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Abstract

Crowdsourcing has emerged as a pivotal paradigm for harnessing collective intelligence to solve

data annotation tasks. Effective label aggregation, crucial for leveraging the diverse judgments of

contributors, remains a fundamental challenge in crowdsourcing systems. This paper introduces a

novel label aggregation strategy based on Shapley values, a concept originating from cooperative

game theory. By integrating Shapley values as worker weights into the Weighted Majority Vote

label aggregation (WMV), our proposed framework aims to address the interpretability of weights

assigned to workers. This aggregation reduces the complexity of probabilistic models and the

difficulty of the final interpretation of the aggregation from the workers’ votes. We show improved

accuracy against other WMV-based label aggregation strategies. We demonstrate the efficiency of

our strategy on various real datasets to explore multiple crowdsourcing scenarios.

Keywords: crowdsourcing, explainability, label aggregation, Shapley values.

1 Introduction and related work

Data annotation is a crucial step in the development of machine learning models. The quality of the

annotations is a key factor in the performance of the models (Snow et al., 2008). Frequently, the

annotation process is outsourced to a crowd of non-expert workers through crowdsourcing platforms

such as Amazon Mechanical Turk1. However, the quality of the annotations can vary greatly from

one worker to another (Ross et al., 2009; Ipeirotis et al., 2010; Hara et al., 2018).

To address this issue, several label aggregation strategies have been proposed in the literature. The

most common approach is the majority vote (MV) strategy, which consists of selecting the label with

the largest number of responses. While simple and easy to implement, MV has several limitations,

such as not taking into account the reliability of the workers. Indeed, it affects the same weight to all

the workers in the final aggregated label, no matter their level of expertise.

To alleviate this issue, probabilistic generative models such as DS (Dawid and Skene, 1979) or

GLAD (Whitehill et al., 2009) have been proposed, relying on generative models of the votes. These

models estimate the reliability of the workers and take it into account in the label aggregation process

through different parameters. The DS model considers that each worker has an assigned confusion

matrix – to be estimated – while GLAD models the reliability of the workers through a scalar weight

and also includes the task’s difficulty in the final aggregation. Such a framework is flexible enough

∗tanguy.lefort@umontpellier.fr
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to incorporate various sources of information, and the inference is often based on the Expectation-

Maximization algorithm which is computationally expensive and sensitive to initialization. Moreover,

the final interpretation of the aggregation from the workers’ votes is not straightforward and the result

of probabilistic models can be difficult to interpret for non-experts.

Weighted MV (WMV) strategies (Limited, 2021; Karger et al., 2011; Ma and Olshevsky, 2020) have

proven to be both effective and easy to interpret. Indeed, the method’s principle is straightforward:

each worker is assigned a weight that represents their reliability. The aggregated label is then the

label that reflects the votes of workers relative to their reliability.

In this work, we aim to propose a new weight for WMV based on the Shapley values (Shapley,

1953). The Shapley value is a concept originating from cooperative game theory that has been used

in various fields such as economics (Aumann, 1994), political science (Engelbrecht and Vos, 2009),

statistics (Owen, 2014) and machine learning for explainability (Lundberg and Lee, 2017) or feature

selection (Cohen et al., 2007). Shapley values have been used in the context of data valuation in

classification (Schoch et al., 2022) and active learning (Ghorbani et al., 2022). Here, we propose to

extend it to classification in a crowdsourcing setting.

If we consider that each worker is a feature and each task is a sample point, given a classifier, the

Shapley value explains the contribution of each worker to the predicted outcome at each queried task

(Molnar, 2020; Rozemberczki et al., 2022). Shapley values are used as worker importance indicators

that can handle interactions between workers’ answers (Owen and Prieur, 2017; Lundberg and Lee,

2017). We propose a study of their usage as interpretable weights in weighted majority votes for

crowdsourcing classification tasks.

2 Notation and related work

Notation. We consider classical multi-class learning notation, with input in X and labels in [K] :=

{1, . . . ,K}. There are ntask available, denoted x1, . . . , xntask , to be labeled by nworker workers. The

set of ntask tasks with their associated true labels is D = {(x1, y⋆1), . . . , (xntask , y
⋆
ntask

)}. Denote

Y ∈ [K]ntask×nworker the matrix of the workers’ answers for each task. The true labels are unob-

served but crowdsourced labels are provided by the workers. We write A(xi) = {j ∈ [nworker] :

worker j labeled task xi} the annotators set of a task xi. For a task xi and each j ∈ A(xi), we

denote y
(j)
i ∈ [K] the label answered by worker j. Given an aggregation strategy agg (such as MV),

we denote aggregated label ŷ
agg
i ∈ [K]. For any set S, we write |S| for its cardinality. The indicator

function is denoted 1(·). The matrix full of ones of size n×m is denoted 1n×m. The row of a matrix

M indexed by i is denoted Mi,: and the column indexed by j is M:,j .

On released datasets, to compute performance metrics, partial true labels are made available. We

denote Dtrain the set of tasks with their true labels unknown and Dtest the set of tasks with known

true labels. Note that these true labels are only used at test time. Both workers and aggregation

strategies do not have access to the true labels. Their goal is to recover it.

The impact of a worker on a task x ∈ X , for a classifier f , is evaluated by a value function νx,f :
2[nworker] → R such that for any set of workers S ⊂ [nworker] and any worker j0 /∈ S, νx,f (S∪{j0})−ν(S)
is the marginal contribution of worker j0 over S. In a classification setting with output f(x), the value
function over a set S ⊆ [nworker] of workers is defined – with xS the answers of the selected workers in
S – as

νx,f (S) = E[f(x)|xS ] . (1)

In practice, this quantity has to be estimated, for instance using the TreeSHAP algorithm (Lundberg

et al., 2018).
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Existing weighted label aggregation strategies. In this work, we focus on label aggregation
strategies as weighted Majority Votes (Littlestone and Warmuth, 1994) – i.e. that can be written as:

∀i ∈ [ntask], ŷi = WMV(i,W ) := argmax
k∈[K]

∑
j∈A(xi)

Wj,k1(y
(j)
i = k), (2)

where W ∈ Rnworker×K is the matrix assigning the weight of worker j when answering class k. We

denote Wj,k ∈ R the weight of worker j for class k. This weight matrix is the cornerstone of each

aggregation strategy. We detail below popular label aggregation strategies that fit into this framework.

• MV: The majority vote strategy assigns the label that has been chosen by the majority of the
workers. It can be written as:

ŷMV
i = WMV(i,1nworker×K) . (3)

This is the simplest weights assignment, where all workers and all labels share the same weight.

• WAWA (Limited, 2021): This strategy, also known as the inter-rater agreement, weights each
user by how much they agree with the MV labels on average. More formally, given a task i:

ŷWAWA
i = WMV(i,W ) , with Wj,: =

(
1

|{y(j)i′ }i′ |

ntask∑
i′=1

1
(
y
(j)
i′ = ŷMV

i′

))
1K . (4)

It allows us to instantiate a weight that can vary for each worker (but not per task) and it

usually improves on the MV strategy.

• ZBS: The Zero-Based Skill aggregation is a gradient descent (GD)-based version of the WAWA

strategy. First, the labels are initialized using the MV strategy. Then, a descent step is performed

on the weights to minimize the squared error between the current worker’s weight and the weight

assigned by the WAWA strategy. Finally, the aggregated labels are recomputed using the WMV

strategy. This loop is repeated until convergence.

Algorithm 1 Zero Based Skill algorithm.

1: Input: η > 0 the learning rate, tmax > 0 maximum number of iterations,
2: Initialize weights at step 0: W 0 = 1

K1nworker×K .
3: for t = 1, . . . , tmax do
4: Update labels: ŷti = WMV(i,W t−1) for i ∈ [ntask]

5: Compute current accuracy by worker: aj =

(
1

|{y(j)
i′ }i′ |

∑ntask
i′=1 1

(
y
(j)
i′ = ŷti

))
1K

6: Update weights for each worker j ∈ [nworker]: W
t
j,: = W t−1

j,: − η(W t−1
j,: − aj)

7: end for
8: Output: ŷZBS

i = ŷi
tmax .



• WDS (Dawid and Skene, 1979): This strategy is based on the Dawid-Skene model. A confusion
matrix π(j) ∈ RK×K is associated to each worker, such that the (k, ℓ)-entry or π(j) represents the
probability for worker j to answer ℓ ∈ [K] when the unknown true label is k ∈ [K]. For instance,
each diagonal term represents the ability of the worker to answer correctly the underlying label.
Using this DS diagonal, we obtain a weighted majority vote denoted WDS:

ŷWDS
i = WMV(i,W ) , with Wj,k = π

(j)
k,k . (5)

3



• M-MSR (Ma and Olshevsky, 2020): The Matrix Mean-Subsequence-Reduced strategy considers
the reliability of all workers as a vector s ∈ Rnworker . Each entry sj represents the reliability of
the worker j. This strategy assumes that each worker answers independently. It also assumes
that a worker is correct with probability pj ∈ [0, 1] and the worker’s probability of being wrong
is uniform across classes, i.e.:

∀(i, j) ∈ [ntask]× [nworker],

{
P(y(j)i = k) = pj if y⋆i = k,

P(y(j)i = k) =
1−pj
K−1 if y⋆i ̸= k

.

The reliability of a worker is linked to its probability of answering correctly: sj =
K

K−1pj −
1

K−1 .
This reliability can be estimated by solving a rank-one matrix completion problem defined as:

E
[

K

K − 1
C − 1

K − 1
11⊤

]
= ss⊤ ,

where C is the covariance matrix of the workers’ answers. More precisely, given two workers
j, j′ ∈ [nworker], the covariance between them is

Cj,j′ =
1

Nj,j′

ntask∑
i=1

1(y
(j)
i = y

(j′)
i ) ,

with Nj,j′ the number of tasks in common: Nj,j′ = |{i ∈ [ntask]|j, j′ ∈ A(xi)}|. The final label
is a weighted majority vote:

ŷM-MSR
i = WMV(i,W ) with Wj,k = log

(K − 1)pj
1− pj

, (6)

where the form of the weights is derived from a maximum a posteriori formulation of the model,

see (Li and Yu, 2014, Corollary 9).

• KOS (Karger et al., 2011): Only set for binary classification K = 2, the KOS strategy comes

from a graph-theory perspective. The worker’s weight is estimated iteratively inspired by the

belief propagation algorithm (Pearl, 1986) to look at the worker agreements on neighboring

tasks. An edge from a worker to a task indicates that the task was answered by the worker. In

an EM fashion, a worker message – the reliability of worker j for task i – is stored in a matrix

W ∈ Rnworker×ntask . Then, the task message – the likelihood of the task i to be positive – is sent

to the workers as a vector of Rntask . The final label is the sign of the weighted majority votes,

with the weight of worker j’s answer to task i being equal to Wj,i.

Note that depending on the strategy, the weights Wj,k might not be upper-bounded. Indeed, the KOS

strategy does not have an upper bound on the weights for instance. If the weights are not upper-

bounded, the more a worker answers following other workers, the more weight they will accumulate.

In Figure 1 we show how each strategy leads to different weights and scales. The weights are computed

for the BlueBirds dataset (Welinder et al., 2010) presented in more detail in Section 3.4.

3 Shapley label aggregation for crowdsourcing

3.1 Preliminaries on Shapley values

Shapley values have been used to quantify the contribution of individual features in machine learning

models’ prediction (Molnar, 2020). In the context of crowdsourcing, we propose to use Shapley values

to quantify the contribution of each worker to the final label aggregation.
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Figure 1: Example of weight matrices W ∈ Rnworker×K obtained for the BlueBirds (nworker = 39,K =
2) dataset using the presented strategies and our in Algorithm 2. We transpose them for ease of
readability (each row is a class, each column a worker). Only WDS takes into account the class label.
For KOS, we show the weight in absolute value, averaged over the tasks (as the weights are task-
dependent). However, this transformation does not affect the scale of magnitude of weights.

Definition 1. Given a set of nworker workers, a classifier f , a task xi ∈ X and a value function
νxi,f (·) : 2[nworker] → R the Shapley value of a worker j for a task i is defined as the average marginal
contribution of the worker j to every subset of [nworker] \ {j}:

ϕj(i, ν) =
∑

S⊆[nworker]\{j}

|S|!(nworker − |S| − 1)!

nworker!
[νxi,f (S ∪ {j})− νxi,f (S)] . (7)

When there is no ambiguity over the value function, we adopt the standard notation abuse ϕj(i, ν) =

ϕj(i).

Shapley values satisfy the following properties – given a task x and a classifier f :

• Symmetry: if νx,f (S ∪ {p}) = νx,f (S ∪ {q}) for all set S ⊆ [nworker] \ {p, q}, then ϕp = ϕq.

• Null worker: if νx,f (S ∪ {p}) = νx,f (S) for S ⊆ [nworker] then ϕp = 0.

• Additivity: for two value functions ν1x,f and ν2x,f , ϕj(i, ν
1
x,f + ν2x,f ) = ϕj(i, ν

1
x,f ) + ϕj(i, ν

2
x,f ).

• Efficiency:
∑nworker

j=1 ϕj(ν) = νx,f ([nworker]).

Where the Shapley value is interesting for a crowdsourcing problem, is that if a worker does not

help the classifier to predict the label, then its Shapley value will be close to zero. And, two workers

with similar contributions will obtain similar Shapley values.

3.2 Shapley label aggregation strategy

We introduce the following label aggregation algorithm based on Shapley values. It is based on the

Expectation-Maximization procedure where we iteratively estimate the labels and the workers’ skills

until convergence – e.g. stabilization of the skills. Given a current estimation of the labels and a

classifier f , we consider the skill of each worker as their total contribution to the prediction. The

contribution of a worker j0 ∈ [nworker] on a single task i0 ∈ [ntask] is given as |ϕj0(i0)| ∈ R+.

First, note that in Algorithm 2 the participation of each worker is linked to their total contribution.

There is no upper bound on the skill estimation with contrib as we value a worker who answers multiple

times. However, if they answer many labels randomly, their Shapley value is close to zero and their

total contribution is low. As it can be seen in Figure 1, as the Shapley values can be used for feature

importance in prediction, it can also identify which workers are the most important for the final label

aggregation and could be the center of more analysis. And, at the same time, it can identify which

workers are not contributing to the final label.

5



Algorithm 2 Shapley label aggregation strategy.

1: Input: classifier f , tmax > 0 maximum number of iterations
2: Initialize labels with MV: ŷ0i = WMV(i,1nworker×K) for each task i ∈ [ntask]
3: for t = 0, . . . , tmax − 1 do
4: Train classifier f on {(Y, ŷti)i∈[ntask]} (workers’ answers and current aggregated labels)
5: Compute Shapley values’ total contribution of each worker j ∈ [nworker]:

contrib(j) =

ntask∑
i=1

|ϕj(i)| .

6: Update weights: W t
j,: = contrib(j)1K for each worker j ∈ [nworker]

7: Update labels with WMV: ŷt+1
i = WMV(i,W t) for i ∈ [ntask].

8: end for
9: Output: ŷshapleyi = ŷi

tmax .

3.3 Implementation

To compute Shapley values, we use the Shap library (Lundberg and Lee, 2017). We choose an XG-

BOOST classifier (Chen and Guestrin, 2016) as the classifier f . In practice, the value function νx,f

evaluated at a set S ⊆ [nworker] defined in Equation (1) is estimated using the TreeSHAP algorithm

(Lundberg et al., 2018). Label aggregation strategies are implemented in Python using the crowd-kit2

or peerannot (Lefort et al., 2023) libraries. The XGBOOST classifier is known to have an extensive

number of hyperparameters to tune. To choose them, we first use the optuna (Akiba et al., 2019)

library to tune over a 3-fold cross-validation of best hyperparameters for the set of tasks and label

{(xi, ŷ0i )i∈[ntask]}. This random search includes the trees’ depth, learning rate, the number of trees,

the minimum child weight, the subsampling proportion and regularization parameter. These best

parameters are then used in Algorithm 2 to iteratively train the XGBOOST model with the current

label estimates. Note that this hyperparameter search can be costly in computation time.

3.4 Evaluation metrics

We evaluate the performance of the Shapley label aggregation strategy using the accuracy and the
F1 score. More precisely, each of the real datasets considered provides a – partially known – ground
truth. This test set is denoted Dtest = {(xi, y⋆i )}

ntest

i=1 and is used to evaluate the accuracy of the
label aggregation strategies. This ground truth is not used during the aggregation, only at evaluation
time. The accuracy of the aggregation strategy agg is the proportion of correctly predicted labels
(̂[y]

agg
i )ntest

i=1 over the total number of tasks in Dtest with ground truth in y⋆ = (y⋆i )
ntest

i=1 :

Accuracy(ŷagg, y⋆) =
1

ntest

ntest∑
i=1

1(ŷ
agg
i = y⋆i ) .

We take into account the possible class imbalance by presenting a macro-average F1 score. This score is
commonly used to evaluate the balance between precision and recall in classification tasks. It provides
a measure of the quality of the label aggregation strategy when dealing with imbalanced datasets.
Denoting respectively TPk, FPk and FNk the true positives, false positives and false negatives related
to the class k ∈ [K], the macro averaged F1-score writes

F1 =
1

K

K∑
k=1

TPk

TPk + 0.5(FNk + FPk)
.

2https://github.com/Toloka/crowd-kit
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These metrics are evaluated on several real datasets. The BlueBirds dataset (Welinder et al., 2010)

is a binary classification (K = 2) dataset with ntask = 108 tasks and nworker = 39 workers. Workers

were asked to identify if there was a blue bird of the species Indigo Bunting in the presented image.

The Temporal Ordering (Temp) (Snow et al., 2008) dataset is a binary classification dataset with

ntask = 462 tasks and nworker = 76 workers. Workers were presented with sentences with events and

asked if the event presented in the first sentence occurred before the one in the second sentence. The

LabelMe dataset (Rodrigues and Pereira, 2018) consists of ntask = 1000 images shown to nworker = 77

workers. The task was to classify the image into one of the K = 8 classes. Finally, the Music

dataset (Rodrigues et al., 2014) is a music genre classification for ntask = 700 samples annotated by

nworker = 44 workers. There are K = 10 different music genres to be assigned to each task.

4 Results

4.1 Performance on real datasets

We evaluate the Shapley label aggregation strategy on several real datasets. From Table 1, we see that

using Shapley-based weights in the WMV strategy outperforms other strategies in terms of accuracy

and F1 score. Note that the KOS strategy can not be applied to the datasets considered with K > 2

as it is only suited for binary classification tasks.

Table 1: Accuracy and F1 Score of the WMV-based label aggregation strategies over 4 real datasets:
BlueBirds, Temp, LabelMe and Music. We obtain equal or better performance in accuracy and F1
score for 3 out of the 4 datasets.

Strategy
BlueBirds (K = 2) Temp (K = 2) LabelMe (K = 8) Music (K = 10)

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

MV 0.759 0.742 0.939 0.938 0.769 0.765 0.711 0.744
WAWA 0.759 0.742 0.945 0.945 0.770 0.766 0.797 0.801
ZBS 0.648 0.623 0.943 0.943 0.774 0.769 0.800 0.804
WDS 0.759 0.736 0.945 0.945 0.736 0.724 0.794 0.797
KOS 0.722 0.678 0.569 0.384 — — — —
M-MSR 0.639 0.578 0.924 0.922 0.767 0.761 0.742 0.744
Shapley 0.805 0.794 0.945 0.945 0.777 0.762 0.760 0.765

Note that the Music dataset is known to be more challenging than the other three datasets due to

high variability in the workers’ answers. This is reflected in the Shapley aggregation as the weights

used are based on the impacts of the workers’ answers in the current aggregation, and if the worker’s

answers are less reliable, so is their interpretation.

4.2 More information on workers

Using the Shapley values as workers’ contribution, we can also provide more information on the

workers’ reliability. Let us explore the BlueBirds dataset Shapley weights as an example. From

Figure 2, we see that worker 34 has the best overall contribution to the final label. Note that this

order of contribution given by Shapley values is in agreement with the accuracy of the workers even

though Shapley values are not directly linked to the accuracy of a model. Indeed, as we know the

ground truth, we can compute the accuracy of each worker. The accuracy of worker 0 is 0.80, worker

34 is 0.79 and worker 33 is 0.44 (random answers). The worker 22 – not represented in Figure 2 as

they are not a main contributor – has an accuracy of 0.42 – worse than a random guess – and an

average absolute contribution of 0.03 to the final label. This worker is indeed not contributing to the

final label given the poor quality of their answers.
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Figure 2: Summary of the main contributing workers for the BlueBirds dataset using Shapley values.
Left: Worker 34 has the highest contribution to the final label – either for class 0 or 1, followed by
worker 31. Worker 18 has better identification for class 1 than class 0. Right: Average impact of each
worker on the final predicted label by the XGBOOST classifier. This worker’s contribution scalar
value – used in Algorithm 2 weight Wj,: – does not allow to differentiate between classes.

Worker 18 has a better identification for class 1 than class 0. However, as we use a single scalar value

that is class-blind in Algorithm 2 to aggregate the label in the WMV, this asymmetrical contribution

is not taken into account. This is a limitation of the current Shapley label aggregation strategy.

5 Conclusion

We introduced a new label aggregation strategy based on Shapley values for crowdsourcing classifi-

cation tasks. In the framework of weighted majority votes, we used the Shapley values as workers’

weights to aggregate the labels. We showed that this strategy outperforms other weighted major-

ity vote strategies on real datasets in terms of accuracy and F1 score. Moreover, we discussed how

Shapley-based skills can be used to explore workers’ reliability. However, this strategy is limited by the

scalar value used to aggregate the labels in the WMV strategy. Not unlike most other WMV strate-

gies, it does not take into account per-class skills. An extension of this work would be to consider

multidimensional skills based on Shapley values for each worker, allowing for a per-class contribution

to the final label and a finer estimation of workers’ skills. Also, the impact of the model used should

be studied. However, a previous study should be conducted to only test models that can handle very

sparse categorical data – as workers typically answer only a few tasks – and for which we can pro-

vide reliable Shapley values. This study focuses on weight majority vote strategies, other aggregation

strategies – such as Dawid and Skene (1979) – often outperform WMV strategies with enough votes.
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