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LEARNING DIFFUSION FUNCTIONS FOR IMAGE RESTORATION

Joel Valdivia Ortega

Helmholtz Al and
Helmholtz Pioneer Campus,
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ABSTRACT

Anisotropic diffusion models play a major role in numerous
image restoration tasks. A key ingredient for these models
is the diffusion function, which is normally an a priori fixed
function. In this paper, we advocate a novel approach to learn-
ing the diffusion function, which is represented as a Fields of
Experts (FoE) function or a U-Net. In several numerical ex-
periments, we prove our technique outperforms both the clas-
sical models and state-of-the-art algorithms. The generaliza-
tion to other datasets/restoration problems is also discussed.

1. INTRODUCTION

In recent years, artificial intelligence, especially deep learn-
ing, has become a widely used technique in image restoration
[, 2]. Nevertheless, it is known that neural networks can be
very unstable [3} 4], fallible [5], and biased [6]].

In contrast, the anisotropic diffusion model proposed by
Perona and Malik [10] is a popular classical method for im-
age restoration based on partial differential equations, which
is frequently used in denoising for life sciences [7]], as well
as for deblurring [23] and inpainting [22]. The anisotropic
diffusion equation fulfills several beneficial properties such
as the maximum principle [8]], the preservation of the mean
value [9]], or consistency and stability of the numerical solu-
tions for a finite difference scheme [10, [11]. In this sense,
the anisotropic diffusion equation exhibits precise mathe-
matical foundations and numerical stability which neural
networks lack. The performance of the Perona-Malik model
(PM) strongly depends on the choice of the so-called diffu-
sion functions which determine the behavior of the image
restoration problem in the proximity of interfaces.

In this work, we learn the diffusion function for the
Perona-Malik model from data interleaving a classical method
with a machine learning technique, achieving a mathemati-
cally explainable yet stable model that outperforms state-
of-the-art deep learning architectures in a variety of data
sets. We emphasize that this method can be generalized to
blind-denoising and related image restoration tasks.
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2. PRELIMINARIES

Perona and Malik [10] introduced the subsequent anisotropic
diffusion equation:

uy — div(a(|Vu|*)Vu) = 0 inQ x (0,7),
a(|[Vul)%: = 0 on 99 x (0,T),
u(z,0) = wugp(z) ong,

1
where 2 C R? is a bounded domain with sufficiently smooth
boundary, v the exterior normal vector to 92, u : Q@ — R
represents a grayscale image, and a : [0,00) — R is the dif-
fusivity or diffusion function with domain T C R. A common
choice for a is a(s) = W with balancing parameter
K > 0. If we assume that a > 0 is continuously differen-
tiable in Y and b(s) = a(s) + 2sa’(s) is its ellipticity, then
there exists a unique so € [0, 00) such that {s € T : b(s) >
0} = (=00, s0) N'Y. An anisotropic function is defined as a
function that satisfies these properties in Y.

3. LEARNING THE DIFFUSION FUNCTION FOR
THE ANISOTROPIC DIFFUSION MODEL

In this section, we introduce three different approaches to
learning the diffusion function for the Perona-Malik model
Quantitative values using reference-based metrics are re-
ported in Table[I] while Table [2] shows values for reference-
free Q value [20] for evaluating performance on CT, MRI [17]]
and Cryo-EM [18] datasets corrupted by additive Gaussian
noise with variance 25. In addition, the butterfly image shown
in this paper belongs to Set12 [15] and was corrupted with an
additive Gaussian noise with variance 50.

3.1. Automation of K

In the first approach (K A), we consider the general diffusion
function a(s) = W and compute the strictly positive
scalar K using a CNN. For this reason, we use a prototypic
classifier mapping the corrupted image to a real number. The
network is composed of 2 convolutional blocks, 5 separable
convolutional blocks, a global average pooling layer, and a
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Fig. 1: Left to right: original image, corrupted input, restored
output, diffusivity output on the last iteration following tech-
nique from section@ Top/bottom: natural/MRI images.

dense layer at the end with 1 unit and = — 1422 as the activa-
tion function. Each convolutional block consists of a convo-
lutional layer with 3 x 3 kernels and 32 filters for the first one
and 64 for the second one, a batch normalization layer, and a
ReLu activation layer. Moreover, the separable convolutional
block is a ReLu activation function layer, a separable convo-
lutional layer, a batch normalization layer, a ReLu activation
layer, a separable convolutional layer, a batch normalization
layer, and a MaxPooling layer. All separable convolutional
layers have 3 x 3 kernels and from the first one to the last one,
the number of filters are 16, 32, 64, 128, and 1024.

3.2. Fields of Experts
For the second approach we consider the specific diffusion

function a(u) = Z ¢;(K;u), where N is a natural number

between 4 and 34 <;5Z are learned activation functions, and
K; are learned square kernels of size between 3 and 12. Fur-
thermore, in order to study the impact of the activation func-
tions, we tested the model with splines of order 1 (FoE-S),
monotonously decreasing splines of order 1 (FoE-D), mono-
mials (FoE-M), and Roth-Black functions (FOE-RB), where
the latter are of the form ¢;(x) = ¢; o, (x) == (1 + L;) o
and «; is a positive learned parameter. The kernels are rep-
resented as CNN using the corrupted image as a single input,
in which the CNN is composed of a standardization layer fol-
lowed by a convolutional layer without bias, and a sigmoid as
the final activation function.

If the activation functions ¢; are splines, we use the fol-
lowing procedure: we partition the interval [0,1] into 20
equal-sized subintervals and provide a constant input with all

its values being 1 to a convolutional layer with kernel size
1 (without bias) to obtain a real scalar for the slope of each
¢; on each subinterval. In addition, we gave a constant input
with all its values being zero to a convolutional layer with
kernel size 1, and positive bias so that we obtained a value
for each ¢; at zero. In the case of monotonously decreasing
splines, we additionally enforced negative slopes.

In the case of Roth-Black functions or monomials, we
consider a convolutional layer (without bias) with a constant
unitary tensor as input and use the outputs as the exponents
for the former and as the coefﬁcients once the diffusion func-

tion was rewritten as a(u) = Z B K;u® for the latter.

Figure [2] shows examples of the learned activation func-
tions and kernels.

3.3. U-Net

For the last approach, we consider a to be a U-Net composed
of a standardization layer followed by an encoder and a de-
coder, each of them with 5 layers. The ¢-th layer from the en-
coder consists of a convolutional block and returns the output
of the convolutional block z; and the output of a MaxPooling
layer when x; was given as input. Moreover, the i-th layer
of the decoder is composed of the concatenation of the output
from a convolutional transpose and x5_; obtained from the
encoder, followed by a convolutional block. The last layer
from the decoder has one channel and its activation function
is a sigmoid. The convolutional block is given by a for loop
with 3 iterations, where the j-th loop is composed of a convo-
lutional layer with 227 filters, 5 x 5 kernels and no activation
function, a batch normalization layer, and a ReLu activation
function layer.

3.4. Comparison between models and discussion

Figures [I] [3] and [ show restored natural and MRI images
generated by the different proposed models. All models reli-
ably preserve edges while removing the Gaussian noise. Note
that the activation functions of the model significantly impact
the preserved features. Furthermore, Figure 3| presents results
obtained with model [3.2] which intrinsically locates edges (a
feature that is not enforced during training) and thus is bene-
ficial for a variety of image data including, for instance, MRI.

For a quantitative comparison, Tables [I] and 2] show that
the proposed techniques outperform the state-of-the-art archi-
tecture CNCL across every dataset on almost every met-
ric. In addition, Table [3] highlights the benefits of the pre-
sented models in terms of computational complexity com-
pared to plain CNN architectures. Note that the value for
every metric improved regardless of the dataset along with
the small number of parameters, which heuristically proves
the absence of over-fitting.

Additionally, Figure[5|shows that every FOE-S model con-
verged to similar diffusion functions, which were anisotropic
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Fig. 2: Kernels and activation functions being splines of order
1 of models with 5 experts. Each kernel is shown above the
corresponding activation function. For every sub-figure, each
paired row of kernel and functions corresponds to a noise vari-
ance of 15, 25, and 50 from top to bottom.

Fig. 3: Second to fifth columns: output images using FoE-S,
FoE-D, FoE-M and FoE-RB. Odd rows are restored outputs,
whereas even ones are the diffusivity’s output on the last iter-
ation. The first column is the original image and the corrupted
one for even and odd rows resp. By pair of rows, from top to
bottom, images are natural and MRI images.

regardless of the noise model or the number of kernels. These
results indicate that this strategy can be generalized to blind
denoising and other image restoration tasks such as deblur-
ring and inpainting, which might be explored in future work.

4. TRAINING AND DATA SETS SPECIFICATIONS

For training every model used in this paper including CNCL,
we incorporated training, test, and validation datasets of size
10000, 2000, and 500, respectively, by randomly cropping
patches from the corresponding train, test, and validation data
sets of BSDS500 [14]], keeping a scale from O to 255. The
sizes of the training and test patches are 128 x 128 while ele-
ments of the validation data set have a fixed size of 256 x 256.
The patches are corrupted by additive Gaussian noise with
a variance of 15, 25, or 50. This data augmentation tech-



Fig. 4: Left to right: original image, corrupted input, restored
output, diffusivity output on the last iteration following model
from section[3.3] Top/bottom: natural/MRI images.

Model || val@s)

24.6/0.59/0.33
26.5/0.67/0.29
29.4/0.83/0.14
29.5/0.83/0.15
29.5/0.83/0.15
29.1/0.81/0.16
28.2/0.77/0.23
29.2/0.83/0.18
26.4/0.44/0.2

Val (25)

20.1/0.41/0.55
23.1/0.49/0.39
26.7/0.72/0.25
26.9/0.74/0.24
26.9/0.74/0.25
26.6/0.73/0.25
25.9/0.68/0.33
27.1/0.76/0.26
22.2/0.34/0.42

Val (50)

14.1/0.2/0.87
17.9/0.27/0.68
23.4/0.55/0.39
24.1/0.6/0.41
24.1/0.61/0.41
23.9/0.59/0.42
23.4/0.55/0.54
23.9/0.59/0.47
19.1/0.23/0.55

Table 1: PSNR/SSIM/LPIPS evaluated at the validation data
set of all considered models for the variances {15, 25, 50}.

Model || Val (15/25/50) CT  MRI Cryo-EM

44.8/36.1/21.5 798 56.1 345

56.2/51.2/32 99 839 70.4
54.6/55.7/61.1  106.1  97.2 88.1

59/62.2/63.2 1149 103.6  84.6
58.6/62.7/63.3 1164 1051  86.2
58.3/62.1/63.9 1154 103.1  81.9
57.5/61.7/642 1181 107.1 983
59.7/62.2/62.4 1147 1043  86.8
62.1/61.1/37.7 117.1 857 56.2

Table 2: Q value [20] using § = 0.001 and 8 x 8 patches.

nique was taken from [[12]. We trained with a batch size of 10
and considered 10 iterations as the restoration process. In all
experiments, we consider the mean squared error as the loss
function using gradient descent with a learning rate of 10~°
and no momentum. A pad size of 8 was used on all sides of
the images to avoid boundary effects.
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Fig. 5: exp | . ¢, 00| (left) and diffusivities for FoE-

n=0
S model (right), where o is the sigmoid function. Solid,
dashed and dotted lines correspond to models being trained
on datasets with noise variance of 15, 25 and 50 resp.

Model PM KA FoE FoE-S U-Net CNCL

21
Size 1 206K 624 2K 27.6K 47.83M
FLOPs || NJA 378G N/A 1.67G 331G 76.81G

Table 3: Number of parameters (top) and number of FLOPs
(bottom) for a 256 x 256 input.

5. CONCLUSIONS

We proposed novel ways to optimize the diffusion function
for improved restoration quality, including FoE and U-Net. In
summary, we obtained better PSNR/SSIM values compared
to the classical Perona-Malik model and a state-of-the-art
deep learning architecture.

6. MATERIALS

For the GitHub repository with code seelhttps://github.
com/JoelVO/anisotropic_diffusion.

7. COMPLIANCE WITH ETHICAL STANDARDS

This is a numerical simulation study for which no ethical ap-
proval was required.
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