
HAL Id: hal-04573509
https://hal.science/hal-04573509

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unlocking Demand Response at the Building Level: a
Distributed Energy Optimisation Approach

Oudom Kem, Feirouz Ksontini

To cite this version:
Oudom Kem, Feirouz Ksontini. Unlocking Demand Response at the Building Level: a Distributed En-
ergy Optimisation Approach. International Conference on Applied Energy 2019, Aug 2019, Västerås,
Sweden. �hal-04573509�

https://hal.science/hal-04573509
https://hal.archives-ouvertes.fr


  
 

UNLOCKING DEMAND RESPONSE AT THE BUILDING LEVEL: A DISTRIBUTED 
ENERGY OPTIMISATION APPROACH 

 
 

Oudom Kem1, Feirouz Ksontini 2 

CEA, LIST, 91191 Gif-sur-Yvette cedex, France 

1 oudom.kem@cea.fr (Corresponding Author) 
2 feirouz.ksontini@cea.fr 

 
 

ABSTRACT 
In this paper, we propose a distributed optimisation 

approach based on Alternating Direction Method of 
Multipliers to optimise building energy consumption, 
reduce energy bills, and adopt demand response (DR) 
schemes at the building level by exploiting building 
flexibility. Different optimisation models are proposed to 
represent the types of flexibility offered by building 
devices and to incorporate DR incentives. The 
evaluations of the approach show significant energy cost 
saving and prove the feasibility of DR adoption. 
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1. INTRODUCTION 
Demand response (DR) presents considerable 

potentials for customers and utilities from financial 
benefits to system reliability. Traditional building 
management systems, however, are not ready to adopt 
the DR schemes. The objective of this paper is to 
incorporate DR in building energy optimisation.  

A building may contain a significant number of 
devices. Each device possesses its own dynamic 
constraints and objectives. Performing an optimisation in 
such a context over a time horizon entails dealing with a 
large number of variables, making it computationally 
impractical to solve in a centralised manner [1]. The work 
in [2], [1], and [3] show the application of distributed 
optimisation methods to solve the optimal power flow 
problem. Advances in decomposition methods such as 
alternating method of multipliers (ADMM) [4] have been 
applied to solve the optimisation of energy flow due to 
their robustness and privacy-preserving features. In this 
paper, we propose an ADMM-based distributed 
approach to solve the building energy optimisation to 

reduce energy bills and enable participation to DR 
programs, while respecting device and user constraints.       

2. CONTEXT 
In this work, we define device flexibility as the 

deviation of consumption or generation of a device that 
is allowed to be carried out. Devices are categorised, 
based on their flexibility, into three types: shiftable-
volume (i.e., require a certain amount of energy within a 
given time interval), shiftable-profile (i.e., its 
consumption can be scheduled within a given time 
interval, but its profile must be satisfied), and sheddable 
(i.e., its consumption can be shed at a cost).  

The flexibility provided by the devices is exploited to 
participate in different DR schemes. A customer 
subscribing to a DR program receives a set of DR requests 
customised based on their consumption and generation. 
DR programs can be categorised into price-based and 
incentive-based. Price-based programs provide 
customers with time-varying energy tariffs. Incentive-
based programs offer direct payments to customers to 
change their consumption patterns upon request.  

In the context of this work, a price-based program is 
specified as a list of energy prices for the next 24 hours. 
Incentive-based programs consist of two types of 
requests: load shedding (i.e., emergency DR) and load 
shifting. The requests are expressed with regard to the 
base consumption. The base consumption represents 
the expected consumption of the customer without 
participating to any DR programs. 

A load shedding request is expressed by a deviated 
consumption, which is the target consumption after 
shedding, a deviation duration, which corresponds the 
period where the shedding is to be executed, and an 
incentive for shedding, denoted as 𝑝௦௛௘ௗ.  

A load shifting procedure consists of deviation (i.e., 
shift the required amount of consumption from the base 



 

consumption) and recovery (i.e., consume the shifted 
amount in addition to the base consumption). A load 
shifting request is thus expressed by a deviated 
consumption, a deviation duration, a recovery duration, 
and an incentive for shifting, denoted as 𝑝௦௛௜ . 

3. PROBLEM DEFINITION 
Optimising energy flow in such a network of devices 

is to minimise the network objective function subject to 
the constraints of each device in the network. We model 
such a network as an energy coordination network [1] 
composed of a set of 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠 𝑇, a set of 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 𝐷, 
and a set of 𝑛𝑒𝑡𝑠 𝑁. A terminal models a transfer point 
through which the energy flows between a device and a 
net. A net represents an exchange zone that constrains 
the energy schedules of its associated devices. Each 
device and each net is associated with a set of terminals. 

Each terminal 𝑡 ∈ 𝑇 has an associated energy flow 
schedule 𝑝௧ = ൫𝑝௧(1), … , 𝑝௧(𝐻)൯ ∈ ℝு  over a time 
horizon 𝐻 ∈ ℕା  (e.g., 24 hours). Then, 𝑝௧(𝜏)  where 
𝜏 ∈ [1, 𝐻] is the amount of energy consumed (𝑝௧(𝜏) > 0) 
or generated (𝑝௧(𝜏) < 0) by device 𝑑 in time period 𝜏 
through terminal 𝑡, where 𝑡 is associated with 𝑑. 

For each device 𝑑 ∈ 𝐷, we use ‘𝑑’ to refer to both 
the devices and the set of terminals associated with the 
device. Each device 𝑑 ∈ 𝐷 has a set of energy schedules 
denoted by 𝑝ௗ = {𝑝௧  | 𝑡 ∈ 𝑑} , possesses a set of |𝑑| 
terminals, and has an objective function 𝑓ௗ: ℝ|ௗ|×ு ⟶

 ℝ . Then, 𝑓ௗ(𝑝ௗ)  is the cost of operating device 𝑑 
according to the schedule 𝑝ௗ. Every device has a set of 
constraints 𝒞ௗ which 𝑝ௗ must satisfy. 

The set of all energy schedules associated with a net 
𝑛 ∈ 𝑁 is denoted by 𝑝௡ = {𝑝௧  | 𝑡 ∈ 𝑛}. Each net 𝑛 has 
a set of |𝑛|  terminals and an objective 
function  𝑓௡: ℝ|௡|×ு ⟶  ℝ . Nets encode an energy 
balance condition, denoted as 𝒞௡, formally:  

෍  𝑝௧(𝜏) = 0, ∀𝜏 ∈ [1, 𝐻],

௧∈௡

 ∀𝑛 ∈ 𝑁 

Provided an energy coordination network, we define 
the optimisation problem as follows: 

𝑚𝑖𝑛௣ ∈ℝಹ×|೅| ෍ 𝑓ௗ(𝑝ௗ) + 

ௗ ∈஽

෍ 𝑓௡(𝑝௡)

௡ ∈ே

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑝ௗ   ∈ 𝒞ௗ,    ∀𝑑 ∈ 𝐷
              𝑝௡   ∈ 𝒞௡,    ∀𝑛 ∈ 𝑁

 

4. DISTRIBUTED OPTIMISATION ALGORITHM 
To solve the optimisation problem, we employ 

ADMM algorithm over a given energy coordination 
network. The cost functions and constraints of devices 

vary according to their types, which are presented in the 
following section. ADMM iteratively solves the problem 
until the convergence is reached. In each iteration, 
ADMM performs the following steps: 

Step 1: Device-minimisation step (executed in 
parallel among devices) 

∀𝑑 ∈ 𝐷,  

𝑝ௗ
௞ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛௣೏∈஼೏

ቀ𝑓ௗ(𝑝ௗ) +
𝜌

2
ฮ𝑝ௗ  − 𝑝̇ௗ

௞ + 𝜈ௗ
௞ฮ

ଶ

ଶ
ቁ 

Step 2: Net-minimisation step (execute in parallel 
among nets) 

∀𝑛 ∈ 𝑁, 

  𝑝̇௡
௞ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛௣೙∈஼೙

ቀ𝑓௡(𝑝௡) +
𝜌

2
‖𝑝௡  − 𝑝௡

௞ − 𝜈௡
௞‖ଶ

ଶቁ 

Step 3: The prices (scaled dual variables) update 
(executed in parallel among nets) 

∀𝑛 ∈ 𝑁, 𝜈௡
௞ାଵ  = 𝜈௡

௞ + (𝑝௡
௞ାଵ − 𝑝̇௡

௞ାଵ) 
First, each device computes in parallel its best 

response to the price and energy requested by nets (i.e., 
computing its optimal variables locally). Second, each 
net, upon receiving the offers from all the devices 
connected to it, checks if the convergence has been 
reached. If there is no convergence, nets compute new 
requests for the devices considering the devices’ 
previous offers and send the new request to the devices. 
Third, nets update the scaled dual variables. (refer to [1] 
for further details) 

5. OPTIMISATION MODELS AND DEMAND RESPONSE 
Device optimisation models capture device flexibility 

and incorporate the energy tariffs from price-based DR 
as well as the incentives from incentive-based DR. 

5.1 External tie 

An external tie (ET) [1] represents a connection of 
the building to an external source of energy. 
Transactions with ET consist in pulling energy from the 
source or injecting energy to the source. The cost 
function of ET is formally defined as follows: 

𝑓ா்(𝜏) = ቐ

𝑝ா்(𝜏) < 0,           𝑃௘௫௣  (𝜏)  ∙  𝑝ா்(𝜏)

𝑝ா்(𝜏) =  0,                             0

𝑝ா்(𝜏) > 0,   (𝑃௜௠௣(𝜏) + 𝑝௦௛௜௙௧(𝜏))  ∙  𝑝ா்(𝜏)
 

where 𝑝ா்(𝜏) is the amount of pulled or injected energy 
at a given time period 𝜏, 𝑃௜௠௣  import energy price, and 
𝑃௘௫௣  export energy price. Price-based DR (i.e., import 
energy tariffs) is considered in the model as 𝑃௜௠௣. The 
incentive for load shifting 𝑝௦௛௜௙௧ is also incorporated in 
the model. The positive value of 𝑝௦௛௜௙௧  incentivises 
reduction of consumption, while the negative 
encourages consumption. 𝑝ா்(𝜏) in each transaction is 
constrained by a specified limit 𝑃௠௔௫, formally:  



 

|𝑝ா்(𝜏)| ≤ 𝑃௠௔௫ , 𝜏 = 1, … , 𝐻 

5.2 Shiftable-volume load  

A shiftable-volume load (SVL) [1] has a zero cost 
function. Its first constraint ensures that the required 
consumption 𝐸  is satisfied within a time interval 
between the earliest time period 𝐴 and the latest 𝐷: 

෍ 𝑝௟௢௔ௗ(𝜏) = 𝐸

஽

ఛୀ஺

 

where 𝑝௟௢௔ௗ(𝜏)  models the consumption of SVL at a 
given time period 𝜏. Second, the energy consumption in 
each time period is constrained by a specified limit 𝐿௠௔௫: 

0 ≤ 𝑝௟௢௔ௗ ≤ 𝐿௠௔௫ 

5.3 Shiftable-profile load 

A shiftable-profile load (SPL) has a zero cost 
function. SPL encodes a hard constraint requiring the 
consumption 𝑝௟௢௔ௗ  to be within the given interval 
between time period 𝐴 and 𝐷, formally: 

𝑝௟௢௔ௗ(𝜏) = 0 , 𝜏 = 1, … , (𝐴 − 1) 

𝑝௟௢௔ௗ(𝜏) = 0 , 𝜏 = (𝐷 + 1), … , 𝐻 

Its second constraint ensures that the consumption 
profile matches the required profile 𝑝௥௘௤, formally: 

ራ ቀ𝑝௟௢௔ௗ(𝜏) = 𝑝௥௘௤(1)ቁ ∩ ቀ𝑝௟௢௔ௗ(𝜏 + 1) = 𝑝௥௘௤(2)ቁ

஽ିఋ

ఛୀ஺

∩ …

∩ ቀ𝑝௟௢௔ௗ(𝜏 + 𝛿 − 1) = 𝑝௥௘௤(𝛿)ቁ 

5.4 Sheddable load 

The cost function of a sheddable load (SL) [1]  
considers the inconvenience from the shedding 𝑝௜௡௖  
and the DR incentive for shedding 𝑝௦௛௘ௗ , formally: 

𝑓ௌ௅(𝜏) = (𝑝௜௡௖(𝜏) − 𝑝௦௛௘ௗ(𝜏)). (𝑝௕௔௦௘௟௢௔ௗ(𝜏) − 𝑝௟௢௔ௗ(𝜏)) 

where 𝑝௦௛௘ௗ(𝜏) ≥ 0 and 𝑝௕௔௦௘௟௢௔ௗ(𝜏)  is the expected 
consumption and 𝑝௟௢௔ௗ(𝜏)  is the consumption after 
shedding. The consumption in each time period must 
satisfy the following constraint: 

0 ≤ 𝑝௟௢௔ௗ(𝜏) ≤ 𝑝௕௔௦௘௟௢௔ௗ(𝜏) , 𝜏 = 1, … , 𝐻 

6. EVALUATIONS 
The evaluations are conducted on a case study of a 

prosumer building with a connection to an energy 
supplier (ET) and a PV. The time horizon for the 
experiments is 24 hours divided into 96 time periods (TP) 
of 15-minute interval. For a 24-hour predicted 
consumption of the building, we use the consumption 
data from UK Elexon 1 . In each scenario, the fixed 

                                                           
1 Non-domestic unrestricted customers 

(https://www.elexon.co.uk/knowledgebase/profile-classes/) 
 

consumption represents a certain percentage of the 
overall consumption, and a certain percentage is 
considered flexible (i.e., shiftable loads). PV production 
is based on the data from one of our projects. To 
simulate price-based DR, we use the two-banded ToU 
tariffs from EDF2 consisting of peak price (0.158 €/kWh) 
and off-peak price (0.11 €/kWh). For incentive-based DR, 
we generate DR requests based on the consumption of 
the scenarios as the requests are consumer-specific.  

6.1 Reduction of energy bills & price-based DR 

In this evaluation, we experiment with four 
scenarios, with varying percentages of flexibility (i.e., 0%, 
20%, 50%, and 100%) proportional to the total 
consumption of the building. Figure 1 shows the energy 
imported for each of the scenarios. The imported energy 
is the energy pulled from the supplier via ET. 

In the first scenario (Import baseline), we suppose 
all the consumption is fixed. Thus, the algorithm is unable 
to optimise the consumption based on the energy tariffs. 
For other scenarios, the algorithm schedules the flexible 
consumption in the off-peak periods as much as possible. 
The imported energy during peak period between TP 29 
(i.e., 7:00) and TP 91 (i.e., 23:00) decreases as the 
flexibility increases, with no import when the flexibility 
reaches 100%. Energy bills are the consequence of 
importing energy. Figure 2 shows reduction in energy 
bills as the flexibility increases. In the best-case scenario, 
in which all the consumption can be shifted, the 
reduction reaches over 20%. In a more realistic scenario3 
(i.e., 20% flexibility), there is a decrease of roughly 5%. 

6.2 Load shedding 

This evaluation investigates the feasibility of the 
proposal in participating to load shedding requests. We 
experiment with different inconvenience 𝑝௜௡௖  and 
incentive 𝑝௦௛௘ௗ  values. Figure 3 demonstrates the 
results. We simulate a request to shed the consumption 
such that the imported energy between TP 5 and TP 14 
is reduced to 3 kW. Providing 𝑝௦௛௘  that compensates 
𝑝௜௡௖ , we obtain the desired result (Import shed). In reality, 
a user may find load shedding at a certain time more 
acceptable than at others. Therefore, the inconvenience 
level also varies accordingly. To simulate this, we conduct 
another experiment with varying convenience levels by 
increasing inconvenience value in TP 8 to 10. Since the 
incentive cannot compensate the inconvenience 

2 An energy supplier in France 
3 Different studies have shown that around 10-20% of demand can be 

time-shifted [5] 



 

between TP 8 and 10, no shedding is carried out in that 
period (shown as Import varying inconveniences). 

 
Figure 1 Energy imported for different amounts of flexibility 

 
Figure 2 Reduction of energy bills 

6.3 Load shifting 
This evaluation aims at validating the feasibility in 

participating to load shifting requests. We simulate a 
request to shift 10% of the import from TP 1-28 (i.e., 
deviation duration - DD) to TP 56-75 (i.e., recovery 
duration - RD). The result is shown in Figure 4. To reduce 
the consumption in DD, we provide an incentive 𝑝௦௛௜௙௧ 
that compensates the energy price during that period. 
This actually encourages consumption, which is 
contradictory to the objective. However, we set the 
import limit 𝑃௠௔௫  in DD to 𝐼𝑚𝑝𝑜𝑟𝑡 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 10% . 
Therefore, the consumption, though encouraged, will 
only reach the set limit. The same mechanism is applied 
in RD, except with the import limit of 𝐼𝑚𝑝𝑜𝑟𝑡 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 +

10%, to encourage the consumption of the shifted load.     

7. DISCUSSION AND CONCLUSION 
The evaluations included in this paper cover only the 

general and demonstrative cases due to the page limit. 
However, other more specific cases are also to be 
considered. For instance, one needs to consider the case 
where the request requires to shed or shift more 
consumption than the loads available to be shed or 
shifted. Furthermore, how the inconvenience and 
incentive are modelled and converted into the same 

scale and unity to include them in the device’s cost 
function is a significant question to be addressed. 

 
Figure 3 Load shedding 

 
Figure 4 Load shifting 

In conclusion, it has been shown that the proposed 
approach is able to reduce energy bills up to over 20% in 
the best-case scenario by exploiting the flexibility of 
consumption to benefit the off-peak price of the price-
based DR. Device optimisation models incorporating 
incentives and inconveniences related to load shedding 
and load shifting have been shown to enable 
participation to different incentive-based DR requests.   
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