). Sec. 5.5.2 focuses on a 3D model
of this dataset that does not meet the assumption A2.

Figure 11: Hough space of Bremen30 (left) and Kapelle5 (right) using
H1’.

Name Acquisition 360 camera #tri
Snowy town walk 670m Garmin Virb 697k

Forest walk 800m Garmin Virb 2.1M
Semi-medieval town walk 1km Gopro Max 2.3M

Campus bike 5.2km Garmin Virb 2.8M
Verdon canyon kayak 2.5km Gopro Max 1.8M
Ruin in forest walk 400m Gopro Max 1.7M

Table 6: Characteristics of six other input 3D models, including acqui-
sition information (camera name and approximate trajectory length) and
number of surface triangles.

The other sections provide informations describing the
VR applications, which are useful for people who want
to use VR to display photogrammetric reconstructions:
common VR headsets (Sec. 5.5.3), compromise between
rendering quality and framerate (Sec. 5.5.4), Locomotion
(Sec. 5.5.5).

5.5.1. Overview of the input and the results
VR applications are available for eight 3D models:

Basalt and City in Sec. 5.3 and six others that are sum-
marized in Tab. 6. The 3D models are reconstructed from
videos taken by helmet-held 360 cameras by [Lhuillier18]
and [Lhuillier19] followed by an incremental mesh sim-
plification based on edge collapses ([Botsch10]). A VR
application is a viewer for a single 3D model (ranging
in size between 169Mo and 800Mo). The VR user can
choose the rendering (textures or normals) and the motion
(2D like a pedestrian, 3D like a bird).

Figs. 12 and 13 show screenshots taken by an Oculus
Quest running the VR applications of Basalt and City,

14

after our reset of their coordinate systems (Sec. 3).
The outward-pointing normal direction is color-encoded:
white for upward vertical, black for downward vertical,
red-green-blue for horizontal. Fig. 14 shows two screen-
shots, the Hough space (H1’) and a top view of recon-
structed points for the six other 3D models. Note that
there is no manual cleanup, since a secondary objective
here is to show the quality of the reconstruction.

5.5.2. Special case: the Verdon canyon
The Verdon canyon stands out a special case among the

eight 3D models for several reasons. First the second step
(Hough) of our method fails, since the assumption A2 is
not met. The two sides (walls) of this canyon are too far
from vertical, and so the unoriented vertical direction is
provided by the first step (PCA). Second the reconstruc-
tion of the ground is inaccurate, since the ground is wa-
ter, which in turns means that ground-to-camera distance
is inaccurate too. Since the ceiling-to-camera distance is
two magnitude orders greater than the ground-to-camera
distance, the oriented vertical direction is good. But the
final scale obtained for VR is inaccurate in comparison
to those of the other 3D models. Third, the water is seg-
mented to improve its texturing based on its mean color.

5.5.3. Common VR headsets
The VR applications are built for common consumer-

grade VR headsets. For each 3D model, there are five
VR applications summarized in Tab. 7. An application
can be PC VR or standalone. “PC VR” means that a PC
renders the scene and the VR headset only displays the
output result via a link cable. “Standalone” means that
the VR headset renders the scene without a PC and cable.
The Oculus Quest headset (2) supports both PC VR and
standalone modes. The rendering is usually better (higher
framerate and texture quality) for PC VR than for stan-
dalone mode. The VR applications are experimented on
(but not restricted to) an Oculus Quest, an Oculus Go, an
Oculus Quest 2, a Lenovo Explorer and a HP Reverb G2,
using Windows 10 for PC VR. They are built in Unity
2019.4, except in the case of the SteamVR Workshop
which has its own game engine. The VR applications
(which are not required for understanding this paper) are
freely downloadable at
https://maximelhuillier.fr

https://sidequestvr.com/user/330664

https://steamcommunity.com/profiles/

76561198051374313/myworkshopfiles/

5.5.4. Compromise between rendering quality and fram-
erate

The PC VR applications render the models in Tabs. 2
and 6 with the relevant game engine’s default setting. In
the standalone mode, which has less computational re-
sources, more things are needed to obtain a decent fram-
erate. A decent framerate reduces the risk of VR sickness,
and is also required for the Oculus Quest to store a VR ap-
plication in a database (at least 60 frames per second for
the App Lab, as summarized in the third line of Tab. 7).

Here we explain how to increase the framerate for a
given 3D model. First we enable monoscopic rendering:
the two eyes see the same image. This halves the compu-
tations needed in comparison to the default stereoscopic
rendering and doubles the framerate. If the framerate is
still too low, we discard triangles in the far background
during the rendering. This is done carefully so as not to
lose too much rendering quality: most discarded triangles
should be occluded by undiscarded triangles. A simple
method is to reduce the depth of the far clipping plane.
If the framerate is still too low, another method is used.
We split the 3D model (here, of Basalt and City) into
local models of horizontal size 50m × 50m, then import
all the local models in Unity (they share the same texture
blocks as the global model), and finally we render only the
nine local models in the 8-neighborhood of the VR user.
A more sophisticated method is to combine local models
and level-of-details like [Finsterwalder20].

5.5.5. Locomotion
We would like the VR user to be able to freely move

on the ground of the environment like a pedestrian, with
strong spatial awareness and a low risk of VR-sickness
(Sec. 2.4).

Since the ground of the environment is greater than
that of the tracking area, the VR user controls their mo-
tion in the environment using hand-held controllers. (The
user can remain seated.) If the VR user chooses to move
like a pedestrian (i.e. 2D motion), their location is con-
strained to be in a “motion surface” that approximates the
ground. We define the motion surface using assumption
A1’: it extrapolates the trajectory of the acquisition cam-
era up to a known vertical offset (see Appendix B for

15

VR headsets-compatibility file mode installation rendering
Oculus Go/Quest/Quest 2 APK standalone enable developer mode (sideloading) monoscopic, all triangles

Oculus Quest/Quest 2 APK standalone easy (App Lab) monoscopic, foreground, FPS>60
Windows Mixed Reality ZIP PC VR easy stereoscopic, all triangles

OpenVR ZIP PC VR install Steam and SteamVR stereoscopic, all triangles
SteamVR Workshop VPK PC VR install Steam and SteamVR stereoscopic, all triangles

Table 7: Five VR applications for each 3D model. Abbreviations: APK=Android package, ZIP=compressed directory including a Windows 10
executable and data, VPK=Valve package, FPS=frames per seconds.

details). Inspired by VR games, we implement two loco-
motion modes. The first has continuous translations on
the motion surface with the left joystick and discrete yaw
rotations with the right joystick. The second replaces the
continuous translations by a “virtual laser pointer” that
enables the user to instantaneously move to a location on
the surface by using a point-and-click controller. The first
locomotion mode provides the best spatial awareness and
can be better for experienced users. The second locomo-
tion mode has the lowest risk of VR-sickness and is better
for inexperienced users.

6. Conclusion

The paper provides a new method for estimating the
vertical direction of a triangulated surface reconstructed
by photogrammetry from terrestrial imagery. The method
is simple: first compute the unoriented vertical by princi-
pal component analysis of the acquisition trajectory fol-
lowed by a Hough transform with votes of the triangle
normals, then obtain the oriented vertical direction and the
scale by projecting the trajectory onto the surface with re-
spect to the two possible opposite vertical directions. We
report experiments using the method in both man-made
and natural environments reconstructed from consumer
grade 360 videos with trajectory lengths of several hun-
dred meters. Variants of the Hough transform and pre-
vious methods are compared on both synthetic and real
datasets. We detail both our method assumptions and lim-
itations. The method is used to build VR applications for
immersive visualization of eight outdoor environments by
common consumer-grade VR headsets. They are freely
available on the internet, which is also a novelty in the
context of photogrammetric scans of complex environ-
ments.

Declaration of competing interest

The author declares that he has no known competing fi-
nancial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This research did not receive any specific grant from
funding agencies in the public, commercial, or not-for-
profit sectors.

Appendix A. Proof of Eq. 7

We use properties of the comatrix Com(A) of a 3 × 3
matrix A =

(
a b c

)
, i.e.

Com(A) =
(
b ∧ c c ∧ a a ∧ b

)
(A.1)

and

(Ax) ∧ (Ay) = Com(A)(x ∧ y) (A.2)

Thanks to Eq. 6 and the Chain rule,

∂u
∂x

=
∂n

∂(u, v,w)
R

1/ f
0
0

 , ∂u
∂y

=
∂n

∂(u, v,w)
R

 0
1/ f

0

 . (A.3)

Thus

∂u
∂x
∧
∂u
∂y

= Com(
∂n

∂(u, v,w)
)(R

1/ f
0
0

 ∧ R
 0
1/ f

0

)
=

1
f 2 Com(

∂n
∂(u, v,w)

)R

001
 . (A.4)

16

Let N = u2 + v2 + w2. Eq. 6 also implies

∂n
∂(u, v,w)

= N−3/2

N − uu 0 − vu 0 − wu
0 − uv N − vv 0 − wv
0 − uw 0 − vw N − ww

 . (A.5)

Let
(
a b c

)
= N3/2 ∂n

∂(u,v,w) . We have

a ∧ b = (N

100
 − u

u
v
w

) ∧ (N

010
 − v

u
v
w

)
=

 0
0

N2

 + Nv

 0
w
−v

 + Nu

 w
0
−u

 = Nw

u
v
w

 .(A.6)

Using similar relations for b ∧ c and c ∧ a, we obtain

Com
(
a b c

)
= N

(
u v w

)T (
u v w

)
. (A.7)

Thanks to Eq. A.4 and Eq. A.7,

||
∂u
∂x
∧
∂u
∂y
|| = ||

1
f 2

Com
(
a b c

)
N3 R

001
 ||

=
N
√

N
f 2N3 |

(
u v w

)
R
(
0 0 1

)T
|(A.8)

Since
(
u v w

)
=

(
x y 1

)
K−TRT (thanks to Eq. 6),

||
∂u
∂x
∧
∂u
∂y
|| =

N−3/2

f 2 |1| =
1
f 2 ||K

−1

x
y
1

 ||−3

=
1
f 2 ||

(x − s/2)/ f
(y − s/2)/ f

1

 ||−3 (A.9)

and we obtain Eq. 7.

Appendix B. Motion Surface

The motion surface extrapolates the trajectory of the ac-
quisition camera computed by Structure-from-Motion as
follows. Assume that the successive locations (xi, yi, zi) of
the acquisition camera are in the coordinate system used
by the game engine for the 3D model. In the case of Unity,
which we use, the y-axis is vertical and points toward the
sky. Furthermore, the ground is roughly horizontal. Thus

we define the motion surface as a function y = f (x, z),
then the left joystick updates the values of x and z, which
moves the VR camera on the motion surface thanks to f .
Let

f (x, z) = a +

∑
j wc jyc j∑

j wc j
where wi = e−

√
(x−xi)2+(z−zi)2

b , (B.1)

a is a vertical offset of the VR camera with respect to the
acquisition camera, b is a scale factor to set the decrease of
the weights wi with respect to the distance between (x, z)
and (xi, zi), and c is used to skip locations and accelerate
the calculations of f at each frame (assuming that i in-
creases by acquisition time). Both a and b are in meters.
The value of b is a trade-off: small enough for extrapola-
tion accuracy, large enough to avoid staircase effects (as
staircase effects can generate VR sickness).

We finish by a note about the coordinate systems. Ours
is right-handed (as usual) with a vertical z-axis toward
sky, whereas Unity’s coordinate system is left-handed
with a vertical y-axis toward sky. There are two con-
sequences. First, we have to convert the table of loca-
tions (xci, yci, zci) in the C# script needed by Unity that
computes f : there is a −π/2 rotation around the x-axis
and a sign change of the x-coordinate in order to switch
from right-handed to left-handed. We therefore convert
(xci, yci, zci) to (−xci, zci,−yci). Second, we use Unity to
rotate by −π/2 around the x-axis when importing the 3D
models (the sign change of x is implicitly added by Unity
here). The acquisition locations and 3D models are then
consistent in Unity.

References

[Alnuaimi17] Al-Nuaimi, A., 2017. Methods of point
cloud alignment with applications to 3D indoor
mapping and localization. Ph.D. thesis. Technische
University Munich. Munich, Deutchland.

[Avidar18] Avidar, A., Malah, D., Barzohar, M., 2018.
Point cloud registration refinement in an urban en-
vironment using 2d edge-maps, in: ICSEE interna-
tional conference on the science of electrical engi-
neering.

[Osnabruck] Borrmann, D., Elseberg, J., Nuchter, A.,
Lauterbach, H., . Robotics 3d scan repository.

17

Http://kos.informatik.uni-osnabrueck.de/3Dscans ,
last accessed on 2023/06/02.

[Botsch10] Botsch, M., Kobbelt, L., Pauly, M., Alliez,
P., Levy, B., 2010. Polygonal mesh processing. AK
Peters.

[Crandall11] Crandall, D., Owens, A., Snavely, N., Hut-
tenlocher, D., 2011. Discrete-continuous optimiza-
tion for large-scale structure from motion, in: Con-
ference on Computer Vision and Pattern Recogni-
tion, IEEE.

[Dai17] Dai, A., Chang, A., Savva, M., Halber, M.,
Funkhouser, T., Niessmer, M., 2017. ScanNet:
richly annotated 3d reconstructions of indoor scenes,
in: Conference on Computer Vision and Pattern
Recognition, IEEE.

[Dhanda19] Dhanda, A., Reina Ortiz, M., Weigert, A.,
Paladini, A., Min, A., Guyi, M., Su, S., Fai, S., San-
tana Quintero, M., 2019. Recreating cultural her-
itage environments for VR using photogrammetry,
in: the 8th intl. workshop 3D-ARCH virtual recon-
struction and visualization of complex architectures.

[Finsterwalder20] Finsterwalder, D., 2020. How
we made the Audi AI:me’s flying VR experi-
ence - part 2, optimizing photogrammetry data
for VR using the realities.io pipeline editor.
Https://medium.com/realities-io/how-we-made-
the-audi-ai-mes-flying-vr-experience-part-2-
41df10b1e63 , last accessed on 2023/06/02.

[Grayson18] Grayson, B., Penna, N., Mills, J., Grant,
D., 2018. GPS precise point positioning for UAV
photogrammetry. The Photogrammetric Record 33,
427–447.

[Hartley00] Hartley, R., Zisserman, A., 2000. Multiple
View Geometry in Computer Vision (chapter: 3D re-
construction of cameras and structure). Cambridge
University Press.

[Joo18] Joo, K., Oh, T., Kweon, I., Bazin, J., 2018.
Globally optimal inlier set maximization for Atlanta
frame estimation, in: Conference on Computer Vi-
sion and Pattern Recognition, IEEE. pp. 5726–5734.

[Kirschenbaum19] Kirschenbaum, M.,
2019. Gopro max teardown.
Https://gethypoxic.com/blogs/technical/gopro-
max-teardown , last accessed on 2023/06/02.

[Klingner13] Klingner, B., Martin, D., Roseborough,
J., 2013. Street view motion-from-structure-from-
motion, in: International Conference on Computer
Vision, Computer Vision Foundation.

[LaValle20] LaValle, S., 2020. Virtual Reality. Cam-
bridge University Press.

[Lhuillier11] Lhuillier, M., 2011. Fusion of GPS and
structure-from-motion using constrained bundle ad-
justments, in: Conference on Computer Vision and
Pattern Recognition, IEEE.

[Lhuillier18] Lhuillier, M., 2018. Surface reconstruc-
tion from a sparse point cloud by enforcing visibility
consistency and topology constraints. Computer Vi-
sion and Image Understanding 175, 52–71.

[Lhuillier19] Lhuillier, M., 2019. Local-convexity re-
inforcement for scene reconstruction from sparse
point clouds, in: International Conference on 3D im-
mersion.

[Lhuillier21] Lhuillier, M., 2021. From photogrammet-
ric reconstruction to immersive VR environment, in:
International Conference on 3D immersion.

[Liu22] Liu, Y., Chen, G., Knoll, A., 2022. Globally
optimal vertical direction in Atlanta world. IEEE
Transaction on Pattern Analysis and Intelligence 44,
1949–1962.

[Lobo03] Lobo, J., Dias, J., 2003. Vision and inertial
sensor cooperation using gravity as a vertical ref-
erence. IEEE Transaction on Pattern Analysis and
Intelligence 25, 1597–1608.

[Lutton94] Lutton, E., Maitre, H., Lopez-Krahe, J.,
1994. Contribution to the determination of vanishing
points using hough transform. IEEE Transactions on
Pattern Analysis and Intelligence 16, 430–438.

[Mel19] Mel, K., Luca, B., Fabio, V., Varvara, A., Ugo,
B., Elena, R., Fabio, M., Luca, F., Paraskevi, N.,

18

Martin, K., Eva, S., Whitworth, M., 2019. Work-
flows for virtual reality visualisation and naviga-
tion scenarios in earth sciences, in: the 5th interna-
tional conference on geographical information sys-
tems theory, applications and management (GIS-
TAM).

[Michot10] Michot, J., Bartoli, A., Gaspard, F., 2010.
Bi-objective bundle adjustment with application to
multi-sensor SLAM, in: International Symposium
on 3D Data Processing, Visualization, and Trans-
mission.

[Mukhopadhyay14] Mukhopadhyay, P., Chaudhuri, B.,
2020. A survey of hough transform. Pattern Recog-
nition 48, 993–1010.

[Obradovic20] Obradovic, M., Vasiljevic, I., Duric, I.,
Kicanovic, J., Stojakovic, V., Obradovic, R., 2020.
Virtual reality models based on photogrammetric
surveys - a case study of the iconostasis of the ser-
bian orthodox cathedral church of saint nicholas in
sremski karlovci (serbia). Applied Sciences 10, 1–
21.

[Poux20] Poux, F., Valembois, Q., Mattes, C., Kobbelt,
L., R., B., 2020. Initial user-centered design of a
virtual reality heritage system: applications for dig-
ital tourism. Remote Sensing 12, 1–32.

[Rabbani05] Rabbani, T., Van Den Heuvel, F., 2005. Ef-
ficient hough transform for automatic detection of
cylinders in point clouds, in: Laser Scanning, IS-
PRS. pp. 60–65.

[Tian20] Tian, N., Clement, R., Lopes, P., Boulic, R.,
2020. On the effect of the vertical axis alignment
on cybersickness and game experience in a supine
posture, in: IEEE Conference on Games, IEEE. pp.
359–366.

[Triggs99] Triggs, B., McLauchlan, P., Hartley, R.,
Fitzgibbon, A., 1999. Bundle adjustment - a modern
synthesis, in: Vision Algorithms: Theory and Prac-
tice, Springer-Verlag. pp. 298–372.

[Valve21] Valve, 2021.
Steamvr/environments/photogrammetry.
Https://developer.valvesoftware.com/wiki/SteamVR

/Environments/Photogrammetry , last accessed on
2023/06/02.

[Vu12] Vu, H., Labatut, P., Pons, J., Keriven, R., 2012.
High accuracy and visibility-consistent dense multi-
view stereo. IEEE Transactions on Pattern Analysis
and Machine Intelligence 34, 889–901.

[Wikipedia22] Wikipedia, 2022. Metaverse.
Https://en.wikipedia.org/wiki/Metaverse , last
accessed on 2023/06/02.

19

Figure 12: Screenshots of Basalt taken by a VR headset (Oculus Quest). Figure 13: Screenshots of City taken by a VR headset (Oculus Quest).

20

Figure 14: Screenshots by an Oculus Quest, the Hough space (H1’) and a top view of the reconstructed points for the 3D models in Tab. 6.

21

