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Abstract

Inspired by sequential budgeted allocation problems, we study the online matching problem with

budget refills. In this context, we consider an online bipartite graphG = (U, V,E), where the nodes

in V are discovered sequentially and nodes in U are known beforehand. Each u ∈ U is endowed

with a budget bu,t ∈ N that dynamically evolves over time. Unlike the canonical setting, in many

applications, the budget can be refilled from time to time, which leads to a much richer dynamic

that we consider here. Intuitively, adding extra budgets in U seems to ease the matching task,

and our results support this intuition. In fact, for the stochastic framework considered where we

studied the matching size built by Greedy algorithm on an Erdős-Réyni random graph, we showed

that the matching size generated by Greedy converges with high probability to a solution of an

explicit system of ODE. Moreover, under specific conditions, the competitive ratio (performance

measure of the algorithm) can even tend to 1. For the adversarial part, where the graph considered

is deterministic and the algorithm used is Balance, the b-matching bound holds when the refills are

scarce. However, when refills are regular, our results suggest a potential improvement in algorithm

performance. In both cases, Balance algorithm manages to reach the performance of the upper

bound on the adversarial graphs considered.

Keywords: Matching in bipartite graphs, random graphs, online matching in bipartite graphs,

online b-matching.

1. Introduction

Finding matchings in bipartite graphs is a fundamental problem that lies at the intersection of graph

theory (Godsil, 1981; Zdeborová and Mézard, 2006), network theory, and combinatorial optimiza-

tion (Lovász and Plummer, 2009; Schrijver, 2003), with far-reaching implications in a wide range

of practical applications, typically in operation research under the name of the ”assignment prob-

lem” (see also Grove et al. (1995)). Specifically, a Bipartite graph G = (U, V,E) has two distinct

sets of nodes U , V and a set of edges E ⊆ U ×V . Such graphs serve as representations for systems

where entities from one set are connected to entities in the other. These connections can symbolize

relationships, dependencies, or allocations, making bipartite graphs a powerful tool for modeling

real-world scenarios. Finding matchings within these graphs involves determining optimal pairings

between nodes from the two sets while respecting certain constraints.

Recent practical applications in Internet advertising have sparked a growing interest in the on-

line version of this problem (see Mehta (2013)). In this context, the graph is incrementally unveiled:
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nodes in U are known in advance, while nodes in V are observed sequentially, along with their as-

sociated edges. Upon revealing a node t ∈ V , an online algorithm must decide whether to match it

with a node u ∈ U such that (u, t) ∈ E and u ∈ U hasn’t been matched yet (standard online match-

ing). This decision is irreversible, which leads to a resulting matching that is sub-optimal, and the

overall objective is to quantify this sub-optimality. Beyond the foundational Online matching prob-

lem, numerous generalizations have been introduced; one of them is called the b-matching problem

(Kalyanasundaram and Pruhs, 1993; Khuller et al., 1994). In this extension, an additional layer of

complexity is introduced by assigning budgets to nodes in the set U . This imposes a new matching

constraint: a node t ∈ V can only be paired with a node u ∈ U if u has some positive budget, as

discussed in Kalyanasundaram and Pruhs (2000); Albers and Schubert (2021, 2022). Several online

algorithms have been developed to tackle both the foundational online matching problem and its ex-

tensions. For instance, the Greedy algorithm seamlessly matches an incoming vertex in V with any

available neighbor in U . Another noteworthy algorithm, Balance, strategically selects a vertex in

V and pairs it with the neighbor in U that has the highest available current budget. The performance

of an online algorithm relies on its competitive ratio — a metric quantifying the ratio between the

size of the created matching and the maximum achievable matching in hindsight (see Mehta (2013);

Feldman et al. (2009)).

Driven by the evolving dynamics of online advertising, where U represents the pool of cam-

paigns or ads available to advertisers and nodes in V denote units of advertising slots arriving

sequentially, each with varying eligibility for a subset of campaigns based on their distinct features

(such as geographic localization, browsing history, and other relevant information), the advertiser’s

primary goal is to maximize the number of ads displayed. In practical scenarios, campaigns or ads

are not showcased just once but come with a predetermined budget of impressions (for instance, a

specific ad may be displayed only 10,000 times each day). This budget is subject to evolution over

time, with the possibility of allocating additional resources to certain campaigns once in a while.

The online matching with budget refill setting. The formal model we consider is the following:

as in classical online matching, a bipartite graph G = (U, V,E) is sequentially revealed one node

in V after the other. The two sets of nodes are defined by U = [n] := {1, . . . , n} and V =
[T ] := {1, . . . , T} for n, T ∈ N

∗ and the set of edges is denoted by E ⊆ U × V . The additional

complexity over the b-matching setting is that the available budget of node u ∈ U at time t ∈ V ,

denoted bu,t−1 ∈ N is not just depleted over time (when node u is matched), but also sometimes

refilled by the refill dynamic denoted ηu,t ∈ N. More precisely, we focus on simple refill dynamics

with a constant rate of refill on average over time, which is already a non-trivial budget dynamic

improvement. In a nutshell, the space of online matching problems with refills is defined as

GT =
{
(U, V,E, (ηu,t)u∈U,t∈V ), |U | = n ≤ T, |V | = T,E ⊆ U × V and (ηu,t)u∈U,t∈V ∈ N

n×T
}
.

The challenge of online matching with budget refills is studied through two lenses:

i) The first one employs an adversarial framework, where the performance of the deterministic

algorithm, Balance, introduced in Kalyanasundaram and Pruhs (2000), is studied.

ii) The second one adopts a stochastic framework, where the graph is a random variable defined

by an Erdös–Rényi random graph model, and the performance of the Greedy algorithm is

studied.
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The rest of the paper is organized as follows: in section 2, we provide a formal description of

the problem studied within the adversarial framework with the main results for this part. section 3

presents the setting for the stochastic case with the main results.

2. The adversarial framework

The initial strand of research focused on online matching (without refills) within the adversarial

framework, where the algorithm is evaluated on the worst possible instance and vertex arrival or-

der. Notably, the Greedy algorithm, that matches incoming vertices with any available neigh-

bors, demonstrates a competitive ratio of 1/2 in the worst-case scenario. However, its performance

improves to reach 1 − 1/e competitive ratio when incoming vertices arrive in a random order,

as highlighted in Goel and Mehta (2008). Another significant contribution is the Ranking algo-

rithm introduced in Karp et al. (1990), showcasing worst-case optimality by consistently achieving

at least 1 − 1/e on any instance (Karp et al., 1990; Devanur et al., 2013; Birnbaum and Mathieu,

2008). Moreover, it exhibits superior performance in scenarios featuring random vertex arrivals

(Mahdian and Yan, 2011).

Beyond traditional online matching, the b-matching problem assigns fixed budgets b ∈ N
∗ to

nodes inU , as pioneered in Kalyanasundaram and Pruhs (2000). In this context, Kalyanasundaram and Pruhs

(2000) introduced the deterministic Balance algorithm, matching a new vertex in V with a neigh-

bor in U that has the highest remaining budget, they proved that Balance achieves an optimal

competitive ratio of 1 − (1/(1 + 1/b)b), tending towards 1 − 1/e as b grows. Furthermore,

Albers and Schubert (2021) explored a broader setting where nodes within U possess varying bud-

gets bu. Through primal-dual methods, they showed that the Balance algorithm achieves a com-

petitive ratio of (1/(1 + 1/bmin)
bmin), where bmin = minu∈U bu.

2.1. Model

Studying the online matching problem in an adversarial setting with budget refills requires some

restrictions on how powerful the adversary is. Indeed, if the sequence of refills (ηu,t)u∈U,t∈V was

to be chosen in an adversarial fashion, then the result would simply be to set it to 0, reducing

the problem to the classical b-matching problem. To avoid such a reduction, two restrictions are

considered on the adversary:

1. The sequence of refills (ηu,t)u∈U,t∈V is a parameter of the problem, set and known in advance

to a refill of one unit every m time steps.

2. Every node t ∈ V has at least one neighbor in U .

Formally, the subset of graphs from which the oblivious adversary can choose is the following,

GT,m = { (U, V,E, (ηt)t∈V ) ∈ GT : ∀t ∈ V, ηt = [tmodm = 0] and ∃u ∈ U, (u, t) ∈ E} .

The choice of a refill of one unit every m time steps comes from the motivating application

of advertising, where advertisers usually renew their budget monthly or quarterly. Considering a

constant value for refills gives a clear and simple setting to disentangle the asymptotic effect of the

refills versus the initialization of budgets.
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The evolution of budget for u ∈ U depends on whether the edge (u, t) ∈ E is added to the

online matching (this is represented through a binary variable xu,t ∈ {0, 1}) and whether t is a

multiple of m or not; formally, it obeys the following dynamics:

bu,t = bu,t−1 − xu,t + 1t mod m=0 and bu,0 = b0 for some b0 ≥ 1.

As a consequence, the online matching on G ∈ GT,m generated by an algorithm ALG is the

subset of edges that can be represented by a binary matrix x ∈ {0, 1}n×T that must satisfy the

following constraints:

1. ∀(u, t) ∈ U × V, (u, t) 6∈ E ⇒ xu,t = 0 (only edges in E can be matched).

2. ∀t ∈ V,
∑

u∈U xu,t ≤ 1 (V -nodes can only be matched once).

3. ∀(u, t) ∈ U × V, bu,t−1 < 1 ⇒ xu,t = 0 (U -nodes need positive budget to be matched).

In online bipartite matching problems, the performance of an algorithm ALG is evaluated by its

competitive ratio, which is the ratio between the size of the matching ALG has created and the largest

possible matching in hindsight, also referred to as OPT with matrix x∗. The rationale is that the

optimal matching of some deterministic graph G can be arbitrarily small. Hence, the constructed

matching size alone does not provide any good insight on the “quality” of an algorithm in the

adversarial case. Formally, in the adversarial framework, the objective of the algorithm is to obtain

the highest worst-case competitive ratio CRadv(ALG,GT,m), defined as follows:

CRadv(ALG,GT,m) = min
G∈GT,m

ALG(G)

OPT(G)

where ALG(G) =
∑

u∈U

∑T
t=1, xu,t, and OPT(G) =

∑

u∈U

∑T
t=1, x

∗
u,t, are the sizes of the match-

ing generated by ALG and OPT respectively.

As previously highlighted, our analysis focuses on evaluating the Balance algorithm within the

mentioned model. We aim to dissect the impact of the initial budget b0 and the refill process by

parameterizing our results with T , which is both the finite horizon and the size of V . This choice

slightly limits the adversary’s power, as it cannot impact the length of the horizon T by simply

providing no edge for an arbitrary number of time steps. Before delving into the details of our main

results within the adversarial setting, here is a summary of our contributions:

• For scenarios with relatively few refills, whenm scales at (approximately) the order of at least√
T , we prove that the impact of refills on the competitive ratio of Balance is negligible. In

essence, the competitive ratio remains identical to that of the b0-matching problem, i.e. the

same problem without refills. Stated otherwise, the dominating effect is the initialization of

the budgets. Interestingly, the refill frequency 1/m does not appear in the competitive ratio.

• Conversely, in scenarios with a higher frequency of refills (with m small compared to
√
T ),

the narrative is completely different. In such cases, the initial budgets exhibit no discernible

influence on the (asymptotic) competitive ratio (asymptotic) competitive ratio. Indeed, we

establish an upper bound for the competitive ratio of Balance within a specific graph, simul-

taneously demonstrating that Balance represents the optimal algorithm. Notably, the derived

upper bound stands at 1− 1−α
e1−α , wherein α ≃ 0.603.
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2.2. Regime m = ω(
√
T )

Intuitively, in the regime m = ω(
√
T ), the effect of the performance within only one period of

length m can dominate the CR (this is obvious for m = T , but it happens even for m = ω(
√
T )).

Theorem 1 Assuming the initial budgets are b1,0 = b2,0 = · · · = bn,0 = b0 ≥ 1. If m = ω(
√
T )

and b0(b0 + 1)b0 ≤ m, then,

sup
ALG:deterministic

CRadv(ALG,GT,m) ≤ 1− 1
(

1 + 1
b0

)b0
+ oT (1) (1)

The bound is reached for the graph defined in the proof.

Sketch of proof. The complete proof is provided in section A.1. It relies on using d =
⌊

m
|VK |

⌋

duplicates of the graph GK = (UK , VK , EK) presented in Kalyanasundaram and Pruhs (2000),

where the size depends on b0. More precisely, it uses d copies of GK at the beginning of the process

and during the remaining time T −m only one node ũ from U is connected with all the remaining

edges in V (see fig. 1 for illustration). Then, the number of edges matched by ALG and OPT during

these T −m last steps is the same, denoted γT which is at most
⌊
T
m

⌋
as it relies on the refills of ũ

only (see section A.1 for more details). Thus,

CRadv(ALG,GT,m) ≤ dALG(GK) + γT
dOPT(GK) + γT

Since γT = o(
√
T ), we can conclude that,

CRadv(ALG,GT,m) ≤ 1− 1
(

1 + 1
b0

)b0
+ oT (1)

�

2.3. Regime m = o(
√
T )

In the regime m = o(
√
T ), where the refills dominate the initialization, the upper bound on the CR

is not as strong. Unlike the previous scenario where it was bounded by 1 − 1
e ≈ 0.63, it will be

bounded only by 0.73. The following theorems establish this upper bound for Balance, and then

that no algorithm can achieve significantly better performance.

Theorem 2 Assuming the initial budgets are b1,0 = b2,0 = · · · = bn,0 = b0 ≥ 1. For m = o(
√
T )

and mb0 = o(T ), then,

CRadv(Balance,GT,m) ≤ 1− (1− α)

e(1−α)
︸ ︷︷ ︸

≃0.73325...

+om,T (1) (2)

where α is defined by 1
2 =

∫ α
0

xex

1−xdx. The bound is reached for the graph defined in the proof.
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Kalyanasundaram and Pruhs (2000)

Kalyanasundaram and Pruhs (2000)

U
V

|U1| = (1 + b0)b0

|U2| = (1 + b0)b0

|V1| = b0(1 + b0)b0

|V2| = b0(1 + b0)b0

T

m

Figure 1: The graph used for the proof of theorem 1

Sketch of proof. The full proof is provided in section A.2. It relies on building an adversarial

graphGth.2 = (U, V,E) with the following structure (see fig. 2 for illustration): Initially, for a period

of size t0 ≃ T
e , the size of U exceeds m (|U | ≃ 2m − 1), allowing the algorithm to accumulate

a significant amount of budget. During this period, ALG and OPT consistently match nodes and

accumulate an equal amount of budget on U , but it is not distributed in the same way. At time t0,

the adversary removes all but m − 1 nodes from U (starting with those with the highest budgets).

Specifically, When the adversary eliminates nodes, it has no impact on OPT because OPT has perfect

hindsight knowledge of the eliminated nodes. Therefore, it can allocate the budget exclusively to

nodes that remain available, ensuring that no budget is lost on eliminated nodes at the time of their

removal. However, ALG remains unaware of which nodes will be eliminated. Consequently, at

the time of elimination, the nodes still have some budget. Subsequently, the remaining nodes are

removed one by one, at a rhythm that depends on m, carefully designed for OPT to widen the gap as

much as possible with ALG.

ALG vs OPT over time: As previously mentioned, up to time tm−2, both ALG and OPT have the

same performance. It is only between tm−2 and T that distinctions arise. Hence, the crucial step

lies in determining the remaining budget of ALG at time tm−2 denoted Ptm−2 . To accomplish this,

it’s necessary to compute the values of ti and then analyze how the remaining budget of ALG evolves

over time.

Intuition behind the choice of ”tis” : Since the main difference between ALG and OPT lies in

the fact that OPT knows the eliminated nodes beforehand, one important quantity to track is the ti
which represents the time taken to deplete the budget of node ui by consistently avoiding matches

with ui before ti−1 and then matching it at every time step between ti−1 and ti (a strategy employed

by OPT). ti is determined by the following recurrence relationship:

ti+1 ≈ b0 − 1 + ti +
b0 + ti
m− 1
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T

tm−2

t2

t1

t0 ≃ T
e

U1

U2

U3

Fully connected

VU

OPT = ALG

OPT 6= ALG

|U | ≃ 2m− 1

Figure 2: The graph Gth.2 used for the proof of theorem 2

by solving it we get,

ti ≈
(

1 +
1

m− 1

)i

(t0 +mb0 −m+ 1)−mb0 +m− 1

Intuition about the value of remaining budget: The remaining budget at time ti follows the

following recurrence,

Pti ≈




 Pti−1

︸ ︷︷ ︸

the remaining budget at time ti−1

+ (n − i)(ti − ti−1)/m
︸ ︷︷ ︸

the refills received between time ti and ti−1

− (ti − ti−1)
︸ ︷︷ ︸

number of nodes matched





n− i− 1

n− i

The expression n−i−1
n−i represents the ratio of the number of nodes at time ti to the number of nodes

at time ti−1.

Therefore, the crux of the proof lies in examining the dynamics and rate of evolution of Pti and

handling the technicalities related to the approximations of the floor and ceil functions involved in

the construction of the different quantities of the problem.

�

2.3.1. NO ALGORITHM CAN BEAT Balance

Theorem 3 Assuming the initial budgets are b1,0 = b2,0 = · · · = bn,0 = b0 ≥ 1. For m = o(
√
T ),

sup
ALG

E

[

CRadv(ALG,GT,m)
]

≤ CRadv(Balance, Gth.2) + oT (1) (3)
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where the expectation is taken over the randomness from ALG.

The proof is provided in section A.3.

Sketch of proof. The intuition is that keeping budgets equalized between the currently available

U -nodes is the best choice an algorithm can make in the adversarial graph used for the proof of

theorem 2. This is because the adversary removes U -nodes one after the other, beginning with those

with the highest budget and never providing again a U -node already removed. �

Analyzing the online matching problem with budget refills in the adversarial setting provides

valuable worst-case guarantees for the competitive ratio of the selected algorithm. However, in

practical applications, the environment is rarely completely adversarial and a worst-case guarantee is

often far from actual performance. Especially, the graphs built by the adversary exhibit no stationary

regime when T grows, while practical applications often enter such regime after some time. At the

cost of additional assumptions, the stochastic framework offers a way to study such regimes more

precisely. While the adversarial model ensures robustness, the stochastic approach aligns better

with real-world dynamics, where uncertainties and randomness are often inherent.

3. The Stochastic framework

Another line of research in online matching has centered on the stochastic version of the problem.

For instance, the known i.i.d. model assumes the existence of a probability distribution governing

the types of vertices drawn independently and identically at each iteration. With the knowledge

of this distribution, algorithms with much better competitive ratios than Ranking were designed

(Manshadi et al., 2012; Jaillet and Lu, 2014; Brubach et al., 2016; Huang et al., 2022), the best one

to date achieving a competitive ratio of (approximately) 0.711. However, this i.i.d. model, while ver-

satile, remains somewhat contrived. Algorithms for this scenario are optimized for the well-known

i.i.d. model and often struggle to accommodate additional knowledge about the graph. Furthermore,

since the guarantee is provided for the worst potential input distribution, it might not consistently

reflect the average performance of these algorithms. As highlighted in Borodin et al. (2020), in

numerous average-case and practical input scenarios, straightforward greedy strategies either out-

perform or perform equally to state-of-the-art algorithms specifically designed for the known i.i.d.

setting. This has led to a call for the formulation of novel stochastic input models that more accu-

rately mirror practical inputs in certain application domains, such as online advertising.

Consequently, another stream of the literature considers standard online algorithms applied to

specific classes of random graphs, representing scenarios where certain properties of the underlying

graph are known. One seminal example is online matching in Erdős–Rényi graphs introduced in

Mastin and Jaillet (2013), where the assumption is that each possible edge exists in U × V with a

fixed probability, independent of other edges. The most interesting and challenging setting corre-

sponds to the so-called sparse regime where each vertex of U has an expected degree independent

of the size n of V , which amounts to taking a probability of connection equal to c/n. Remarkably,

even analyzing the most straightforward Greedy algorithm in these models poses significant chal-

lenges and provides valuable insights see (Mastin and Jaillet, 2013; Borodin et al., 2018; Dyer et al.,

1993). On another hand, a more general random graph model, known as the configuration model

was analyzed in Noiry et al. (2021); Aamand et al. (2022), which specifies a distribution for the

degrees of the vertices.
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3.1. Model

The online matching problem with refills of the budgets in the stochastic setting is studied in the

following framework:

1. The random graph is a standard Erdős–Rényi model G(n, T, p), i.e., a bipartite graph with

n vertices on one side, T on the other side and each potential edge (u, t) ∈ U × V occurs

independently with probability p.

2. The regime considered is the sparse one, in the sense that p = a
n with a > 0. The motivation

comes from online advertising where there are many users compared to the number of ad

campaigns, but only a few are eligible.

3. The sequence of refills (ηu,t)u∈U,t∈V is a realization of independent Bernoulli random vari-

ables of parameter β/n, for some β > 0.

We shall denote by D the distribution of such random instance (graph and refills).

As emphasized previously, each node in U is associated with a budget bu,t ∈ N. We add the

additional assumption that the maximum budget per node is capped at some K ∈ N
∗ so that the

budget dynamics are now expressed as follows,

bu,t = min(K, bu,t−1 − xu,t + ηt) with bu,0 = b0 ≥ 1 .

As before, an online matching on G generated by an algorithm ALG is a subset of edges, represented

by a binary matrix x ∈ {0, 1}n×T , satisfying the following constraints:

1. ∀(u, t) ∈ U × V, (u, t) 6∈ E ⇒ xu,t = 0 (only edges in E can be matched).

2. ∀t ∈ V,
∑

u∈U xu,t ≤ 1 (no V -node can be matched twice).

3. ∀(u, t) ∈ U×V, bu,t−1 < 1 ⇒ xu,t = 0 (U -nodes need some positive budget to be matched).

The reasons behind capping the maximal budget to K are three-fold. First, in many applications

in mind, the budget is capped (either by one, which corresponds to an idle/active state, or by a

large number as in the online advertisement motivating example). Second, with the algorithm and

the random graph considered, the budget will follow a negatively biased (and non-homogeneous)

random walk, so that the maximal budget is sub-linear with arbitrarily high probability (hence this

restriction is actually without loss of generality in the random model considered). Third, this cap-

ping induces a finite number of quantities to track through time (namely the current proportion of

vertices with this or that budget), which greatly simplifies the analysis.

The performance of an algorithm in the stochastic setting can be either measured by the size of

the expected matching size it creates or by the ratio between expected matching sizes of ALG and

OPT. Formally, the different quantities we shall consider are

CRsto(ALG,D) =
EG∼D[ALG(G)]

EG∼D[OPT(G)]
or matching size = EG∼D[ALG(G)]

where ALG(G) =
∑

u∈U

∑T
t=1, xu,t, and OPT(G) =

∑

u∈U

∑T
t=1, x

∗
u,t, are the sizes of the match-

ing generated by ALG and OPT respectively. The dependency on T is implicitly in the definition of

G, however, we shall explicitly indicate the dependency by considering ALG(G,T ) and OPT(G,T ).
To provide an overview of our contributions within the stochastic setting, we first present a

summary of our main results:
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• Firstly, we describe the asymptotic performance of Greedy on the Erdős-Réyni model for

any value of budget capping (in particular for arbitrarily large ones). We prove this by first

introducing a system of ODEs, and second proving that the discrete and random matching

process is, with very high probability, close to the continuous and deterministic solution of

this system.

• Secondly, we study the stability of the stationary solution of the ODE system. In the specific

case of a maximal budget of one (motivated by vertices that are idle after being matched until

they become active again after some random time), we also get more specific and technical

convergence results.

• Lastly, in terms of competitive ratio, we establish that it converges to 1 as K , T and n ap-

proach infinity.

3.2. Main results

Our first main theorem, stated below, identifies the asymptotic size of the matching generated by

Greedy on the bipartite Erdős-Rényi model with budget refills. The result shows that with high

probability, the size of the matching generated by Greedy is close to the solution of a system of

ordinary differential equations.

Theorem 4 With probability 1 − O
(
n1/4 exp(−a3n1/4)

)
, the matching size created by Greedy

denoted by Greedy(G,T ) satisfies,

Greedy(G,T ) = nh(T/n) +O(n3/4)

and,
E[Greedy(G,T )]

n
→

n→+∞
h(T/n)

where h(τ) is solution of the following equation,

ḣ(τ) = 1− e−a(1−z0(τ)),
1

n
≤ τ ≤ T

n

and z0(τ) satisfies the following system,







ż0(τ) = −z0(τ)β + z1(τ)
1−z0(τ)

(1− e−a+az0(τ)) for k = 0

żk(τ) = (zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1−e−a+az0(τ)

1−z0(τ)
for 1 ≤ k ≤ K − 1

żk(τ) = β zk−1(τ)− zk(τ)
1−e−a(1−z0(τ))

1−z0(τ)
for k = K

∑K
k=0 zk(τ) = 1

(4)

Sketch of proof. For 0 ≤ k ≤ K , t ∈ [T ], let Uk(t) = {u ∈ U : bu,t = k} be the set of nodes

with budget equals to k at time t and Yk(t) = |Uk(t)| the total number of nodes with budget equals

k in U . The expectation of the one-step change of the variable Greedy(G, t) can be expressed as,

E [Greedy(G, t + 1)− Greedy(G, t)|Greedy(G, t)] = 1−
(

1− a

n

)∑
k≥1 Yk(t)

= 1−
(

1− a

n

)n−Y0(t)

10
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As the evolution of Greedy(G, t) depends on Y0, an analysis of the process Y(t) = (Yk(t))k≥0

is necessary. The dynamic of this process is described by the following system:







E [∆0(t)|Y(t)] = −Y0(t) [δ(1 − pΣ(t))] + Y1(t)(1 − δ)pΣ(t)

E [∆1(t)|Y(t)] = −Y1(t) [δ(1 − pΣ(t)) + (1− δ)pΣ(t)] + Y0(t)δ + Y2(t)(1 − δ)pΣ(t)

E [∆k(t)|Y(t)] = δ(1 − pΣ(t)) [Yk−1(t)− Yk(t)] + [Yk+1(t)− Yk(t)] (1− δ)pΣ(t) ∀k > 1

where ∀k ≥ 0, ∆k(t) = Yk(t+ 1)− Yk(t), and Σ(t) = 1
p(n−Y0(t))

(1− (1− p)(n−Y0(t))).
After establishing the evolution of these processes, the main idea behind the proof of theorem 4

(postponed to section B.1) is to show that Greedy(G,T ) is closely related to the solution of some

ODE (this is sometimes called ”the differential equation method” (Wormald, 1999; Warnke, 2019;

Enriquez et al., 2019) or ”stochastic approximations” (Robbins and Monro, 1951). �

Upon establishing that, with high probability Greedy(G,T ) is close to nh(T/n), a function

depending on z0(T/n), the solution of eq. (4), the objective is to solve this system to get an exact

approximation of the matching size created by Greedy on the Erdős–Rényi model. However, ob-

taining a closed-form solution of the system of differential equations eq. (4) is quite challenging. To

address this complexity, one approach is to explore the system’s stationary solution and examine its

stability; This means determining whether the solution to eq. (4) converges to this stationary state,

and then showing that Greedy(G,T ) converges towards a function depending on the stationary

solution of eq. (4).

More precisely, corollary 5 shows that for K ≥ 1, Greedy(G,T ) converges with high proba-

bility to nh∗ a function of z∗0 , the stationary solution of eq. (4) and when n → ∞,
E(Greedy(G,T ))

n
converges to h∗(ψ). Furthermore, corollary 6 demonstrates at a specified rate the convergence of

Greedy(G,T ) to nh∗(T/n) with high probability and also, for n → ∞,
E(Greedy(G,T ))

n converges

to h∗(T/n). The distinction between these results lies in the type of convergence of z0(t) to z∗0 :

In corollary 5, z0(t) asymptotically converges to z∗0 , whereas in corollary 6, the convergence is

exponential.

Corollary 5 For K ≥ 1, with probability at least 1− 2e−a2n
3
2 /8T ,

|Greedy(G,T ) − nh∗(T/n)| ≤ o(T )

and,
E[Greedy(G,T )]

n
→

n→+∞
h∗(T/n)

with h∗(x) =
∫ x
1/n(1 − e−a(1−z∗0 ))dτ =

(
x− 1

n

)
(1 − e−a(1−z∗0 )), and z∗0 is the unique solution of

∑K
k=0 z

∗
0

(
β

g(z∗0 )

)k
= 1 with g(z∗0) =

1−e−a(1−z∗0)

1−z∗0
.

Section B.2 contains the detailed proof.

Sketch of proof. The first step is to compute S̄z∗0 , the unique stationary solution of eq. (4).

Then, to demonstrate that S̄z∗0 is an asymptotically stable stationary solution, we rely on matrix

perturbation theory for the proof of stability. Once stability is established, we further prove that the

matching size converges to a function that depends on S̄z∗0 .

�
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Corollary 6 For K = 1, with probability at least 1− 2e−a2n
3
2 /8T ,

∣
∣
∣E[Greedy(G,T )] − T (1− e−a(1−z∗0 ))

∣
∣
∣ ≤ c

T

(log(T ))3/4
= o(T )

where z∗0 = 1
β − 1

aW

(

a
β e

−a
(

1− 1
β

))

, with W (·) the Lambert function, and c is some universal

constant.

The proof is postponed to section B.3.

Sketch of proof. For K = 1, eq. (4) is reduced to a system of two equations. Firstly, we

compute S1
z∗0

, the stationary solution of the reduced system. Then, we prove that S1
z∗0

is an expo-

nentially stable stationary solution using the perturbation method. Once the exponential stability is

established, we further get that the matching size converges to a function depending only on S1
z∗0

. �

Our final main result of this section is given below. Firstly, we establish a lower bound on

CRsto, which depends on (z∗0 , . . . , z
∗
K) the stationary solution of eq. (4). This lower bound is derived

through an exact calculation of the matching size achieved by the Greedy algorithm and an upper

bound on the matching size generated by OPT. Subsequently, we demonstrate that the competitive

ratio converges to 1 as T , K and n grows significantly.

Proposition 7 For T,K, n, b0, β ∈ N
∗,

CRsto(Greedy,D) ≥
Tg(z∗0)(1− z∗0) + nb0 − n

(
β

g(z∗0 )−β − (K+1)βK+1

g(z∗0 )
K+1−βK+1

)

nb0 + βT
+OK,β(T

−1/4)

(5)

where
∑K

k=0 z
∗
0

(
β

g(z∗0 )

)k
= 1 with g(z∗0) =

1−e−a(1−z∗0)

1−z∗0
as defined in corollary 5.

The proof is presented in section B.4

Sketch of proof. Initially, we express Greedy(G,T ) as a function of T, z0(t), β, a. Then, we

use an upper bound on OPT(G,T ), which is not very tight as it only takes into account the initial

budget and the refills. Subsequently, we approximate Greedy(G,T ) by a function that depends on

the stationary solution S̄z∗0 .

It is noteworthy that in this context, the matching size Greedy(G,T ) aligns with that of theo-

rem 4 through the integration of the system eq. (4), up to negligible terms. �

From proposition 7, the next result shows that when K,T, n goes to infinity, the competitive

ratio approaches 1.

Theorem 8 For any α, β > 0, the competitive ratio tends to 1, as T,K, n approach infinity, as

lim
K,n→+∞

lim
T→+∞

CRsto(Greedy,D) = 1

The proof is in section B.5

Sketch of proof. The proof relies on calculating z∗0 as K approaches infinity. Subsequently, as

T approaches infinity, the limit of CRsto(Greedy,D) is shown to be g(z∗0)(1 − z∗0)/β. Finally, as

K tends towards infinity, the limit converges to 1, with the assurance that this convergence happens

with high probability as n tends to infinity.

�
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4. Conclusions

This study delves into the online matching problem on a bipartite graph G = (U, V,E) with budget

refills, an intriguing and practical extension of the standard online matching paradigm that involves

endowing nodes in U with budget allocations. Two distinct frameworks, namely the adversarial and

the stochastic, are studied, with the primary disparity residing in the types of graphs and the nature

of the budget dynamics considered. In the stochastic framework, our exploration of the asymptotic

performance of Greedy in random graphs aligns with the initial intuition that periodic budget refills

can streamline the online algorithm’s task, occasionally resulting in a competitive ratio CR reaching

1.

In the adversarial case with minimal refills, our analysis demonstrates the negligible impact of

refills on the competitive ratio of Balance, aligning its CR with that observed in the b-matching

scenario. However, in cases involving numerous refills, a larger upper bound emerges, suggesting

the possibility for algorithms to attain improved performance.

The dynamic nature of the budget constraint poses challenges in applying the primal-dual

method to establish a lower bound. A crude lower bound of 1 − 1
e is derived from a modified

version of Ranking, wherein each node u ∈ U is duplicated upon refill, altering the problem to a

context where

Ranking secures a minimum performance of 1 − 1
e . Nevertheless, this approach leaves a gap

compared to the upper-bound of 1 − 1−α
e1−α in the case m = o(

√
T ). While our intuition, based on

extensive simulations and optimization, suggests that the upper bound might be precise, this area

remains a challenging open question.
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Appendix A. Adversarial Case

A.1. Proof of theorem 1

Theorem 1 Assuming the initial budgets are b1,0 = b2,0 = · · · = bn,0 = b0 ≥ 1. If m = ω(
√
T )

and b0(b0 + 1)b0 ≤ m, then,

sup
ALG:deterministic

CRadv(ALG,GT,m) ≤ 1− 1
(

1 + 1
b0

)b0
+ oT (1) (1)

The bound is reached for the graph defined in the proof.

Proof.

Let b0,m, T ∈ N
∗ such that m ≥ kb0 where k , (1 + b0)

b0 and m ≤ T . The bipartite graph of

size (k, kb0) used in (Kalyanasundaram and Pruhs, 2000, Sec. 2, Thm. 5) is denoted (U0, V0, E0).
To put the emphasis on which set of nodes the edges are defined on, E0 will actually be denoted

E0(U0, V0) as the structure of edges will be used on different subsets of nodes of the final graph.

The graph G = (U, [T ], E) with U = {u1, . . . , un} of size n ∈ N
∗ is built as follows. In-

tuitively, the first period of length m is implementing copies of E0 on disjoint nodes, then one

remaining node in U is the only neighbor of all following time steps. Denoting j =
⌊

m
kb0

⌋

,

E =

(
j
⋃

i=1

E0 (Ui, Vi)

)

∪ ({ũ} × Jjkb0 + 1, T K) (6)

where Ui = {ul : l ∈ J(i− 1)k + 1, ikK}, Vi = J(i− 1)mkb0 + 1, ikb0K and ũ is chosen to be a

node of U1 which has been depleted of its initial budget during V1 (there is at least one).

For each i ∈ [j], on each subset Vi of time steps, as per Kalyanasundaram and Pruhs (2000,

Proof of Thm. 5), ALG matches at most b0(b0 + 1)b0 − bb0+1
0 edges, while OPT manages to match

b0(b0 + 1)b0 edges. After time jkb0, both ALG and OPT match the same number of edges γT which

is at most the sum of refills obtained by ũ – i.e.
⌊
T
m

⌋
– (its initial budget is used during period V1).

In the end,

CRadv(ALG,GT,m) ≤ j(kb0 − bb0+1
0 ) + γT

jkb0 + γT
(7)

≤ j(kb0 − bb0+1
0 )

jkb0
+ oT (1) as γT = o(

√
T ) and jkb0 = ω(

√
T ) (8)

= 1− 1
(

1 + 1
b0

)b0
+ oT (1) def. of k = (1 + b0)

b0 (9)

Similarly, it is straightforward to show that Balance achieves the lower bound of the b-matching

problem on each of the duplicates of E0(Ui, Vi), as these sub-graphs are disjoint.
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Kalyanasundaram and Pruhs (2000)

Kalyanasundaram and Pruhs (2000)

U
V

|U1| = (1 + b0)b0

|U2| = (1 + b0)b0

|V1| = b0(1 + b0)b0

|V2| = b0(1 + b0)b0

T

m

Figure 3: The graph used for the proof of theorem 1

A.2. Proof of theorem 2

Theorem 2 Assuming the initial budgets are b1,0 = b2,0 = · · · = bn,0 = b0 ≥ 1. For m = o(
√
T )

and mb0 = o(T ), then,

CRadv(Balance,GT,m) ≤ 1− (1− α)

e(1−α)
︸ ︷︷ ︸

≃0.73325...

+om,T (1) (2)

where α is defined by 1
2 =

∫ α
0

xex

1−xdx. The bound is reached for the graph defined in the proof.

We provide a slightly more detailed result here.

Theorem 9 Assuming the initial budgets are b1,0 = b2,0 = · · · = bn,0 = b0 ≥ 1. For m = o(
√
T )

and mb0 = o(T ), then,

CRadv(Balance,GT,m) ≤ 1− mb0 + t0
e(mb0 + 2t0)

− 1

e

∫ α

0

x2ex

1− x
dx

+
mb0
t0

(

1− 1

e
+

1

e

∫ α

0

x(α− x)ex

1− x
dx

)

+ om,T (1) (10)

where α is defined as follows
∫ α
0

xex

1−xdx = 1− t0
mb0+2t0

. The upper bound is reached for the graph

defined in the proof.

The proof is organized as follows:

1. Definition of the adversarial graph.

2. Decomposition of Balance(Gth.2).

3. Several lemmas to treat each term of the decomposition.
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Definition of the adversarial graph for Balance. For b0,m, T ∈ N
∗ such that m ≤ T , the

number of U -nodes is set to n = m − 1 + max

(⌈

t0
b0+⌊ t0

m⌋

⌉

,

⌈
m⌊ t0

m⌋
b0+⌊ t0

m ⌋−1

⌉)

(Note that when

b0 ≪ t0
m , then n ≃ 2m− 1). The graph Gth.2 = (U, V,E) is defined as follows,







U = [n]

V = [T ]

E = (U × [t0]) ∪ (U1 × Jt0 + 1, t1K) ∪ · · · ∪ (Um−1 × Jtm−2 + 1, tm−1K ∪ (Um−1 × Jtm−1 + 1, T K)

where,

• U1 is the subset of the m− 1 node with the lowest budget at time t0, i.e.

U1
unif∼ {A ⊆ U : |A| = m− 1,∀u ∈ A, u′ ∈ U \ A, bu,t0 ≤ bu′,t0} .

• for any i > 1, Ui is built be removing the node with the lowest budget at time ti−1 from Ui−1

– i.e. Ui = Ui−1 \ {ui} where

ui
unif∼ argmin

u∈Ui−1

bu,ti−1 .

• for any i ≥ 1, ti = inf{t > ti−1 : b0 +
⌊

t
m

⌋
= (t− ti−1)}. Intuition: ti is the time it takes to

take the budget of ui to 0 by never matching ui before ti−1 and matching it at every time step

between ti−1 and ti (which is what OPT does).

• t0 is chosen such that T − tm−1 = o(T ) (it is possible as proven in lemma 10)

Proof.

The objective is to compute the performance of Balance and OPT on the graph GTh. 2 defined above

to obtain a bound on the CR.

Performance of OPT. Before time t0, OPT can use nodes from U \ U1 to match a each time step:

|U \ U1| = max

(⌈

t0
b0+⌊ t0

m⌋

⌉

,

⌈
m⌊ t0

m⌋
b0+⌊ t0

m⌋−1

⌉)

, which ensures that the total budget of nodes in

U \U1 over the period [t0] is at least t0 (accounting for the last refill that cannot necessarily be fully

used). As a remark, if b0 = 1, this simplifies to |U \ U1| = m: with a refill every m timesteps, m
nodes suffice to match at every time step. Thus, at time t0, OPT never matched any node from U1.

Then, by induction and definition of ti, OPT(G
th.2) = tm−1.

Performance of ALG.

Balance(Gth.2) =

t0∑

t=1

∑

u∈U

xu,t

︸ ︷︷ ︸

,A0

+

m−1∑

i=1

ti∑

t=ti−1+1

∑

u∈Ui

xu,t

︸ ︷︷ ︸

,Ai

(11)

= A0 +

m−1∑

i=1

Ai (12)
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T

tm−2

t2

t1

t0 ≃ T
e

U1

U2

U3

Fully connected

VU

OPT = ALG

OPT 6= ALG

|U | ≃ 2m− 1

Figure 4: The graph Gth.2 used for the proof of theorem 2

= A0 +

m−1∑

i=1

B
(i)
ti−1

−B
(i)
ti

+ (m− i)

(⌊
ti
m

⌋

−
⌊
ti−1

m

⌋)

(by induction)

(13)

where B
(i)
t =

∑

u∈Ui

bu,t ,

= A0 +

m−1∑

i=1

B
(i)
ti−1

−B
(i)
ti

+

m−1∑

i=1

(m− i)

⌊
ti
m

⌋

−
m−2∑

i=0

(m− i− 1)

⌊
ti
m

⌋

(14)

= A0 +

⌊
tm−1

m

⌋

− (m− 1)

⌊
t0
m

⌋

+

m−1∑

i=1

B
(i)
ti−1

−B
(i)
ti

+

m−2∑

i=1

⌊
ti
m

⌋

(15)

= A0 − (m− 1)

⌊
t0
m

⌋

+
m−1∑

i=1

B
(i)
ti−1

−B
(i)
ti

+
m−1∑

i=1

⌊
ti
m

⌋

(16)

= A0 − (m− 1)

⌊
t0
m

⌋

+
m−1∑

i=1

B
(i)
ti−1

−B
(i−1)
ti−1

+B
(i−1)
ti−1

−B
(i)
ti

+
m−1∑

i=1

⌊
ti
m

⌋

(17)

= A0 − (m− 1)

⌊
t0
m

⌋

+B
(0)
t0

−B
(m−1)
tm−1

+
m−1∑

i=1

B
(i)
ti−1

−B
(i−1)
ti−1

+
m−1∑

i=1

⌊
ti
m

⌋

(18)
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= A0 − (m− 1)

⌊
t0
m

⌋

+B
(0)
t0 −B

(m−1)
tm−1

+

m−2∑

i=0

B
(i+1)
ti

−B
(i)
ti

+

m−1∑

i=1

⌊
ti
m

⌋

(19)

= A0 − (m− 1)

⌊
t0
m

⌋

+B
(1)
t0 −B

(m−1)
tm−1

+

m−2∑

i=1

B
(i+1)
ti

−B
(i)
ti

+

m−1∑

i=1

⌊
ti
m

⌋

(20)

= A0 − (m− 1)

⌊
t0
m

⌋

︸ ︷︷ ︸

,Q1

+B
(1)
t0
︸︷︷︸

,Q2

−B
(m−1)
tm−1
︸ ︷︷ ︸

,Q3

−
m−2∑

i=1

⌈

B
(i)
ti

m− i

⌉

︸ ︷︷ ︸

,Q4

+

m−1∑

i=1

⌊
ti
m

⌋

︸ ︷︷ ︸

,Q5

(21)

where the last equality comes fromB
(i+1)
ti

= B
(i)
ti

−
⌈

B
(i)
ti

m−i

⌉

which in turn comes from the definition

of Ui+1 (the adversary removes the node with most budget) combined with lemma 11 (Balance

equalizes budget among available nodes).

The following lemma proves that T = tm−1 + o(T ),

Lemma 10 For t0 ≤ T
e , T = tm−1 + o(T ).

Proof.

According to lemma 16,

t̃m−1 =

(

1 +
1

m− 1

)m−1

(t0 +mb0 −m+ 1)−mb0 +m− 1 (22)

Putting everything together gives,

T − tm−1 = T − tm−1 − t̃m−1 + t̃m−1 (23)

≤ T +

(

1 +
1

m− 1

)m−1

(t0 +mb0 −m+ 1)−mb0 +m− 1 (24)

≤ T + e(t0 +mb0)−mb0 (25)

choosing t0 such that t0 = ⌊T/e⌋ along with the fact that m = o(
√
T ), implies that T − tm−1 =

o(T ).

Computation of the CR.

CRadv(Balance,GT,m) (26)

=
Q1 +Q2 −Q3 −Q4 +Q5

tm−1 + o(T )
(27)

=
O
(
t0
m

)
+Q2 −Q3 −Q4 +Q5

tm−1 + o(T )
as A0 = t0 (28)

=
O
(
t0
m

)
+ (m− 1)

(
b0 +

⌊
t0
m

⌋
−
⌊
t0
n

⌋)
+O(m)−Q3 −Q4 +Q5

tm−1 + o(T )
lemma 13 (29)
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=
O
(
t0
m

)
+ (m− 1)

(
b0 +

⌊
t0
m

⌋
−
⌊
t0
n

⌋)
+O(m)−Q4 +Q5

tm−1 + o(T )
(30)

=
1

tm−1 + o(T )

(

O
(
t0
m

)

+ (m− 1)

(

b0 +

⌊
t0
m

⌋

−
⌊
t0
n

⌋)

− ⌊α∗m⌋
⌈

B
(1)
t1

m

⌉

+t̄0

∫ α∗

1
m

gm(x)dx+
gm(α∗)− gm(1/m)

m
+O(m2) +Q5

)

lemma 23 (31)

=
1

tm−1 + o(T )

(

O
(
t0
m

)

+ (m− 1)

(

b0 +

⌊
t0
m

⌋

−
⌊
t0
n

⌋)

− ⌊α∗m⌋
⌈

B
(1)
t1

m

⌉

+t̄0

∫ α∗

1
m

gm(x)dx+
gm(α∗)− gm(1/m)

m
+O(m2)

+

((

1 +
1

m− 1

)m−1

− 1 +
1

m

)

t0 +B(m, b0)

)

lemma 19 (32)

where α∗ ∈ (1/m, 1) the solution of

t̄0
m

∫ α∗

1
m

z

1− z
ezdz −mα∗ − Y1 = 0 , (33)

and

gm(x) =
x(α∗ − x)

1− x

(

1 +
1

m− 1

)mx

thus B(m, b0) ≤ (e− 2)mb0 + b0

A.2.1. PROOF OF LEMMA 11

The following lemma states that U -nodes that were available exactly at the same time steps in the

past should have the same budget within one unit when the algorithm is Balance.

Lemma 11 Let W ⊆ U such that ∀s ≤ t ∈ V , (∃u ∈ W, (u, s) ∈ E) ⇒ (∀u ∈ W, (u, s) ∈ E).
For the algorithm Balance,

∃βt ∈ N,∀u ∈W,∃zu,t ∈ {0, 1}, s.t. bu,t = βt + zu,t and
∑

u′∈W

zu′,t < |W | (34)

Proof.

We first focus on the first part of the result. Let t ∈ N
∗ and W ⊆ U such that ∀s ≤ t ∈ V ,

(∃u ∈ W, (u, s) ∈ E) ⇒ (∀u ∈ W, (u, s) ∈ E). We need to prove that using the Balance

algorithm implies that the budgets of the nodes at time t differ only by one. We will prove it by

recursion using the following hypothesis,

K(i) : ∃βi ∈ N,∀u ∈W, bu,i = βi + zu,i with zu,i ∈ {0, 1} and
∑

u′∈W

zu′,i < |W |

By assumption, ∀u ∈W bu,0 = b0, which means that K(0) holds.

At time i, Balance chooses ui ∈ argmaxu∈U :(u,i)∈E bu,i. If ui 6∈ W , the result is direct from

K(i− 1) with βi = βi−1 + [i modm = 0]. Otherwise, there are two cases when ui ∈W .
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Case ∀u ∈ W, bu,i−1 = βi−1. Then, by choosing βi = βi−1 − 1 + [i modm = 0], we have

bui,i = βi and for any u′ ∈W \ {ui}, bu′,i = bu,i−1 + [i modm = 0].

Case ∃u, u′ ∈ W, bu,i−1 6= bu′,i−1. Then, by choosing βi = βi−1 + [i modm = 0], we have

bui,i = βi and ∀u ∈W \ {ui}, bu,i = bu,i−1 + [i modm = 0].

In both cases, K(i) holds.

A.2.2. PROOF OF LEMMA 13

During the phase i, between ti−1 and ti, the graph is fully-connected to Ui. Thus,
∑

u∈Ui
bu,t

follows the following dynamic Zt.

Given k,m, t, j ∈ N
∗, the dynamic of interest is

Zt = Zt−1 − 1Zt−1≥1 + k1t mod m=j . (35)

where k = |Ui|, and j accounts for the fact that a phase begins at a time ti−1 that is not necessarily

a multiple of m.

Lemma 12 For k,m, t, Z0, j ∈ N
∗,

Zt =







(Z0 − t)+ + k1t=j if t ≤ j

g(Zj , k, t− j,m) if j < t ≤ j + t∗

f(k,m, t− j, t̃) if j + t̃ ≤ t

(36)

t∗ =







Zj + k
⌈
Zj+1−m
m−k

⌉

if m > k

Zj if m ≤ k and Zj < m

+∞ otherwise

and t̃ = m

⌈
t∗

m

⌉

(37)

and f(k,m, t, t̃) =
(

1k<m(k − (t modm))+ + 1k≥m

(

k
(

1 +
⌊
t−t̃
m

⌋)

− (t− t̃)
))

, g(Zj , k, t,m) =
(
Zj + k

⌊
t
m

⌋
− t
)

Proof.

First, the case when j = 0.

For k,m, t, Z0 ∈ N
∗, t∗ is defined to be the first time at which Zt reaches 0.

t∗ = min
t∈N∗

t s.t. Zt = 0 (38)

which value is given by lemma 14.

For any t ≤ t∗, 1[Zt−1>0] = 1, thus, by recursion,

Zt = Z0 − t+ k

t∑

t′=1

1[t′ mod m=0] (39)
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= Z0 − t+ k

⌊
t

m

⌋

. (40)

For any t∗ ≤ t < t̃, tmodm 6= 0 and thus Zt = 0 (by recursion starting at Zt∗ = 0).

For any t > t̃, the analysis is split between the case k ≥ m and k < m. In both cases Zt̃ = k
and we denote t = t̃+∆t.

First, if k ≥ m, similarly as before, we get Zt̃+∆t = (Zt̃ − ∆t + k
⌊
∆t
m

⌋
): for k ≥ m, it is

always true that Zt̃+∆t−1 > 0 which gives the result by recursion.

Second, if k < m, the result is proved by recursion.

Recursion hypothesis – H(t) = Zt̃+∆t = (k − (t modm))+ and by definition of t̃, H(t̃) holds

as Zt̃ = k.

Zt+1 = Zt − 1Zt>0 + k1t+1 mod m=0 (41)

= (k − (t̃+∆t) modm)+ − 1(k−(t̃+∆t) mod m))+>0 + k1(t̃+∆t+1) mod m=0 (42)

= (k −∆t modm)+ − 1(k−∆t mod m)>0 + k1(∆t+1) mod m=0 (43)

• If (∆t+ 1) modm = 0, we necessarily have Zt̃+∆t = 0 (as k ≤ m− 1). Thus Zt̃+∆t+1 =
k = (k − (t̃+∆t+ 1) modm)+.

• If (∆t + 1) mod m 6= 0 and Zt̃+∆t > 0, we have Zt̃+∆t+1 = Zt̃+∆t − 1 which gives the

result,

• If (∆t+ 1) modm 6= 0 and Zt̃+∆t = 0, we have Zt̃+∆t+1 = Zt̃+∆t which gives the result.

Second, the general case when 0 ≤ j <m.

Let Z̃t = Zt+j , t∗j = mint∈N∗ t s.t. Z̃t = 0 and t̃j = m
⌊
t∗j
m

⌋

. Using the result proved above for

j = 0 gives for any t > j

Z̃t−j = g(Z̃0, k, t− j,m)1t−j≤t∗j
+ 1t−j≥t̃j

f(k,m, t− j, t̃) (44)

⇔ Zt = g(Zj , k, t− j,m)1t−j≤t∗ + 1t−j≥t̃f(k,m, t− j, t̃) (45)

and for any t ≤ j,

Zt = (Z0 − t)+ + k1t=j (46)

Lemma 13 B
(1)
t0 = (m− 1)

(
b0 +

⌊
t0
m

⌋
−
⌊
t0
n

⌋)
+ (m− 1− (t0 mod n)+)

Proof.

By application of lemma 12, B
(0)
t0 = nb0 + n

⌊
t0
m

⌋
− t0. By application of lemma 11,

B
(1)
t0 = (m− 1)

⌊

nb0 + n
⌊
t0
m

⌋
− t0

n

⌋

+ (m− 1− (t0 mod n))+ (47)

= (m− 1)

(

b0 +

⌊
t0
m

⌋

−
⌊
t0
n

⌋)

+ (m− 1− (t0 mod n))+ (48)
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A.2.3. PROOF OF LEMMA 19

This section is organized as follows:

1. A characterization of ti by a recursive equation.

2. The introduction of t̃i (to approximate ti).

3. The quantification of the approximation error between ti and t̃i.

4. A closed-form computation of
∑m−1

i=1 t̃i.

5. The final result.

A characterization of ti. The following result allows to characterize the sequence of ti by a

recursive equation.

Lemma 14 For a, b ≥ 0,m, c ≥ 2, if t∗ = inf{t ∈ N
∗ : b+ c

⌊
t
m

⌋
= (t− a)} then,

t∗ =







a+ b+ c
⌈
a+b+1−m

m−c

⌉

if m > c

a+ b if m ≤ c and a+ b < m

+∞ otherwise

(49)

Proof.

First,

t∗ = min
t∈N∗

t s.t. b+ c

⌊
t

m

⌋

− (t− a) = 0 (50)

= min
t∈N∗

t s.t. b+ a+ (c−m)

⌊
t

m

⌋

−
{
t

m

}

= 0 ({·} denotes the fractional part) (51)

= min
k∈N

j∈[0...m−1]

km+ j s.t. (a+ b)− j + (c−m)k = 0 and km+ j > 0 (52)

= min
k∈N

a+ b+ ck s.t. (a+ b) + 1−m ≤ (m− c)k ≤ a+ b and a+ b+ k > 0 (53)

(54)

Going from eq. (51) to eq. (52) is done by using the Euclidean division of t by m as t = km + j.
As eq. (53) is linear in k with positive coefficients, it is minimized at the lowest feasible value of k
which is

k∗ =







⌈
a+b+1−m

m−c

⌉

if m > c

0 if m ≤ c and a+ b < m

+∞ otherwise

(55)

The result follows by using the fact that t∗ = k∗m+ j∗ where j∗ = a+ b+ (1−m)k∗.

Corollary 15 ∀i ∈ N, ti+1 = b0 − 1 + ti +
⌈
b0+ti
m−1

⌉

.

Proof.

Direct application of lemma 14 from the definition of ti.
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Introduction of t̃i to approximate ti. To obtain a sequence t̃i close to ti with a closed form, the

intuition is to ”remove” the fractional part and solve the arithmetic-geometric equation.

∀i ∈ N
∗, t̃i+1 = b0 − 1 + t̃i +

b0 + t̃i
m− 1

, . (56)

t̃0 = t0 (57)

The intuitive justification is that we are in the regime m = o(
√
T ), thus the error introduced by

ignoring a term of order
{

b0+ti
m−1

}

is small (especially if t1 = Θ(T )).

Now, given that t̃i follows an arithmetic-geometric equation, it admits a closed-form expression:

Lemma 16 For any i ∈ N,

t̃i =

(

1 +
1

m− 1

)i

(t0 +mb0 −m+ 1)−mb0 +m− 1 (58)

Proof.

Let i be in N.

t̃i+1 = b0 − 1 + t̃i +
b0 + t̃i
m− 1

(59)

⇔ t̃i+1 =
m

m− 1
t̃i +

m

m− 1
b0 − 1 (60)

⇔ t̃i+1 +mb0 −m+ 1 =
m

m− 1
t̃i +

m

m− 1
b0 − 1 +mb0 −m+ 1 (61)

⇔ t̃i+1 +mb0 −m+ 1 =
m

m− 1

(
t̃i + b0 + (m− 1)b0 −m+ 1

)
(62)

⇔ t̃i+1 +mb0 −m+ 1 =
m

m− 1

(
t̃i +mb0 −m+ 1

)
(63)

⇔ t̃i+1 = −mb0 +m− 1 +

(
m

m− 1

)i

(t̃0 +mb0 −m+ 1) (64)

Quantification of the approximation error.

Lemma 17 ∀i ∈ N
∗, ti − t̃i < (m− 1)

((

1 + 1
m−1

)i
− 1

)

.

Proof.

ti − t̃i = ti−1 − t̃i−1 +

⌈
ti−1 + b0
m− 1

⌉

− t̃i−1 + b0
m− 1

eq. (56) and corollary 15 (65)

= ti−1 − t̃i−1 +
ti−1 − t̃i−1

m− 1
+

⌈
ti−1 + b0
m− 1

⌉

− ti−1 + b0
m− 1

(66)

= (ti−1 − t̃i−1)

(

1 +
1

m− 1

)

+

⌈
ti−1 + b0
m− 1

⌉

− ti−1 + b0
m− 1

(67)
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Thus, by induction, using that t0 − t̃0 = 0 (by definition).

ti − t̃i < (ti−1 − t̃i−1)

(

1 +
1

m− 1

)

+ 1 (68)

<

(

1 +
1

m− 1

)i

(m− 1) + 1−m (69)

Closed-form computation of
∑m−1

i=1 t̃i.

Lemma 18
∑m−1

i=0 t̃i =

((

1 + 1
m−1

)m−1
− 1 + 1

m

)

mt0 +A(m, b0) where

A(m, b0) = m(mb0 −m+ 1)

((

1 +
1

m− 1

)m−1

− 2 +
1

m

)

. (70)

Proof.

m−1∑

i=0

t̃i = −m(mb0 −m+ 1) + (t0 +mb0 −m+ 1)

m−1∑

i=0

(

1 +
1

m− 1

)i

(71)

(72)

= −m(mb0 −m+ 1)−m+ (t0 +mb0 −m+ 1)

(

1 + 1
m−1

)m
− 1

1 + 1
m−1 − 1

(73)

= −m(mb0 −m+ 1)−m+ (t0 +mb0 −m+ 1) (m− 1)

((

1 +
1

m− 1

)m

− 1

)

(74)

=

((

1 +
1

m− 1

)m−1

− 1 +
1

m

)

mt0

+m(mb0 −m+ 1)

((

1 +
1

m− 1

)m−1

− 2 +
1

m

)

︸ ︷︷ ︸

,A(m,b0)

(75)

Putting everything together.

Lemma 19
∑m−1

i=1

⌊
ti
m

⌋
=

((

1 + 1
m−1

)m−1
− 1 + 1

m

)

t0 +B(m, b0) where B(m, b0) < (e −
2)mb0 + b0
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Proof.

m−1∑

i=1

⌊
ti
m

⌋

=
m−1∑

i=1

t̃i
m

+
m−1∑

i=1

ti − t̃i
m

−
m−1∑

i=1

{
t̃i
m

}

︸ ︷︷ ︸

,E(m)

(76)

where

E(m) ≤
m−1∑

i=1

ti − t̃i
m

(77)

<
m− 1

m

m−1∑

i=1

((

1 +
1

m− 1

)i

− 1

)

(78)

<
m− 1

m





(

1 + 1
m−1

)m
− 1

1 + 1
m−1 − 1

−m



 (79)

<
(m− 1)

m

(

(m− 1)

((

1 +
1

m− 1

)m

− 1

)

−m

)

(80)

<
(m− 1)

m

(

m

(

1 +
1

m− 1

)m−1

+ 1− 2m

)

(81)

< (m− 1)

((

1 +
1

m− 1

)m−1

− 2

)

+
m− 1

m
(82)

Using lemma 18 gives

m−1∑

i=1

⌊
ti
m

⌋

=

((

1 +
1

m− 1

)m−1

− 1 +
1

m

)

t0 + E(m) + A(m, b0)
︸ ︷︷ ︸

,B(m,b0)

(83)

where

B(m, b0) <

((

1 +
1

m− 1

)m−1

− 2 +
1

m

)

mb0 (84)

A.2.4. PROOF OF LEMMA 23

The objective of this subsection is the compute
∑m−1

i=1

⌈
B

(i)
ti

m−i

⌉

. This section is organised as follows:

1. the introduction of Yi to approximate

⌈
B

(i)
ti

m−i

⌉

, 2. the bounding of Yi, 3. the quantification of the

approximation error between Yi and

⌈
B

(i)
ti

m−i

⌉

, 4. the final result.
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Introduction of Yi. For any i ≥ 1, Yi is defined by the following recursion:

Y1 =

⌈

B
(1)
t1

m− 1

⌉

(85)

Yi+1 = Yi − (t̃i+1 − t̃i)

(
1

m− i− 1
− 1

m

)

+ 1 (86)

where t̃i is the approximate time dynamic defined in eq. (56).

The bounding of Yi .

Lemma 20 For 1 ≤ i < m− 1,

Y1 + i− 1− t̄0
m
g((i + 1)/m) ≤ Yi ≤ Y1 + i− 1− t̄0

m
g(i/m) (87)

where g(z) =
∫ z

1
m

x
1−x exp(x)dx and t̄0 = t0 −mb0 −m+ 1.

Proof.

By definition of Yi, it holds

Yi = Y1 + i− 1−
i∑

k=2

(t̃k − t̃k−1)

(
1

m− k
− 1

m

)

(88)

= Y1 + i− 1−
i∑

k=2

(t̃k − t̃k−1)
k

m(m− k)
(89)

= Y1 + i− 1− t̄0
m

i∑

k=2

(

1 +
1

m− 1

)k (

1− m− 1

m

)
k

(m− k)
by eq. (58) (90)

= Y1 + i− 1− t̄0
m2

i∑

k=2

k

m− k

(

1 +
1

m− 1

)k

(91)

where t̄0 = t0 −mb0 −m+ 1. Moreover, since (1 + 1
m−1 ) ≥ exp( 1

m ), this gives

exp(
k

m
) ≤ (1 +

1

m− 1
)k ≤ exp(

k

m− 1
) ≤ exp(

k

m
)(1 +

2

m
),

Since the function x 7→ x
1−x exp(x) is increasing on R+, we get that (for i < m− 1)

∫ i
m

1
m

x

1− x
exp(x)dx

︸ ︷︷ ︸

,g(i/m)

≤ 1

m

i∑

k=2

k

m− k
exp(

k

m
)

︸ ︷︷ ︸

A

≤
∫ i+1

m

2
m

x

1− x
exp(x)dx,

Or equivalently, for i < m− 1,

Y1 + i− 1− t̄0
m
g((i + 1)/m) ≤ Yi ≤ Y1 + i− 1− t̄0

m
g(i/m) (92)
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Quantification of approximation error. The sequence Yi only approximates well

⌈
B

(i)
ti

m−i

⌉

as long

as it stays positive.

Lemma 21

⌈
B

(i)
ti

m−i

⌉

− Yi ≤ O(i)

Proof.

By application of lemma 12 on B
(i)
t

B
(i)
ti

= B
(i)
ti−1

−







B
(i)
ti−1

m− i+ 1







+ (m− i)

(

1 +

⌊
ti
m

⌋

−
⌈
ti−1

m

⌉)

− (ti − ti−1) (93)

Thus, using the definition of Yi in eq. (85),

⌈

B
(i)
ti

m− i

⌉

− Yi =
B

(i)
ti

m− i
− Yi +O(1) (94)

=
1

m− i



B
(i)
ti−1

−







B
(i)
ti−1

m− i+ 1









+

(

1 +

⌊
ti
m

⌋

−
⌈
ti−1

m

⌉)

− ti − ti−1

m− i
− Yi

+O(1) (95)

= (ti − ti−1)

(
1

m
− 1

m− i

)

−
(

Yi−1 − (t̃i − t̃i−1)

(
1

m
− 1

m− i

)

+ 1

)

+
B

(i)
ti−1

m− i+ 1
+ 1 +O(1) (96)

=







B
(i)
ti−1

m− i+ 1







− Yi−1 + (ti − ti−1 − t̃i + t̃i−1)

(
1

m
− 1

m− i

)

+O(1) (97)

By induction

⌈

B
(i)
ti

m− i

⌉

− Yi =

i∑

j=2

(tj − tj−1 − t̃j + t̃j−1)

(
1

m
− 1

m− j

)

+O(i) (98)

=
i∑

j=2

(tj − tj−1)− (t̃j − t̃j+1)

m
−

i∑

j=2

tj − tj−1 − t̃j + t̃j−1

m− j
+O(i) (99)

=
(ti − t1)− (t̃i − t̃1)

m
−

i∑

j=2

(

(tj−1 − t̃j−1)
(

1 + 1
m−1

)

+ 1
)

+ t̃j−1 − tj−1

m− j

+O(i) by eq. (68) (100)

=
ti − t1 − t̃i + t̃1

m
−

i∑

j=2

tj−1 − t̃j−1 + 1

(m− j)(m− 1)
+O(i) (101)

≤ O(i) by lemma 17 (102)
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Lemma 22 i∗ = ⌊α∗m⌋

Proof.

The objective is to find i∗ such that

Y1 + i∗ − 1− t̄0
m
g((i∗ + 1)/m) < 0 ≤ Y1 + i∗ − 1− t̄0

m
g(i∗/m) (103)

Let define α∗ ∈ (1/m, 1) the solution of

t̄0
m

∫ α

1
m

z

1− z
ezdz −mα∗ − Y1 = 0 , (104)

then i∗ = ⌊α∗m⌋ satisfies eq. (103).

Lemma 23

m−1∑

i=1

⌈

B
(i)
i

m− i

⌉

= ⌊α∗m⌋
⌈

B
(1)
t1

m

⌉

− t̄0

∫ α∗

1
m

g(x)dx+
g(α∗)− g(1/m)

m
+O(m2) (105)

where α∗ ∈ (1/m, 1) the solution of

t̄0
m

∫ α

1
m

z

1− z
ezdz −mα∗ − Y1 = 0 , (106)

and

g(x) =
x(α∗ − x)

1− x

(

1 +
1

m− 1

)mx

Proof.

Let define i∗ = ⌊α∗m⌋. Then,

m−1∑

i=1

⌈

B
(i)
i

m− i

⌉

=

i∗∑

i=1

Yi +

i∗∑

i=1

⌈

B
(i)
i

m− i

⌉

− Yi +

m−1∑

i=i∗+1

⌈

B
(i)
i

m− i

⌉

(107)

=

i∗∑

i=1

Yi +

i∗∑

i=1




ti − t1 − t̃i + t̃1

m
−

i∑

j=2

tj−1 − t̃j−1

(m− j)(m− 1)
+O(i)





+ (m− 1)(m− 1− i∗)−
m−1∑

i=i∗+1

(ti modm) (108)

=

i∗∑

i=1

Yi + i∗
t̃1 − t1
m

+

i∗∑

i=1

ti − t̃i
m

−
i∗∑

i=1

i∑

j=2

tj−1 − t̃j−1

(m− j)(m− 1)
+O((i∗)2)
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+ (m− 1)(m− 1− i∗)−
m−1∑

i=i∗+1

(ti modm) (109)

=
i∗∑

i=1

Yi + i∗
t̃1 − t1
m

+
i∗∑

i=1

ti − t̃i
m

−
i∗∑

i=1

i∑

j=2

1

(m− j)

((

1 +
1

m− 1

)j−1

− 1

)

(110)

+ (m− 1)(m− 1− i∗) +O(m2) using i∗ = ⌊α∗ m⌋ and eq. (69)

=

i∗∑

i=1

Yi + i∗
t̃1 − t1
m

+

i∗∑

i=1

ti − t̃i
m

− 1

(m− 1)

i∗∑

i=1

i∑

j=2

((

1 +
1

m− 1

)j−1

− 1

)

+ (m− 1)(m− 1− i∗) +O(m2) (111)

=

i∗∑

i=1

Yi + i∗
t̃1 − t1
m

+
i∗(i∗ + 1)

2(m− 1)
− 1

(m− 1)

i∗∑

i=1

i∑

j=2

((

1 +
1

m− 1

)j−1
)

− i∗

m− 1
+ (m− 1)(m− 1− i∗) +

i∗∑

i=1

ti − t̃i
m

+O(m2) (112)

=

i∗∑

i=1

Yi + i∗
t̃1 − t1
m

+

i∗∑

i=1

ti − t̃i
m

+
i∗(i∗ + 1)

2(m− i∗)
+ (m− 1)(m− 1− i∗) +O(m2)

(113)

=

i∗∑

i=1

Yi +O(m2) by lemma 17 and i∗ = ⌊α∗m⌋ (114)

=

i∗∑

i=1

(

Y1 + i− 1− t̄0
m2

i∑

k=2

k

m− k

(

1 +
1

m− 1

)k
)

+O(m2) by eq. (91)

(115)

= i∗Y1 +
i∗(i∗ + 1)

2
− i∗ − t̄0

m2

i∗∑

i=1

i∑

k=2

k

m− k

(

1 +
1

m− 1

)k

+O(m2) (116)

= i∗Y1 −
t̄0
m2

i∗∑

i=1

i∑

k=2

k

m− k

(

1 +
1

m− 1

)k

+O(m2) by i∗ = ⌊α∗m⌋

(117)

= i∗Y1 −
t̄0
m2

i∗∑

k=2

(i∗ − k)k

m− k

(

1 +
1

m− 1

)k

+O(m2) (118)

= i∗Y1 −
t̄0
m

i∗∑

k=2

( i
∗

m − k
m) k

m

1− k
m

((

1 +
1

m− 1

)m) k
m

+O(m2) (119)

= i∗Y1 −
t̄0
m

i∗∑

k=2

g

(
k

m

)

+O(m2) with g(x) =
x(α∗ − x)

1− x

(

1 +
1

m− 1

)mx

(120)
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= i∗Y1 −
t̄0
m

i∗∑

k=2

g

(
k

m

)

+O(m2) (121)

= i∗

⌈

B
(1)
t1

m− 1

⌉

− t̄0

∫ α∗

1
m

g (x) dx+
g(α∗)− g(1/m)

m
+O(m2) (122)

Moving from eq. (121) to eq. (122) arises from approximating a Riemann sum by an integral.

A.3. Proof of theorem 3

Theorem 3 Assuming the initial budgets are b1,0 = b2,0 = · · · = bn,0 = b0 ≥ 1. For m = o(
√
T ),

sup
ALG

E

[

CRadv(ALG,GT,m)
]

≤ CRadv(Balance, Gth.2) + oT (1) (3)

where the expectation is taken over the randomness from ALG.

Proof.

The proof is based on the adversarial graph design defined in section A.2 and organized in two steps:

1. Showing that the sequence of total budget decreases at least as fast as the one of Balance.

2. Using this in eq. (13) to show that ALG(Gth.2) ≤ Balance(Gth.2) + o(T ).

ALG is assumed to be any matching algorithm, potentially randomized. The matching built by

ALG is denoted x, the graph Gth.2 is adversarially defined based on x as in section A.2 and we use

the rest of the notation defined there. Note that only the choice of nodes in U1, . . . , Um−1 differs

from the graph adversarial to ALG, not the other quantities such as ti.

For any i ≤ m−1 and t ∈ [T ], the total budget of ALG is denoted B
(i)
t = E

[∑

u∈Ui
xu,t
]

where

the expectation is taken over the randomness of ALG. We denote B
(i),bal
t for the sequence generated

by Balance in section A.2 for comparison.

Dynamic of B
(i)
ti

. First, at time t0, by application of lemma 12, B
(0)
t0 = B

(0),bal
t0 . The key element

of the proof is to use that

∀y ∈ R
n
+,∀k ≤ n,

k∑

j=1

y(n−j) ≤
k

n
‖y‖1 where y(j) ≥ 0 is the ith largest coordinate of y. (123)

Thus, by applying eq. (123) on b·,t0 , after the adversary removes n −m+ 1 nodes to build U1, we

have B
(1)
t0 ≤ B

(1),bal
t0 + m − 1. The term r0 = m − 1 comes from the fact Balance does not

exactly equalize the budgets (see lemma 11) and a randomized balance algorithm could do it more

accurately in expectation. By induction, using at each step lemma 12 and eq. (123), we obtain that

∀i ≤ m− 1, B
(i)
ti

≤ B
(i),bal
ti

+ i(m− i)
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Showing that ALG(Gth.2) ≤ Balance(Gth.2)+ o(T ). Denoting it the phase of the graph to which

time step t belongs, it is possible to show that,

ALG(Gth.2) = t∗+

m−1∑

i=it∗+1

(m−i)
(⌊

ti
m

⌋

−
⌊
ti−1

m

⌋)

+O(m) where t∗ = max{t ∈ [T ] : B
(it)
t ≥ 1}

Noting that, B
(it),bal
t ≤ B

(it)
t + it(m− it), leads to ALG(GTh.2) ≤ Balance(GTh.2) +m2, which

gives,

CRadv(ALG,GT,m) ≤ CR(ALG, GTh.2) ≤ CR(Balance, GTh.2) + oT (1)

where CR(ALG, Gth.2) = ALG(Gth.2)
OPT(Gth.2)

.

Appendix B. Stochastic Case

B.1. Proof of theorem 4

Theorem 4 With probability 1 − O
(
n1/4 exp(−a3n1/4)

)
, the matching size created by Greedy

denoted by Greedy(G,T ) satisfies,

Greedy(G,T ) = nh(T/n) +O(n3/4)

and,
E[Greedy(G,T )]

n
→

n→+∞
h(T/n)

where h(τ) is solution of the following equation,

ḣ(τ) = 1− e−a(1−z0(τ)),
1

n
≤ τ ≤ T

n

and z0(τ) satisfies the following system,







ż0(τ) = −z0(τ)β + z1(τ)
1−z0(τ)

(1− e−a+az0(τ)) for k = 0

żk(τ) = (zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1−e−a+az0(τ)

1−z0(τ)
for 1 ≤ k ≤ K − 1

żk(τ) = β zk−1(τ)− zk(τ)
1−e−a(1−z0(τ))

1−z0(τ)
for k = K

∑K
k=0 zk(τ) = 1

(4)

The proof of theorem 4 is based on Wormald’s theorem introduced in Wormald (1995, 1999)

and is organized as follows:

1. Definition of the evolution of (Yk(t))k≥0 and Greedy(G, t).

2. Proving that (Yk(t))k≥0 and Greedy(G, t) satisfy the hypotheses of the Wormald theorem.

3. Application of Wormald theorem on (Yk(t))k≥0 and Greedy(G, t).
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Recall that for all u ∈ U , bu,t ∈ N is given by,

bu,t = min(K, bu,t−1 − xu,t + ηt) with bu,0 = b0 ≥ 1 and K ∈ N. (124)

Here ηt is a realization of a Bernoulli random variable with parameter β
n denoted B

(
β
n

)

.

First, let’s introduce some notations, for k ∈ N and t ∈ [T ],

• Uk(t) = {u ∈ U : bu,t = k} is the set of nodes with budget k.

• Yk(t) = |Uk(t)| is the number of nodes with budget equals to k.

• Greedy(G,T ) =
∑

u∈U

∑T
t=1 xu,t is the matching size.

• C(t) =
∑

k≥1 Yk(t) = n − Y0(t) is the total number of nodes with budget at least equals to

1.

In order to apply Wormald’s theorem, it is necessary to track the evolution of Greedy(G,T ). To

achieve this, we must precisely quantify the one-step change in Greedy(G, t) for all t ∈ [T ]. This

crucial step is addressed in the forthcoming lemma,

Lemma 24 For t ∈ [T ], the expectation of the one-step change of Greedy(G, t) is given by,

E [Greedy(G, t + 1)− Greedy(G, t)|Greedy(G, t)] = 1−
(

1− a

n

)∑
k≥1 Yk(t)

= 1−
(

1− a

n

)n−Y0(t)

Proof.

For t ∈ [T ], the matching size at time t+ 1 is defined as follows,

Greedy(G, t+ 1) = Greedy(G, t) + 1{xu,t+1=1, u∈Uk(t+1)}

Moving to conditional expectation gives,

E [Greedy(G, t + 1)− Greedy(G, t)|Greedy(G, t)] = P (xu,t+1 = 1, u ∈ Uk|Greedy(G, t))

= 1−
(

1− a

n

)C(t)

= 1−
(

1− a

n

)n−Y0(t)

Since the evolution of Greedy(G, t) depends on Y0, we need to quantify the evolution of

Yk(t),∀k ∈ N, t ∈ [T ]. This is done in the subsequent lemma,

Lemma 25 For t ∈ [T ], denoting Σ(t) = 1
pC(t)(1 − (1 − p)C(t)), the expectation of the one-step

change of Yk, when matching is built using Greedy algorithm is given by,







E [∆0(t)|Y(t)] = −Y0(t) [δ(1 − pΣ(t))] + Y1(t)(1 − δ)pΣ(t)

E [∆1(t)|Y(t)] = −Y1(t) [δ(1 − pΣ(t)) + (1− δ)pΣ(t)] + Y0(t)δ + Y2(t)(1 − δ)pΣ(t)

E [∆k(t)|Y(t)] = δ(1 − pΣ(t)) [Yk−1(t)− Yk(t)] + [Yk+1(t)− Yk(t)] (1− δ)pΣ(t) ∀k > 1

(125)

where ∀k ≥ 0, ∆k(t) = Yk(t+ 1)− Yk(t).
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Proof.

For t ∈ [T ], the evolution of the number of nodes with budget k ∈ N can be formulated as,

Yk(t+ 1) = Yk(t)−
∑

u∈Uk(t)

1{{ηt=1}∩{xu,t=0}}∪{{xu,t=1}∩{ηt=0}} +
∑

u∈Uk−1(t)

1{{ηt=1}∩{xu,t=0}}+

∑

u∈Uk+1(t)

1{{xu,t=1}∩{ηt=0}} (126)

We are interested in the conditional expectation of eq. (126) denoted byE(t) = E [Yk(t+ 1)− Yk(t)|Y(t)]
where Y(t) = (Yk(t))k≥0,

E(t)

= −E




∑

u∈Uk(t)

1{{ηt=1}∩{xu,t=0}∪{{xu,t=1}∩{ηt=0}}

∣
∣
∣
∣
∣
∣

Y(t)



 + E




∑

u∈Uk−1(t)

1{{ηt=1}∩{xu,t=0}}

∣
∣
∣
∣
∣
∣

Y(t)





+ E




∑

u∈Uk+1(t)

1{{xu,t=1}∩{ηt=0}}

∣
∣
∣
∣
∣
∣

Y(t)



 (127)

= −
∑

u∈Uk(t)

P ({{ηt = 1} ∩ {xu,t = 0}} ∪ {{xu,t = 1} ∩ {ηt = 0}}|Y(t))

+
∑

u∈Uk−1(t)

P

(

{{ηt = 1} ∩ {xu,t = 0}}
∣
∣
∣Y(t)

)

+
∑

u∈Uk+1(t)

P

(

{{xu,t = 1} ∩ {ηt = 0}}
∣
∣
∣Y(t)

)

(128)

= −
∑

u∈Uk(t)

P ({{ηt = 1} ∩ {xu,t = 0}}|Y(t))−
∑

u∈Uk(t)

P ({{ηt = 0} ∩ {xu,t = 1}}|Y(t))

+
∑

u∈Uk−1(t)

P

(

{{ηt = 1} ∩ {xu,t = 0}}
∣
∣
∣Y(t)

)

+
∑

u∈Uk+1(t)

P

(

{{xu,t = 1} ∩ {ηt = 0}}
∣
∣
∣Y(t)

)

(129)

= −
∑

u∈Uk(t)

δP ({xu,t = 0}|Y(t))−
∑

u∈Uk(t)

(1− δ)P ({xu,t = 1}|Y(t))

+
∑

u∈Uk−1(t)

δP
(

{xu,t = 0}
∣
∣
∣Y(t)

)

+
∑

u∈Uk+1(t)

(1− δ)P ({xu,t = 1}|Y(t)) (130)

Moving from eq. (128) to eq. (129) and then from eq. (129) to eq. (130) is done using indepen-

dence.

To get the final expression of E(t), we need to compute P

[

{xu,t = 1}
∣
∣
∣Y(t)

]

. By using Bayes

formula we can see that,

P

[

{xu,t = 1}
∣
∣
∣Y(t)

]

= P

[

{(u, t) ∈ G}
∣
∣
∣Y(t)

]

P

[

{xu,t = 1}
∣
∣
∣Y(t), (u, t) ∈ G

]

= pP
[

{xu,t = 1}
∣
∣
∣Y(t), (u, t) ∈ G

]
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Now, let’s compute P

[

{xu,t = 1}
∣
∣
∣Y(t), (u, t) ∈ G

]

,

P

[

{xu,t = 1}
∣
∣
∣Y(t), (u, t) ∈ G

]

=

C(t)
∑

i=1

P

[

{xc,t = 1, c ∈ [i], Bc(t) ≥ 1}
∣
∣
∣Y(t), (u, t) ∈ G

]

=

C(t)
∑

i=1

P

[

{xc,t = 1}
∣
∣
∣c ∈ [i], Bc(t) ≥ 1,Y(t), (u, t) ∈ G

]

P

[

c ∈ [i], Bc(t) ≥ 1
∣
∣
∣Y(t), (u, t) ∈ G

]

=

C(t)
∑

i=1

1

i
P

[

c ∈ [i], Bc(t) ≥ 1
∣
∣
∣Y(t), (u, t) ∈ G

]

=

C(t)
∑

i=1

1

i

(
C(t)− 1

i− 1

)

pi−1 (1− p)C(t)−i

=
1

pC(t)
(1− (1− p)C(t))

︸ ︷︷ ︸

Σ(t)

Thus, we get

P

[

{xu,t = 1}
∣
∣
∣Y(t)

]

=
1

C(t)
(1− (1− p)C(t))

Due to Greedy algorithm, here the choice of u inside the probabilities doesn’t depend on Uk,

so putting everything together in E(t), and distinguishing cases where k = 0, k = 1 and k ≥ 2, we

get,







E [∆0(t)|Y(t)] = −Y0(t) [δ(1 − pΣ(t))] + Y1(t)(1 − δ)pΣ(t)

E [∆1(t)|Y(t)] = −Y1(t) [δ(1 − pΣ(t)) + (1− δ)pΣ(t)] + Y0(t)δ + Y2(t)(1 − δ)pΣ(t)

E [∆k(t)|Y(t)] = δ(1 − pΣ(t)) [Yk−1(t)− Yk(t)] + [Yk+1(t)− Yk(t)] (1− δ)pΣ(t) ∀k > 1

where ∀k ≥ 0, ∆k(t) = Yk(t+ 1)− Yk(t).

Before establishing the hypotheses of Wormald’s theorem, we introduce a technical lemma,

Lemma 26 For n > 0, a ≤ n/2 and 0 ≤ w ≤ 1,

0 ≤ e−aw −
(

1− a

n

)nw
≤ a

ne

Proof.

Using the following inequalities: 1− x ≥ e−x−x2
for x ≤ 1

2 and 1− x ≤ e−x for x ≥ 0, we obtain

e−aw
(

1− a2w
n

)

≤
(
1− a

n

)nw ≤ e−aw. The result follows by rearranging terms and using that

awe−aw ≤ 1/e.
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To apply Wormald’s theorem Wormald (1999) in our model, three key hypotheses need to be

met: the boundedness hypothesis, the Lipschitz hypothesis, and the trend hypothesis. These hy-

potheses will be established in the following lemmas for both Greedy(G, t) and Yk(t).

Lemma 27 ∀k ≥ 0, let −ǫ < τ < T
n + ǫ and −ǫ < zk < 1 + ǫ where ǫ > 0. The functions fk(τ)

and j0(τ) defined as follows,

fk(τ) =

{

−z0(τ)β + z1(τ)
1−z0(τ)

(1− e−a+az0(τ)) for k = 0

(zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1−e−a+az0(τ)

1−z0(τ)
for k ≥ 0

j0(τ) = 1− e−a(1−z0(τ))

are Lipschitz with a constant L = (β + a)(1 + ǫ) and L′ = aeaǫ respectively.

Proof.

The proof is done for k = 0 and remains the same for k ≥ 1. Let −ǫ < z0 < 1+ǫ, −ǫ < z1 < 1+ǫ,
−ǫ < τ < T

n + ǫ and −ǫ < τ ′ < T
n + ǫ.

|f0(τ)− f0(τ
′)| =

∣
∣
∣
∣
−z0(τ)β +

z1(τ)

1− z0(τ)
(1− e−a+az0(τ)) + z0(τ

′)β − z1(τ
′)

1− z0(τ ′)
(1− e−a+az0(τ ′))

∣
∣
∣
∣

≤ β
∣
∣z0(τ

′)− z0(τ)
∣
∣+

∣
∣
∣
∣

z1(τ)

1− z0(τ)
(1− e−a+az0(τ)) +

z1(τ
′)

1− z0(τ ′)
(1− e−a+az0(τ ′))

∣
∣
∣
∣

≤ β
∣
∣z0(τ

′)− z0(τ)
∣
∣+ a|z1(τ) + z1(τ

′)| using( 1− e−ax ≤ ax)z

Thus we get,

|f0(τ)− f0(τ
′)| ≤ (β + a+ 2)(1 + ǫ)|τ − τ ′|

Therefore, we proved that f0 is L-Lipschitz with L = (β + a + 2)(1 + ǫ). Now, let’s proceed to

prove that j0 is Lipschitz,

|j0(τ)− j0(τ
′)| = |e−a(1−z0(τ)) − e−a(1−z0(τ ′))|

= e−a(1−z0(τ))|1− ea(z0(τ
′)−z0(τ))|

≤ e−a(1−z0(τ))a|z0(τ ′)− z0(τ)| using 1− eax ≤ −ax
≤ eaǫa|τ − τ ′|

Hence j0 is L′-Lipschitz with L′ = eaǫa.

The next lemma proves the trend hypothesis,

Lemma 28 For t ∈ [T ] the functions fk

(
t
n ,

Y0(t)
n , . . . , YK(t)

n

)

and j( t
n ,

Y0(t)
n ) are given by,

fk =







−Y0(t) β
n (1− 1

n−Y0(t)
(1− e−a(1−

Y0(t)
n

)) + Y1(t)(n−a)
n

1
n−Y0(t)

(1− e−a(1−
Y0(t)

n
)) for k = 0

−Y1(t)
n

[

a(1− 1
n−Y0(t)

(1− e−a(1−
Y0(t)

n
)) + (n−a)

n−Y0(t)
(1− e−a(1−

Y0(t)
n

))
]

+ Y2(t)(n−a)
n(n−Y0(t))

(1− e−a(1−
Y0(t)

n
)) + Y0(t)a

n for k = 1
−Yk(t)

n

[

a(1 − 1
n−Y0(t)

(1− e−a(1−
Y0(t)

n
)) + (n−a)

n−Y0(t)
(1− e−a(1−

Y0(t)
n

))
]

+
Yk+1(t)(n−a)
n(n−Y0(t))

(1− e−a(1−
Y0(t)

n
)) +

Yk−1(t)a
n (1− 1

n−Y0(t)
(1− e−a(1−

Y0(t)
n

)) for k ≤ K − 1
Yk−1(t) β

n (1− 1
n−Y0(t)

(1− e−a(1−
Y0(t)

n
))− Yk(t)(n−a)

n
1

n−Y0(t)
(1− e−a(1−

Y0(t)
n

)) for k = K
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j = 1− e−a(1−
Y0(t)

n
)

and we have for all k ≥ 1,

∣
∣
∣
∣
E(Greedy(G, t + 1)− Greedy(G, t)|Greedy(G, t)) − j

(
t

n
,
Y0(t)

n

)∣
∣
∣
∣
≤ a

en
(131)

∣
∣
∣
∣
E(Yk(t+ 1)− Yk(t)|Y(t)) − fk

(
t

n
,
Y0(t)

n
, . . . ,

Yk(t)

n
, . . .

)∣
∣
∣
∣
≤ a

en
(132)

Proof.

Let’s prove eq. (132) for k = 0 ( the proof is the same for k ≥ 1),

M0 =

∣
∣
∣
∣
E(Y0(t+ 1)− Y0(t)|Y(t)) − f0

(
t

n
,
Y0(t)

n
,
Y1(t)

n

)∣
∣
∣
∣

M0 ≤
∣
∣
∣
∣

−Y0(t)β
n(n− Y0(t))

(1− (1− a

n
)n−Y0(t) − 1 + e−a(1−

Y0(t)
n

))

∣
∣
∣
∣

+

∣
∣
∣
∣

Y1(t)(n− β)

n(n− Y0(t))
(1− (1− a

n
)n−Y0(t) − 1 + e−a(1−

Y0(t)
n

))

∣
∣
∣
∣

≤ a

ne
(using lemma 26)

Let’s now prove eq. (131),

P =

∣
∣
∣
∣
E(Greedy(G, t+ 1)− Greedy(G, t)|Greedy(G, t)) − j

(
t

n
,
Y0(t)

n

)∣
∣
∣
∣

P =
∣
∣
∣e−a(1−

Y0(t)
n

) − ((1− a

n
)n−Y0(t))

∣
∣
∣

≤ a

ne
(using lemma 26)

The following lemma shows the Boundness hypothesis,

Lemma 29 For t ∈ [T ], k ≥ 0,

|Greedy(G, t + 1)− Greedy(G, t)| ≤ β′

|Yk(t+ 1)− Yk(t)| ≤ β

with β, β′ > 0.

Proof.

For t ∈ [T ] and k ≥ 0,

|Greedy(G, t+ 1)− Greedy(G, t)| = 1{xu,t+1=1,u∈Uk(t+1)} ≤ 1

Hence we have β′ = 1.

As seen previously, Yk(t) is the number of nodes with budget equals to k at time t. So, by the

nature of the matching process,

|Yk(t+ 1)− Yk(t)| ≤ 1
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Hence β = 1.

In the following lemma we approximate with high probability Yk(t),∀k ≥ 0, t ∈ [T ] by the

solution of a system of differential equations,

Lemma 30 With probability 1−O
(
n1/4 exp(−a3n1/4)

)
,

Yk(T ) = nzk(T/n) +O(n3/4) for k ≥ 0

∀ τ ∈ [ 1n ,
T
n ], (z0, . . . , zK) is the solution of the following system,







ż0(τ) = −z0(τ)β + z1(τ)
1−z0(τ)

(1− e−a+az0(τ)) for k = 0

żk(τ) = (zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1−e−a+az0(τ)

1−z0(τ)
for 1 ≤ k ≤ K − 1

żk(τ) = β zk−1(τ)− zk(τ)
1−e−a(1−z0(τ))

1−z0(τ)
for k = K

∑K
k=0 zk(τ) = 1

(133)

Proof.

For 1
n ≤ τ ≤ T

n , let’s consider the normalized random variable Zk(τ) = Yk(τ n)
n and Z(τ) =

(Zk(τ))k≥0. The conditional expectation of the one-step change of Zk(τ) for different values of k
is given by,

• For k = 0,

E
[
Z0(τ +

1
n)− Z0(τ)|Z(τ)

]

1/n
=

E [Y0(τ n+ 1)/n − Y0(τ n)/n|Y(τ n)/n]

1/n

=
E

[

−Z0(τ)
[

δ(1 − 1
n−nZ0(τ)

(1− (1− p)n−nZ0(τ)))
]]

1/n

+
E

[

Z1(τ)(1 − δ) 1
n−nZ0(τ)

(1− (1− p)n−nZ0(τ))
]

1/n

when n→ +∞, we get,

ż0(τ) = −z0(τ)β +
z1(τ)

1− z0(τ)
(1− e−a+az0(τ))

• For k = 1,

E
[
Z1(τ +

1
n)− Z1(τ)

∣
∣Z(τ)

]

1/n
=

E [Y1(τ n+ 1)/n − Y1(τ n)/n|Y(τ n)/n ∀k ≥ 1]

1/n

=
E

[

−Z1(τ)
[

δ(1 − 1
n−nZ0(τ)

(1− (1− p)n−nZ0(τ)))
]]

1/n

+
E

[

−Z1(τ)(1 − δ) 1
n−nZ0(τ)

(1− (1− p)n−nZ0(τ)))
]

1/n
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+
E

[

Z0(τ)δ + Z2(τ)(1− δ) 1
n−nZ0(τ)

(1− (1− p)n−nZ0(τ))
]

1/n

when n→ +∞ we get,

ż1(τ) = β(z0(τ)− z1(τ)) + (z2(τ)− z1(τ))
1 − e−a+az0(τ)

1− z0(τ)

• k ≥ 2,

E
[
Zk(τ +

1
n)− Zk(τ)|Z(t)

]

1/n
=

E [Yk(τ n+ 1)/n − Yk(τ n)/n|Y(τ n)/n]

1/n

=
E

[

−Zk(τ)
[

δ(1 − 1
n−nZ0(τ)

(1− (1− p)n−nZ0(τ)))
]]

1/n

+
E

[

−Zk(τ)(1− δ) 1
n−nZ0(τ)

(1− (1− p)n−nZ0(τ)))
]

1/n

+
E

[

Zk−1(τ)δ(1 − 1
n−nZ0(τ)

(1− (1− p)n−nZ0(τ)))
]

1/n

+
E

[

Zk+1(τ)(1 − δ) 1
n−nZ0(τ)

(1− (1− p)n−nZ0(τ)))
]

1/n

when n→ +∞ we get,

żk(τ) = (zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1− e−a+az0(τ)

1− z0(τ)

Applying the Wormald theorem (Wormald, 1995, 1999), with the domain D defined by −ǫ < τ <
T
n +ǫ, −ǫ < zk < 1+ǫ, for ǫ > 0. And taking β = 1 for the boundeness hypothesis (see lemma 29),

Λ1 = a/(e n) for the trend hypothesis (see lemma 28). The Lipschitz hypothesis is satisfied with

Lipschitz constant L = (β+ a)(1+ ǫ) (see lemma 27). Setting λ = an−1/4, the Wormald theorem

gives with probability 1−O
(
n1/4 exp(−a3n1/4)

)
,

Yk(T ) = nzk(T/n) +O(n3/4) for k ≥ 0

with (z0, . . . , zK) the solution of the following system,







ż0(τ) = −z0(τ)β + z1(τ)
1−z0(τ)

(1− e−a+az0(τ)) for k = 0

żk(τ) = (zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1−e−a+az0(τ)

1−z0(τ)
for 1 ≤ k ≤ K − 1

żk(τ) = β zk−1(τ)− zk(τ)
1−e−a(1−z0(τ))

1−z0(τ)
for k = K

∑K
k=0 zk(τ) = 1

40



DYNAMIC ONLINE MATCHING WITH BUDGET REFILLS

Now we have all the tools to prove theorem 4.

Proof.

For 1
n ≤ τ ≤ T

n , let’s consider the normalized random variable H(τ) = Greedy(G,τ n)
n , the condi-

tional expectation of the one-step change of H(τ) is given by,

E
[
H
(
τ + 1

n

)
−H(τ)

∣
∣H(τ)

]

1/n
=

E [Greedy(G, τ n+ 1)/n − Greedy(G, τ n)/n|Greedy(G, τ n)/n]
1/n

= 1− (1− a

n
)n−nZ0(τ)

when n→ +∞ we get,

ḣ(τ) = 1− e−a(1− z0(τ))

Applying Wormald theorem (Wormald, 1995, 1999), we choose the domain D defined by −ǫ <
τ < T

n + ǫ, −ǫ < z0 < 1 + ǫ for ǫ > 0. We have β′ = 1 for the boundedness hypothesis

(see lemma 29), δ = a/(e n) for the trend hypothesis (lemma 28). The Lipschitz hypothesis is

satisfied with Lipschitz constant L′ = aea ǫ. Setting λ = an−1/4, the Wormald theorem gives with

probability 1−O
(
n1/4 exp(−a3n1/4)

)
,

Greedy(G,T ) = nh(T/n) +O(n3/4)

where h(τ) is solution of the following equation,

ḣ(τ) = 1− e−a(1−z0(τ)), 1/n ≤ τ ≤ T/n

and z0(τ) as defined in the following system,







ż0(τ) = −z0(τ)β + z1(τ)
1−z0(τ)

(1− e−a+az0(τ)) for k = 0

żk(τ) = (zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1−e−a+az0(τ)

1−z0(τ)
for 1 ≤ k ≤ K − 1

żk(τ) = β zk−1(τ)− zk(τ)
1−e−a(1−z0(τ))

1−z0(τ)
for k = K

∑K
k=0 zk(τ) = 1

Since Greedy(G,T ) is bounded and thus uniformly integrable, so convergence in probability

implies convergence in mean:

lim
n→+∞

E[Greedy(G,T )]

n
= h(T/n)

The next theorem applies an improved version of the Wormald theorem (see Warnke (2019),

Enriquez et al. (2019)) on Greedy(G,T ),

Theorem 31 With probability at least 1− 2e−a2n
3
2 /8T we have,

max
1≤t≤T

|Greedy(G, t) − nh(t/n)| ≤ 3eL
′T/nan3/4
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with L′ = aeaǫ and ǫ > 0, here h(τ) is solution of the following equation,

ḣ(τ) = 1− e−a(1−z0(τ)) 1/n ≤ τ ≤ T/n

and z0(τ) is defined by the following system,







ż0(τ) = −z0(τ)β + z1(τ)
1−z0(τ)

(1− e−a+az0(τ)) for k = 0

żk(τ) = (zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1−e−a+az0(τ)

1−z0(τ)
for 1 ≤ k ≤ K − 1

żk(τ) = β zk−1(τ)− zk(τ)
1−e−a(1−z0(τ))

1−z0(τ)
for k = K

∑K
k=0 zk(τ) = 1

(134)

Proof.

Using the normalized random variable H(τ) = Greedy(G,τ n)
n with 1

n ≤ τ ≤ T
n , let’s compute the

conditional expectation of the one-step change of H(τ),

E
[
H
(
τ + 1

n

)
−H(τ)

∣
∣H(τ)

]

1/n
=

E [Greedy(G, τ n+ 1)/n − Greedy(G, τ n)/n|Greedy(G, τ n)/n]
1/n

= 1− (1− a

n
)n−nZ0(τ)

when n→ +∞ we get,

ḣ(τ) = 1− e−a(1− z0(τ))

Applying the non-asymptotic version of the Wormald theorem (Warnke, 2019), we choose the do-

main D defined by −ǫ < τ < T
n + ǫ, −ǫ < z0 < 1 + ǫ for ǫ > 0. We have β′ = 1 (lemma 29),

δ = a/(e n) for the trend hypothesis(lemma 28). The Lipschitz hypothesis is satisfied with Lip-

schitz constant L′ = aea ǫ(lemma 27). Setting λ = an−1/4 we have with probability at least

1− 2e−a2n
3
2 /8T ,

max
1≤t≤T

|Greedy(G, t) − nh(t/n)| ≤ 3eL
′T/nan3/4

B.2. Proof of corollary 5

Corollary 5 For K ≥ 1, with probability at least 1− 2e−a2n
3
2 /8T ,

|Greedy(G,T ) − nh∗(T/n)| ≤ o(T )

and,
E[Greedy(G,T )]

n
→

n→+∞
h∗(T/n)

with h∗(x) =
∫ x
1/n(1 − e−a(1−z∗0 ))dτ =

(
x− 1

n

)
(1 − e−a(1−z∗0 )), and z∗0 is the unique solution of

∑K
k=0 z

∗
0

(
β

g(z∗0 )

)k
= 1 with g(z∗0) =

1−e−a(1−z∗0)

1−z∗0
.

The proof is organized as follows:
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1. Finding the stationary solution of eq. (133).

2. Proving that the stationary solution is asymptotically stable.

3. Proving that Greedy(G,T ) converges to a function depending on the stationary solution.

The next result gives a general form for the stationary solution of eq. (133),

Lemma 32 For 1
n ≤ τ ≤ T

n , let S̄z∗0 = (z∗0 , . . . , z
∗
k, . . . , z

∗
K) be the stationary solution of the

system,







ż0(τ) = −z0(τ)β + z1(τ)
1−z0(τ)

(1− e−a+az0(τ)) for k = 0

żk(τ) = (zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1−e−a+az0(τ)

1−z0(τ)
for 1 ≤ k ≤ K − 1

żk(τ) = β zk−1(τ)− zk(τ)
1−e−a(1−z0(τ))

1−z0(τ)
for k = K

∑K
k=0 zk(τ) = 1

(135)

S̄z∗0 is unique and satisfies,

z∗k = z∗0

(
β

g(z∗0)

)k

for 0 ≤ k ≤ K (136)

where g(z∗0) =
1−e−a(1−z∗0)

1−z∗0
.

Proof.

eq. (136) is proved by recurrence. For the uniqueness, according to eq. (135), S̄z∗0 satisfies
∑K

k=1 z
∗
k =

1, using eq. (136) we get that P (z∗0) =
∑K

k=1 z
∗
0

(
β

g(z∗0 )

)k
− 1. P (0) = −1 and lim

z0→1
P (z0) > 0.

Moreover P is continuous and monotonic, this implies that P (z0) = 0 has a unique solution. Thus,

S̄z∗0 is unique.

Remark 33 Given that z∗k follows a geometric progression, for convergence, it’s essential that
∣
∣
∣

β
g(z∗0 )

∣
∣
∣ ≤ 1. Therefore, we will proceed with the remaining proofs under this assumption.

The following lemma shows that S̄z∗0 is an asymptotically stable stationary solution of eq. (135).

Theorem 34 S̄z∗0 is a an asymptotically stable stationary solution of eq. (135).

Proof.

Let Z =






z0(t)
...

zK(t)




, eq. (133) can be seen as Ż = F (Z), where,

F (z0(t), . . . , zK(t)) =

(

−β z0 + z1g(z0), . . . , β zk−1(t)− zk(t)
1− e−a(1−z0(t))

1− z0(t)

)
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The Jacobian of F at S̄z∗0 is then given by,

DF (S̄z∗0 ) =













−β + z∗1g
′(z∗0) g(z∗0) 0 . . . . . . 0

β + (z∗2 − z∗1)g
′(z∗0) −β − g(z∗0) g(z∗0) 0 . . . 0

(z∗3 − z∗2)g
′(z∗0) β −β − g(z∗0) g(z∗0) 0.. 0

... 0 β −β − g(z∗0) g(z∗0) ..0

...
...

...
...

...
...

−z∗Kg′(z∗0) . . . . . . 0 β −g(z∗0)













Since proving that S̄z∗0 is asymptotically stable is equivalent to proving that the eigenvalues of

DF (S̄z∗0 ) are non-positives are non-positives (Viterbo, 2011). We achieve this using the perturbation

method. To do so, we shall write,

DF (S̄z∗0 ) =M + uv⊤

where v⊤ = (1, 0, . . . , 0) and,

u⊤ = g′(z∗0)(z
∗
1 , z

∗
2 − z∗1 , . . . ,−z∗K)

= z∗1g
′(z∗0)

(

1,
β

g(z∗0)
− 1, (

β

g(z∗0 )
− 1)

β

g(z∗0 )
, (

β

g(z∗0 )
− 1)

( β

g(z∗0)

)2
, . . .

)

and M is the matrix with g(z∗0) above the diagonal, β below it and its diagonal is (−β,−β −
g(z∗0), . . . ,−β − g(z∗0),−g(z∗0)).

M =













−β g(z∗0) 0 . . . . . . 0
β −β − g(z∗0) g(z∗0) 0 . . . 0
0 β −β − g(z∗0) g(z∗0) 0.. 0
... 0 β −β − g(z∗0) g(z∗0) ..0
...

...
...

...
...

...

0 . . . . . . 0 β −g(z∗0)













Let us denote by ΠM (λ) the characteristic polynomial of M , as a function of λ, so that

ΠM+uv⊤(λ) = ΠM (λ)
(

1 + v⊤(M − λI)−1u
)

which implies that eigenvalues of M + uv⊤ are either eigenvalues of M or solutions of

1 + v⊤(M − λI)−1u = 0.

Since 0 is an eigenvalue of M + uv⊤, we aim at proving that 1 + v⊤(M − λI)−1u = 0 has K
non-positives solutions.

We now claim that the eigenvalues ofM are µj := −β−g(z∗0)+2
√

βg(z∗0) cos(
jπ
k+1) for j ∈ [k]

and 0. This is a consequence of standard computations along with Theorem 2.2 of Kulkarni et al.

(1999). We also denote by ωj the eigenvectors of M associated to µj (and ω0 to 0) and by P the

matrix whose columns are ω0, ω1, .... As a consequence,

q(λ) = 1 + v⊤(M − λI)−1u = 1 + v⊤Pdiag
( 1

µj − λ

)

P−1u
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= 1 +
(ω0,1

−λ , . . . ,
ωj,1

µj − λ

)

P−1u

Since we can take any eigenvectors in P , we can assume that ωj,1 ≥ 0 hence it remains to prove

that P−1u is a vector with non-negative coordinates. Notice that this vector is the vector of u in the

basis formed by the eigenvectors of M .

The computations of ωj are quite standard, and they yield, denoting θ =
√

β
g(z∗0 )

, for 1 ≤ j ≤ K

ωj =
(

θ sin(
jπ

K + 1
), . . . , (−θ)t+1 sin(

(t+ 1)jπ

K + 1
) + (−θ)t sin( tjπ

K + 1
), . . . , (−θ)K+1 sin(

(K + 1)jπ

K + 1
)

+ (−θ)K sin(
tKπ

K + 1
)
)

As a consequence, u and all the eigenvectors ωj are orthogonal to the vectors of ones, which indi-

cates that u =
∑

j αjωj for some scalar αj . The objective is to prove that they are all positive

The exact forms of u and ωj give, after a few lines of algebra,

K∑

j=1

αj sin(m
jπ

K + 1
) = (−θ)m, ∀m ∈ [K].

This system can be rewritten using the Chebyshev polynomials of second kind (denoted by Un) as,

K∑

j=1

αjUm−1(cos(
jπ

K + 1
)) sin(

jπ

K + 1
) = (−θ)m, ∀m ∈ [K].

Hence in a more compact matrix way it can be seen as,

W






α1 sin(
π

K+1)
...

αK sin( Kπ
K+1)




 = −θ,

where −θ =
(

(−θ)j
)

j∈[K]
and W is the matrix whose j-th column is

(U0(cos(
jπ

K + 1
), . . . , UK−1(

jπ

K + 1
))⊤

We introduce now the following polynomial,

Pm(X) = γm
Uk(X)

X − cos( mπ
K+1)

=

K∑

j=1

βj,mUj−1(X)

where

γm =
1

Πj 6=m(cos( mπ
K+1)− cos( jπ

K+1))2
K

=
1

2K
1

Πj 6=m − 2 sin(m+j
2

π
K+1) sin(

m−j
2

π
K+1)
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so that the sign of γm is (−1)m−1, Pm(cos( jπ
K+1)) = 0 for all j 6= m, and Pm(cos( mπ

K+1) = 1. We

get that

αm =
1

sin( mπ
K+1)

K∑

j=1

βj,m(−θ)j.

Using the fact that, by definition of Pm,

UK(X) =

K∑

j=1

1

γm
βj,mUj=1(X)(X − cos(

mπ

K + 1
))

and the property of Chebishev polynomial,

Uk(X) = 2XUk−2(X)− Uk−3,

we can identify the coefficients βj that satisfy a linear recurrence of order 2 and are defined by

βj = 2γm
sin( (K−j+1)mπ

K+1 )

sin( mπ
K+1)

.

It remains to compute αm =
∑
βj(−θ)j , and standard computations yield that

αm = −2γm(−1)m
(1− θ2)

1 + 2 cos( mπ
K+1)θ + θ2

≥ 0

Thus, we have proved that P−1u is a vector with non-negative coordinates. Consequently, q(λ)
is an increasing function of λ. As a result, M + uv⊤ has K eigenvalues of negative real part and

one eigenvalue equals to zero. From this, we can conclude that S̄z∗0 is an asymptotically stationary

solution of eq. (135).

Given the previous results, we can prove corollary 5,

Proof.

Let h∗(T/n) =
∫ T/n
1/n (1− e−a(1−z∗0 ))dτ = (T−1)(1−e−a(1−z∗0 ))

n , we have,

|Greedy(G,T )− nh∗(T/n)| = |Greedy(G,T )− nh(T/n) + nh(T/n)− nh∗(T/n)|
≤ max

1≤t≤T
(|Greedy(G, t) − nh(t/n)|

︸ ︷︷ ︸

≤3eL
′T/nan3/4 by theorem 31

+|nh(T/n)− nh∗(T/n)|)

Let’s focus on D = |nh(T/n)− nh∗(T/n)|, for 1 ≤ T ′ < T and δ > 0,

D = |nh(T/n)− nh(T ′/n+ δ) + nh(T ′/n + δ)− nh∗(T/n)|
= |nh(T/n)− nh(T ′/n+ δ)− nh∗(T/n) + nh∗(T ′/n+ δ) + nh(T ′/n+ δ) − nh∗(T ′/n+ δ)|

=

∣
∣
∣
∣
∣
n

∫ T/n

T ′/n+δ
(e−a(1−z∗0 ) − e−a(1−z0(t)))dt+ n

∫ T ′/n+δ

1/n
(e−a(1−z∗0 ) − e−a(1−z0(t)))dt

∣
∣
∣
∣
∣
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=

∣
∣
∣
∣
∣
ne−a(1−z∗0 )

∫ T/n

T ′/n+δ
(1− ea(z0(t)−z∗0 ))dt+ ne−a(1−z∗0 )

∫ T ′/n+δ

1/n
(1− ea(z0(t)−z∗0 )dt

∣
∣
∣
∣
∣

≤ ne−a(1−z∗0 )

∣
∣
∣
∣
∣

∫ T/n

T ′/n+δ
(−a(z0(t)− z∗0))dt+

∫ T ′/n+δ

1/n
(−a(z0(t)− z∗0))dt

∣
∣
∣
∣
∣

using (1− eax ≤ −ax)

≤ ne−a(1−z∗0 )a

∫ T/n

T ′/n+δ
|z0(t)− z∗0 |dt+ ne−a(1−z∗0 )a

∫ T ′/n+δ

1/n
|z0(t)− z∗0 |dt

≤ ne−a(1−z∗0 )a

∫ T/n

T ′/n+δ
ǫdt+ ne−a(1−z∗0 )a

∫ T ′/n+δ

1/n
|z0(t)− z∗0 |dt using (theorem 34)

≤ ne−a(1−z∗0 )aǫ

(
T − T ′

n
− δ

)

+ ne−a(1−z∗0 )a

∫ T ′/n+δ

1/n
1dt using 0 ≤ z0 ≤ 1 and 0 ≤ z∗0 ≤ 1

≤ ne−a(1−z∗0 )aǫ

(
T

n

)

+ ne−a(1−z∗0 )a

(
T ′ − 1

n
+ δ

)

(1− ǫ)

≤ ne−a(1−z∗0 )aǫ

(
T

n

)

+ ne−a(1−z∗0 )a

(
T ′ − 1

n
+ δ

)

︸ ︷︷ ︸

≤ T
n2

≤ 2e−a(1−z∗0 )a

(
T

n

)

choosing (ǫ =
1

n
)

Thus,

|Greedy(G,T )− nh∗(T/n)| ≤ 3eL
′T/nan3/4 + 2e−a(1−z∗0 )a

T

n

with L′ = aeaγ where γ > 0. Taking n = cT with c < 1, we can see that |Greedy(G,T ) −
nh∗(T/n)| ≤ o(T ),

B.3. Proof of corollary 6

Corollary 6 For K = 1, with probability at least 1− 2e−a2n
3
2 /8T ,

∣
∣
∣E[Greedy(G,T )] − T (1− e−a(1−z∗0 ))

∣
∣
∣ ≤ c

T

(log(T ))3/4
= o(T )

where z∗0 = 1
β − 1

aW

(

a
β e

−a
(

1− 1
β

))

, with W (·) the Lambert function, and c is some universal

constant.

The proof is organized as follows:

1. Finding the stationary solution of eq. (133) for K = 1.

2. Proving that the stationary solution is exponentially stable.

3. Applying an improved version of the Wormald theorem on Greedy(G,T ).
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4. Proving that Greedy(G,T ) converges to a function depending on the stationary solution.

Intuitively K = 1 means that the maximum budget reached by each node in U is equal to 1.

From a technical aspect, supposing K = 1 reduces eq. (135) to a system of 2 equations as follows,

for t ∈ [ 1n ,
T
n ]







ż0(t) = −β z0(t) + z1(t)
1−z0(t)

(1− e−a(1−z0(t)))

ż1(t) = βz0(t)− z1(t)
1−z0(t)

(1− e−a(1−z0(t)))

z0(t) + z1(t) = 1

(137)

By simplifying eq. (137), we reduce the system to the following equation,

ż0(t) = −β z0(t) + 1− e−a(1−z0(t)) (138)

The following lemma computes the unique stationary solution of eq. (138),

Lemma 35 The stationary solution of eq. (138) is unique and is given for β, a > 0 by,

z∗0 =
1

β
− 1

a
W

(
a

β
e
−a

(

1− 1
β

))

where W is the Lambert function.

Proof.

Let’s define G(z0) = −β z0 + 1 − e−a(1−z0), the stationary solution of eq. (138) is the solution of

G(z∗0) = 0 (the homogeneous equation) with a > 0 and β > 0,

G(z∗0) = 0 ⇐⇒ 1− e−a(1−z∗0 ) = β z∗0 ⇐⇒ e
a
(

1
β
−z∗0

)

a

(
1

β
− z∗0

)

=
a

β
e
−a

(

1− 1
β

)

⇐⇒ a

(
1

β
− z∗0

)

=W

(
a

β
e
−a

(

1− 1
β

))

Where W is the Lambert function. So, by rearranging the terms in the last equation, the solution of

G(z∗0) = 0 is given by,

z∗0 =
1

β
− 1

a
W

(
a

β
e
−a

(

1− 1
β

))

Let’s prove the uniqueness of the stationary solution, G(0) = 1 − e−a > 0 and G(1) = −β < 0

and we have ∀ 0 ≤ z0 ≤ 1, dG(z0)
dz0

= −(β + ae−ae−a(1−z0)) < 0. Thus G(z0) = 0 has a unique

solution.

The following theorem proves that z∗0 is exponentially stable, meaning that ∀t ∈ [ 1n ,
T
n ], z0(t)

converges to z∗0 with an exponential rate.

Theorem 36 For any f0 ≥ 0 and t ∈ [ 1n ,
T
n ], consider the ordinary differential equation (ODE),

{

ż0(t) = βz0(t) + 1− e−a(1−z0(t))

z0(1/n) = f0

Thus, it implies that z0(t) converges to z∗0 exponentially.
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Proof.

The idea here is to prove that for any perturbation that we add to z∗0 , this perturbation tends to 0
when t tends to +∞ exponentially.

Let’s consider ǫ(t) : R → R, a pertubation of the stationary solution z∗0 ,

ǫ̇(t) = −β z∗0 − β ǫ(t) + 1− e−a(1−z∗0 (t)−ǫ(t))

ǫ̇(t) = −1 + e−a(1−z∗0 ) − β ǫ(t) + 1− e−a(1−z∗0−ǫ(t))

ǫ̇(t) = e−a(1−z∗0 )
(

1− eaǫ(t)
)

− β ǫ(t)

ǫ̇(t) ≤ −aǫ(t) e−a(1−z∗0 ) − β ǫ(t) using that (1− eaǫ(t) ≤ −aǫ(t))

ǫ̇(t) ≤ ǫ(t)
(

−a e−a(1−z∗0 ) − β
)

︸ ︷︷ ︸

≤0

Integrating the last equation , we get,

ln (|ǫ(t)|) − ln(|ǫ(0)|) ≤
(

−a e−a(1−z∗0 ) − β
)

t (139)

|ǫ(t)| ≤ |ǫ(0)| exp
(

−t
(

a e−a(1−z∗0 ) + β
))

(140)

|ǫ(t)| ≤ |f0 − z∗0 | exp
(

−t
(

ae
−a

(

1− 1
β
+ 1

a
W

(

a
β
e
−a(1− 1

β
)
))

+ β

))

(141)

|ǫ(t)| ≤ |f0 − z∗0 | exp
(

−tβ
(

1 +W (e
−a(1− 1

β
)
))

(142)

Moving from eq. (141) to eq. (142) is done using exp(−W (x)) =W (x)/x).

Thus lim
t→+∞

ǫ(t) = 0 exponentially with the following rate ω = β
(

1 +W (e
−a(1− 1

β
)
)
)

.

Lemma 37 S1
z∗0

= (z∗0 , z
∗
1) = (z∗0 , z

∗
0

β
g(z∗0 )

) is an exponentially stable stationary solution of

eq. (137).

Proof.

According to lemma 35, z∗0 is a stationary solution of eq. (138), this implies that S1
z∗0

= (z∗0 , z
∗
1) =

(z∗0 , z
∗
0

β
g(z∗0 )

) is a stationary solution of eq. (137). As previously demonstrated, ∀t ∈ [ 1n ,
T
n ], z0(t)

converges to z∗0 exponentially. This implies that eq. (138) possesses an exponentially stable station-

ary solution. Given that eq. (138) is a reduced version of eq. (137), we can conclude that S1
z∗0

is an

exponentially stable stationary solution for eq. (137).

With all the essential elements assembled, we are now ready to establish the proof for corollary 6

Proof.

Let h∗(T/n) =
∫ T/n
1/n (1− e−a(1−z∗0 ))dτ = (T−1)(1−e−a(1−z∗0 ))

n , we have,

|Greedy(G,T )− nh∗(T/n)| = |Greedy(G,T )− nh(T/n) + nh(T/n)− nh∗(T/n)|
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≤ max
1≤t≤T

(|Greedy(G, t) − nh(t/n)|)
︸ ︷︷ ︸

≤3eL
′T/nan3/4 by theorem 31

+|nh(T/n)− nh∗(T/n)|

Let’s focus on |nh(T/n)− nh∗(T/n)|,

|nh(T/n)− nh∗(T/n)| =
∣
∣
∣
∣
∣
n

∫ T/n

1/n
(1− e−a(1−z0(τ)))dτ − n

∫ T/n

1/n
(1− e−a(1−z∗0 ))dτ

∣
∣
∣
∣
∣

(143)

=

∣
∣
∣
∣
∣
n

∫ T/n

1/n
(e−a(1−z∗0 ) − e−a(1−z0(τ)))dτ

∣
∣
∣
∣
∣

(144)

=

∣
∣
∣
∣
∣
ne−a(1−z∗0 )

∫ T/n

1/n
(1− ea(z0(τ)−z∗0 ))dτ

∣
∣
∣
∣
∣

(145)

≤
∣
∣
∣
∣
∣
ne−a(1−z∗0 )

∫ T/n

1/n
−a(z0(τ)− z∗0)dτ

∣
∣
∣
∣
∣

(using 1− eax ≤ −ax)

(146)

≤ nae−a(1−z∗0 )

∫ T/n

1/n
|z0(τ)− z∗0 |dτ (147)

≤ nae−a(1−z∗0 )|f0 − z∗0 |
∫ T/n

1/n
exp

(

−τβ
(

1 +W (e−a(1− 1
β
)
))

dτ

(148)

≤ nae−a(1−z∗0 )|f0 − z∗0 |
β
(

1 +W (e
−a(1− 1

β
)
)
)

(

e
−β

n

(

1+W (e
−a(1− 1

β
)
)

)

− e
−T

n
β

(

1+W (e
−a(1− 1

β
)
)

))

(149)

Moving from eq. (147) to eq. (148) is done using theorem 36. Thus we have,

|Greedy(G,T )− nh∗(T/n)| ≤ 3eL
′T/nan3/4 +

nae−a(1−z∗0 )|f0 − z∗0 |
P

(

e−
1
n
P − e−

T
n
P
)

with L′ = aeaǫ and P = β
(

1 +W (e−a(1− 1
β
))
)

, ǫ > 0.

Now let’s focus on A = 3eL
′T/nan3/4 +

nae−a(1−z∗0)|f0−z∗0 |
P

(

e−
1
n
P − e−

T
n
P
)

and considering

that n = T
α log(T ) with α > 0, we get,

A ≤ 3eL
′T/nan3/4 +

nae−a(1−z∗0 )|f0 − z∗0 |
P

(

1− e−
T
n
P
)

=
ae−a(1−z∗0 )|f0 − z∗0 |

P
(

T

α log(T )
− T 1−αP

α log(T )
)

+ 3a
T

3
4
+αL′

(α log(T ))
3
4

≤ ae−a(1−z∗0 )|f0 − z∗0 |
P

T

α log(T )
+ 3a

T
3
4
+αL′

(α log(T ))
3
4
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Taking α = 1
4(P+L′) , with z∗0 = 1

β − 1
aW

(
a
β e

−a(1− 1
β
)
)

and using the fact that e−W (x) = W (x)
x , we

get,

A ≤
βW

(

e
−a(1− 1

β
)
)

αP
|f0 − z∗0 |

T

log(T )
+ 3a(4(L′ + P ))

3
4
T

3L′+4P
4(P+L′)

(log(T ))
3
4

= c1
T

log(T )
+ c2

Tω′

(log(T ))
3
4

≤ c
T

(log(T ))3/4

where c1 =
4β(P+L′)W

(

e
−a(1− 1

β
)
)

P , c2 = 3a(4(L′ + P ))
3
4 , c = c1 + c2,ω = 3P+4L′

4(L′+P ) and

ω′ = 3L′+4P
4(P+L′) .

B.4. Proof of proposition 7

Proposition 7 For T,K, n, b0, β ∈ N
∗,

CRsto(Greedy,D) ≥
Tg(z∗0)(1− z∗0) + nb0 − n

(
β

g(z∗0 )−β − (K+1)βK+1

g(z∗0 )
K+1−βK+1

)

nb0 + βT
+OK,β(T

−1/4)

(5)

where
∑K

k=0 z
∗
0

(
β

g(z∗0 )

)k
= 1 with g(z∗0) =

1−e−a(1−z∗0)

1−z∗0
as defined in corollary 5.

Proof.

According to eq. (124), we have that for all u ∈ U ,

bu,t = min(K, bu,t−1 − xu,t + ηt) with bu,0 = b0 ≥ 1

Which gives,

Greedy(G,T ) =
∑

u∈U

T∑

t=1

xu,t = nb0 +
∑

u∈U

T∑

t=1

E[ηt]

︸ ︷︷ ︸

A1

−
∑

u∈U

bu,T

︸ ︷︷ ︸

A2

−
∑

u∈U

T∑

t=1

E[1bu,t=K1ηt=1]

︸ ︷︷ ︸

A3

According to lemma 30, we have w.h.p ∀k ≥ 0, t ∈ [T ], Yk(t) = nzk(t/n) + O(n3/4), let’s then

compute A1, A2 and A3,

A1 =
∑

u∈U

T∑

t=1

E[ηt] = β T

A2 =
∑

u∈U

bu,T = n

K∑

k=1

kzk(T/n) +O
(
K(K + 1)

2
n3/4

)
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A3 = β
T∑

t=1

zK(t/n) +O(βTn−1/4)

Using the following upper bound on OPT(G,T ) ≤ nb0 + βT and n = O(T ), we get that,

CRsto(Greedy,D) ≥ nb0 + βT − n
∑K

k=1 kzk(T/n)− β
∑T

t=1 zK(t/n)

nb0 + βT
+O(T−1/4) (150)

According theorem 34, ∀τ ∈ [ 1n ,
T
n ], (z0(τ), . . . , zK(τ)) converges to S̄z∗0 asymptotically, this im-

plies that,

CRsto(Greedy,D) ≥
nb0 + βT − βTz∗0

(
β

g(z∗0 )

)K
− nz∗0

∑K
k=1 k

(
β

g(z∗0 )

)k

nb0 + βT
+O(T−1/4) (151)

From
∑K

k=0 z
∗
0

(
β

g(z∗0 )

)k
= 1, we have that

(
β

g(z∗0 )

)K
=

g(z∗0 )
β − 1

z∗0

(
g(z∗0 )
β − 1

)

, this gives,

CRsto(Greedy,D) ≥
nb0 + βT − βTz∗0

(
β

g(z∗0 )

)K
− nz∗0

∑K
k=1 k

(
β

g(z∗0 )

)k

nb0 + βT
+O(T−1/4)

≥
nb0 + βT − βTz∗0

(
g(z∗0 )
β − 1

z∗0

(
g(z∗0 )
β − 1

))

− nz∗0
∑K

k=1 k
(

β
g(z∗0 )

)k

nb0 + βT

+O(T−1/4)

≥
nb0 + g(z∗0)T (1− z∗0)− nz∗0

∑K
k=1 k

(
β

g(z∗0 )

)k

nb0 + βT
+O(T−1/4)

≥
nb0 + g(z∗0)T (1− z∗0)− nz∗0

∑K
k=1 k

(
β

g(z∗0 )

)k

nb0 + βT
+O(T−1/4)

Using 1−
(

β
g(z∗0 )

)K+1
= 1

z∗0

(

1− β
g(z∗0 )

)

and
∑K

k=1 kx
k = x d

dx

(
1−xK+1

1−x

)

with x = β
g(z∗0 )

,

CRsto(Greedy,D) ≥
nb0 + g(z∗0)T (1− z∗0)− nz∗0

∑K
k=1 k

(
β

g(z∗0 )

)k

nb0 + βT
+O(T−1/4)

≥
nb0 + g(z∗0)T (1− z∗0)− n

(
β

g(z∗0 )−β − (K+1)βK+1

g(z∗0 )
K+1−βK+1

)

nb0 + βT
+O(T−1/4)
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B.5. Proof of theorem 8

Theorem 8 For any α, β > 0, the competitive ratio tends to 1, as T,K, n approach infinity, as

lim
K,n→+∞

lim
T→+∞

CRsto(Greedy,D) = 1

Proof.

lim
T→+∞

CRsto(Greedy,D) =
g(z∗0)(1− z∗0)

β

When K → ∞, z∗0 satisfies
∑+∞

k=0 z
∗
0

(
β

g(z∗0 )

)k
= 1, this gives,

+∞∑

k=0

z∗0

(
β

g(z∗0)

)k

= z∗0
1

1− β
g(z∗0 )

= 1 =⇒ 1− e−a(1−z∗0 ) = β

which leads to z∗0 = 1 + ln(1−β)
a .

Thus,

lim
K,n→+∞

lim
T→+∞

CRsto(Greedy,D) = lim
K,n→+∞

g(z∗0)(1− z∗0)

β
= 1
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