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Abstract

A workflow for the numerical prediction of in-flight ice accretion on 3D
structures is presented. The method is based on the predictor-corrector
approach, which has been so far mainly developed in 2D codes and
assessed in straight-wing test-cases. The adaptations made for the 3D
implementation are thus described. Among other developments, a re-
meshing technique based on the Dragon method is presented. The new
methods are verified against reference numerical data. The whole work-
flow is validated by using several test-cases for which experimental
measurements of ice shapes are available. Both straight and swept wings
are therefore investigated. The numerical results are encouraging for low-
sweep angles. Some recommendations are made for improving the results,
including the need for new ice-density models. The predictor-corrector
method is poorly adapted for cases exhibiting large scallop-like struc-
tures, which tends to be reinforced by high sweep angles. In this article,
the test cases with highest sweep angle are effectively calculated less accu-
rately. Costly multi-step ice-accretion simulations should be preferred
for such conditions, unless a special ice bulk density model is developed.
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1 Introduction

In-flight icing is a significant threat to aircraft. This hazard is faced when
the aircraft flies through clouds of supercooled water droplets. In order to
mitigate this risk, manufacturers carry out flight and wind-tunnel tests and
use numerical simulations. This set of techniques is useful both for the design
of protection systems and for certification. Regarding numerical simulation
tools, the implementation of 3D softwares is a strong need, as shown by the
configurations investigated in the AIAA 1st ice prediction workshop (IPW1)
[1].

For both design and certification purposes, a large number of simulations
must be performed to cover the full range of icing conditions encountered by
the aircraft. Therefore, the computational time is a key issue from a practical
point of view. This question is even more important for the 3D codes discussed
in this article than for 2D codes. The exposure time texp to icing conditions
being very long compared to the characteristic time of the aerodynamic flow,
a sequential approach is generally used [2–4] (see figure 1). In the latter, the
steady-state aerodynamic flow, the supercooled-water-droplet trajectories and
the flow of the water collected on the exposed surfaces are solved successively.
The main result of this sequence is an ice-accretion rate at each point of the
exposed surfaces. An ice thickness is deduced, corresponding to a physical
accretion time ∆t. A very basic approach, rather fast but not very accurate, is
to perform this loop only once and deduce the ice thickness by using ∆t = texp.
This so-called predictor approach does not take into account the fact that ice
growth affects the aerodynamic flow and the collection of water droplets by
the surface. To do so, the multi-step approach [4] splits the exposure time
into N steps. N successive loops are then performed, allowing the ice to grow
gradually over physical accretion times ∆t = texp/N . This approach is more
realistic, but it can be costly for N large. The issue of the robustness of each
step of the loop also becomes even more important for N large. The approach
chosen for this article is a predictor-corrector approach. The latter has been
developed and widely used in 2D [4]. It consists in reducing the total number
of loops to N = 2, the first one being a simple predictor approach (∆t = texp),
the second one being a correction step. We should indeed point out that, for
the same computational cost, a predictor-corrector simulation generally gives
better agreement with experiment than a multi-step simulation with N = 2
steps. Figure 2 shows this for two 2D cases presented in section 6, and cal-
culated here with IGLOO2D [4]. For the (cold) rime-ice case RUN405, the
multi-step calculation provides an ice shape that is a little too similar to the
predictor shape. For the (warmer) glaze-ice run 06-27-91/1, the ice horn in the
upper part extends too far downstream with the 2-step approach. In the lower
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Fig. 1: Sequential approach for ice accretion simulations

Fig. 2: Comparison between the predictor-corrector method and a multi-step
method with N = 2 steps. RUN405 case on the left. Run 06-27-91/1 on the
right. Simulations with IGLOO2D. Both predicted and corrected ice shapes
are displayed for the predictor-corrector approach. The ice shapes are also
displayed for the 2 steps of the multi-step method.

part, the ice shape provided by this method is too thick in the most down-
stream part. The predictor-corrector calculation significantly improves the ice
shape in both respects. The reason for this is attributed to the fact that the
shading effect progressively exerted by the growing ice shape on droplet tra-
jectories is better modelled (section 5.2 will show that the predictor-corrector
approach allows for additional sub-iteration, whereas the 2-step method only
models ice growth in two steps with no sub-stepping).

For multi-step approaches as for predictor-corrector approaches, it is neces-
sary to update the fluid volume at each additional loop because of the growth
of the ice shape. The deformation of the exposed surface can be done by a
Lagrangian displacement of the surface mesh nodes [3–10], or by a level-set
resolution [6, 10–12]. The update of the fluid volume can be done by remesh-
ing [3–6, 9, 10], by mesh deformation [7, 8] or by an IBM method [11, 13, 14].
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In this article, both Lagrangian deformation and level-set resolution will be
discussed, while the remeshing approach will be investigated.

This paper deals with a 3D framework for taking into account the retroac-
tion of ice growth on the flow by predictor-corrector approach. The IGLOO3D
icing suite is presented in section 2. The three solvers involved will be dis-
cussed in sections 2.2 (aerodynamic flow), 2.3 (droplet trajectories) and 2.4
(ice accretion). More precisely, the aerodynamic and trajectory solvers will be
treated quite briefly while the accretion solver MESSINGER3D will be much
more thoroughly discussed. The deformation of the exposed surface and the
meshing tool based on the Dragon method are discussed in sections 3 and
4, respectively. The predictor-corrector method is presented in section 5. The
method is assessed first in cases of 2D airfoils (section 6), then for swept wings
(section 7). For both types of cases, the icing conditions used will be those of
Appendix C [15]. The considered cloud is thus composed of supercooled water
droplets small enough to be locally deposited on the exposed surfaces. It is
then useless to account for phenomena such as splashing (or sticking and ero-
sion for the case of ice crystals), which add a degree of modeling error that
is not desirable for evaluating the method. For the same reason, surfaces not
protected against ice are investigated.

2 Presentation of the numerical tools

2.1 Ice-accretion computational strategy

The sequential approach of figure 1 is used in the ice accretion suite IGLOO3D.
This tool, which was designed to be modular, allows different solvers to com-
municate with each other (through CGNS file inputs and outputs [16]) in order
to achieve all the steps necessary for ice-accretion simulations. Several types of
mesh can be used. For this article, unstructured meshes are mainly employed.
In particular, the meshes around the clean geometries of the IPW1 cases are the
ones that have been provided by the IPW1 Committee. The Dragon method
discussed later on was also used to generate several grids.

As shown in figure 3, the CEDRE solvers, well suited for unstructured
meshes, are used for the airflow and droplet-trajectory simulations (sections
2.2 and 2.3). Other solvers could also be used as it was presented in previous
articles [17, 18] (For example, the elsA solver for the airflow computation).
The ice accretion is solved by MESSINGER3D, which is based on Messinger’s
approach [19] for the thermodynamic balance applied to the water deposited
on the exposed surfaces. This method is one of the traditional approaches
used for ice-accretion simulation, while another widespread technique is the
use of thin-film flow simulation methods (SWIM method – Shallow Water
Icing Model – [20–22], solution of the Saint-Venant equations [23], method of
Chauvin et al. [24] considering the possible presence of three layers locally:
runback water, ice and liquid water trapped under the ice). More details will be
given in section 2.4, where it will become apparent that an iterative method is
employed, quite similar in this respect to the work of Zhu et al. [25]. According
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Fig. 3: IGLOO3D computational loop

to the articles of Chauvin et al. [24] and Lavoie et al. [22], very similar results
would be expected between our Messinger’s approach and a method based on
the resolution of thin-film flows for the genuine ice-accretion cases addressed
here. MESSINGER3D produces an ice-deposition mass-rate, from which an
ice shape is inferred.

Figure 3 also shows that the ”predictor-corrector” approach is the strategy
chosen in this article in order to deal with the ice growth and its retroaction
on the airflow and droplet trajectories. This approach consists in running:

1. a first ”predictor” step, based on the sequential call to the three codes.
The first ice-deposit deformation is thus directly computed from the ice-
deposition-mass rate produced by the code and the time texp of the whole
accretion process;

2. a second step for which the airflow and droplet trajectories are computed
around the predicted ice shape, in order to correct the computation of the
ice-deposition mass rate. This correction method is explained in section 5.
For this approach, it is necessary to generate a mesh around the predicted
ice shape. This is done by first modifying the shape of the iced surface as
outlined in section 3 and then remeshing the fluid volume as described in
section 4.

2.2 Aerodynamic solution

CEDRE is a multi-physics numerical tool, including unstructured solvers for
several physical problems (airflow simulations, droplet trajectories, conductive
heat transfer, radiative heat transfer,...). [26]
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Among these solvers, the airflow solver CHARME was used [26, 27].
CHARME is based on the finite volume method on unstructured grids. Vari-
ous numerical options are available for the space and time discretization and
for the turbulence modeling for instance. In the present study, the k-ω SST
model was used for turbulence modeling, along with the model developed by
Aupoix [28] for modeling rough walls whenever necessary. For this model, a
constant wall temperature is imposed and the equivalent sand-grain roughness
height ks was set to a constant value:

ks = L/1000, (1)

where L is a reference length. For 2D airfoils, it is common practice in
ONERA’s codes to set L equal to the chord length. For 3D objects, it is less
obvious to link the roughness height to a unique reference length, and the
validity of the empiric correlation (1) is questionable. Nevertheless, this rela-
tion was used because swept airfoils are investigated and it is still possible to
define an equivalent chord length.

Regarding the numerical schemes, a second-order space discretization was
used based on the HLLC scheme [29] and a MUSCL reconstruction (with
a hybrid limiter [30]). For the time discretization, a basic first-order Euler
implicit scheme was used with local time-stepping, since the steady-state solu-
tion is sought. The CFL numbers employed reached around 10 to 50 according
to the test-case investigated. The large linear system arising from the implicit
time scheme was solved with a GMRES method.

2.3 Computation of the droplet trajectories

The Eulerian droplet-trajectory solver SPIREE [31–33] was employed to com-
pute the droplet trajectories. SPIREE is also based on the finite volume
method on unstructured grids. The Schiller and Naumann model was used
for the drag modeling. Full deposition was assumed on walls (only Appendix
C test-cases are investigated). As in CHARME, a first-order Euler implicit
scheme was used with local time-stepping, and the GMRES method was used.
A second-order space discretization was also used, based on a Godunov-like
scheme [31] and a MUSCL reconstruction (with a hybrid limiter [30]).

2.4 Messinger balance

The Messinger balance solved in MESSINGER3D is very similar to the one
of IGLOO2D [4]. It consists of a mass and energy balance for water on the
icing surface. Thus it accounts for the deposited droplets (the mass rate is pro-
vided by the droplet trajectory solver), liquid-water runback on the surface,
phase changes (evaporation, sublimation, solidification), convective heat trans-
fer between the water and the air flow. As mentioned earlier, only Appendix C
is addressed in this article although some features are available for Appendices
O (Supercooled Large Droplets) and P (ice crystals). Therefore, no distinction
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Fig. 4: Mass and energy balance in Messinger approach

is made between impacting mass and deposited mass. The main outputs are
the icing regime (rime, glaze or running-wet regime), the ice growth rate ṁacc,
the wall liquid mass fraction fL and the water (or wall) temperature Tw.

2.4.1 Mass and energy balance

The mass and energy balance are sketched in figure 4 for a given ”con-
trol volume” (actually a surface element). Liquid water is incoming through
runback and impingement and outgoing through runback, evaporation and
solidification. Condensation or melting could occur instead of evaporation and
solidification, respectively, for specific conditions, which will not be consid-
ered here for the sake of simplicity (although it does not affect the validity of
the equations presented here). Regarding the energy balance, runback, droplet
impingement, phase changes and convection are accounted for. It is assumed
that the wall is adiabatic, which is a fairly good assumption for unheated walls.

It is obvious that the runback direction plays a major role in the balance.
In 2D codes, there is no ambiguity about this direction. In three dimensions, it
is assumed here that the runback is mainly driven by the skin friction exerted
by the air flow. It means that the effects of pressure gradients and gravity are
neglected, as well as inertial forces (fixed airfoils are considered). The ”2D-like
balance” exposed here is thus applied along the friction lines.

Along these lines, the mass and energy balances for the liquid water write,
respectively:

Sṁimp + Ṁrb,in − Ṁrb,out − Sṁevs = Sṁacc

(2)

SṁimpHimp + Ṁrb,inHrb,in − Ṁrb,outHrb,out − SṁevsHevs − SQ̇c = ∆U
(3)

where S is the area of the surface element and:
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• ṁimp is the impinging surface mass rate (kg.m−2.s−1).Himp is the impinging
mass enthalpy (J/kg);

• Ṁrb,in and Ṁrb,out are the incoming and outgoing runback mass rates
(kg.s−1), respectively. Hrb,in and Hrb,out are the incoming and outgoing run-
back water mass enthalpy (J/kg). The runback terms are related to each
other via fluxes between the cells of the mesh, as shown in section 2.4.2;

• ṁevs is the evaporated or sublimated surface mass rate (kg.m−2.s−1). Hevs

is the evaporated or sublimated mass enthalpy (J/kg);
• Q̇c = htc (Tw − Tr) is the convective heat flux (W/m2), related to the
heat transfer coefficient htc, the recovery temperature Tr and the iced wall
temperature Tw;

• ṁacc is the solidified surface mass rate or surface ice growth rate
(kg.m−2.s−1). This is a major output of the Messinger code, which then
allows to compute the ice thickness. It is assumed that no liquid water
is accumulated locally: the surface mass rate corresponding to liquid
accumulation is zero;

• ∆U is the variation of the total energy of the water system (ice and liquid
water) during the accretion process (W). ∆U is a function of Tw. Since there
is no accumulation of water, ∆U is linked to the variation of total energy of
the growing ice:

∆U = Sṁacccs (Tw − Tm) (4)

where cs is the ice specific heat capacity and Tm is the water melting
temperature.

The system of equations (2) and (3) thus depends on three unknowns:
the wall temperature Tw, the surface ice growth rate ṁacc and the runback
mass rate (more specifically Ṁrb,out is chosen). One additional relation is
thus required to close the system. This is done by successively considering
four mutually exclusive icing regimes, each regime being associated with one
equation:

1. Rime ice regime: there is only ice, provided that Tw < Tm. It means that
no runback occurs and the additional relation is:

Ṁrb,out = 0 (5)

2. Glaze ice regime: there are both liquid and solid water, which requires that
Ṁrb,out > 0, and the additional equation is:

Tw = Tm (6)

3. Running-wet regime: there is only liquid water (if Tw > Tm). No ice
accretion occurs and the additional equation is:

ṁacc = 0 (7)

4. Dry-wall regime: there is no water (Ṁrb,out = 0), and again ṁacc = 0.



Springer Nature 2021 LATEX template

Workflow for Predictor-Corrector simulations of in-flight ice-accretion 9

Evaporation

The evaporated or sublimated surface mass rate ṁevs required in equations
(2) and (3) is given by:

ṁevs = −ρghm (Yv(Te)− Yv(Tw)) (8)

where ρg is the gas density, Yv stands for the steam mass fraction and hm is
the mass transfer coefficient. hm is derived from the heat transfer coefficient
through the Chilton-Colburn analogy [34, 35]:

hm
htc

=
Le−2/3

ρgcp
(9)

where cp is the air specific heat capacity at constant pressure and Le is the
Lewis number for air-water vapor.

Convective heat transfer

After the airflow simulation, the heat transfer coefficient, which plays a key
role in the modeling of glaze ice shapes, is computed thanks to the following
formula:

htc =
ϕwa

Twa − Tr
(10)

where ϕwa is the wall heat flux provided by the airflow solver, Twa is the
wall temperature imposed as a boundary condition to the airflow solver. The
recovery temperature is calculated via the recovery coefficient rrec = Pr1/3 (in
turbulent regime, where Pr = 0.7 is the Prandtl number of air):

Tr = Te

(
1 + rrec

γ − 1

2
M2
e

)
(11)

where γ = 1.4 is the heat capacity ratio of air. Te and Me are the temper-
ature and the Mach number at the edge of the boundary layer, respectively.
Me is computed as the isentropic Mach number. Te is reconstructed from
the assumed conservation of the total temperature in the flow outside of the
boundary layer.

There are other methods available in IGLOO3D to compute htc, as dis-
cussed in reference [17]. The first one is based on two simulations of the airflow
with two different wall temperatures. htc and Tr are derived from the lineariza-
tion of the heat flux with respect to the wall temperature. This approach is
expensive because two Navier-Stokes simulations are required per loop. This
method has therefore been left aside. The other methods consist in imitating
the integral-boundary-layer models available in IGLOO2D [4], by relating htc
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to the skin friction coefficient Cf :

htc = ρgcpue
Cf/2

Prt +
√
Cf/2/

(
1.92ks

+−0.45
Pr−0.8

) (12)

where ue is the airflow velocity at the edge of the boundary layer (related to
Me), Prt = 0.9 is the turbulent Prandtl number and ks

+ is the equivalent
sand-grain roughness height ks made non-dimensional in wall coordinates. This
method is based on a Reynolds analogy modified to take into account the rough
state of the iced surface. It is thus possible to use the skin friction coefficient Cf
produced by the RANS solver. In order to reproduce the IGLOO2D method
as closely as possible, it is also possible to compute:

Cf
2

=
0.1681

ln2
(
864θ

ks
+ 2.568

) (13)

where θ is the momentum thickness of the boundary layer simulated by the
RANS solver. Unless explicitly specified, the methods based on equation (12)
were also discarded for the simulations of this article because they are assumed
to be less accurate than the method based on Navier-Stokes computations in
3D (there are especially some 2D assumptions made in this method).

In addition, it was possible to activate a laminar-turbulent transition model
for the 2D cases. This model consists in computing the recovery factor and
the heat transfer coefficient differently in the laminar area. First, the laminar
area is identified as the region in which

ksue
ν

≤ 600 (14)

where ν is the kinematic viscosity of the airflow. This is a simple version of
sharp transition based on Braslow’s criterion. Second, in the laminar area, the
recovery coefficient is:

rrec =
√
Pr, (15)

while the heat transfer coefficient is computed after Smith and Spalding’s
formula, as in IGLOO2D [4]. This equation was derived for an incompressible
boundary layer over a 2D body with an arbitrarily varying free-stream velocity.
It links the heat transfer coefficient to the evolution of the velocity at the
edge of the boundary layer along a streamline (s is the wrap distance from the
attachment line) [36, 37]:

htc = ρgcpue
0.2926ν

uePr

√
u2.87e /

∫ s

0

ν(s′)ue(s′)1.87ds′ (16)
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It is not straightforward to assess the integral term

∫ s

0

ν(s′)ue(s
′)1.87ds′

over 3D surfaces. A partial differential equation (PDE) approach was thus
developed to easily make the computation on unstructured surface meshes.
The integral term has the following form:

ψ =

∫ s

0

ϕ(s′)ds′ =

∫ s

0

dψ′ (17)

where the function to be integrated is:

ϕ(s) = ν(s)ue(s)
1.87 (18)

A pseudo time step dt is defined to move along the streamline so that:

dt = κdψ (19)

where κ is a unit scalar whose units are compatible with the fact that dt is
a time step (κ could take any value). This is equivalent to dt = κϕds after
equation (17). The following velocity can thus be defined locally:

V⃗ψ =
ds

dt
e⃗s(s) =

1

κϕ(s)
e⃗s(s) (20)

where e⃗s is the unit direction vector of the streamline (i.e. e⃗s(s) =
u⃗e(s)

∥u⃗e(s)∥
).

Moreover, equation (19) implies

dψ

dt
=

1

κ
=
∂ψ

∂t
+ V⃗ψ · ∇⃗ψ (21)

Under conservation form, this equation reads:

∂ψ

∂t
+ ∇⃗ ·

(
ψV⃗ψ

)
=

1

κ
+ ψ∇⃗ · V⃗ψ (22)

Equation (22) is an hyperbolic PDE for which the propagation velocity is

V⃗ψ. It can thus easily be solved with a Finite Volume method.

2.4.2 Numerical resolution on unstructured grids

Messinger balance

The Messinger balance is solved by a steady-state finite-volume approach on
an unstructured surface mesh (figure 5). The runback terms are conservative
fluxes between neighboring faces. An iterative process is thus used. At step
n+1, the incoming runback term of face i , Ṁrb,in

n
,i, is supposed to be known

from the previous step n. The following system of equations, derived from
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equations (2) and (3), is solved successively in each face i, using Newton’s
method.

Ṁrb,out
n+1
,i + Siṁevs(Tw

n+1
,i ) + Siṁacc

n+1
,i = Siṁimp,i + Ṁrb,in

n
,i

∆U(Tw
n+1
,i , ṁacc

n+1
,i ) + Ṁrb,out

n+1
,i Hrb,out(Tw

n+1
,i )

+Siṁevs(Tw
n+1
,i )Hevs(Tw

n+1
,i )− SiQ̇c(Tw

n+1
,i ) = Siṁimp,iHimp,i

+Ṁrb,in
n
,iHrb,in

n
,i

C
(
Tw

n+1
,i , ṁacc

n+1
,i , Ṁrb,out

n+1
,i

)
= 0

(23)
C is the closure relation, dependent on the icing regime. This produces the
three unknowns Tw

n+1
,i , ṁacc

n+1
,i and Ṁrb,out

n+1
,i in all faces i at time step

n + 1. In order to update Ṁrb,in
n+1
,i for the next iteration in all the faces i

in a conservative way, the outcoming rates Ṁrb,out
n+1
,i are dispatched over the

neigbouring faces. For instance, faces j = 1 and j = 2 of figure 5 receive some
incoming runback from face i. There is also some incoming runback stemming
from another face in face j = 2. To achieve the computation of Ṁrb,in

n+1
,i , the

ratio of runback which is assigned to each neighbouring face is first computed.
For face i, the ratio is primarily given by the orientation between the runback
direction d⃗i and the unit normal vector n⃗ij (in the tangent plane of face i,
pointing outwards) to the edge Γij between face i and its neighbor face j (like
in any other finite-volume method). Each neighbor face thus receives a ratio
rij of the overall outgoing runback mass rate, constructed to conserve the mass
flow rate:

rij =
Ṁrb,out,i→j

Ṁrb,out,i

=
x+ij∑

k∈N (i)

x+ik
(24)

where N (i) is the set of edges of face i and

x+ij =

{
d⃗i · n⃗ij | Γij | if d⃗i · n⃗ij > 0

0 otherwise
(25)

where | Γij | is the length of edge Γij .

Thus, in the case of figure 5, face j = 1 receives 100ri1 % of Ṁrb,out,i. Face

j = 2 receives 100ri2 % of Ṁrb,out,i, which corresponds to 100(1 − ri1) % of

Ṁrb,out,i because face j = 3 does not receive any water mass flow rate from
face i. On the contrary, face j = 3 is a source of water runback for face i.

Ṁrb,in
n+1
,i is then the sum of all the mass flows received from neighbouring

faces:
Ṁrb,in

n+1
,i =

∑
j∈N (i)

rjiṀrb,out,jy
+
ji, (26)

where y+ji = 1 if d⃗j · n⃗ji > 0, 0 otherwise.
The iterative process is continued until convergence to steady-state.
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Fig. 5: Computation of runback on unstructured grid

Fig. 6: Notations used for the surface Finite Volume method, face i and its
neighbours j ∈ N (i) = {1, N(i)}

Computation of integrals along streamlines

Regarding the solution of equation (22), the notations of figure 6 are retained.
After applying the divergence theorem, the integration of this equation over
face i reads:

∂Ui
∂t

+
1

Si

∫
∂Si

ψV⃗ψ · n⃗dl = Si (27)

where the conservative term (solved term, mean value of ψ), the convective
term and the source term are, respectively:

Ui =
1

Si

∫
Si

ψdS (28)

1

Si

∫
∂Si

ψV⃗ψ · n⃗dl =
∑

j∈N (i)

Gij (29)
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Si =
1

Si

∫
Si

1 + ψ∇⃗ · V⃗ψdS (30)

Gij is the numerical flux through the jth edge of face i, Γij . Basic upwind

fluxes are used according to the orientation of the velocity V⃗ψ:

Gij =

(
V +
ij Ui + V −

ij Uj
)
| Γij |

Si
(31)

where:
V +
ij = max (0, Vij) and V −

ij = min (0, Vij) , (32)

and Vij is the velocity at the edge Γij , that is interpolated as follows:

Vij =
1

2

(
V⃗ψi · n⃗ij − V⃗ψj · n⃗ji

)
= V +

ij + V −
ij (33)

The source term of equation (30) is simplified as

Si ≃ 1 +
Ui
Si

∫
Si

∇⃗ · V⃗ψdS = 1 +
Ui
Si

∑
j∈N (i)

Vij | Γij | (34)

Introducing equations (29), (31), (33) and (34) in equation (27) leads to:

∂Ui
∂t

+
1

Si

∑
j∈N (i)

(
V +
ij Ui + V −

ij Uj
)
| Γij |= 1+

Ui
Si

∑
j∈N (i)

(
V +
ij + V −

ij

)
| Γij | (35)

Simplifying the factor terms of V +
ij in both LHS and RHS, and considering

steady-state, the latter equation becomes:

1

Si

∑
j∈N (i)

V −
ij Uj | Γij | −

Ui
Si

∑
j∈N (i)

V −
ij | Γij |= 1 (36)

This equation is solved via a Gauss-Seidel iterative algorithm: at iteration
n+1, a loop is made over the faces i to compute Ui from the values Uj already
known from iteration n in the neighboring faces j:

Un+1
i =

∑
j∈N (i)

V −
ij | Γij | U∗

j∑
j∈N (i)

V −
ij | Γij |

− Si∑
j∈N (i)

V −
ij | Γij |

(37)

where U∗
j is either Un+1

j if it has already been computed at (n+1)th iteration
during the loop over the faces, or Unj otherwise.
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Moreover, a specific treatment is made in the vicinity of stagnation points,
where Un+1

i = 0, to ensure that ψ = 0. Three conditions are tested to check
that face i is a stagnation point:

• for all the edges of face i, the fluxes are outgoing from face i: test if∑
j∈N (i)

V −
ij | Γij |= 0 (no incoming flux),

• for at least one edge of face i, the flux is outgoing on both sides of the edge:
test if V⃗ψi · V⃗ψj < 0 for at least one edge Γij ,

• an inlet boundary condition is detected at one edge of face i.

2.5 CASSIOPEE

CASSIOPEE (CFD Advanced Set of Services In an Open Python Environ-
mEnt) [38] is an open-source library developed at ONERA. It is a suite of
Python modules dedicated to the pre- and post-processing of CFD simulations.
These modules interface the data through the CGNS standard representation.
Among all functionalities, CASSIOPEE is able to create/modify structured
or unstructured meshes (extrusion, intersection, smoothing, adaptation. . . ),
prepare the required information for the CFD simulation (i.e. connectivi-
ties, overset transfers, immerged boundary conditions. . . ) and post-process a
solution (interpolation, slice, iso-surface. . . ). The Python-CGNS architecture
allows to easily setup complete and automatic workflows or develop research
algorithms. All the CASSIOPEE functionalities can be used in a sequential
openMP or a distributed MPI environment. For this work, CASSIOPEE has
been used mainly for the re-meshing and Level-Set methods presented later on.

3 Ice shape

3.1 Ice thickness

The ice thickness hice is derived from the ice growth rate ṁacc thanks to the
following relation:

hice(∆t) =
ṁacc∆t

ρi
(38)

where ∆t is the physical accretion time and ρi is the density of ice. For glaze
conditions, ρi = 917 kg.m−3. For the rime regime, the ice is especially porous
and the following correlation for the bulk density is used [39]:

ρi = 378 + 425 log(Rm)− 82.3 (log(Rm))
2

(39)

where Rm is the Macklin parameter [40]:

Rm = −1

2
D43,imp × 106∥u⃗p∥

1

Tw − Tm
(40)

where D43,imp is the de Brouckere mean diameter of impinging droplets and
∥u⃗p∥ is their velocity. Besides, ρi is limited to values larger than 750 kg.m−3.
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This correlation has been quite widely and successfully used for 2D geometries
with IGLOO2D [4].

3.2 Surface deformation

For most of the simulations of this article, a basic Lagrangian approach is
used for the iced surface deformation. The nodes Ni of the surface mesh are
simply displaced over a distance hicei in the normal (outwards) direction to
the surface −→nSi: −−−→

ON1
i =

−−−→
ON0

i + hicei
−→nSi (41)

where O is the origin of the reference frame, N0
i is the initial position of

node Ni (clean profile) and N1
i is the new position of this node (iced profile).

Linear interpolations are performed to compute hicei at node N
0
i from the ice

thicknesses known at the neighbouring face centers.
A Level-set approach is also available in IGLOO3D in order to deal with

the potential robustness issues of this basic Lagrangian approach. The LEV-
ELSET3D module indeed uses a Level-Set field to calculate the ice growth
direction. The main steps of the algorithm are the following:

• Compute the distance ϕ to the iced surface (i.e. the Level-Set field) in cells
of the surrounding volume mesh.

• Compute the ice growth direction −→n ϕ in the volume mesh which is defined
as (see figure 7):

−→n ϕ =
∇⃗ϕ

∥∇⃗ϕ∥
(42)

This growth direction field is based on the Level-Set whose theoretical prop-
erties ensure that the displacement of a concave surface would not lead to
self-intersection in a pure Eulerian formalism.

• Move the nodes of the iced surface mesh by doing NL sub-iterations:

∀k ∈ [1, NL] ,
−−−→
(∆x)kn =

hicen
NL

−→n ϕ(x⃗kn) (43)

where
−−−→
(∆x)kn is the displacement of the node n at iteration k, hicen is the

ice thickness calculated according to equation (38) at the node n, −→n ϕ(x⃗kn)
is the interpolated value of the steady ice growth direction field −→n ϕ at the
current position xkn of the node n at sub-iteration k. This interpolated value
is updated at each sub-iteration.
As here we use a Lagrangian displacement method, self-intersections are still
possible. However, as this Lagrangian displacement is driven by the Eule-
rian field −→n ϕ, the risk of self-intersections can be reduced by increasing the
number of sub-iterations NL. We point out that the resulting surface mesh
may then have nodes that collapse when dealing with difficult configurations
with highly concave features. In these cases, geometric post-processing may
be necessary to remove these collapsing nodes. This step is not addressed
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Fig. 7: Ice growth direction defined as the gradient of the distance to the iced
surface

Fig. 8: Imposing the topological consistency of the connections between the
deformed iced surface and the adjacent boundary conditions by projecting (a)
and extruding (b) the edges of the iced surface

here as this issue was not encountered for the simulations described in the
present study.

• Ensure topological consistency of the connections between the iced surface
and other domain boundary conditions adjacent to it (see figure 8).

3.3 Verification

The RUN405 case of table 1 was used in order to check that IGLOO3D pro-
duces the expected ice shape. To do so, IGLOO2D was run first, as a reference,
with default options [4] on an unstructured mesh with a characteristic mesh
size near the wall equal to ∆x/c ≃ 2 · 10−3 (c is the chord length). Then,
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Fig. 9: Verification of ice shape, RUN405 case. On the left, predicted ice
thicknesses. On the right, ice shapes.

IGLOO3D was fed with the exact same input data as IGLOO2D: the surface
mesh, the aerodynamic inputs (htc, Tr, etc.) and the droplet inputs (espe-
cially ṁimp) are the same for both codes. Predictor simulations were run with
the two codes. Figure 9 shows that IGLOO3D produces the same results as
IGLOO2D (with the simple Lagrangian displacement method). There is indeed
a perfect agreement between the two codes on the ice thickness hice for all
curvilinear abscissas s (set equal to 0 at the stagnation point). The ice shape
is also logically the same for both codes.

The level-set method is evaluated in figure 10 with the same unstructured
mesh was used as for figure 9 (after verifying that the solution is unchanged
for finer volume meshes). Figure 10 shows that the result is the same as that
of the basic Lagrangian approach, whether the number of iterations of the
method NL is equal to 10 or 30. This is expected because the airfoil surface
is convex. For the predictor-corrector approach, in the cases investigated in
this paper, there is no concavity effect to take into account either, and in the
following, the basic Lagrangian method will be preferred.

4 Remeshing with CASSIOPEE

4.1 Dragon method

An automatic grid generation strategy called “Dragon mesh” [41] is evaluated
using the open-source CASSIOPEE software [38]. This approach creates a
hybrid grid composed of prism cells extruded from the walls and hexahedra
cells in the near field with a junction layer made of tetrahedra. The mesh
generation process can be decomposed in 6 steps:

1. The geometry can be imported in CASSIOPEE, either as an IGES/STEP
file or a surface mesh. In the present configurations, a surface mesh (unstruc-
tured with triangles elements) is provided. This mesh can be refined or
smoothed (for example, for too sharp iced geometries).
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Fig. 10: Verification of the level-set solution, RUN405 case

2. The second step concerns the creation of a prismatic layer by extruding the
surface mesh. CASSIOPEE allows growing layers of prisms with a given
distribution along the normals of the surface mesh. Here, a simple geometric
law is applied where the user gives the ratio and the first prism height.

3. An octree grid is automatically generated by CASSIOPEE from the external
prism layer. The minimum cell size of the octree is calculated from the
averaged cell size of the surface mesh and the ratio between two refinement
levels is equal to 2. Other reference surfaces for the creation of the octree
can be added during this process, in order to refine locally, for example
around a body wake or a separation area.

4. The next step consists in blanking the unstructured octree grid around the
external prisms layer. An offset of this external surface is applied to ensure
a given thickness of the blanking hole.

5. Finally, the gap, previously created between the octree blanked grid and
the prism layers mesh is filled with tetrahedra thanks to the open source
TetGen tool, integrated in CASSIOPEE. The automatic processing of the
previous steps with respect to a mean cell size value will ensure that the
tetrahedra are almost isotropic.

6. The last step allows assembling the three previous meshes (prisms, octree
and tetrahedra) which are converted to a conformal polyhedra represen-
tation. The boundary conditions can also be automatically added and the
final block can be split for parallel distribution.

This meshing strategy has already been applied on different external con-
figurations like a simple CRM aircraft configuration or the LAGOON landing
gear [42]. The Dragon mesh strategy has been extended to constrained geome-
tries (with symmetry plane(s) for example) or internal configurations. The
problematic was to manage the extrusion step with the plane constraints along
which the extruded prisms have to be projected. Figures 11, 12 and 13 present
three examples:
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Fig. 11: Example of Dragon mesh strategy applied on a NACA0012 iced wing
with an ice shape (RUN405 conditions) and constrained by two planes

Fig. 12: Example of Dragon mesh strategy applied on a GLC305 geometry
with an ice shape

• a NACA0012 iced wing constrained by two planes on which the extruded
prisms are projected (figure 11). For this case, the algorithm has been embed-
ded in a global CASSIOPEE function for cases without or with one or two
constraining planes.

• the embedded algorithm also allows generating meshes on wings constrained
by a wall on one side, such as the GLC305 wing of figure 12.

• for the Rotor67 NASA test case (figure 13), the iced blade, spinner and
carter surfaces are extruded with the constraints of periodic lateral and
in/out surfaces.

4.2 Verification

The Dragon method is assessed by generating a mesh around a clean unswept
NACA0012 geometry (figure 14). Two kinds of meshes were used for the
airfoil surface, one composed of around 113500 triangles, and another one com-
posed of 44800 quadrangles (the considered span length is equal to the chord
length). The Dragon volume meshes are composed of 5.5 million cells for the
first mesh, and of 3 million cells for the second one. Even though the overall
number of cells is smaller, the mesh based on quadrangles is almost twice as
fine in the streamwise direction as the mesh based on triangles in the vicin-
ity of the stagnation line. The prism layers used are thin enough at the wall
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Fig. 13: Example of Dragon mesh strategy applied on a Rotor67 NASA geom-
etry with an ice shape

that the y+ of the first cells is everywhere lower than 3, which is correct for
the low-Reynolds approach used for modelling the wall boundary conditions.
For the RUN405 case, as shown in figures 15 and 16, the solutions produced
by IGLOO3D (”Unstructured”) on the Dragon meshes are compared against
IGLOO2D (using the default options) and a 3D reference solution obtained on
a structured mesh manually generated with ICEM-CFD (”IGLOO3D Struc-
tured”). For the latter solution, the airflow simulation was performed with the
solver elsA [43] using the same conditions as the ones exposed in [17]. The
agreement between all the solutions is quite good for pressure distribution on
the airfoil. There is however a slight difference in pressure on suction side espe-
cially for the mesh based on quadrangles on the surface. This deserves further
analysis, but the solution is already good enough for a key parameter of the

simulations, the collection efficiency β =
ṁimp

LWCu∞
(where LWC is the liquid

water content of the cloud, while u∞ is the farfield airflow velocity), to be very
similar to the other solutions (computed with a single-bin droplet-size distri-
bution). The other main conclusion is that for the surface mesh composed of
triangles, the solution is quite good but there is a little bit more variability
from one cell to another than with the surface mesh made of quadrangles (the
illustrations appear as slightly thicker curves). Figure 17 confirms that there
is less variability in the predictor ice shape produced by IGLOO3D for the
surface mesh composed of quadrangles than for the one composed of triangles.

Finally, an important parameter for the calculations is the heat transfer
coefficient. In figure 18, it is plotted for the mesh composed of triangles on
the wing surface, for two methods: the default method (equation (10)) and
the one based on the skin friction coefficient Cf (equation (12)). For this
case, the spreading of the IGLOO3D results is quite important, even more so
for the default method. In addition, the Cf -based method is somewhat more
similar to IGLOO2D in the immediate vicinity of the leading edge, which is
expected. The agreement is worse further away (while for the default method
it remains a little better). Considering the differences in methods, the agree-
ment between all results can already be judged as satisfactory (viscous-inviscid
coupling for IGLOO2D, Navier-Stokes approach for IGLOO3D, htc computed
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Fig. 14: NACA0012 RUN405 test-case: Dragon mesh of the clean wing

Fig. 15: NACA0012 RUN405 test-case: pressure coefficient for two simulations
using the Dragon mesh of the clean wing. Comparison against simulations with
IGLOO2D and with IGLOO3D on a reference mesh. On the left, surface mesh
composed of quadrangles. On the right, surface mesh composed of triangles.

with equation (10) or equation (12) for IGLOO3D, with equation (13) for
IGLOO2D).

The agreement between IGLOO3D and IGLOO2D on htc is even better
for the Case 241 of IPW1, which will be discussed in section 6.3 (figure 19).
The difference between the two codes on htc is also much smaller than the
dispersion observed between all the codes of IPW1 [1]. The IGLOO3D results,
computed with the default method (equation (10)), are very good both for
the mesh provided by the IPW1 committee and for a Dragon mesh (there is
however a bit more variability on the latter, shown by all the points in light
blue corresponding to the solution in the surface elements). Besides, there is
a difference at the stagnation point, with IGLOO3D predicting a significantly
lower htc for the mesh of the IPW1 committee (the mesh is finer for IGLOO3D
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Fig. 16: NACA0012 RUN405 test-case: collection efficiency for two simulations
using the Dragon mesh of the clean wing. Comparison against simulations with
IGLOO2D and with IGLOO3D on a reference mesh. On the left, surface mesh
composed of quadrangles. On the right, surface mesh composed of triangles.

Fig. 17: NACA0012 RUN405 test-case: predictor ice shape for two simulations
using the Dragon mesh of the clean wing. On the left, surface mesh composed
of quadrangles. On the right, surface mesh composed of triangles.

than IGLOO2D at this location). At this location, the discrepancy is critical
to accretion modeling and may introduce a deficit in freezing (because the ice
is less cooled), and thus additional liquid-water runback.



Springer Nature 2021 LATEX template

24 Workflow for Predictor-Corrector simulations of in-flight ice-accretion

Fig. 18: NACA0012 RUN405 test-case: heat transfer coefficient for simulations
using the Dragon mesh of the clean wing (surface mesh composed of triangles).
On the left, htc computed with equation (10). On the right, htc computed with
equation (12).

Fig. 19: Case 241 test-case: heat transfer coefficient htc(W/K/m
2) produced

by IGLOO2D and IGLOO3D on the clean airfoil, with respect to the curvi-
linear abscissa s (s = 0 at the stagnation point). Solution on the mid-slice for
IGLOO3D (and solution in the surface elements in light blue). On the left,
mesh provided by the IPW1 committee. On the right, Dragon mesh.
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Fig. 20: Schematic view of the interpolation (projection) performed by
INTERP3D from the iced profile (red) to the initial profile (black).

5 Predictor-Corrector method

The predictor-corrector method is an approach that models the retroaction
of the ice shape on the airflow and droplet trajectories at the cost of only
two computational loops of figure 1 (unlike the multi-step method which typ-
ically requires several tens of loops). This method is available in the 2D code
IGLOO2D [4]. In this article, we describe the implementation of this method
for a 3D icing suite, IGLOO3D. As explained in section 2.1, the method con-
sists of correcting the predicted ice shape thanks to the aerodynamic and
trajectography solutions around the predicted ice shape. This means that, once
these ”corrector” aerodynamic and trajectography solutions are obtained, the
following tasks need to be done:

1. project and interpolate corrector data from the iced profile to the initial
profile (clean profile),

2. run a Messinger calculation in corrector mode on the initial profile using
both predictor and interpolated corrector data.

Step 1 is performed thanks to the INTERP3D module whose operating
principle is detailed in the paragraph 5.1. MESSINGER3D computations in
corrector mode are described in section 5.2.

5.1 Data interpolation with INTERP3D module

INTERP3D interpolates the surface data from the (predicted) iced profile
(also called corrector surface) to the initial (clean) profile (also called predictor
surface), see figure 20. For this purpose, the following steps are performed by
the INTERP3D module:

• Extraction of the surface geometry and (aerodynamic and trajectography)
data for both predictor and corrector sets,

• Interpolation of corrector surface data at face centers whenever necessary,
• Projection of corrector surface data on predictor surface,
• Interpolation of projected corrector surface data at nodes if necessary.

All computations are performed based on face-centered data values. To
calculate a projected value at a face center of the initial profile mesh, it is
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necessary to identify the subset of faces of the predicted profile mesh that will
contribute to the result. This is done in two steps:

• First, a ray is launched from the center of the considered face in the nor-
mal direction. The face of the predicted mesh profile that it intersects is
identified (see figure 21-a). Note that faces of the predicted profile mesh
are temporarily triangulated and stored in a background Cartesian grid to
accelerate the computation and make it more robust.

• Second, the other donor faces of the predicted profile mesh are identified:
those are the faces adjacent to the node of the intersected face which is
closest to the intersection point (see figure 21-b).

Once the donor faces are identified, their centers are projected on the tangent
plane of the considered face and their values are interpolated to the center
of the considered face by a least-square interpolation method in the tangent
plane (see figure 21-c). Note that if the number Nd of donor faces is strictly
less than three (at a mesh boundary for example), a least-square interpolation
is not possible. Thus, a particular treatment is used for the interpolation in
such cases: inverse-distance interpolation for Nd = 2, interpolation of order 0
for Nd = 1.

5.2 Corrector mode of MESSINGER3D

In corrector mode, the Messinger computation is made iteratively. N succes-
sive solutions of the Messinger balance exposed in section 2.4 are computed
(for the simulations of this article, N = 10). At each loop i ∈ {1, ..., N}, the
(aerodynamic and trajectography) inputs of the Messinger balance are lin-
early interpolated from the predictor INPUTpre and interpolated corrector
INPUTcor data as follows:

INPUTi = (1− ti

∆t
)INPUTpre +

ti

∆t
INPUTcor (44)

where:

ti =
i− 1

N − 1
∆t (45)

The physical accretion time considered for the corrector simulation is con-
sistent with the one used for the predictor simulation: ∆t = texp (exposure
time to the icing cloud). Consequently, the first corrector loop is made with
predictor inputs (INPUTpre), whereas the last loop is performed with correc-
tor inputs (INPUTcor). The final ice thickness is the sum of the ice thicknesses
resulting from each loop:

hice =

N∑
i=1

hice(t
i−1 → ti) (46)
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(a) Ray-Face intersection

(b) Donor faces identification

(c) Data projection and in-plane least
square interpolation

Fig. 21: Illustration of the projection process.

5.3 Verification

For the verification of the predictor-corrector method, the RUN405 and Run
06-27-91/1 cases of table 1 are used. For RUN405, which is a rime case, figure
22 shows that the ice thickness converges quickly with the number of loops
N . The difference between the thicknesses obtained for N = 50 and N = 5 is
less than 70 microns. For N = 10, which is the default value in the following,
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Fig. 22: Impact of the number of loops N on the predictor-corrector solution.
On the left, RUN405 case. On the right, Run 06-27-91/1.

it is around 10 microns at most. This limited effect of N is expected: in rime
regime, the accretion rate ṁacc is directly proportional to β because freezing
is immediate. The interpolation performed on β by INTERP3D as well as
equation (44) both being linear, no effect of N is expected (the variation
of the ice density bringing however a non-linearity regarding hice). In the
glaze regime, the process is less linear. For the glaze-ice run 06-27-91/1, the
convergence is slower and the error remains larger for N = 10. However, it is
less than 0.5 mm (corresponding to less than a 5% error).

As shown in figure 23 for RUN405, the IGLOO3D result is successfully
cross-checked against the reference IGLOO2D results, for identical inputs (sur-
face mesh size, aerodynamic and droplet data). The ice temperature, which is
strictly below 273.15 K, confirms that a purely rime ice is obtained. There-
fore, the ice thickness is related to the droplet input (β), as well as to the
ice density. The ice temperature is affected by the airflow, in particular by
htc. The fact that both the ice thickness and the temperature are well cap-
tured by the sequence of INTERP3D and MESSINGER3D thus shows that the
predictor-corrector method implemented in IGLOO3D faithfully reproduces
the reference method of the article [4].

6 2D ice-accretion test-cases

A series of test cases is discussed to show the potential and limitations of the
predictor-corrector method.

Several 2D cases are first discussed, as shown in table 1. The RUN405 case
has been used earlier for verifications. The cold conditions of this case produce
some rime ice. A NACA0012 airfoil is used, with a chord length equal to 0.5334
m and a 3.5◦ angle of attack. A NACA0012 profile with the same chord length
is also used for the run 06-27-91/1. The angle of attack is 4◦. The warmer
conditions and the higher value of the LWC make it possible to have some
glaze ice. Case 241 is a rime-ice configuration investigated in the IPW1 [1].
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Fig. 23: Verification of the predictor-corrector method, RUN405 case

This case involves a NACA23012 airfoil with a chord length equal to 0.4572 m
and a 2◦ angle of attack. Case 241 is therefore mainly a variation in geometry
compared to RUN405. In all three cases, the geometry is extruded to employ
3D meshes.

In this section, IGLOO3D results are compared to both experimental data
and IGLOO2D. This allows us to verify that the implementation in the 3D
code allows a similar behavior to the 2D code, despite sometimes consider-
able differences on the numerical approaches and parameters. For example,
for the IGLOO2D computations, the airflow simulations are performed with
a coupled approach between an inviscid code and an integral-boundary-layer
solver, on very coarse meshes. Moreover, the droplet trajectories are treated
by a Lagrangian approach. Besides, this section dealing with relatively sim-
ple geometries is also an opportunity to present and compare approaches
based on several types of meshes: those generated by the Dragon method, and
some meshes created manually with ICEM-CFD already used in a previous
paper [17].

Table 1: 2D ice-accretion cases investigated

Case V∞ (m/s) P∞ (Pa) T∞ (K) MVD (µm) LWC (kg/m3) t (s)

Case 241 102.889 92528. 250.15 30. 0.42 · 10−3 300.
Run 06-27-91/1 57.914 95610. 266.45 20. 1.3 · 10−3 480.
RUN405 102.827 93000. 250.37 20. 0.55 · 10−3 420.

6.1 RUN405

The NACA0012 RUN405 case was run with the predictor-corrector approach.
The mesh employed for the predictor step was the Dragon grid discussed in
section 4.2, for which the NACA0012 surface mesh is composed of around
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Fig. 24: NACA0012 RUN405 test-case: Dragon mesh for the corrector com-
putation.

Fig. 25: NACA0012 RUN405 test-case: ice shape

113,500 elements. The mesh of the corrector step is also a Dragon mesh (figure
24) with the same number of surface elements and 4.4 million volume ele-
ments. For this case, the heat transfer coefficient is computed from the friction
coefficient Cf (equation (12)). After equation (1), the equivalent sand-grain
roughness height employed for the computation is ks = 0.5334 mm. Regarding
the simulation of droplet trajectories, a single-bin distribution was used, which
is common practice for modeling in-flight icing of 2D airfoils under Appendix
C conditions [44].

The predicted ice shape, shown in figure 25, is very similar to that com-
puted with IGLOO2D (with default options). This was expected since rime-ice
shapes are directly linked to the collection efficiency β – because the water
freezes locally – and figure 16 shows the very good agreement between the
codes on β (for the predictor step). However, the convective heat transfer being
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Fig. 26: NACA0012 RUN405 test-case: ice shape using a manually-generated
structured mesh for IGLOO3D

lower for IGLOO3D than for IGLOO2D around the stagnation point (figure
18), IGLOO3D predicts the occurence of a bit of liquid-water runback there,
which explains the slight discrepancy between the IGLOO2D and IGLOO3D
ice shapes. The numerical and experimental results are very similar in all
respects, except for the maximum thickness. The small inaccuracy there could
be caused by several factors: the ice density model may be slightly inaccurate,
a little bit of runback may occur in the experiment (which may be influenced
by the convective transfer and the roughness height, which is difficult to pre-
dict). An accurate multi-step simulation may also help capturing better the
ice thickness there. Consistently with what was discussed in section 4.2, there
is some fluctuation in the ice shape due to the surface mesh used, composed
of triangles.

As an element of comparison, figure 26 shows the results obtained with
IGLOO3D using structured meshes manually generated with ICEM-CFD (sim-
ilar to the ones of reference [17], with around 1300 quadrangles on the wing
surface and 250000 hexaedra), instead of the Dragon meshes. The aerodynamic
simulations were then performed with elsA, as in reference [17], which provides
the momentum thickness of the boundary layer, from which the heat trans-
fer coefficient was inferred (equation (13)). The results are very similar to the
ones obtained with the Dragon meshes. The main difference is that there is no
variability in the ice shape because the mesh is structured and the results are
strictly identical for all cells of a given x/c.

6.2 Run 06-27-91/1

The same approach as for figure 26 was used to investigate the 2D glaze-ice
case. A structured mesh made with ICEM-CFD was thus made with the same
properties as in reference [17] both for the predictor and the corrector steps.
The airflow simulations were then made with elsA and equation (13) was used
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Fig. 27: NACA0012 run 06-27-91/1 test-case: ice shape using a structured
mesh for IGLOO3D

to compute htc. The predictor step was already shown in reference [17] for
this case but a fully-turbulent approach was used. Here, the laminar-turbulent
transition is modeled. The predictor and corrector ice shapes are shown in
figure 27. Again, the agreement between IGLOO3D and IGLOO2D is good.
The biggest difference between the results of the two codes concerns the upper
part of the profile: IGLOO3D predicts a slightly thicker and narrower horn than
IGLOO2D. This difference is mainly due to the fact that IGLOO3D predicts
a larger htc than IGLOO2D almost everywhere (except around the stagnation
point), which reduces runback. Nevertheless, overall, all the simulations cap-
ture quite satisfactorily the experimental ice shape. IGLOO3D produces too
much runback in the immediate vicinity of the stagnation point, causing the
presence of two thin horns there. However, it must be emphasized that the
corrector simulations improve the results in the vicinity of the accretion limits.

6.3 Case 241

For the rime-ice case 241, we used the ”hybrid” approach retained for all the
simulations of the IPW1 addressed in this article: the mesh of the clean airfoil
provided by the organizing committee was used for the predictor step while a
mesh was automatically generated with the Dragon method for the corrector
step. The 7-bin droplet size distribution provided by the organizing committee
was also used.

The agreement between IGLOO2D and IGLOO3D is very good both for
predictor and corrector steps (figure 28). The predictor-corrector approach
produces a rather satisfactory ice shape, compared to the experimental one
(both the entire set of ice-shape scan points and the so-called Maximum Com-
bined Cross-Section – MCCS – are provided for the experimental shape, with
the MCCS resembling an envelope of the ice shape [1, 45]). The corrector ice
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Fig. 28: Case 241, 2D rime-ice case. Ice shapes produced by IGLOO2D and
IGLOO3D. Comparison against the experimental ice shape.

shape is again sharper than the predictor shape and it is in better agreement
with the experimental shape.
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7 3D ice-accretion test-cases

Table 2 shows the icing conditions for the five 3D test-cases investigated. First,
a test-case involving a GLC305 airfoil with 28◦ sweep angle at the leading
edge (and 15.6◦ at the trailing edge) is investigated, Case 4 (a glaze-ice case).
The experimental data is available in reference [46]. A single-bin droplet-size
distribution was used for this case. The roughness height was set to 0.952 mm.

The other four cases are taken from the IPW1 base. NACA0012 airfoils
are employed for these test-cases with a chord length equal to 0.91438 m and
a 0◦ angle of attack. Two different sweep angles are used, Λ = 30◦ and Λ =
45◦. The interested reader will find further information in the synthesis paper
of IPW1 [1]. The 7-bin droplet size distributions provided by the organizing
committee were used for these cases. After equation (1), the roughness size
was set to 0.91438 mm.

Table 2: 3D ice-accretion cases investigated

Case Λ (◦) V∞ (m/s) P∞ (Pa) T∞ (K) MVD (µm) LWC (kg/m3) t (s)

Case 4 28. 112. 97511. 263. 20. 0.68 · 10−3 120.
Case 361 30. 103. 92321. 257. 34.7 0.5 · 10−3 1200.
Case 362 30. 103. 92321. 266. 34.7 0.5 · 10−3 1200.
Case 371 45. 103. 94463. 257. 32. 0.5 · 10−3 1200.
Case 372 45. 103. 94463. 266. 32. 0.5 · 10−3 1200.

7.1 Case 4

Regarding the GLC305 Case 4, the grid of the predictor simulation is an
unstructured mesh for which the surface mesh is composed of 6,636 triangles.
Figure 29 shows the mesh and its level of refinement in the vicinity of the stag-
nation point. The two cuts, A and B, employed to compare between IGLOO3D
and the experiments are also shown in figure 29. The mesh of the corrector
run is an automatically generated Dragon grid (figure 12). The surface grid is
composed of 59,260 triangles and the volume grid is made of 3.2 million ele-
ments. Additionally, the heat transfer coefficient was computed with equation
(12) for this case.

The numerical and experimental ice shapes are compared on the two cuts
A and B in figure 30. The numerical ice shape is smooth (figure 29) and does
not capture the fact that there are some scallop structures in the experimental
ice shape. However, the simulation remains satisfactory. First, the ice thickness
at the leading edge is captured quite well on both cuts. Second, except for
the sharpness of the ice shape at its limit on suction side, the overall ice
shape is predicted correctly by IGLOO3D. Besides, the ice shape obtained with
the corrector run is closer to the experimental one than the ice shape of the
predictor run. It is especially in the vicinity of the accretion limits that the ice
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Fig. 29: GLC305 case 4: clean surface mesh, cuts A and B for experimental
ice shape measurements, simulated ice shape (white surface).

Fig. 30: GLC305 case 4: comparison between experimental and numerical ice
shapes along cuts A and B. On the left, Cut A. On the right, Cut B.

shape is improved by the predictor-corrector simulation. It has to be mentioned
that the effect of the number of corrector loops N has been tested for this
3D glaze-ice case with rather small ice thickness. For N = 50, the IGLOO3D
result is almost superimposed to the curve obtained with the default N = 10
(which explains why we did not add the N = 50 curve in figure 30).
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Fig. 31: Case 361: ice shapes produced by IGLOO3D. Comparison against
the experimental ice shape [47].

7.2 Case 361

For the rime ice case 361 with a 30◦ sweep-angle NACA0012 airfoil, the ice
shape produced by the predictor approach is reasonably good, compared to the
experimental ice shape (figure 31). The predictor-corrector results do not even
improve the ice shapes, which tend to be too sharp. For both the predictor
and corrector solutions, there is no visible difference between the numerical ice
shapes produced at the two experimental stations.

The pressure coefficient distribution has also been checked to ensure that it
is correct compared to the experimental data (figure 32). Additionally, the ice
shapes predicted by various solvers (including ours) proved to be very similar
to each other on this test-case, despite different numerical approaches and
meshes [1].

In order to improve the results, it could be necessary to work on the ice
density model. It is our experience that this model is quite satisfactory for 2D
wings but it is probably less reliable for 3D geometries. Additionally, if the
ice shape exhibits a transverse pattern such as small scallops, it is unlikely
that the predictor-corrector approach captures the shape, as confirmed by the
identical results obtained for the two stations in figure 31. Such ice shapes are
indeed largely due to shadowing effects that affect the droplet collection and
that are poorly modeled by the predictor-corrector approach. A multi-step
approach would be more appropriate.
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Fig. 32: Case 361: pressure coefficient produced by IGLOO3D and by the
experiments [47].
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Fig. 33: Case 362: ice shapes produced by IGLOO3D. Comparison against
the experimental ice shape [47].

7.3 Case 362

For the glaze-ice case 362, figure 33 shows that IGLOO3D captures very well
the experimental ice shape on both sides of the separation line. However, the
horn heights are not predicted correctly. As in case 361, the ice density model
could be questioned and the use of a multi-step approach could help capturing
some scallop-like patterns (which may be expected to be moderate as shown
by the two rather similar experimental tracings of figure 33).

It is also possible that IGLOO3D produces too little runback, because htc
is high close to the stagnation point. This is due to the fact that for the swept-
wings, it was not possible to activate a transition model in IGLOO3D and
the boundary layer is thus fully turbulent. Modeling the laminar-turbulent
transition would probably increase the amount of runback. However, since the
ice thickness predicted by the IGLOO3D simulation is not so bad along the
separation line, the amount of runback should not be increased too much.
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Fig. 34: Case 371: ice shapes produced by IGLOO3D. Comparison against
the experimental ice shape [47].

7.4 Case 371

Figure 34 shows that the IGLOO3D results are worse for a 45◦ sweep-angle
than in the same condition for a 30◦ sweep-angle (case 361). As in case 361,
the ice shape predicted by the predictor approach is better than that given by
the predictor-corrector approach, which is is too sharp. Figure 35 shows that
the pressure distribution is well predicted again, which excludes the cause of
a poorly calculated aerodynamic effect.

For swept wings with a high sweep angle corresponding to the SUNSET2
database, it was necessary to drastically change the ice density by taking ρi =
450kg/m3 [18, 48, 49]. This was to model a bulk ice density taking into account
the voids between the scallop structures. For test-case 371, the use of ρi =
450kg/m3 predicts a too thick ice shape, whereas ρi = 700kg/m3 seems to be
a reasonable value to capture at least the ice thickness in the vicinity of the
separation line (figure 34). However, it is not a proper model for the bulk ice
density. Such a model still needs to be developed for 3D applications.

For high sweep angles, various kinds of scallop-like ice shapes can be
obtained [50], which could explain the relatively high variability of the experi-
mental tracings for this case. The use of multi-step approaches could thus also
help to better model the ice shape, as mentioned earlier.
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Fig. 35: Case 371: pressure coefficient produced by IGLOO3D and by the
experiments [47].
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Fig. 36: Case 372: ice shapes produced by IGLOO3D. Comparison against
the experimental ice shape [47].

7.5 Case 372

For case 372, the ice thickness predicted by the predictor IGLOO3D simulation
is not so bad along the separation line but the use of ρi = 700kg/m3 again
produces slightly better results. Apart from that, the predicted ice shape is
not very satisfactory for this case. As in case 362, the improvement of the heat
transfer coefficient modeling (which mainly drives the amount of liquid-water
runback) and the use of a better validated ice density could be interesting
avenues for future progress. For this case where the scallop structure is quite
pronounced, the use of a multi-step method is nevertheless the most relevant
way to improve the results.

8 Conclusion

This article presents a workflow for 3D ice-accretion simulations. It is based
on the predictor-corrector method, which allows to perform only two loops
of the usual quasi-steady computational sequence performed for in-flight-icing
modeling. For the correction loop, a remeshing is performed with the Dragon
method.

Several test cases are presented to evaluate the method, involving straight
and swept wings in Appendix-C icing conditions (and not protected against
icing). The predictor-corrector method is very interesting for ice-accretion
modeling on straight wings, which is not a surprise since the method is very
often used with the 2D icing suite IGLOO2D for example. It is also very encour-
aging for low-sweep angles. However, this method is not adapted for capturing
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scallop-like ice shapes. For highly-swept wings (45◦ in this article), the method
is noticeably less accurate. To correctly model such ice shapes, the multi-step
approach is recommended (at the cost of a much higher number of loops of
the computational sequence). As an alternative, the development of a specific
model of bulk ice density may be able to support the future use of the predictor-
corrector approach for the cases where there are well-developed scallops. More
generally, the ice shapes could be improved by upgrading the ice-density model
(that has been empirically estimated and validated on straight wings). There
is also a need to improve liquid-water runback prediction, which implies better
modeling the convective heat transfer on the rough surface of the ice.

To conclude, only wing geometries have been tested. It would be use-
ful to use other geometries representative of 3D aircraft structures (however,
experimental data are not always available to validate the simulations).

Acknowledgments. The authors would also like to thank François Cam-
inade from DASSAULT-AVIATION for the mesh and data used for the
predictor simulation of the GLC305 case 4.

Declarations

• Funding and/or Conflicts of interests/Competing interests: This project has
received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 824310. Partial financial
support was also received from DGAC (GENOME project). The authors
declare they have no financial interests.

References
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