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Abstract

The Source Scanning Technique (SST) is an experimental method used to syn-

thesise the vibroacoustic response of a given structure under random excitations

such as the Diffuse Acoustic Field (DAF) and the Turbulent Boundary Layer

(TBL) using a single monopole source. It was previously developed and val-

idated for simple plane structures such as Flat Rectangular Panels (FRPs).

However, in industrial cases, the structures of interest can be more complex. In

this paper, the feasibility of the extension of SST to Curved Rectangular Panels

(CRPs) is investigated. To numerically evaluate the performances of SST when

generating wall-pressure plane waves (WPPWs) on CRPs, analytical develop-

ments are proposed to estimate the transfer functions between the monopole

source and the CRPs. Two- and three-dimensional cases are considered and

validated using the boundary element method. Then, parametric studies are

carried out to determine the optimal parameters for implementing the SST pro-

cess in two- and three-dimensional cases considering a conformal geometry, i.e.,

the array of monopoles has the same geometry as the structure of interest. The

numerical results obtained are then supported by experimental investigations
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using a robotized system to move the monopole source. The transfer functions

obtained using the proposed analytical models are compared to the measured

ones, yielding relatively good agreement between the results.

Keywords: Source Scanning Technique – Curved Rectangular Panels –

Vibroacoustics – Wall-Pressure Synthesis – Diffuse Acoustic Field – Turbulent

Boundary Layer – Wall-Pressure Plane Waves

1. Introduction

The experimental characterization of structures under random excitations such

as the diffuse acoustic field (DAF) and the turbulent boundary layer (TBL) is

of great interest in the building sector and the transportation industry [1, 2].

However, the test facilities generally used (i.e., reverberant chamber for the DAF5

and wind tunnel or in situ tests for the TBL) can be hard to control and costly.

Moreover, the results obtained for a given structure can be very different from

one facility to another, even though the same setup is implemented. The exper-

imental synthesis of the vibroacoustic response of structures under stochastic

excitations using an array of acoustic sources was theoretically demonstrated10

some decades ago by Fahy [3]. However, the technical limitations of this pe-

riod did not allow the experimental validation of these techniques. Since 2000,

several researchers have addressed this problem using various approaches. For

instance; Maury et al. [4], Elliott et al. [5], Bravo and Maury [6] and Maury and

Bravo [7] extensively discussed the real-time reproduction of random excitations15

using an array of loudspeakers. The experimental results obtained in the labo-

ratory on different test cases clearly showed the ability of loudspeaker arrays to

reproduce various partially correlated pressure fields, in particular for acoustic

diffuse fields. Some years ago, the concept was even extended to an industrial

application at the ZAL Center of Applied Aeronautical Research in Hamburg.20

The Acoustic Flight-Lab consists of a large semi-anechoic chamber including a

8.5-metre-long fuselage demonstrator excited with an array of 444 loudspeakers

[8]. The setup is designed to replicate engine noise from propulsion concepts.
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It is used to validate numerical models of cabin noise and to examine new noise

reduction measures in the cabin [8, 9]. At present, approaches using an array of25

loudspeakers (which are controlled in real time) suffer from a significant draw-

back when the scale of the variations of the pressure field to be reproduced is

small. This situation is encountered when considering a DAF excitation at rela-

tively high frequencies (i.e. several kHz) or when considering a TBL excitation

for which the convective contributions may be of small wavelengths. Instead, a30

criterion of at least 4 sources per minimum wavelength characterizing the tar-

geted pressure field is commonly required to get an accurate synthesis [4, 5, 7].

When the frequency increases, the number of sources required may become very

large. Moreover, the minimum distance between the sources is limited by the

physical sizes of the loudspeakers considered. It is possible that the distance35

between the sources to respect the criterion can be smaller than the minimum

distance permitted by the design of the array.

To circumvent this issue, Maury and Bravo [10] proposed a focused synthesis of

TBL excitation over a sub-domain of the simulation surface. While this method

allows reaching higher frequencies and ensures the correct reproduction of TBL40

excitation, it also limits the observation area to a fraction of the actual panel.

To circumvent this issue, Marchetto et al. [11, 12] developed an alternative ap-

proach based on reciprocity principles. The first step consists in separating the

contributions of the wall-pressure excitation from the vibroacoustic behavior of

the panel through a mathematical formulation in the wavenumber domain. The45

excitation is then characterized by its cross-spectral density function whereas

the vibroacoustic behavior of the panel is characterized by its sensitivity func-

tions. These latter are measured experimentally, indirectly, using reciprocity

principles. They are determined by exciting the structure at the point of inter-

est and measuring the vibratory field with a laser vibrometer which is converted50

in the wavenumber space [11, 12]. The comparison of the results obtained with

this approach versus the equivalent results from standard test facilities showed

good agreement between both kinds of results as well as for DAF and TBL

excitations. However, this approach can be experimentally time consuming for
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estimating the transmission loss of a panel as it requires measuring the vibratory55

field of the panel for many source positions on a surface surrounding the panel.

Aucejo et al. [13] took a different approach from the previous ones based either

on the real-time control of a loudspeaker array [4–7] or on a reciprocity principle

[11, 12]. Instead of using a compact source array with a predefined number of

sources as in [4–7], only one monopole source was used along with the synthetic60

array principle [14]. The issue related to the size of the source was then overcome

as in the indirect approach [11, 12]. However, contrary to the latter, the method

used was “direct”, which permits estimating the radiated pressure from the panel

relatively easily.

The process proposed in [13] requires two identification steps and a post-processing65

step to simulate TBL-induced vibrations from a set of transfer functions and the

synthetic array principle. The first identification step consists in characterizing

the pressure field induced by the monopole source on the surface of the test

structure. This operation should be repeated for each position of the source in

the virtual array. This step may be time consuming but it should be carried out70

only once to characterize the source and its acoustical environment. The second

identification step which should be repeated for each tested panel consists in

measuring the transfer functions between the monopole source at the different

positions on the virtual array and the receiving points of interest (on the panel or

in the acoustic domain). The responses of the panel to unit wall-pressure plane75

waves (WPPWs), generally called the panel sensitivity functions [11, 12, 15],

can be estimated during the post-processing step from the measured transfer

functions using the monopole source. The last step consists in deducing the vi-

broacoustic response of the tested panel from the measured sensitivity functions

and the cross-spectrum density function of the wall-pressure field characterizing80

the excitation.

This technique [13] was named the Source Scanning Technique (SST) and was

applied to reproduce the vibration response of a steel panel to WPPWs or a

TBL up to 300 Hz. A qualitative comparison of the response at a given point

on the panel subject to a TBL excitation with measurements taken from the85
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literature was carried out. Globally, the results were encouraging. Recently, an

extensive study of the SST process [16] was performed to definitively validate

this experimental approach. To automate the process, a 3D Cartesian robot

was used to move the acoustic source whereas a 2D Cartesian robot was used to

move a linear array of microphones to measure the radiated pressure from the90

panel. The SST process was validated up to 2000 Hz for a simply supported

aluminum panel by comparison with measurements in a reverberant room for

the DAF and in an anechoic wind tunnel for the TBL excitation. Comparisons

with an analytical model also showed that the technique is able to accurately

estimate the sensitivity functions of the panel. For more complex panels, they95

may be helpful to extract the physical phenomena contributing to the noise

radiation of the panels.

It can be highlighted that the principle of synthetic array used in [13] was

originally developed for the aperture RADAR and was extended to the active

aperture SONAR a long time ago [17, 18]. Although the principle was not new100

at the time of the works performed by Aucejo et al. [13], they were pioneers in

the use of this principle to characterize a given panel excited by DAF or TBL ex-

citation. Since then, other methods using this principle have been proposed for

the same application. On one hand, the Wave Field Synthesis (WFS) approach

[19] was extended in [20] for the reconstruction of random sound pressure distri-105

butions on a planar reproduction surface using a planar array of reproduction

monopoles parallel to the reproduction plane. On the other hand, the Planar

Nearfield Acoustic Holography (P-NAH) based on the fundamentals of acous-

tic holography was proposed in [21]. Both approaches are open-loop processes

using arrays of acoustic sources. Experimental validations of these techniques110

coupled to the synthetic array principle are proposed in [22]. It was observed

that they provided very good estimations of the transmission loss of the panel

tested for the DAF and incident acoustic plane waves but were not able to ac-

curately synthesize the wall-pressure field induced by a TBL excitation outside

the acoustic wavenumber domain. The P-NAH approach [23] was extended to115

estimate the absorption coefficient of a sound absorbing material under a syn-
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thesized DAF excitation at the material surface by using a synthetic array of

acoustic monopoles facing the material. The estimated absorption coefficients

for a melamine foam were in satisfactory agreement with those obtained from

a model above 400 Hz. The frequency limitation could be explained by the120

finite size of the sample and the non-optimization of the virtual source array.

The results of the method were then compared to measurements on a set of

six typical acoustic materials using the standard reverberant room method [24].

Although its limitation in the low-frequency range was observed as in [23], it

was shown that the method did not exhibit size effects as is generally seen with125

the reverberant room. Recently, two sound field synthesis methods for charac-

terizing acoustic materials under plane wave excitation at arbitrary incidence

angle [25] were studied. The first method consists of a real-time control of a set

of loudspeakers to generate the plane waves whereas the second one is based on

the synthetic array principle. It was observed that the first one permitted fast130

measurement once calibration was performed and that the results were better

at high frequencies than the second one. The second method, however, was

much simpler to install and use. It was studied in-depth and improved in a con-

secutive paper [26]. Emphasis was placed on the diffuse field sound absorption

coefficient of the material. Contrary to the original concept based a spherical135

wave formalism [23], it was presented in a plane wave formalism. Moreover, the

discrete version of the Paris formula was used to estimate the sound absorption

coefficient. The proposed improvements overcome some of the limitations ob-

served for the original version concerning the maximum incidence angle limit

and when the distance from the source array to the microphone array is small.140

Techniques based on the synthetic array concept, such as SST, WFS, P-NAH,

and their developments, have proven effective and precise in assessing the vi-

broacoustic response of Flat Rectangular Panels (FRPs) subjected to DAF or

TBL excitation. Yet, within an industrial framework, the structures under con-

sideration often exhibit more intricate geometries. For example, an aircraft’s145

fuselage presents curvature in the direction perpendicular to the airflow, prompt-

ing the need to evaluate the curvature’s impact on the vibroacoustic response
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of curved structures to TBL excitation. Consequently, it is necessary to adapt

these methodologies to more complex, non-academic entities such as Curved

Rectangular Panels (CRPs). This paper aims to fulfil two interlinked goals in150

addressing this need.

• The first goal involves devising an analytical model for predicting the pres-

sure field generated by a monopole source on the surface of Curved Rigid

Panels (CRPs). This model diverges from the existing literature that typ-

ically considers a monopole positioned either outside [27] or inside [28, 29]155

a cylindrical surface. Instead, our model focuses on a monopole situated

within a semi-infinite acoustic domain, delimited by a finite curved surface

that transitions into infinite rigid baffles, as illustrated in Fig. 1. The for-

mulation of this model enables the numerical examination of the precision

of the synthesis method in reconstructing pressure fields on CRPs.160

• The second objective focuses on evaluating the SST method’s efficacy in

generating sound pressure fields, such as WPPWs, on CRPs. This involves

a numerical investigation into how the design of the array—specifically, its

geometry, the spacing between virtual sources, and their proximity to the

test structure - affects the accuracy of the sound pressure synthesized on165

the curved surface.

This paper is organized as follows

• In Sec. 2, analytical developments are proposed to compute the transfer

functions between a monopole source and observation points located on

a curved rectangular rigid surface. The solutions obtained for the two-170

and three-dimensional cases are verified numerically by comparison with

boundary element simulations. The latter are much more computer time

consuming than the proposed analytical solutions which are well-adapted

for parametric studies of SST performances.

• The performances of the SST process for synthesizing WPPWs on curved175

surfaces are studied numerically in Sec. 3 from simulations using the
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analytical solutions previously developed. Rules to define the optimal

parameters of the virtual array of monopoles are extracted from these

investigations.

• Finally, the results are experimentally verified in a controlled laboratory180

environment. The experimental setup is then presented in Sec. 4.1 and

the experimental results are thoroughly discussed in Sec. 4.2.

2. Closed-form transfer functions

2.1. Description of the problem

A thorough search of the relevant literature did not yield any closed-form trans-185

fer functions between a monopole source located at a given point x0 and an

observation point y located on a rigid curved surface (σ) as depicted in Fig. 1.

This is required to build a theoretical model for the transfer functions used in

the synthesis process over curved surfaces. The semi-infinite acoustic domain is

bounded by the rigid curved surface (σ) which is extended by an infinite rigid190

flat baffle (β) (expanding at infinity along the x and −x directions) whereas the

Sommerfeld conditions are considered at infinity for the unbounded directions

(i.e., non-reflecting boundary conditions).

It is underlined that in the following, the notations x and y refer to vector

points in the spatial domain, be it in Cartesian or polar/cylindrical coordinates.195

The notations x (r, θ) and x (r, θ, z) (2D and 3D cases, respectively) for instance,

should be read “point x of coordinates (r, θ) or point x of coordinates (r, θ, z)”,

respectively.

The previously described problem can be written in the following mathematical

form with a time-domain convention e−iωt
200 

∆p (x) + k2p (x) = −δ (x − x0) , x ∈ Ω

∂n(x)p (x) = 0, x ∈ σ

lim
r→∞

r

(
∂p

∂r
− ikp

)
= 0, x ∈ Σ∞

, (1)
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Figure 1: Problem geometry and parameters: (σ) represents the rigid curved surface, (β) the

infinite rigid flat baffle, the monopole source is located at x0. For the three-dimensional case,

refer to Fig. 2. Non-reflecting acoustic boundary conditions are specified on Σ∞.

where ∂n(x)• designates the partial normal derivative at point x in the direction

n, and n corresponds to an exterior unit vector on the boundary constituted

by (σ ∪ β). The domain of propagation Ω corresponds to the upper half-space

delimited by the baffle (β) and the structure (σ) onto which wall sound pressures

are reproduced.205

In the following section, a function p (x) is sought, which is the solution of the

Neumann problem presented in Eq. (1). In the first step, the two-dimensional

problem is solved and then follows the general three-dimensional case.

2.2. Two-dimensional case

In what follows, use will be made of the polar coordinates with the origin located210

at point O as shown in Fig. 1: the coordinates of any point x inside the

propagation domain Ω are denoted by (r, θ); those of a monopole source at

point x0 are denoted (r0, θ0) and those of a point y on (σ ∪ β) are denoted by

(rσ, θσ) in the polar coordinates. The subscript β in xβ and x0β indicate the
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image point with respect to the infinite rigid baffle plane (β).215

Note that since x is closer to (σ) than x0 in our application, the result is r < r0.

From Eq. (3.51) in [30], Green’s representation of the exterior sound pressure

field p (x) due to the source at point x0 and diffracted by the surface (σ ∪ β)

reads

p (x) = p0 (x) +
∫
σ∪β

Tr
[
∂n(y)p (y)

]
G (x,y) dS (y)

−
∫
σ∪β

Tr [p (y)] ∂n(y)G (x,y) dS (y) , (2)

where Tr [•] represents the Cauchy trace operator and ∂n(y)• designates the par-220

tial normal derivative at point y in the direction n.

In this application, the sound pressure should be predicted on or close to the

curved surface. Therefore, only the case where r < r0 (i.e., the receiving point

is closer to the origin O than the monopole source) is considered.

Because the object is rigid, Tr
[
∂n(y)p (y)

]
= 0 on σ ∪β, and Eq. (2) reduces to225

p (x) = p0 (x)−
∫
σ∪β

Tr [p (y)] ∂n(y)G (x,y) dS (y) . (3)

A priori, the Green’s function G is chosen to be the following free-field Green’s

function

G (x,y) =
i

4
H

(1)
0 [k0d (x,y)] , x ∈ Ω and y ∈ σ ∪ β,

where H
(1)
0 is the Hankel function of the first kind and order 0. In the following,

the superscript “(1)” in the function considered will be omitted as only Hankel

or Bessel functions of the first kind are used. d(x,y) represents the distance230

(Euclidean norm) between point x and point y.

It is important to note that ∂n(y)G (x,y) ̸= 0 on (β). Let us choose the half-

space Green’s function Gβ whose normal derivative vanishes on the plane baffle

(β ∪ β̄). It is given by

Gβ (x,y) =
i

4
H

(1)
0 [k0d (x,y)] +

i

4
H

(1)
0

[
k0d

(
x,yβ

)]
, (4)
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where xβ is the mirror-image point of x with respect to the plane baffle. Thus,235

∂n(y)Gβ (x,y) = 0 on β
(
∪β̄

)
. The integral representation in Eq. (3) reduces to

p (x) = p0β (x)−
∫
σ

Tr [p (y)] ∂n(y)Gβ (x,y)dS (y) , (5)

where the integral term, which represents the sound field diffracted by (σ∪β) is

now defined on a finite domain (σ) compared to Eq. (3) where the integration

domain was composed of the structure (σ) and the infinite baffle (β). Note

that the free-field source term p0 (x) has been replaced by p0β (x) = p0 (x,x0)+240

p0 (x,x0β) such that ∂n(x)p0β (x) = 0 when x ∈ β ∪ β̄.

The current problem conforms closely to cylindrical symmetry. Therefore, cylin-

drical harmonics expansion of the sound field are used for the sake of simplifying

the search for a solution to the problem.

Let us proceed with a cylindrical harmonics expansion of p0β (x) and ∂n(y)Gβ (x,y).245

• Source term p0β (x)

For r < r0, it becomes (see Appendix D of Ref. [31])

i

4
H

(1)
0 [k0d (x,x0)] =

i

4

+∞∑
n=−∞

Hn (k0r0) Jn (k0r) e
in(θ−θ0),

where Hn and Jn are the Hankel function of the first kind and order n

and the Bessel function of the first kind and order n, respectively. Note

that HnJn = H−nJ−n.250

The following equation is obtained using a similar expansion to the previ-

ous one

i

4
H

(1)
0 [k0d (x,x0β)] =

i

4

+∞∑
n=−∞

Hn (k0r0β) Jn (k0r) e
in(θ−θ0β) for r < r0β .

Note that r0β = r0 and θ0β = −θ0. It follows that

p0β (x) =
i

4

+∞∑
n=−∞

Hn (k0r0) e
inθ

[
Jn (k0r) e

−inθ0 + Jn (k0r) e
inθ0

]
. (6)

Using Euler’s trigonometric formula yields

p0β (x) =
i

2

+∞∑
n=−∞

Hn (k0r0) Jn (k0r) e
inθ cos (nθ0) . (7)
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• Derivative of the half-space Green’s function ∂n(y)Gβ (x,y)255

Gβ reads

Gβ (x,y) =
i

4
H

(1)
0 [k0d (x,y)] +

i

4
H

(1)
0

[
k0d

(
x,yβ

)]
,

where y (rσ, θσ) is now on (σ) exclusively. Note that r > rσβ = rσ. Gβ

can thus be written as

Gβ (x,y) =
i

4

+∞∑
n=−∞

Hn (k0r) Jn (k0rσ) e
in(θ−θσ)

+
i

4

+∞∑
n=−∞

Hn (k0r) Jn (k0rσβ) e
in(θσβ−θ), (8)

and becomes

Gβ (x,y) =
i

2

+∞∑
n=−∞

Hn (k0r) Jn (k0rσ) e
−inθ cos (nθσ) . (9)

The partial normal derivative ∂n(y)• corresponds to the radial derivative260

in the polar coordinates ∂rσ •, that is

∂n(y)Gβ (x,y) = ∂rσGβ (x,y) , (10)

and ultimately

∂n(y)Gβ (x,y) =
ik0
2

+∞∑
n=−∞

Hn (k0r) J
′
n (k0rσ) e

−inθ cos (nθσ) , (11)

where the prime denotes the derivative with respect to the argument of

the involved function.

Inserting Eqs. (7) and (11) into Eq. (5) yields265

p (x) =
i

2

+∞∑
n=−∞

Hn (k0r0) Jn (k0r) e
inθ cos (nθ0)

− ik0
2

+∞∑
n=−∞

Hn (k0r) e
inθ

∫
σ

Tr [p (y)] J ′
n (k0rσ) cos (nθσ) rσdθσ.

Let An =

∫
σ

Tr [p (y)] J ′
n (k0rσ) cos (nθσ) rσdθσ be the unknown amplitudes.

The previous equation can be rewritten as follows
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p (x) =
i

2

+∞∑
n=−∞

Hn (k0r0) Jn (k0r) e
inθ cos (nθ0)

− ik0
2

+∞∑
n=−∞

Hn (k0r) e
inθAn. (12)

Let us determine ∂n(x)p (x) = ∂rp (x). It reads

∂rp (x) =
ik0
2

+∞∑
n=−∞

Hn (k0r0) J
′
n (k0r) e

inθ cos (nθ0)−
ik20
2

+∞∑
n=−∞

H ′
n (k0r) e

inθAn.

The Neumann boundary condition ∂n(x)p (x)
∣∣
x=y = 0 provides

ik0
2

+∞∑
n=−∞

Hn (k0r0) J
′
n (k0rσ) e

inθσ cos (nθ0)

− ik20
2

+∞∑
n=−∞

H ′
n (k0rσ) e

inθσAn = 0. (13)

A necessary condition for Eq. (13) to be satisfied requires270

An =
J ′
n (k0rσ)

k0H ′
n (k0rσ)

Hn (k0r0) cos (nθ0) . (14)

Substituting Eq. (14) into Eq. (12), the sound pressure at any point x ∈ Ω

such that r < r0 reads

p (x) =
i

2

+∞∑
n=−∞

Hn (k0r0) Jn (k0r) e
inθ cos (nθ0)

− ik0
2

+∞∑
n=−∞

Hn (k0r) e
inθ J ′

n (k0rσ)

k0H ′
n (k0rσ)

Hn (k0r0) cos (nθ0) .

Hence, the following analytical result is derived

p (x) =
i

2

+∞∑
n=−∞

e inθ cos (nθ0)Hn (k0r0)

[
Jn (k0r)−

J ′
n (k0rσ)

H ′
n (k0rσ)

Hn (k0r)

]
. (15)

Eq. (15) can be seen as the transfer function between a field point x ∈ Ω and

a unit point source located at x0. However, the parameter of interest is the275

sound pressure at the surface of the curved structure (σ).

Using one of the Wronskian relations Jn (ξ)H ′
n (ξ)−Hn (ξ) J

′
n (ξ) =

2i

πξ
(cf. [27],

p. 21), the sought result, which corresponds to the sound pressure induced by
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a monopole source at point x0 (r0, θ0) and on a point xσ (rσ, θσ) located on the

rigid curved surface, is derived as follows280

p (xσ) = − 1

π

+∞∑
n=−∞

e inθσ cos (nθ0)
1

k0rσ

Hn (k0r0)

H ′
n (k0rσ)

. (16)

2.3. Three-dimensional case

Now, let us consider the three-dimensional case. The same assumptions as

the 2D case are used; the only difference is that, the rigid curved structure is

extruded in the z-direction (i.e. normal to the plane (x, y)). The problem to be

solved consists of an infinite rigid half cylinder placed on a rigid infinite baffle285

plane and insonified by a monopole source located at x0 of coordinates (r0, θ0, z0)

as shown in Fig. 2. Mathematically, the 3D Helmholtz problem corresponds to

Eq. (1) where Ω is the 3D semi-infinite acoustic domain bounded by the rigid

surfaces.

Figure 2: Problem geometry for the 3D case.

The total sound pressure field of the acoustic excitation due to a point source290

on a long half cylinder above/on a hard ground can be expressed as [27, 32]

p (x) = p0 (x) + p0β (x) + pσ (x) + pσβ (x) , (17)

where p0 (x) and p0β (x) represent, respectively, the sound pressure field due

to the monopole source and its image with respect to the ground while pσ (x)

and pσβ (x) correspond to the scattered sound pressure field by the infinite half

cylinder and its image with respect to the ground, respectively.295
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Using the standard Fourier transform about the z variable, the free field sound

pressure generated by the monopole source

p0 (x) =
e ik0∥x−x0∥

4π ∥x − x0∥
, (18)

can be expanded in terms of its Fourier integral representation as follows

p0 (x) =
i

8π

+∞∑
n=−∞

e in(θ−θ0)

∫ +∞

−∞
Jn (krr)Hn (krr0) e

ikz(z−z0)dkz, (19)

where kr =
√
k20 − k2z corresponds to the axial wavenumber.

The same is done for the image of the source with respect to the ground/baffle.300

Hence, the following expression

p0β (x) =
e ik0∥x−x0β∥

4π ∥x − x0β∥
, (20)

is expanded as

p0β (x) =
i

8π

+∞∑
n=−∞

e in(θ−θ0β)

∫ +∞

−∞
Jn (krr)Hn (krr0β) e

ikz(z−z0β)dkz. (21)

Note that r0β = r0, θ0β = −θ0 and z0β = z0. Hence, it comes

p0β (x) =
i

8π

+∞∑
n=−∞

e in(θ+θ0)

∫ +∞

−∞
Jn (krr)Hn (krr0) e

ikz(z−z0)dkz. (22)

The sound pressure field scattered by the structure (σ) and its image with

respect to the ground are respectively given in convenient forms as [27]305

pσ (x) =
+∞∑

n=−∞
e inθ

∫ +∞

−∞
AnHn (krr) e

ikzzdkz, (23)

and

pσβ (x) =
+∞∑

n=−∞
e inθ̄

∫ +∞

−∞
BnHn (kr r̄) e

ikzzdkz, (24)

where r̄ and θ̄ represent the coordinates of the field point with respect to the

centerline of the image structure (σβ), which is the same as that of the structure

(σ) itself.
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As (σ) and (σβ) have the same centerline, it comes r̄ = r and θ̄ = θ. Hence the310

total sound pressure scattered by the structure ps (x) = pσ (x) + pσβ (x) is

ps (x) =
+∞∑

n=−∞
e inθ

∫ +∞

−∞
(An +Bn)Hn (krr) e

ikzzdkz, (25)

which will be simply written as

ps (x) =
+∞∑

n=−∞
e inθ

∫ +∞

−∞
CnHn (krr) e

ikzzdkz, (26)

where Cn = An +Bn.

The total sound pressure field in Eq. (17) can now be expressed as

p (x) =
i

4π

+∞∑
n=−∞

e inθ

∫ +∞

−∞
e ikzz cos (nθ0) Jn (krr)Hn (krr0) e

−ikzz0

− 4πiCnHn (krr) e
ikzzdkz. (27)

The Neumann boundary condition
∂p (x)
∂r

∣∣∣∣
r=rσ

= 0 gives315

Cn =
1

4πi

J ′
n (krrσ)

H ′
n (krrσ)

Hn (krr0) e
−ikzz0 cos (nθ0) . (28)

Hence the sound pressure field of the acoustic excitation due to a monopole

source on a long cylinder sector placed on rigid baffle can be written as

p (x) =
i

4π

+∞∑
n=−∞

e inθ cos (nθ0)

∫ +∞

−∞
Hn (krr0) Jn (krr)

− J ′
n (krrσ)

H ′
n (krrσ)

Hn (krr) e
ikz(z−z0)dkz. (29)

Using the same Wronskian relation as for the 2D case leads to the following

equation for the sound pressure on the surface of the structure itself at r = rσ

p (xσ) = − 1

2π2

+∞∑
n=−∞

e inθσ cos (nθ0)

∫ +∞

−∞

1

krrσ

Hn (krr0)

H ′
n (krrσ)

e ikz(zσ−z0)dkz. (30)

Note that Eq. (16) and Eq. (30) correspond to the sound pressure at point320

xσ when a monopole of unit amplitude is located at point x0. In Sec. 3, this

quantity will be named the transfer function between the monopole position x0
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and the receiving point xσ and will be denoted Tps. These solutions are verified

using comparisons with BEM results as presented in the subsequent section.

325

2.4. Verification of the analytical solutions

Now that Eq. (1) has been solved, the solutions of the two- and three-dimensional

cases must be verified. The verification of these solutions is done using the

Boundary Element Method (BEM) with OpenBEM [33] which is an open ac-

cess code implemented in MATLAB. OpenBEM consists of three independent330

formulations: axisymmetrical (AxiBEM), bi-dimensional (2DBEM), and three-

dimensional (3DBEM). They share a common structure and many of the fea-

tures, but differ in the definition of the geometry and its implementation. Fig.

3 shows the mesh generated with Gmsh 2.2 1: the mesh contained 12096 trian-

gular elements (at least 5 elements per minimum wavelength) and a reflecting335

plane is defined at z = 0 in order to take into account the rigid flat baffle.

Figure 3: Generated mesh for OpenBEM numerical computations.

Naturally, 2DBEM is used for the verification of the two-dimensional trans-

1Gmsh is an open source 3D finite element mesh generator with a built-in CAD engine

and post-processor [34].
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fer functions and 3DBEM for that of the three-dimensional transfer functions.

Comparing 2DBEM results to those provided by Eq. (16) shows a very good

agreement between both methods, as shown in Fig. 4. In the case of the three-340

dimensional transfer functions, the results are also very accurate as is observed

in Fig. 5. Although there are some minor discrepancies due to the limits of nu-

merical methods (OpenBEM in this case), the solution established in Eq. (30)

can be effectively validated.

0 /4 /2 3 /4

25

30

35

40

(a)

0 /4 /2 3 /4
-

- /2

0

/2

(b)

Figure 4: Comparison between the amplitudes and phases of the wall sound pressure ob-

tained with OpenBEM (gray continuous line) and those obtained using the analytical solu-

tion developed in Eq. (16) (dash-dotted black line) for one position of the monopole source(
r0 = 1 m, θ0 = π

4

)
at a frequency f = 1000 Hz: two-dimensional case. (a) amplitudes (b)

phases.

3. Parametric studies of the SST process performances345

Prior to this study, the principle of SST process is recalled: starting from a set

of monopole source positions around the structure of interest, a target sound

pressure field will be generated on the surface of this structure (see Fig. 6).

More precisely, the target sound pressure corresponds to a WPPW, expressed

as p (x) = e−ik·x. To achieve this, S different source positions are considered350

and the amplitudes of these sources will be determined so that the target sound

pressure is reached at P observation points on the surface of interest. To assess
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Figure 5: Comparison between the magnitudes and phases of the wall sound pressure ob-

tained with OpenBEM (gray continuous line) and those obtained using the analytical solu-

tion developed in Eq. (30) (dash-dotted black line) for one position of the monopole source(
r0 = 0.6 m, θ0 = π

4
, z0 = 0.5 m

)
and at a frequency f = 1000 Hz: three-dimensional case.

The distance along the z-axis between the plane of the monopole source and that of the ob-

servation points is ∥z − z0∥ = 0.3 m.

the quality of the reproduction, Q reconstruction points are defined on the

surface. To ensure the accuracy of the reproduction process, a check is performed

to ensure that the Q reconstruction points are different from the P observation355

points by imposing Q > P , i.e., more reconstruction points than observation

points. Additionally, the principle of the synthetic aperture is employed in order

to use only a single monopole source. Instead of considering a set of S sources,

a single source is moved to the S positions successively. Using the measured

transfer functions for these S source positions and through post-processing, the360

behavior of the S source antenna is virtually recreated. The SST process can

be summarized in three main steps [16]

• Characterization of the acoustic source: the transfer functions Tps between

the source positions s, and the observation points p on the curved surface

are estimated (with the proposed analytical formulas in Sec. 2). T des-365

ignates the transfer function matrix having the transfer functions Tps as

components.
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• Computation of the source amplitudes: from the target sound pressure at

the observation points which are stored in a sound pressure vector p, the

source amplitude vector q is obtained by inverting the following matrix370

equation

Tq = p. (31)

When the number of observation points P is less than the number of

source positions S, the system in Eq. (31) is under-determined and has

an infinite number of solutions. However, when P > S, the system is

over-determined and does not have a single exact solution. Nevertheless,375

a solution minimizing the reproduction error introduced in Eq. (36) can

be established. The matrix T is thus rectangular, therefore Eq. (31) is

solved in the least squares sense as

q = T†p, (32)

where the dagger symbol indicates the Moore-Penrose pseudo-inverse.

• Synthesis of the sound pressure field: the transfer functions Tqs between380

the source positions s, and the reconstruction points q on the curved sur-

face are estimated and stored in the reconstruction transfer function ma-

trix T̂. The synthesized sound pressure vector, p̂ containing the synthe-

sized sound pressure at the reconstruction points is given by

p̂ = T̂q. (33)

Here, the grids of observation points and reconstruction points are differ-385

ent, that is to say, T̂ ̸= T for testing the robustness of the reproduction

process.

As mentioned above, in order to assess the quality and accuracy of the synthesis

process, the sound pressure field is reconstructed using another grid of Q points.

The transfer function matrices T and T̂ of respective size P × S and Q× S are390

determined through measurements or numerical simulations, with Q > P . The
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vector of the reconstructed sound pressure p̂ is computed with the following

expression: p̂ = T̂q.

3.1. Two-dimensional case

In this section, the goal is the reproduction of Wall-Pressure Plane Waves (WP-395

PWs) of the form p (x) = e−ik·x where k is the wavevector characterizing the

WPPW [35–37]. In the current geometry of the problem, illustrated in Fig.

6, the sound pressure induced by a WPPW at an observation point (on the

structure) of angular coordinate θ takes the form

p (x) = e−ikθRθ, (34)

where R is the radius of the structure and kθ corresponds to the circumferential400

wavenumber characterizing the WPPW.

Figure 6: Section view of the SST setup for CRPs.

For the sake of simplicity, the structure of interest will be a half-circle with a

radius R = 0.5 m. The observation points and the reconstruction points are

uniformly distributed along the surface.
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3.1.1. Studying the effect of the density of the array of monopoles405

From the results obtained with planar structures [16], a good reproduction of

the target sound pressure field was obtained when the criterion of 4 monopoles

per minimum wavelength was fulfilled [7, 13]. However, in the current case,

there is a curvature on the structure of interest, which means that this cri-

terion has to be validated or changed for these structures. In this context, a410

study of the behavior of the SST process on these structures is proposed, succes-

sively fixing all other parameters but one: ns, the number of required monopole

sources per minimum wavelength. As stated earlier, the aim is the synthesis

of WPPWs whose wavenumbers kθ ∈ [−kmax, kmax] with kmax arbitrarily set

at 50 rad m−1. It is important to note that uniform angular spacing between415

monopole positions is assumed. This spacing between two adjacent source po-

sitions is defined as a fraction of the lowest wavenumber to be synthesized at

the highest frequency of interest

δs =
λmin

ns
, (35)

where ns is a positive integer representing the number of monopole positions

per minimum wavelength.420

In these studies, the geometry of the virtual array of monopoles is the same as

the structure of interest as shown in Fig. 6 (i.e., the geometry is conformal

to the structure, that is to say, circular). The radius of this arc of sources is

always greater than the radius of the structure. In comparison to the interplanar

distance [16] defined for rectangular structures, the radial height h is defined425

as the difference between the radius of the arc of monopoles and that of the

structure. In the following, the radial height is h = 5 cm.

In order to assess the quality of the reproduction, an indicator, called the

reproduction error, is defined as follows

ep (kθ, ω) =
E
[
∥p (x, kθ, ω)− p̂ (x, kθ, ω)∥2

]
∥p (x, kθ, ω)∥2

. (36)
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In the previous equation, the dependence on kθ and ω of the functions ep,430

p and p̂ is explicitly indicated to provide a clear understanding of how the

reproduction error is calculated.

Fig. 7 and Fig. 8 respectively show the reproduction error (see Eq. (36)) in the

frequency-wavenumber domain and the real part of the target and synthesized

sound pressure fields at the surface of the structure (θ designates the angular435

position of the considered point on the structure) for four different values of ns.

(a) (b)

(c) (d)

Figure 7: Reproduction error in the frequency-wavenumber domain: (a) ns = 1, (b) ns = 2,

(c) ns = 3 and (d) ns = 4.

It is crucial to recall the reproduction error criteria for ensuring fidelity in the

reproduction process, as outlined in Section 3.2.2 of [16]. The synthesis meets

the accuracy standard if the reproduction error remains below −10 dB, meaning

a relative Mean Square Error (MSE) of less than 10%.. Comparing Fig. 7a, Fig.440
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Figure 8: Real part of the target sound pressure field (continuous grey line) and the re-

constructed sound pressure (dashed black line) of the WPPW defined by the wavenumber

kθ = 50 rad m−1 at a frequency f = 2000 Hz: (a) ns = 1, (b) ns = 2, (c) ns = 3 and (d)

ns = 4.

7b, Fig. 7c and Fig. 7d, it can be noticed that the reproduction error covers an

increasing area in the frequency-wavenumber domain when ns varies from 1 to 4.

This means that for an increasing number of monopoles per smallest wavelength,

the reproduction process becomes more accurate. This observation is confirmed

by comparing the target sound pressure fields and the synthesized ones. In Fig.445

8a and Fig. 8b, the reproduced sound pressure fields do not match the target

ones. However, in Fig. 8c and Fig. 8d, the reproduction process is very accurate

and the synthesized sound pressure fields perfectly match the target ones. It is

important to notice that only one example of WPPW is shown in these figures,

the results for other WPPWs can be deduced by consulting the reproduction450
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error maps in Fig. 7 and choosing one frequency and one wavenumber.

In conclusion, the WPPWs are accurately synthesized when ns > 3 which is

consistent with the criteria that was defined for flat rectangular structures.

Thus, the same criteria as in [16], that is ns = 4, is defined for the remainder

of this paper.455

Let us now discuss the influence of the radial height on the conformal geometry

setup of the SST process.

3.1.2. Influence of the radial height

Now that the criteria of four monopoles per smallest wavelength is verified, the

influence of the radial height on the reproduction process can be studied by460

modifying its value and discussing the results in terms of two main indicators:

the reproduction error and the condition number of the transfer function matrix

T between each monopole position and the observation points on the structure.

The condition number measures the sensitivity of the method with respect to

perturbations in the input data and round-off error.465

Three different values are considered for h: 5 cm, 10 cm, and 20 cm. For these

three radial heights, the reproduction error in the frequency-wavenumber do-

main is very close to the one presented in Fig. 7d. At first sight, this suggests

that the radial height has no influence on the quality of the synthesized sound

pressure. However, it should be kept in mind that the transfer function matrix470

T between the monopole and the points on the curved surface are calculated

numerically with the analytical formula in Eq. (16). They are then only per-

turbed by numerical errors induced by computing precision. In the SST process,

the monopole amplitudes are obtained by inverting the transfer matrix T whose

stability is assessed by the condition number.475

Let us now take a look at the condition number of the transfer matrix T for

each radial height in Fig. 9.

It can be noticed that the condition number does not vary that much as a

function of the frequency. However, comparing the results for each of the radial

heights, a rapidly increasing condition number is observed when the arc of480
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Figure 9: Condition number κ of the transfer matrix T for three different radial heights:

h = 5 cm (continuous line), h = 10 cm (dashed line) and h = 20 cm (dotted line).

monopoles is displaced farther from the structure: from 103 for h = 5 cm to

109 for h = 20 cm. The condition number is a measure of the sensitivity of

the sought parameters (i.e., the amplitudes of the monopole source at each

position) with respect to perturbations in the input data and round-off errors

made while solving Eq. (31) for q. When the condition number is very large,485

the computed solution of the system may be in error. Values of the condition

number near 1 indicate a well-conditioned matrix whereas large values indicate

an ill-conditioned matrix. This means that the condition number of the transfer

matrix must not be very high in practical applications. Otherwise, the errors

induced by the hypothetical noise around the setup will be amplified due to the490

sensitivity of the system. The Tikhonov regularization method was used on

the measured transfer matrices and the results showed an improvement of the

condition number. However, the regularized transfer matrices did not yield a

better reproduction error. As a result, the transfer matrices were directly used

in the computation of the source amplitudes without any regularization.495

In conclusion, the closer the arc of monopoles is to the structure (small values
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of the radial height, h = 5 cm for instance), the lower the condition number

of the transfer matrix, inducing a more accurate synthesis of the target sound

pressure fields.

3.2. Three-dimensional case500

Let us consider Fig. 6 with the z-axis as shown on the figure. In the three-

dimensional case and considering the cylindrical coordinates, the target sound

pressure at point x (R, θ, z) corresponding to the WPPW of wavevector k (kθ, kz)

is of the form

p (x) = e−i(kθRθ+kzz), (37)

where kθ and kz are the circumferential and the longitudinal wavenumbers,505

respectively.

The structure of interest is a rigid half-cylinder of 0.5 m radius and 1 m of length.

3.2.1. Influence of the density of the array of monopoles

Let us study the number of source positions ns needed per minimum wavelength

in order to achieve an accurate reproduction process.510

Fig. 10 shows the reproduction error in the wavenumber domain for each value

of ns, for a frequency f = 500 Hz. We recall that, for an accurate reproduction

process, the reproduction error must be less than −10 dB which corresponds to

an MSE of 10% between the target value and the reconstructed results.

When observing Fig. 10a, it can be noticed that the synthesis process is accu-515

rate when the wavevector of the WPPWs is in a circle of radius 12 rad m−1. The

quality of the reproduction exhibits the same trend in the longitudinal direction

and in the circumferential one. For all other wavevectors and considering the set

threshold of −10 dB, the synthesis process is not accurate as the colorbar is set

so that any reproduction error above −10 dB appears white in the wavenumber520

domain map.

Increasing the density of the monopole array from ns = 1 to ns = 2 (i.e.,

doubling the density) improves the process as the reproduction error decreases

in the wavenumber domain map in Fig. 10b.
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(a) (b)

(c) (d)

Figure 10: Parametric studies: influence of the density of the array of monopoles on the

reproduction error ep at a frequency f = 500 Hz. (a) ns = 1, (b) ns = 2, (c) ns = 3 and (d)

ns = 4.

When looking at the wavenumber domain maps for ns = 3 and ns = 4 in525

Fig. 10c and Fig. 10d, respectively, a good reproduction process over al-

most all the wavevectors in the wavenumber domain of interest [−50, 50] ×

[−50, 50] rad2 m−2, is observed.

The parametric study was extended to additional frequencies, revealing trends

similar to those observed in the two-dimensional case, although these results are530

not depicted here.

Fig. 11 illustrates the target WPPW intended for reconstruction through the

SST process.

Now, let us take a look at the reconstructed sound pressure fields when ns is

consequently given values from the set {1, 2, 3, 4}.535
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Figure 11: Target WPPW defined by the wavevector (50, 50) rad m−1 and mapped on the

surface of the half-cylindrical structure.

Fig. 12 represents plots on the surface of the half-cylinder of the reconstructed

sound pressure field of the WPPW defined by the wavevector (kθ, kz) = (50, 50) rad m−1

and for a frequency f = 500 Hz.

As expected after the previous analysis of the reproduction errors for ns = 1

and ns = 2, the synthesized sound pressure fields do not match the target one540

as there are not enough monopole positions per minimum wavelength for an

accurate SST process : this can be observed in Fig. 12a and Fig. 12b.

In Fig. 12c and Fig. 12d, the synthesized sound pressure fields match the target

one for the frequencies of interest. There is no noticeable difference between the

results obtained for ns = 3 and those obtained for ns = 4, which highlights that545

the reproduction error criterion of −10 dB is a severe one.

These comparisons allow us to state that at least 4 monopole positions per

minimum wavelength are needed for an accurate reconstruction process.

Fig. 13 shows the reproduction error in the wavenumber domain for each value

of ns, for a frequency f = 1000Hz. The same conclusions as for Fig. 10 can be550

made, validating again the criteria on the number of monopoles per minimum

wavelength.

29



(a) (b)

(c) (d)

Figure 12: Parametric studies: influence of the density of the array of monopoles on the

reconstructed sound pressure fields at a frequency f = 500 Hz. (a) ns = 1, (b) ns = 2, (c)

ns = 3 and (d) ns = 4.

3.2.2. Studying the effect of the radial height

Now, let’s examine the impact of radial height h depicted in Fig. 6, considering

the heights: h = 5 cm and h = 10 cm. While the error maps for both heights555

at various frequencies are not displayed here, they closely resemble those seen

in Fig. 13d. Notably, the reproduction error consistently remains below the

−10 dB threshold, confirming the synthesis technique’s accuracy for these radial

heights.

Table 1 presents the condition numbers of the transfer matrix T. The data560

illustrate that the condition number decreases as the frequency increases, con-

sistent with observations in two-dimensional analyses. This reduction occurs at
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(a) (b)

(c) (d)

Figure 13: Parametric studies: influence of the density of the array of monopoles on the

reproduction error ep at a frequency f = 1000 Hz. (a) ns = 1, (b) ns = 2, (c) ns = 3 and (d)

ns = 4.

a gradual rate with respect to frequency. Moreover, comparing radial heights

of 5 cm and 10 cm shows minimal differences, suggesting that these dimensions

negligibly influence the behavior of the condition number.565

Table 1: Values of the condition number (log10(κ)) of the transfer matrix T for each frequency

and radial height setup.

Frequency (Hz) h = 5 cm h = 10 cm

500 16.9 17

1500 16.6 16.7

2000 16.4 16.5
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Although the condition number for a radial height of h = 5 cm slightly outper-

forms that of h = 10 cm across the three frequencies of interest, this observation

aligns with previous results that indicated improvements when the distance be-

tween the monopole array and the structure is increased. It is important to

note that the separation between the array and the structure should be at least570

equal to the spacing between two adjacent monopoles in the array. The results

for h = 20 cm are not shown as they closely resemble those for h = 5 cm and

h = 10 cm, as depicted in Fig. 13d.

4. Experimental validation

In this section, the experimental transfer functions are compared to the analyt-575

ical solutions (2D and 3D) of Sec. 2 for cross-validation.

4.1. Experimental setup

Let us consider Fig. 14 in which chamber 1 designates the semi-anechoic room

of the Laboratory of Mechanics and Acoustics (LMA) where the structure, the

truss on which the monopole source is mounted, and the monopole source itself580

are present. The robot arm is mounted upside down on the truss structure for

the needs of the experiment. This robot arm can slide along a motorized rail of

length 2 m which is parallel to the z axis on Fig. 14.

The 2 m motorized rail is aligned with the centerline of the structure (half open

cylinder) in order to have an accurate positioning of the robot arm with respect585

to the structure.

The monopole source is mounted on the robot using a 6 m flexible hose attached

to a hollow aluminum tube attached to the free end of the robot arm, as shown

in Fig. 15a.

The 63 microphones used during this experiment were flush-mounted on the590

rigid open half cylinder as shown in Fig. 15b. They were assembled per sets

of 8 per external conditioner except one which had 7 microphones. Fig. 16

shows a picture of the type of microphone used and the conditioner they were

connected to.
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Figure 14: Sketch of the experimental setup for the SST process on CRPs.

All the cables installed in chamber 1 and chamber 2 were retrieved in a control595

room where they were plugged in an OROS acquisition system. Chamber 1 cor-

responds to the semi-anechoic room and chamber 2 is a reverberant room. The

microphones were flush-mounted on a 5 cm thick plywood baffle, and we en-

sured acoustic isolation from chamber 2 using a sealant around the microphone

bodies. Consequently, any potential background noise from chamber 2 has a600

negligible impact on the measurements. All the microphones were calibrated by

taking into account the attenuation due to the length of the cables (estimated

at 15 m) used to plug all the devices in the control room.

As the length of the cables were substantial, the first step corresponded to a

quality control of the cables. A sinusoidal signal with a frequency of 200 Hz605

and an amplitude of 800 mV was sent. On the other side (control room), the

same signal was received, but attenuated due to the resistivity of the cables,

and this would have had an impact on the measurements if the microphones

were not calibrated using the same experimental setup as for the measurement

of the transfer functions.610
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(a) Monopole source mounted on the robot arm.

(b) Flush-mounted microphones on the rigid open half cylinder.

Figure 15: Local views of the experimental setup.

Figure 16: 1/4′′ microphones and 8 channel conditioner with a Harting connector output

manufactured by the Center for Transfer of Technologies of Le Mans (CTTM).

Then each microphone was accurately calibrated using a piston-phone (GRAS,

serial number: 23201, type 42AD) generating a signal of 113.99 dB at a fre-

quency of 251.2 Hz. The microphones were successively placed inside the piston-

phone using an adapter.
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Fig. 17 shows the complete experimental setup used during the measurements.615

Figure 17: Experimental setup: simply supported rigid open half cylinder. The monopole

source (7) is mounted on the robot arm (8) which can slide along the rail (9) and supported

by the truss structure (1). The 63 microphones (3) are flush-mounted on the rigid open half

cylinder (4) baffled by the half polystyrene cylinders (2) and (5). (6) corresponds to the robot

arm control unit.

As shown in Fig. 15b, the microphone spacing is δp = 2 cm, ensuring a num-

ber of observation points P greater than the number of source positions S as

δp > δs ≈ 3 cm. In order to avoid using a plethora of microphones for the mea-

surement of the transfer functions, the idea is to apply the same “principle of

invariance” as the one used for FRPs, see Appendix B of Ref. [16]. Certainly,620

the structure of interest is more complex than the flat panel but this invariance

of the measurements should remain valid in this new case study in view of the

symmetry of the system. This principle consists in using only one semi-circular

microphone array to perform transfer function measurements over the entire

surface of the half cylinder. Instead of having to move the microphone array625

(which is impossible in our configuration) or having a multitude of microphones

to manage over the entire surface of the half cylinder, the monopole source

is simply displaced to the position facing the location of the“virtual” array of
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microphones where the transfer functions are to be measured.

Then, the transfer functions between each predefined source position and the630

flush-mounted microphones on the cylindrical structure are determined using a

sweep signal from 1 to 2000 Hz with a linear sweep variation for a duration of

3 seconds and generated by the monopole source. These transfer functions will

subsequently form the experimental transfer function matrix Texp used later for

sound pressure synthesis on the surface of the structure.635

4.2. Validation of the transfer functions

This section is dedicated to the experimental validation of the two- and three-

dimensional transfer functions previously established in Sec. 2.

4.2.1. Two-dimensional case

Fig. 18 presents a comparison between analytical and experimental transfer640

functions at two frequencies for a specified radial height and a monopole source

position (r0, θ0). The comparison includes plots of the sound pressure along a

semi-circular arc, which is experimentally represented by the arc of microphones

labeled as (3) in Fig. 17 and visible in Fig. 15b.

Analysis of Fig. 18 reveals a strong correlation between the analytical results645

and the experimental measurements obtained using a 63-microphone array.

These findings validate the two-dimensional theoretical transfer functions de-

scribed in Eq. (16), which have also been compared with numerical results from

OpenBEM.

4.2.2. Three-dimensional case650

Similar to the two-dimensional case, the three-dimensional transfer functions

outlined in Eq. (30) and the experimental setup described in Sec. 4.1 require

validation through experiments. Fig. 19 illustrates comparisons between the

theoretical transfer functions from Eq. (30) and actual measurements. These

comparisons involve sound pressure plots on the structure’s surface at various655

frequencies, a specific radial height, and two positions (r0, θ0, z0) of the monopole
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Figure 18: 2D transfer functions for two angular positions θ0 of the monopole source at two

frequencies and a radial height h = 5 cm: comparison between the analytical results (dash-

dotted black line) and the experimental measurements (continuous gray line, the red dots

correspond to the position of the microphones) for the two-dimensional case.

source. Unlike the two-dimensional setup, the monopole source in the three-

dimensional experiments is positioned on a different z-plane, not aligning with

the microphone arc array’s plane.

In Fig. 19a and Fig. 19b, the monopole source is located at660 (
r0 = 55 cm, θ0 =

π

2
, z0 = 50 cm

)
,

and the microphone array is always at the same position. This figure shows

that, despite some discrepancies, there is a good agreement between both types

of results.
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Figure 19: 3D transfer functions for two frequencies, two angular positions θ0 of the monopole

source and two radial heights. Comparison between the analytical results (dash-dotted black

line) and the experimental measurements (continuous gray line, the red dots correspond to

the position of the microphones) for the three-dimensional case. The observation points are

on a different section from the plane/section of the source: ∥z − z0∥ = 50 cm for the two top

figures and ∥z − z0∥ = 25 cm for the two bottom figures.

As for Fig. 19c and Fig. 19d, the monopole source is at position(
r0 = 60 cm, θ0 =

π

4
, z0 = 25 cm

)
.

The data shows alignment with theoretical predictions, affirming the accuracy665

of the three-dimensional transfer functions. This comprehensive validation un-

derscores the reliability of the theoretical framework.
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5. Conclusions

This paper examines the adaptation of the Source Scanning Technique (SST)

from Flat Rectangular Panels (FRPs) to Curved Rectangular Panels (CRPs).670

SST, an experimental method for characterizing structures under various exci-

tations like the Diffuse Acoustic Field (DAF) and Turbulent Boundary Layer

(TBL), utilizes a single moving acoustic source to simulate a full array and gen-

erate desired sound pressure fields. This technique offers a potential alternative

or complement to traditional testing environments such as reverberant rooms675

or wind tunnels.

Despite an extensive review of the literature failing to produce any closed-

form transfer functions for a curved rectangular panel with a monopole source

above it, the initial approach was to solve the Helmholtz equation for this sce-

nario. Transfer functions were developed for both two-dimensional and three-680

dimensional contexts. Verification was achieved through numerical simulations

with OpenBEM, comparing the amplitudes and phases of surface sound pres-

sures between analytical and numerical results, demonstrating strong concor-

dance.

Following the numerical validation of the closed-form transfer functions, para-685

metric studies were initiated to identify optimal design parameters for the vir-

tual array of monopole sources to ensure precise reproduction. These studies,

conducted for both two-dimensional and three-dimensional cases, utilized the

reproduction error and the condition number of the transfer matrix as metrics

to evaluate the synthesis process’s quality and accuracy.690

The study commenced by determining the minimum number of monopole po-

sitions needed in the array to accurately reproduce the target sound pressure

field, identified as wall-pressure plane waves. It was found that at least four

monopole positions per smallest wavelength are required for precise reproduc-

tion. Additionally, the relationship between the distance from the monopole695

array to the structure and the accuracy of reproduction was explored, revealing

that a closer proximity enhances the reproduction quality, as long as it exceeds
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the distance between adjacent monopoles.

After conducting initial studies to establish baseline parameters, the optimal

settings for accurately reproducing the target sound pressure fields were deter-700

mined. Subsequent steps involved the experimental validation of these transfer

functions. The analytical and experimental transfer functions display strong

agreement, confirming the validity of the closed-form transfer functions in both

two-dimensional and three-dimensional contexts.

Further research should explore the practical implementation of the Source Scan-705

ning Technique (SST) and its application in the vibroacoustic characterization

of curved elastic structures subjected to Diffuse Acoustic Field (DAF) or Tur-

bulent Boundary Layer (TBL) excitations.
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