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The ionization by photon or electron impact of the inner (2a1) and outer (1t2) valence orbitals
of the CH4 molecule is investigated theoretically. In spite of a number of approximations, including
a monocentric approach and a rather simple distorting molecular potential, the calculated cross
sections are overall similar to those of other theoretical methods, and in reasonable agreement with
experimental data. The originality of the present approach stands in the way we evaluate the
transition matrix elements. The key ingredient of the calculation scheme is that the continuum
radial wave function of the ejected electron is represented by a finite sum of complex Gaussian type
orbitals. This numerically expensive optimization task is then largely compensated by rather simple
and rapid analytical calculations of the necessary integrals, and thus all ionization observables,
including cross section angular distributions. The proposed and implemented Gaussian approach is
proved to be numerically very reliable in all considered kinematical situations with ejected electron
energy up to 2.7 a.u.. The analytical formulation of the scheme is provided here for bound molecular
states described by monocentric Slater type orbitals; alternatively, one may also use monocentric
Gaussian type orbitals for which the formulation is even simpler. In combination with complex
Gaussian functions for the continuum states, an all Gaussian approach with multicentric bound
states can be envisaged.

I. INTRODUCTION

Atomic and molecular collision processes remain an ac-
tive research area, both for their fundamental interest
and for numerous applications for which data are needed.
Experimental measurements of observables provide chal-
lenges to theoreticians who attempt to solve quantum
mechanical many-body problems by necessarily making
some approximations. Among the many existing pro-
cesses, the photon or electron impact ionization of poly-
atomic molecules is a difficult one to describe theoreti-
cally (see, e.g., [1–3]). Indeed, on top of the multielec-
tron target structure, the multicentric nature of the prob-
lem makes well-established atomic scattering tools inad-
equate and inappropriate. This is true already for small
molecules such as water or methane, and is worse with
molecules lacking simple symmetries and/or of increasing
size.

For atomic ionization processes, experimental advances
allow nowadays for measurements of angular distribu-
tions of multiply differential cross sections, thus provid-
ing stringent tests to theoretical models. Theoretical de-
velopments have also made huge progress. For example,
they allow today for an essentially exact numerical calcu-
lation of the pure three-body problem in the continuum
(see, e.g., [4]), as with calculations of differential cross
sections for the single ionization of hydrogen by electron
impact (see, e.g., [5–7]) or for the double photoioniza-
tion of helium (see, e.g., [8–11]). Over the last decades,
and going beyond the three-body case, the ionization of
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other atoms by photons or electrons has been studied
through a variety of nonperturbative and perturbative
methods; each of them present advantages but also lim-
itations, necessarily entail some approximations to the
many-body problem, and have different degrees of suc-
cess. Many methods exist also in the case of molecular
targets. From a theoretical point of view, one critical is-
sue when dealing with ionization processes in molecules
is to describe accurately continuum states on extended
spatial domains, that is to say the wave function of an
electron ejected from a complex, anisotropic, multicentric
system. Obviously, as molecular targets of increasing size
are considered, the radial domain in which the interac-
tions play a role is larger, and the evaluation of transi-
tion matrix elements may also present some challenges
since integrals of oscillatory functions need to be evalu-
ated. Compared to the bound part of the spectrum for
which very accurate quantum chemistry tools are avail-
able, one may state that the continuum part of molecular
spectra is relatively not so well mastered, except possi-
bly for diatomic molecules. As a result, and because of
the many-body aspects of the system, calculated ioniza-
tion observables are generally only in fair agreement with
available experimental data. There is clearly room for
improvement especially when the focus is on the angular
distributions of differential cross sections which provide
the most detailed information on the physical process.

The spherical symmetry of atomic targets allow for
standard partial wave techniques to be implemented
within scattering theory. Such tools have to be adapted
or modified in the case of molecules. For bound states the
multicentric aspects are essentially mastered, in particu-
lar with the use of real Gaussian Type Orbitals (rGTOs)
centered on different nuclei (see, e.g., [12]); the calcula-
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tion of one- and two-electron integrals is greatly facili-
tated by a number of mathematical properties, including
the Gaussian product theorem (see, e.g., [13]). In the
case of continuum states proper multicentric expansions
are cumbersome to provide, and the evaluation of related
integrals presents serious difficulties. The aim of this pa-
per is to present a method that contributes in tackling
this issue. The key idea is to represent accurately molec-
ular continuum states with a finite sum of complex Gaus-
sian Type Orbitals (cGTOs). As will be demonstrated,
this leads to a closed-form formulation for an efficient
calculation of ionization matrix elements, at least in a
one-center framework. By extension, the mathematical
properties of Gaussian functions allow us to envisage,
in future developments, a similar methodology but in a
multicentric approach.

Real GTOs have a widespread success in molecular
bound calculations, and a large amount of optimized sets
are today available for a variety of systems. Compared to
bound states, relatively less attempts have been made to
investigate and to systematically optimize rGTOs for cal-
culations over continuum states [14–25]. Because of their
unsuitable functional form, they appear to be inefficient
in reproducing the fast oscillatory behavior of continuum
wave function above certain energies and over sufficiently
large radial domains.

In a previous work, we have investigated the ad-
vantage of using cGTOs over the standard rGTOs in
representing oscillating and non-decreasing wave func-
tions [26, 27]. cGTOs, that is, GTOs with complex-
valued exponents, have been introduced in molecular res-
onances calculation in the framework of complex basis
function method [28–30]. They have been applied to
photoionization of atoms and small molecules for total
cross section calculations [31–34], and more recently, for
the calculation of differential cross sections and photo-
electron angular distributions [35–37]. Another field of
application of cGTOs is the electron dynamics in molec-
ular systems [38, 39]. In such case, the exponents but also
the coordinates centers of the Gaussian functions are al-
lowed to be complex values. In [40], we have presented a
single−center, one−active−electron approach using cG-
TOs to study molecular photoionization of water and am-
monia. The construction of cGTOs was achieved by fit-
ting them, through a least squares technique, to a set
of regular Coulomb functions with different energies on
a discrete radial grid (the optimization procedure was
originally developed with rGTOs [15, 16] and recently
extended to cGTOs [26]). It turns out [40] that the cG-
TOs exponents optimized in this way can be employed
for distorted wave functions in the same energy/distance
ranges without significant loss of accuracy.

In this work, we formulate, implement and apply
the cGTO approach to study the simple ionization of
methane (CH4) by electronic or photonic impact. We
consider the inner (2a1, next highest occupied molec-
ular orbital (NHOMO)) and outer (1t2, highest occu-
pied molecular orbital (HOMO)) valence orbitals. We

show that all the transition elements needed to calcu-
late the observables in both processes can be written in
closed form, and thus easily evaluated. The focus on
the methane molecule is justified in several ways. It is
the smallest hydrocarbon, known to be the most preva-
lent greenhouse gas emitted on earth from human and
animal activities. Methane also presents practical inter-
est in astrophysics, radiobiology, and in the development
of technological plasma device (see, e.g., [41] and refer-
ences therein). In this work, the interest on methane is
primarily motivated by the quite vast number of funda-
mental studies available in the literature for the two pro-
cesses under consideration, see e.g. refs. [3, 42–51] about
photoionization and refs. [52–68] about differential cross
sections for ionization by electronic impact. This allows
for comparisons of the present cross sections results with
several experimentally available data sets and other the-
oretical results to test the applicability and efficiency of
the proposed Gaussian approach comprehensively.
The remaining of this paper is as follows. In Sec. II

we present the theoretical framework for both photoion-
ization and electron impact ionization. Next we describe
both the initial (bound) and final (continuum) molecular
states. For the latter a cGTO representation is used; a
table of the optimized exponents is provided. We then
proceed by giving the analytical formulae that allow one
to calculate all the necessary matrix elements. Results
of calculations of ionization cross sections of the inner
(2a1) and outer (1t2) valence orbitals of CH4 are pre-
sented in Sec. III. First the proposed analytical Gaussian
approach is validated with purely numerical calculations;
then cross sections are compared with data sets from the
literature. Finally, a summary and some perspectives of
future developments are given in Sec. IV.
Atomic units (a.u.) in which ℏ = e = me = 1 are used

throughout unless otherwise specified.

II. THEORETICAL FRAMEWORK

In this section we present the one-active-electron
framework used to study the simple ionization of
methane by electronic or photonic impact. We first re-
call the standard observables of interest and then focus
on the proposed Gaussian approach, leading to analyti-
cal formulae for all the integrals required in the calcula-
tions. We will elaborate extensively on the case of elec-
tronic impact ionization while, for photoionization, only
the essential formulae previously introduced in [40] will
be summarized here, for self-consistency.
For both photonic and electronic collisions, we con-

sider some initial bound molecular orbital ϕi(r) (usually
defined in the molecular (MOL) frame) whose ionization
energy is denoted Vi and occupation number Ni. The
electronic structure of CH4 is (1a212a

2
11t

6
2) and we will fo-

cus on the outer and inner valence molecular orbitals 1t2
and 2a1 for which experimental data are available. Dur-
ing the collision, one electron is ejected with wavevector
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ke and associated energy Eke
= k2e/2. Throughout the

paper, we will use the standard partial wave expansion
for the continuum wave function of the outgoing electron,

ψ−
ke
(r) =

√
2

π

∑
l,m

ıle−ıδl
ul,ke

(r)

ker
Y m
l (r̂)Y m∗

l (k̂e), (1)

where ul,ke is the radial function, δl denotes the phase
shift for a given angular momentum l and Y m

l are the

complex spherical harmonics. The notations r̂ and k̂e
stand for the solid angles associated respectively with r
and ke in the laboratory frame centered on the heaviest
atom of the molecule and with the z axis defined as the
direction of the incident projectile.

The laboratory frame (LAB) can be rotated into the
molecular frame (MOL) by using Wigner rotation ma-

trices D
(l)
m̃m

(
R̂
)
[69] involving the Euler angles R̂. The

spherical harmonics transform according to

Y m
l |MOL =

l∑
m̃=−l

D
(l)
m̃m

(
R̂
)
Y m̃
l |LAB . (2)

Since in the considered experiments the molecular target
is randomly oriented, an average over all orientations of
the calculated observables must be performed before a
theory-experiment comparison can be done.

A. Photoionization

For self-consistency, we outline the essential formula-
tion for evaluating the two main observables measured in
molecular photoionization experiments, namely the cross
section σ(ke) and the asymmetry parameter β. For a de-
tailed derivation, we refer the reader to [40, 51, 70, 71].
During a photoionization process, an incident electro-
magnetic radiation with energy Eγ interacts with a
molecular target, producing an ionized molecule and an
ejected electron (photoelectron) in the outgoing contin-
uum state ψ−

ke
(r):

γ +CH4 → CH+
4 + e− (ke) ,

with energy conservation

Eγ = Eke
+ Vi. (3)

The photoelectron angular distribution is given by the
differential cross section [72, 73]

dσPI

dk̂e
= Ni

4π2keEγ

c

∣∣TPI
if

∣∣2 , (4)

c being the speed of light in vacuum. For a photon with
linear polarization along the direction ϵ̂, the transition

elements between the initial and the final states can be
written in the dipole approximation as

T
PI(G )
if = ⟨ψ−

ke
|T (G )|ϕi⟩ (5)

where the superscript (G ) refers to the gauge choice:
T (L ) = ϵ̂ · r in length gauge and T (L ) = 1

ıEγ
ϵ̂ · p in ve-

locity gauge. To take into account the random molecular
orientation, the common approach consists in a rotation
of T (G ) and ψ−

ke
into the molecular frame (see Eq. (2)),

followed by an average over all the possible molecular

Euler angles R̂ [70, 71]. For subsequent calculations, we

need to write down the rotated transition operators T (G )
µ

in the molecular frame:

T (L ) =

1∑
µ=−1

D1
µ0

(
R̂
)√

4π

3
r Y µ

1 (r̂)︸ ︷︷ ︸
=

1∑
µ=−1

D1
µ0

(
R̂
)

T (L )
µ , (6)

and

T (V ) =

1∑
µ=−1

D1
µ0

(
R̂
) −1

Eγ
∇µ︸ ︷︷ ︸

=

1∑
µ=−1

D1
µ0

(
R̂
)

T (V )
µ . (7)

In eq. (7), ∇µ denotes the spherical tensor components of
the gradient operator [69]. After angular averaging, the
differential cross section for linearly polarized photons
takes the traditional form [70, 71]

dσPI(G )

dk̂e
=
σ(G )(ke)

4π

[
1 + β(G ) P2(cos (θ)

]
, (8)

where the integrated cross section is

σ(G )(ke) =

∫
dσ(G )

dk̂e
dk̂e =

√
4πA(G )

0 , (9)

and the asymmetry parameter β(G ) is given by

β(G )(ke) =
√
5
A(G )

2 (ke)

A(G )
0 (ke)

. (10)

In equation (8), P2(x) =
1
2 (3x

2 − 1) is the second Legen-

dre polynomial, and θ = (̂ϵ̂,ke) is the scattering angle in
the laboratory frame. The key quantities to be computed

A(G )
L (ke) are given by the following sums [40, 51]:
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A(G )
L (ke) =

8πEγ

ke c

∑
l1,m1,µ1

∑
l2,m2,µ2

(−ı)l1−l2eı(δl1−δl2)M(G )
l1,m1,µ1

(
M(G )

l2,m2,µ2

)∗

× (−1)m1−µ1

√
(2l1 + 1)(2l2 + 1)(2L+ 1)

4π

(
l1 l2 L
0 0 0

)(
1 1 L
0 0 0

)
×
(

1 1 L
µ1 −µ2 −µ1 + µ2

)(
l1 l2 L

−m1 m2 µ1 − µ2

)
,

(11)

where δl stand for the phase shifts of the continuum par-

tial waves (1),

(
l1 l2 l3
m1 m2 m3

)
is the 3j−Wigner sym-

bol [69] and M(G )
l,m,µ are the gauge−dependent integrals

M(G )
l,m,µ =

∫ (
ul,ke

(r)

r
Y m
l (r̂)

)∗

T (G )
µ ϕi(r) dr. (12)

The calculation of observables relies on an efficient eval-
uation of these integrals, a task that the present work
aims to accomplish. Their precise form strongly depends
on the basis sets selected for the description of ul,ke

(r)
and ϕi(r). More insights will be given in the dedicated
subsection II F where it is shown that those integrals be-
come analytical when using cGTOs expansions for the
continuum radial function.

B. Ionization by electronic impact

We now provide the basic formulae necessary to de-
scribe the simple ionization of methane by electronic im-
pact, i.e.

e− (k0) + CH4 → CH+
4 (Q) + e− (ks) + e− (ke) ,

where k0, ks and ke are the wavevectors of the incident,
scattered and ejected electrons, respectively. Neglecting
the recoil energy of the ionized molecule Q, the conser-
vation of energy is written as

k20
2

− Vi ≈
k2s
2

+
k2e
2
. (13)

The experimental data analyzed below correspond to rel-
atively high incident and scattered energies, and to asym-
metric energy sharing (i.e., ks >> ke). Although it en-
tails some degree of approximation, in such kinematical
conditions, we work here in the framework of the first
Born approximation and neglect exchange between the
scattered and the ejected electrons. The triple differen-
tial cross section (TDCS) is defined by [74, 75]

d3σ(e,2e)

dΩfdΩedEe
=

Ni

4π2

kfke
k0

∣∣∣T (e,2e)
if

∣∣∣2 , (14)

where the scattering amplitude is given by

T
(e,2e)
if =

〈
Ψf

∣∣V ∣∣Ψi
〉
. (15)

In eq. (15), Ψi represents the wave function of the system
(incident electron−neutral molecule) before ionization,
while Ψf represents that of the system after the collision
(scattered electron−ejected electron−ionized molecule).
V denotes the interaction between the incident electron
and the target composed of M nuclei and N electrons:

V = −
M∑

m=1

Zm

|Rm − r0|
+

N∑
j=1

1

|rj − r0|
, (16)

where r0, rj and Rm are, respectively, the position vec-
tors of the incident electron, of the j−th bound elec-
tron and of the m−th nucleus. For a neutral target∑M

m=1 Zm = N .

In the frozen-core approximation, the neutral molecule
CH4 and the ionized molecule CH+

4 are described by the
same molecular orbitals. This approximation leads to the
single−active−electron (position r, N = 1) model where
the dimensionality of the integrals is reduced from 3(N+
1) to 6. Moreover, if we neglect the spatial distribution of
the nucleiRm ≈ 0 [76], the scattering amplitude becomes

T
(e,2e)
if =

〈
ψ−
ke

(r)ψs (r0)

∣∣∣∣ 1

|r− r0|
− 1

|r0|

∣∣∣∣ϕi (r)ψ0 (r0)

〉
(17)

where ψ0, ψs and ψ−
ke

are the wave functions of the inci-
dent, the scattered and the ejected electrons, respectively.
We also suppose that the incident and scattered electrons
are described by plane waves. By using Bethe’s integral,
the integration over r0 leads to the following expression
in the laboratory frame:

T
(e,2e)
if =

4π

q2
〈
ψ−
ke

(r)
∣∣ eıq·r − 1

∣∣ϕi (r)〉 , (18)

with the transferred momentum

q = k0 − ks. (19)

The matrix element (18) depends on the orientation of
the molecule with respect to the laboratory frame defined

by Euler angles R̂. Since the molecules are randomly ori-
ented in the experiments, an average over all the possible
orientations has to be performed. The explicit calcula-
tion of (18) using Gaussian integrals will be detailed in
subsection II F.
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C. Molecular orbitals

The molecular orbitals of methane considered in this
work are expressed as linear combinations of Slater Type
Orbitals (STOs) centered on the heaviest nucleus follow-
ing Moccia [77]:

ϕi (r) =

Ni∑
j=1

Cij r
nj−1 e−ζjr Y

mj

lj
(r̂) . (20)

Y
mj

lj
denote the complex spherical harmonics where

the values of {lj ,mj} are chosen depending on the ir-
reducible representation of the tetrahedral molecular
symmetry group Td and the maximum lj does not
exceed 3. The nonlinear parameters {nj , ζj} were
optimized together with the geometrical equilibrium
configuration by minimizing the total energy at the
Hartree−Fock level where nj are restricted to integers
≤ 8. The linear coefficients were obtained by the usual
self−consistent−field−procedure. The number of STOs
actually used for molecular orbitals of methane is typi-
cally Ni ∼ 7 − 15. The C−H distance corresponding to
the equilibrium configuration is 2.080 a.u., and the ion-
ization energy Vi is 13.71 eV and 25.05 eV for the 1t2
and 2a1 states, respectively.

D. Continuum wave functions

The radial functions ul,ke
(r) in the partial wave ex-

pansion (1) are the solution of the ordinary differential
equation,

[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ Umol(r)

]
ul,ke(r) =

k2e
2
ul,ke(r),

(21)
where Umol(r) is a molecular central potential felt by the
ejected electron. Although it is not a very proper ap-
proach, the approximation of a molecular potential with
radial symmetry is justified here by the tetrahedral sym-
metry of the CH4 molecule. A substantial advantage of
using such a central potential is that the explicit calcula-
tion of the angular average over Euler angles in the (e, 2e)
case can be bypassed [62, 78]. In this contribution, we
have investigated two choices for the potential Umol(r).

As a very first approximation, it is possible to con-
sider a pure Coulomb potential Umol(r) = −z/r, the
ejected electron feeling over the whole space the asymp-
totic charge z = 1. The Coulomb phase shift is given
by δl = arg (Γ(l + 1 + ıη)) with the Sommerfeld param-
eter η = −z/ke, and the radial functions are the regular
Coulomb functions,

ul,ke(r) =Fl(η, ker)

=(2ker)
l+1e−

πη
2
|Γ (l + 1 + ıη)|
2Γ (2l + 2)

eıker
1F1 (l + 1 + ıη, 2l + 2;−2ıker) ,

(22)

where 1F1 is the Kummer confluent hypergeometric function [79, 80].
The Coulomb approximation is quite crude. As an improvement, we also consider a distorted model. We assume

that the ejected electron feels a distorted radial potential, obtained as the angular average of the static exchange
potential associated with molecular orbital ϕi [62, 78, 81]:

Ui (r, {Rm}) = −
M∑

m=1

Zm

|r−Rm|
+

NMO∑
i′=1

(2− δi,i′)

∫
dr′

|ϕi′ (r′)|2

|r− r′|
. (23)

Index i′ denotes the molecular orbitals in the form (20)
and NMO = 5 is the total number of doubly occupied
orbitals for methane: 1a1, 2a1, 1t2x, 1t2y and 1t2z. The
charge Zm is 6 for the carbon atom and 1 for each hy-
drogen atom while Rm is the position of the m−th nu-
cleus. By applying an angular average to this anisotropic
potential [78, 81], we obtain a radial potential Umol

i (r),
labeled with respect to the selected ionized orbital ϕi.
It turns out that using STOs as in (20) for ϕi′ such
potential has an analytic expansion in terms of incom-
plete Gamma functions [78]. This average model po-
tential (see Fig. 2 in [62]) is dominated by the carbon
nucleus charge at small distances, Umol

i (r) ∼ −6/r, it
possesses a local minimum at r = 2.08 a.u. correspond-
ing to the radial distance of the hydrogen atoms, and it

behaves as a Coulomb−like potential at large distances,
Umol
i (r) ∼ −1/r. Distorted continuum wave functions

ul,ke(r), for a given energy range and over a finite spa-
tial grid, can then be numerically calculated using for
example the RADIAL code [82].

E. Representation of the continuum wave functions
using optimal sets of complex Gaussians

The key idea to simplify the calculations of the tran-
sition matrix elements is to employ cGTOs to represent
the radial functions, solutions of the differential equa-
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tion (21),

ul,ke
(r) ≈ rl+1

N∑
s=1

[cs]l,ke
e−[αs]l r

2

. (24)

The exponents {αs} and the coefficients {cs} of cGTOs
are complex−valued; the real part of the exponents is
positive as to ensure integrability. Compared to the
expansion proposed and used in [26, 40], numerical ef-
ficiency is improved by systematically introducing the
term rl+1 that reproduces the correct behavior of ul,ke

(r)
at small r (see behavior in Eq. (22) for the pure Coulomb
case). Note that the coefficients depend on the partial
wave number l and the wave number ke while the ex-
ponents depend only on l. In other words, for a fixed
l, we use a series of N exponents to represent a set of
radial functions {uke}l with different ke; for each func-
tion within this set, a combination of N linear coefficients
[cs]l,ke

is optimized .

1. Optimization of the exponents for Coulomb functions

The aim is to generate suitable sets of cGTOs that
incorporate the behavior of continuum wave functions
required to describe an electron ejected with an energy
up to, say, k2e/2 ≃ 2 a.u.. Here we outline the numerical
approach used to generate such optimal sets of complex
exponents. For more technical details we refer the reader
to [26, 40].

We consider L + 1 sets of regular Coulomb func-
tions (22) defined as

Fl : {Fν(r) = Fl(η, kνr)}ν=1,...,νmax
(25)

for l = 0, . . . , L. In each set we take νmax = 7 reg-
ular Coulomb functions defined on a momentum grid
kν = 0.5 + 0.25(ν − 1) a.u., ν = 1, . . . , 7, up to a com-
fortable radial distance R = 30 a.u.. For each set Fl,
we optimize N = 30 cGTOs with complex exponents
{α1, . . . , αN}l. The optimization is performed using a
two−steps iterative algorithm where the exponents and
the coefficients are alternatively optimized. After picking
some initial choice of exponents spanning a large interval
of real parts following ref. [26], (i) a linear least square
optimization is applied to update the coefficients {cs}
for the current set of exponents and (ii) the set of ex-
ponents {αs} is updated to minimize some cost function
by using a nonlinear method. Step (i) is performed by
a least square fitting technique, while the second step
makes use of a trust region algorithm [83]. The opti-
mization of the N = 30 complex exponents is equivalent
to a 2N = 60-variable optimization in real space. The
trust region algorithm requires reasonable initial values
for the Gaussian exponents. From our experience [40],
picking the initial values of the real parts so that they

span a large domain (following a geometric progression,
typically from 10−4 to 103) allows the optimization to
perform efficiently. We iterate over steps (i) and (ii)
until a reasonable convergence is reached. The cost func-
tion was chosen as a normalized sum over the modulus
of the differences between the fitted functions (25) and
their cGTOs expansions (24) on the radial grid. An ex-
tra penalty function was added to this sum in order to
avoid the convergence of the real part of two different ex-
ponents to the same value. Table I reports the obtained
exponents for l = 0, . . . , 5, ordered according to their real
parts.
Note that the convergence of the optimized exponents

with respect to the number of cGTO has been checked
within the selected ranges of radial distance and energy.
Should the domain of interest be larger than 30 a.u., or
should the electron energy reach much higher values, the
basis set would necessitate using more cGTO terms [26].

2. Optimization of the coefficients for distorted waves

Although the cGTOs in Table I are initially optimized
to fit regular Coulomb functions, we have observed that
the same sets of exponents can be used to accurately re-
produce distorted radial functions in similar energy and
radial ranges (and even at slightly higher energies). Us-
ing the distorted waves arising from eq. (21) for a given
energy range, we need only to perform once the linear
least square optimization of the coefficients {cs} (step
(i) in the algorithm explained above), which can be done
at a low computational cost.

F. Matrix elements evaluation using closed-form
integrals

Thanks to the use of cGTOs representation (24), we
derive in this section closed-form expressions for all inte-
grals required to evaluate the observables of sections IIA
and IIB.

1. Photoionization: dipole transition elements

Using cGTOs allows to easily write the dipole transi-
tion elements in both length (L ) and velocity (V ) gauges
in closed form as first demonstrated in [27, 40]. Here
we summarize the main expressions for each gauge in
a more compact formalism adapted to the Gaussian fit-
ting of the form (24). After substituting the molecular
orbital (20) and the partial wave expansion of the con-
tinuum wave function (1), and performing the angular
integrations with standard tools [69, 84], the transition
element (12) can be written as
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M(G )
l,m,µ = (−1)mc(G )

Ni∑
j=1

Cij

(
l 1 lj

−m µ mj

)
Kl,lj R

(G )
l,lj

δl,lj±1 δm,mj+µ, (26)

where the superscript indicates the length G = L and velocity G = V gauges. The different factors in (26) read as
follows:

Kl,lj =

{
(−1)lj

√
lj if l = lj − 1,

(−1)lj+1
√
lj + 1 if l = lj + 1,

(27)

c(L ) = −1, R(L )
l,lj

= Jl,ke
(ζj , nj + 1) ,

c(V ) =
1

Eγ
, R(V )

l,lj
= −ζjJl,ke

(ζj , nj) +
(
nj − 1 + bl lj

)
Jl,ke

(ζj , nj − 1) ,
(28)

with

bl lj =

{− lj if l = lj + 1,

lj + 1 if l = lj − 1.
(29)

The R(G )
l,lj

quantities in (28) contain the radial integrals

defined as

Jl,ke
(ζ, n) =

∫ ∞

0

(ul,ke
(r))

∗
e−ζrrndr. (30)

By substituting now the radial function ul,ke(r) by its
cGTOs expansion (24), these integrals are given as a sum
of closed-form integrals:

Jl,ke
(ζ, n) ≈

N∑
s=1

[cs]
∗
l,ke

∫ ∞

0

e−[αs]
∗
l r2e−ζrrl+n+1dr

=

N∑
s=1

[cs]
∗
l,ke

G
(
[αs]

∗
l , ζ, l + n+ 1

)
,

(31)

where G can be evaluated as

G (α, γ, n) =
Γ (n+ 1)

(4α)
n+1
2

U

(
n+ 1

2
,
1

2
;
γ2

4α

)
=

Γ (n+ 1)

(2α)
n+1
2

e
γ2

8α Dn+ 1
2

(
γ√
2α

)
,

(32)

U(a, b; z) being the Tricomi function and Da(z) the
parabolic cylinder function [79, 80]. Numerical values of
those two special functions can be easily computed using
standard mathematical packages [85].

2. Ionization by electronic impact

We proceed now to the calculation of the transition
matrix element (18) in the (e, 2e) case. We make use of
the Rayleigh expansion in terms of the spherical Bessel
function jλ [69, 84]

eıq·r = 4π
∑
λ,µ

ıλ jλ (qr) Y
µ∗
λ (q̂)Y µ

λ (r̂) , (33)

of the molecular orbital (20) and of the partial wave ex-
pansion (1) with the Gaussian representation (24). The
angular part of the integration is performed with stan-
dard tools [69, 84]. The transition integral (18) can then
be written as the sum of two terms

T
(e,2e)
if = T

(1)
ike

(
q; R̂

)
− T

(2)
ike

(
q; R̂

)
, (34)

where

T
(1)
ike

(
q; R̂

)
=

(4π)2

q2

√
2

π

1

ke

Ni∑
j=1

Cij

lj∑
νj=−lj

D lj
νjmj

(
R̂
)
Sνj

j , (35)

and

T
(2)
ike

(
q; R̂

)
=

4π

q2

√
2

π

1

ke

Ni∑
j=1

Cij(−ı)ljeıδljJl,ke
(ζj , nj)

lj∑
νj=−lj

D lj
νjmj

(
R̂
)
Y

νj

lj

(
k̂e

)
. (36)
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Eqs. (34), (35) and (36) take into account the rotation (2) of the spherical harmonics associated with the q̂ and the

k̂e directions into the molecular frame, with Euler angles R̂. In (36), the radial integrals Jl,ke
are the same as those

appearing in the case of photoionization, namely (30), and can be calculated through Eqs. (31) and (32). In contrast,
the elements Sνj

j in the first contribution (35) are a little more complicated, being defined as

Sνj

j =
∑
l,m

eıδlY m
l

(
k̂e

)∑
λ

ıλ−l ⟨l m|λ, m− νj |lj νj⟩
(
Y

m−νj

λ (q̂)
)∗

Il,ke,λ (ζj , nj , q) , (37)

with the Gaunt coefficients denoted as [69]

⟨l1m1|l3m3|l2m2⟩ ≡
∫
Y m1∗
l1

(r̂)Y m3

l3
(r̂)Y m2

l2
(r̂) dr̂ ,

(38)
and the radial integrals defined as

Il,ke,λ (ζ, n, q) =

∫ ∞

0

(ul,ke(r))
∗
e−ζr jλ (qr) r

ndr. (39)

In order to evaluate the integrals I (39), we use the cG-
TOs representation (24), leading to

Il,ke,λ (ζ, n, q)

≈
N∑
s=1

[cs]
∗
l,ke

∫ ∞

0

e−[αs]
∗
l r2e−ζr jλ (qr) r

n+l+1dr.
(40)

The individual integrals appearing in this sum have an
oscillating integrand because of the Bessel function, as
investigated in [86]. Their evaluation may not be easy
depending on the values of ζ, λ, q, n and l. The calcu-
lation of (40) can be facilitated by applying the finite
Hankel representation of the spherical Bessel functions
(formulae 10.49.1 and 10.49.2 of ref. [87]),

jλ(z) =
(−ı)λ

2ı

[λ/2]∑
k=0

(−1)k a2k(λ+ 1
2 )

(
eız

z2k+1
− (−1)λ

e−ız

z2k+1

)

+
(−ı)λ

2

[(λ−1)/2]∑
k=0

(−1)k a2k+1(λ+ 1
2 )

(
eız

z2k+2
+ (−1)λ

e−ız

z2k+2

) (41)

where the polynomial coefficients are given by

ak(λ+ 1
2 ) =


(λ+ k)!

2kk!(λ− k)!
, k = 0, 1, . . . , λ

0, k = λ+ 1, λ+ 2, . . .

(42)

The square brackets in the upper summation boundaries [x] denote the integer part of x, and a sum is ignored if the
lower summation boundary exceeds the upper one. Substituting this expression in (40), we obtain

Il,ke,λ (ζ, n, q) =

N∑
s=1

[cs]
∗
l,ke

[
I(1)
l,ke,λ

(
ζ, n, q, [αs]

∗
l

)
+ I(2)

l,ke,λ

(
ζ, n, q, [αs]

∗
l

)]
, (43)

where the I(1,2)
l,ke,λ

integrals can also be expressed in terms of the G(α, γ, n) integrals given by eq. (32),

I(1)
l,ke,λ

(
ζ, n, q, [αs]

∗
l

)
=
(−ı)λ

2ı

[λ/2]∑
k=0

(−1)ka2k
(
λ+ 1

2

)
q2k+1

×
[
G
(
[αs]

∗
l , ζ − ıq, n+ l − 2k

)
− (−1)λG

(
[αs]

∗
l , ζ + ıq, n+ l − 2k

)]
, (44)

I(2)
l,ke,λ

(
ζ, n, q, [αs]

∗
l

)
=
(−ı)λ

2

[(λ−1)/2]∑
k=0

(−1)ka2k+1

(
λ+ 1

2

)
q2k+2

×
[
G
(
[αs]

∗
l , ζ − ıq, n+ l − 2k − 1

)
+ (−1)λG

(
[αs]

∗
l , ζ + ıq, n+ l − 2k − 1

)]
. (45)

Despite the heavy appearance of the above formulae and sums, each term is actually easy to evaluate be-
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cause the G quantities just require a good routine for
the parabolic cylinder function [85]. If the initial target
state ϕi(r) is expanded over monocentric GTOs rather
than STOs as in Eq. (20), the radial integrations are
much simpler; we refer to [86] for the formulas and a
detailed numerical investigation.

The transition amplitude obtained through (34) is then
substituted in the differential cross section formula (14),
followed in principle by Euler-angle averaging. This last
step can actually be bypassed in the present calculations,
thanks to the use of a pre-averaged potential Umol(r)
(see details in subsection IID). We finally get the TDCS
for the electron impact ionization of methane in a very
efficient way.

III. RESULTS

The reliability of the proposed Gaussian approach is
now being tested in realistic conditions inspired by ex-
perimental results taken from the literature. We will also
compare the Gaussian results with those of other bench-
mark theoretical approaches using similar assumptions.
We focus on two target orbitals of methane, the high-
est occupied molecular orbital 1t2 and the next highest
occupied molecular orbital 2a1. We would like to em-
phasize that in the method proposed in this work the
most demanding part of the calculation is the optimiza-
tion of the cGTO exponents. However, this preliminary
first step has to be performed only once for a chosen
energy range. Typically, the multidimensional optimiza-
tion takes one day with one CPU for each value of l. The
subsequent steps, i.e. the cross sections calculations, are
relatively rapid thanks to the analytical formulation de-
rived in section II: typically, 30s of CPU time for each
energy abscissa in the case of photoionization, and a few
hours for one TDCS point at a given angle in the (e, 2e)
case.

A. CH4 photoionization

The photoionization cross section σ(G )(ke) and asym-
metry parameter β(G )(ke) are presented in Fig. 1. Re-
sults of the cGTO approach with the distorting molecular
potential (see details in subsection IID), are shown for
both length and velocity gauges, together with available
experimental points and two selected theoretical results.

For both orbitals, the Gaussian cross section ob-
tained in velocity gauge agrees best with the experi-
mental points (experimental uncertainties are not shown)
[44, 45]. The theoretical results reproduce the main fea-
tures of the energy dependency: for the 2a1 orbital, the
shape of the maximum around 40eV and the absolute
values are good; for the 1t2 orbital, except at low photon
energy, the decreasing shape and the absolute values of
the results agree equally well with experimental points.

Cross sections obtained in the length gauge are larger
and clearly overestimate the experimentally observed
magnitude; however, the general tendencies are still cor-
rectly recovered. The Gaussian results are also com-
pared with TD-DFT results of Stener et al [48] (obtained
in length gauge) and with the single-center method of
Novikovskiy et al [50] (obtained in velocity form). None
of them (including the present results) give uniformly
perfect agreement but the order of magnitude of the dis-
crepancies between theoretical with experimental points
or among theoretical results remains acceptable.
The bottom panels of Fig. 1 show the results for the

asymmetry parameter, compared with available experi-
mental points of [46] for the 1t2 orbital between 15 and
30 eV (to our knowledge, no experimental data is avail-
able outside this energy range, nor for the 2a1 orbital).
The agreement is not so good, but this is not totally sur-
prising because the asymmetry parameter is related to
the photoelectron angular distribution which is strongly
sensitive to the quality of the wave functions used in the
calculation. In contrast to what is observed for cross
sections, larger absolute values are obtained in velocity
gauge. A comparison with benchmark TD-DFT results
[48], obtained in length gauge, shows that the general
trends are similar. Our velocity gauge results agree best
with TD-DFT results in the case orbital 2a1, whereas
length gauge results are somehow closer to the TD-DFT
and to experimental points in the case of orbital 1t2.
A similar comparison was presented in [40] for two

other XHn molecules, namely water and ammonia. In
all cases, including the present calculations on CH4, the
cGTO description of the continuum is shown to be reli-
able to calculate photoionization observables.

B. CH4 ionization by electronic impact in coplanar
geometry

Our investigation now turns to electronic impact ion-
ization of methane. Several series of experimental data
collected in coplanar asymmetric geometry are consid-
ered here for comparison and assessment of the cGTO
calculations.
We have first calculated the TDCS for the kinematic

parameters of the Lahmam-Bennani et al experiment [52]
where the scattered electron is detected at an energy of
500 eV, with ejected electron energy of 12 eV, 37 eV or
74 eV, and a scattering angle of the fast outgoing electron
at θs = −6◦. In this experiment, the low energy electron
analyzer is swept around the plane over angular ranges
θe ∈ [25◦, 160◦] and θe ∈ [200◦, 335◦]. In such kinemat-
ical and geometrical configurations, the angular distri-
butions feature two peaks: one close to the momentum
transfer direction (known as binary peak) and one in the
opposite direction (known as recoil peak). The cGTO re-
sults for the ionization of the inner 2a1 orbital are shown
in Fig. 2 for an ejected electron energy Ee = 37 eV with
two different choices of the continuum wave function, ei-
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Figure 1. Partial photoionization cross section σ(G )(ke) (top panels) and asymmetry parameter β(G )(ke) (bottom panels) as a
function of the photon energy Eγ (in eV, see eq. (3)), for orbitals 2a1 (left panels) and 1t2 (right panels) of CH4. Present results
using cGTOs in both length (-L) and velocity (-V) gauges are compared with results from other theoretical methods: TD-DFT
by Stener et al [48] (dashed line) and single-center method of Novikovskiy et al [50] (dark red dotted line), and experimental
points: Backx & Van der Wiel [44] (green diagonal crosses), Van der Wiel et al [45] (straight violet crosses) and Marr et al [46]
(red spots).

ther a pure Coulomb wave (a quite crude choice) or a dis-
torted wave (see details in subsection IID). Calculations
based on analytical integrals using cGTO expansions are
compared with results obtained with numerical integrals,
that is to say using the ’exact’ original wave functions and
numerical quadrature. The perfect agreement shows that
the cGTO representation of the continuum and the as-
sociated analytical integrals are fully reliable. The same
agreement is found also for other kinematical situations
and also when ionizing the 1t2 orbital. This being ascer-
tained, all the TDCS to be presented hereafter have been
obtained with the Gaussian analytical approach proposed
in this work.

In Fig. 3 we compare theoretical and experimental re-
sults, for both the 2a1 and 1t2 orbitals, and for three val-
ues of the ejected energy. All other theoretical curves and
experimental points have been normalized to the maxi-
mum point of the distorted wave calculation at the main
binary peak, independently for each panel of Fig. 3. Our
theoretical results using the Coulomb wave function re-
produce those published TDCS within the same approxi-
mation [52, 62] (not shown on Fig. 3) [88]. The obtained
TDCS recover the main binary peaks but clearly fail to
reproduce the recoil peaks observed in the measurements.
The distorted wave calculations lead to a better agree-
ment, especially for the 2a1 orbital where the relative
amplitudes of the recoil and binary peaks agree quite well
with the experiment. Our distorted wave results are glob-
ally similar to those obtained within the complex Kohn

method (CKM) [57] in which the interaction between the
ejected electron and the residual molecular ion is treated
in a close coupling method (in [57] the spatial distribu-
tion of the hydrogen nuclei is properly taken into account
- see footnote [76]). They are also very similar in both
shape and magnitude (not shown) to those obtained with
the multicenter distorted-wave method (MCDW) [63] in
which the continuum wave function of the slow ejected
electron is calculated in a multicenter potential of the
residual ion. The similarity in calculated TDCSs indi-
cates that the anisotropic potential plays no major role,
at least for methane and for the considered geometrical
and kinematical configuration.

The three calculations (present cGTO distorted wave,
MCDW [63] and CKM [57]) provide an agreement with
the measurements that is overall acceptable. As expected
from the first Born approximation, the cGTO TDCS is
symmetric with respect to the momentum transfer di-
rection and the angular shift of the experimental binary
peak is not reproduced.

As a second test, we have explored the kinematical pa-
rameters presented in the more recent experiments of Ali
et al [66], i.e. an incident electron energy of 250 eV,
an ejected electron with either energy 50 eV or 30 eV,
and several fixed scattering angles of the fast outgoing
electron (θs between -20◦ and -30◦ with 2.5◦ steps). The
low energy electrons are detected over the angular range
θe ∈ [27.5◦, 130◦], with a focus on the binary region. The
cGTO TDCS are presented in Fig. 4 for the target orbital
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Figure 2. TDCS for ionization by electronic impact of the
inner (2a1) valence orbital of CH4, as a function of ejection
angle θe, at fixed scattering angle of θs = −6◦, Es = 500 eV,
Ee = 37 eV (as in the experiments of Lahmam-Bennani et
al [52]). For a Coulomb wave for the ejected electron (red
line) or a distorted wave (black thick line), the results ob-
tained with the cGTO approach are compared to the purely
numerical ones (blue and orange dashed lines). The vertical
lines indicate the momentum transfer direction and its oppo-
site.

1t2 with an ejected electron energy of 50 eV. Fig. 4 also
collects the experimental data and some of the theoreti-
cal results of [66]. In this experiment, the data associated
with different scattering angles were internormalized so
that only one point, the maximum of the θs = −20◦

curve, was used to normalize the experimental data to
the distorted wave calculation for all panels of Fig. 4.
The earlier measured data of [59] at θs = −20◦ are also
reported. The distinctive feature of the TDCS from 1t2
state is the splitting of its binary peak into a double
peak appearing with increasing scattering angle, due to
the p-type character of this orbital, as previously pre-
dicted in [62] and observed in [66]. Again, the present
cGTO results compare quite well with the experimental
results. The double peak structure is well reproduced.
As expected, the angular shift of the binary peak from
the direction of the momentum transfer direction is not
recovered due to the first Born approximation. Compar-
ison within theoretical results remains very satisfactory,
the cGTO calculation being close to the results of ear-
lier calculations using Generalized Sturmian Functions
(GSF) [66, 78]. Both are symmetric with respect to the
momentum transfer, and differ from the results obtained
with the molecular three-body distorted wave (M3DW)
approach [2, 66]. This is to be expected since the latter
uses for the initial bound state a Dyson molecular or-
bital for the active electron, and for the final state two
distorted waves multiplied by an electron-electron dis-
tortion factor; moreover, contrary to our case, exchange
is included. The discrepancies between the theoretical
methods (GSF and M3DW), and between theoretical and

experimental points, have been analyzed in [66]. The
present results confirm this global picture with a similar
agreement as the orders of magnitude are concerned. In-
deed, since the TDCS have been internormalized, Fig. 4
provides not only a visual comparison of the shapes but
also an insight of the TDCS relative magnitudes at dif-
ferent scattering angles.
Similar conclusions can be drawn from the analysis of

Fig. 5 where the TDCS is shown for an ejected elec-
tron energy of 30 eV, all other parameters remaining un-
changed. With this lower ejection energy, the agreement
between theory and experiment is better at low scattering
angles. Discrepancies appear at larger scattering angles
when the double peak fades in the experimental data but
remains in the present cGTO (Coulomb or distorted) and
GSF theoretical curves.
TDCS calculation using cGTO-expanded wave func-

tions and analytical integrals thus succeed in reproduc-
ing the main features of experimental (e, 2e) TDCS for
methane in coplanar asymmetric geometry and with dif-
ferent sets of kinematic parameters. These results vali-
date the present Gaussian methodology as a reliable tool
for the theoretical description of collision processes in-
volving continuum states.

IV. SUMMARY

We have studied theoretically the ionization of the in-
ner (2a1) and outer (1t2) valence orbitals of the CH4

molecule, by both photon and electron impact. Inspired
by the available experimental data, we have considered
here ejected electrons with energy up to about 2.7 a.u..
For the photoionization, within the dipolar approxima-
tion, we have looked at the energy dependence of the
cross section and the asymmetry parameter related to
the angular distribution of the ejected electron. For the
electron impact ionization, within the first Born approx-
imation, we have focused on the angular distributions of
the triple differential cross sections related to (e, 2e) ex-
periments in coplanar asymmetric geometries, in which
the incident electron is scattered with an energy much
larger than the ejected electron. For both processes,
we have worked within a one-center approach, and with
bound molecular target states described by Slater type
orbitals provided in the literature. The ejected electron
is described by a continuum state of a model molecu-
lar central potential; the corresponding radial function
is subsequently represented by a finite sum of complex
Gaussian type orbitals, i.e., GTO with complex-valued
exponents. With these ingredients, we have provided the
formulation to calculate all ionization matrix elements
analytically. The present manuscript has given solid ev-
idence that the calculation scheme works very well.
In spite of the approximations, the calculated ioniza-

tion observables for CH4 are of fair quality. For pho-
toionization, when compared to other theoretical results
and experimental data, an overall acceptable agreement
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Figure 3. TDCS for ionization by electronic impact of the inner (2a1, left panels) and outer (1t2, right panels) valence orbitals of
CH4, as a function of ejection angle θe, at fixed scattering angle of θs = −6◦, with kinematical parameters of Lahmam-Bennani
et al [52], Es = 500 eV, Ee = 12 eV (upper panels), 37 eV (middle panels) and 74 eV (lower panels). The present cGTO
calculations with the ejected electron described by a Coulomb wave (red line) and a distorted wave (black thick line), are
compared with the complex Kohn method (CKM) results (blue dashed line) [57] and the experimental points [52]. The vertical
lines indicate the momentum transfer direction and its opposite. The relative experimental data have been normalized at the
binary peak maximum to the cGTO theoretical curve obtained with the distorted potential.

is found in the velocity gauge, especially for the outer
1t2 orbital. For electron impact ionization, and for dif-
ferent sets of kinematical and geometrical parameters, a
reasonable agreement is found with TDCS obtained by
other theories using similar approximations and also with
measured angular distributions.

In our opinion, more importantly than the calcu-
lated cross sections it is the approach itself which opens
new perspectives. The originality stands in the use of
cGTO to represent the continuum radial function. In
the present study such representation is demonstrated to
be sufficiently accurate for energies up to 2.7 a.u. and
spanning a radial domain of 30 a.u.. It is used here in
combination with one-center molecular bound states de-
scribed by a sum of Slater type orbitals, leading to ion-
ization matrix elements in closed form. The analytical
formulation is even simpler if monocentric Gaussian type
orbitals are used. With practically no effort, it can be
readily adapted for both ionization processes, the radial
integrals reducing to well known Gaussian integrals (we

refer to [86] for the formulas and a numerical investiga-
tion).

The proposed approach allows one to envisage treat-
ing molecular processes, for example with large molecules
as long as the wave function is practically negligible be-
yond 30 a.u. (as was the case for a small molecule such
as CH4). Moreover, the analytical character of the ma-
trix elements is maintained also in a multicentric GTO
description of the target. In that case, the formulation,
whether in radial or Cartesian coordinates, makes use of
the Gaussian mathematical properties extended to the
complex plane [89]. As a consequence our Gaussian ap-
proach should allow us to consider studying molecular
processes with molecules whose orbitals are issued for
example by the Gaussian package [90]. Finally, it is our
intention to further develop the method by considering
multicentric continuum states, whose cGTO representa-
tion would lead to an all-Gaussian approach.
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Figure 4. TDCS for ionization by electronic impact of the
outer (1t2) valence orbital of CH4, as a function of the ejec-
tion angle θe, for different values of the scattering angle (from
top to bottom) θs = −20◦, −22.5◦, −25◦, −27.5◦ and −30◦

with kinematical parameters of Ali et al [66], Ei = 250 eV,
Ee = 50 eV. The present cGTO calculations with the ejected
electron described by a Coulomb wave (red line) and a dis-
torted wave (black thick line), are compared with the the-
oretical (M3DW - dashed blue and GSF - dashed orange)
curves and with the experimental points published in [66].
For θs = −20◦, the experimental points of [59] are also shown.
The vertical dotted lines indicate the momentum transfer di-
rection. The experimental data, as well as the M3DW and
the GSF results, have been normalized to the cGTO curve
obtained with distorted potential at the binary peak maxi-
mum for θs = −20◦.
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Table I. Optimal cGTOs exponents {αs}l obtained by fitting the set of Coulomb functions defined in eq. (25), for l = 0, . . . , 5.
Each column is the result of a separate optimization for fixed l and momentum range ke ∈ [0.5, 2] a.u.
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