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ABSTRACT
The increasing presence of smart and dynamic environments with
IoT devices creates new challenges in energy optimisation such as
handling environments’ dynamics and privacy concerns. In this
paper, we aim at optimising energy consumption in such environ-
ments, exploiting building flexibility to reduce energy bills, while
respecting user preferences as well as device constraints and ad-
dressing the complexity of the environment. We propose a multi-
agent optimisation system based on Alternating Direction Method
of Multipliers to solve the optimisation problem. Various evalua-
tions of the proposal show significant energy cost savings, while
addressing dynamics and preserving privacy.
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1 INTRODUCTION
These days, the shifting towards smart buildings alongwith Internet
of Things (IoT), while offering numerous advantages, presents also
challenges. Smart buildings are not limited to residential buildings,
but cover a wide range of building types from connected industrial
buildings to smart transit stations. Such buildings are dynamic and
open in the sense that devices may enter or exit the environments
at any time. They may contain multiple users, each owning a set
of devices and having different constraints. Devices may be acti-
vated or deactivated at by their owners, resulting in inclusion in
or exclusion from the optimisation. Moreover, privacy, one of the
main concerns in IoT [13], needs to be addressed, especially in the
presence of multiple users. In this paper, we address energy optimi-
sation in such complex and multi-user environments, handling the
dynamics, openness, and privacy concern.

Many algorithms and techniques have been proposed for build-
ing energy optimisation. Some are based on artificial neural network
[3, 9], multi-agent system [7], distributed model predictive [11], ant
colony optimisation [5], and reinforcement learning [10], to name a
few. The existing works address specific aspects of the optimisation.
Most of the works focus on thermal comfort, user preferences, and
energy saving. To the best of our knowledge, hardly any consider
the dynamics and privacy issue in the optimisation.

An environment may contain a significant number of devices,
each with its own dynamic constraints, objectives, and preferences
provided by its user. Performing an optimisation for such an envi-
ronment over a time horizon entails dealing with a large number of
variables, making it computationally impractical to solve in a cen-
tralised manner [8]. Solving complex problems using a distributed
technique has become prevalent in the literature [2, 6, 8, 12]. The
algorithm in [8] significantly parallelises the problem to be exe-
cuted by solver agents. In addition, it uses the approach commonly

known as Lagrangian relaxation, which preserves the privacy of
the cost function and local constraints of each agent. Advances in
decomposition methods such as alternating direction method of
multipliers (ADMM) [1, 4] have been applied to solve optimisation
of energy flow due to their robustness and privacy-preserving fea-
tures. In this paper, we propose a multi-agent energy management
system (MEM) based on ADMM to solve energy optimisation in a
distributed fashion. Agents representing the devices perform local
optimisation with local data, avoiding any privacy issue. An inher-
ently distributed, dynamic, and open system itself, MEM proves
efficient in handling dynamics and distribution of its components.

The rest of the paper is organised as follows. First, we present the
context of the work. Second, a concise description of the distributed
optimisation is provided. Third, we present our main contribution,
MEM. Fourth, different evaluations of the proposal are presented.
Finally, we discuss and conclude the paper.

2 CONTEXT
This work addresses energymanagement in environments equipped
with a wide range of energy-consuming/producing devices (e.g.,
household appliances, photovoltaic, and local generators). We con-
sider both fixed devices and controllable devices (i.e, controllable
consumption/production) providing some sort flexibility.

Let 𝑈 be a set of users in an environment 𝐸, D a set of energy-
consuming/producing devices, 𝐶 a set of device constraints, and
UPref user preferences on how each device should operate. Then,
an environment at a given time 𝑡 is defined as follows:

𝐸𝑡 = (𝑈𝑡 , 𝐷𝑡 ,𝐶𝑡 ,UPreft , 𝑆𝑡 ) (1)

where 𝐸𝑡 represents the environment 𝐸 at time 𝑡 ,𝑈𝑡 a set of users in
𝐸𝑡 , 𝐷𝑡 a set of devices in 𝐸𝑡 and considered in the optimisation, 𝐶𝑡
a set of device constraints, UPreft a set of user preferences, and 𝑆𝑡 a
set of external energy sources. We separate static devices 𝑆𝐷𝑡 ⊂ 𝐷𝑡

whose state is constant from dynamic devices 𝐷𝐷𝑡 ⊂ 𝐷𝑡 whose
state may evolve over time. A device 𝑑 ∈ 𝐷𝑡 has a set of constraints
𝐶𝑑 ⊂ 𝐶𝑡 . A user 𝑢 ∈ 𝑈𝑡 owns a set of devices 𝐷𝑢 ⊂ 𝐷𝑡 , and has
a set of preferences on their devices UPrefu ⊂ UPreft . For each
device they own 𝑑𝑢 ∈ 𝐷𝑢 , the user may configure 𝑑𝑢 based on their
preferences UPref du ⊂ UPrefu .

3 DISTRIBUTED OPTIMISATION
The devices, whose energy consumption or production profile is to
be optimised, are connected at the building level, forming a network
of devices. Optimising energy flow in such a network is to minimise
the network objective function subject to the constraints of each
device in the network. We model such a network as an energy
coordination network [8] composed of a set of terminals 𝑇 , a set of
devices 𝐷 , and a set of nets 𝑁 . A terminal models a transfer point
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through which the energy flows between a device and a net. A net
represents an exchange zone that constrains the energy schedules
of its associated devices. Each device and each net is associated
with a set of terminals.

Each terminal 𝑡 ∈ 𝑇 has a schedule 𝑝𝑡 = ((𝑝𝑡 (1), ..., 𝑝𝑡 (𝐻 )) ∈ R𝐻
over a time horizon 𝐻 ∈ N+ (e.g., 24 hours). Then, 𝑝𝑡 (τ) where τ ∈
[1, 𝐻 ] is the amount of energy consumed (𝑝𝑡 (τ) > 0) or generated
(𝑝𝑡 (τ) < 0) by device 𝑑 ∈ 𝐷 in time period τ through terminal 𝑡 ,
where 𝑡 is associated with 𝑑 . For each device 𝑑 ∈ 𝐷 , we use ′𝑑′ to
refer to both the devices and the set of terminals associated with
the device. Each device 𝑑 ∈ 𝐷 has a set of energy schedules denoted
by 𝑝𝑑 = {𝑝𝑡 |𝑡 ∈ 𝑑}, possesses a set of |𝑑 | terminals and has an
objective function 𝑓𝑑 : R |𝑑 |×𝐻 → R. Then, 𝑓𝑑 (𝑝𝑑 ) is the cost of
operating device 𝑑 according to the schedule 𝑝𝑑 . Every device has
a set of constraints 𝐶𝑑 which 𝑝𝑑 must satisfy. Similarly, each net
𝑛 ∈ 𝑁 has a set of energy schedules 𝑝𝑛 = {𝑝𝑡 |𝑡 ∈ 𝑛}, a set of |𝑛 |
terminals, an objective function 𝑓𝑛 : R |𝑛 |×𝐻 → R, and a set of
constraints𝐶𝑛 to satisfy. Provided an energy coordination network,
we define the optimisation problem as follows:

𝑚𝑖𝑛𝑝∈R𝐻×|𝑇 |

∑︁
𝑑∈𝐷

𝑓𝑑 (𝑝𝑑 ) +
∑︁
𝑛∈𝑁

𝑓𝑛 (𝑝𝑛)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 𝑝𝑑 ∈ 𝐶𝑑 ,∀𝑑 ∈ 𝐷

𝑝𝑛 ∈ 𝐶𝑛,∀𝑛 ∈ 𝑁

(2)

To solve the optimisation problem specified in Equation 2, we
implemented a solution based on ADMM. ADMM iteratively solves
the problem until the convergence is reached. In each iteration,
ADMM performs the following steps:

Step 1: Device-minimisation executed in parallel by each device

∀𝑑 ∈ 𝐷, 𝑝𝑘+1
𝑑

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝑑 ∈𝐶𝑑
(𝑓𝑑 (𝑝𝑑 ) +

𝜌

2
| |𝑝𝑑 − ¤𝑝𝑘

𝑑
+ 𝑣𝑘

𝑑
| |22) (3)

Step 2: Net-minimisation executed in parallel by each net

∀𝑛 ∈ 𝑁, ¤𝑝𝑘+1𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝑛∈𝐶𝑛
(𝑓𝑛 (𝑝𝑛) +

𝜌

2
| |𝑝𝑛 − 𝑝𝑘𝑛 − 𝑣𝑘𝑛 | |22) (4)

Step 3: Price update executed in parallel by each net

∀𝑛 ∈ 𝑁, 𝑣𝑘+1𝑛 = 𝑣𝑘𝑛 + (𝑝𝑘+1𝑛 − ¤𝑝𝑘+1𝑛 ) (5)

First, each device computes in parallel its best response to the
price and energy requested by nets. At any iteration 𝑘 + 1, 𝑝𝑘+1

𝑑

represents the device’s response to the request < ¤𝑝𝑘
𝑑
+ 𝑣𝑘

𝑑
>. Sec-

ond, upon receiving the offers from all the devices connected to it,
each net checks if the convergence has been reached. If there is no
convergence, nets compute a new request for the devices consid-
ering the devices’ previous offers and send the new request to the
devices. Third, nets update the scaled dual variables (refer to [8]
for further details on ADMM). The cost functions and constraints
of the devices differ according to their types, and are presented in
Section 4.3.

4 MULTI-AGENT ENERGY MANAGEMENT
MEM is composed of agents assuming different roles required to
carry out the optimisation, modelled as follows:

MEM = (NA,DA) (6)

whereNA is the model of net agents assuming the role of the nets in
the energy coordination network and DA models the static device

agents representing the static devices as well as the dynamic device
agents representing the dynamic devices. The role of an agent
determines the knowledge it possesses, the actions it can perform,
and the behaviour it comports.

4.1 Net agents
The role of a net agent is to ensure that, in each time period, there is
a balance between the energy flowing into and out of its terminals.
Net agents are modelled as follows:

NA = (𝑂𝑝𝑡𝑛𝑒𝑡 ,𝐶𝑛𝑒𝑡 ,𝐶𝑜𝑚𝑚𝑛𝑒𝑡 ) (7)

where𝑂𝑝𝑡𝑛𝑒𝑡 contains the optimisation steps (equation 4 and equa-
tion 5) executed locally by a net agent, 𝐶𝑛𝑒𝑡 represents the energy
balance constraint upheld by a net, and 𝐶𝑜𝑚𝑚𝑛𝑒𝑡 is the communi-
cation ability of the agent, enabling it to send and receive messages
with other agents (e.g., functions required for sending, receiving,
and processing messages). Each net agent iteratively computes the
optimisation steps 𝑂𝑝𝑡𝑛𝑒𝑡 until a convergence is reached, while
ascertaining that 𝐶𝑛𝑒𝑡 is respected.

4.2 Device agents
The role of a device agent is to perform the local optimisation,
while respecting the constraints of its user(s) and the device. The
optimisation result is communicated to its associated net agent(s).
Formally, the model of a device agent is as follows:

DA = (𝑂𝑝𝑡𝑑𝑒𝑣,𝐶𝑑𝑒𝑣, Pref , 𝐼𝑑𝑒𝑣,𝐶𝑜𝑚𝑚𝑑𝑒𝑣, Sen, State) (8)

where𝑂𝑝𝑡𝑑𝑒𝑣 is the device-minimisation step (equation 3) executed
by the device agent (see 4.3), 𝐶𝑑𝑒𝑣 represents device constraints,
Pref consists of user preferences regarding the manner in which the
device may operate (e.g., the interval in which the device is allowed
to be switched on or off), 𝐼𝑑𝑒𝑣 refers to additional information
required by the device agent to perform the optimisation (e.g.,
energy prices), 𝐶𝑜𝑚𝑚𝑑𝑒𝑣 is the communication capacity of the
agent required for communicating with its associated net agent(s),
Sen is the agent’s ability (e.g., functions to retrieve data directly
from sensors or from data stores) to acquire the current state of the
device, and State models the information concerning the device’s
state as part of the agent’s knowledge.

Each dynamic device agent needs to consider the current state
of the device in its optimisation. For instance, the agent is pro-
vided access to the sensor installed on the device for which the
agent is responsible. In this way, the agent can retrieve data from
the sensor to monitor the state of the device. For static device
agents, Sen and State are irrelevant. Each device agent executes its
device-minimisation step iteratively considering the updates from
its associated net(s).

4.3 Device optimisation model
4.3.1 Fixed load (FL). FL [8] models a device whose power con-
sumption profile must be satisfied. Fixed loads have a zero cost
function. Their constraint 𝑐FL ∈ 𝐶𝑑𝑒𝑣 ensures that the required con-
sumption 𝑝req is satisfied in each time period, formally: 𝑝FL (τ) =
𝑝req (τ), τ = 1, ..., 𝐻 where 𝑝FL is the actual consumption of FL.

4.3.2 Shiftable load (SL). SL [8] models a device that must con-
sume a certain amount of energy (i.e., the volume) within a given
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time interval. The interval allowed to activate the device is a user
preference prefSL ∈ Pref and imparted to the device agent as part
of its knowledge. SL has a zero cost function. It encodes a hard
constraint 𝑐SL ∈ 𝐶𝑑𝑒𝑣 mandating that the required amount of con-
sumption𝑉 is satisfied between an earliest time period𝐴 and latest
time period 𝐷 , formally:

∑𝐷
τ=𝐴 𝑝SL (τ) = 𝑉 where 𝑝SL is the actual

consumption of SL.

4.3.3 Sheddable load (ShL). ShL [8] models a device whose con-
sumption can be shed at a cost when there is a need to reduce
demands (e.g., lighting system - on/off or selecting a level of bright-
ness). The cost function of sheddable loads considers inconve-
nience 𝑝inc ∈ Pref resulting from the shedding, formally: 𝑓ShL (τ) =
𝑝inc (τ) ∗ (𝑝req (τ)−𝑝ShL (τ)) where 𝑝req is the required consumption
and 𝑝ShL the actual consumption after shedding. ShL’s constraint
𝑐ShL ∈ 𝐶𝑑𝑒𝑣 ensures that the consumption after shedding does
not surpass the required consumption, formally: 0 ≤ 𝑝ShL (τ) ≤
𝑝req (τ), τ = 1, ..., 𝐻 .

4.3.4 Curtailable generator (CG). CG models an energy source
whose production can be curtailed (e.g., photovoltaic). The cost
function of curtailable generators incorporates a curtailment cost
𝑝curt ∈ Pref , formally: 𝑓CG (τ) = 𝑝curt (τ) ∗ (𝑝gen (τ) − 𝑝CG (τ))
where 𝑝gen is the expected production and 𝑝CG the production after
curtailment.

4.3.5 External tie. ET [8]models a connection to an external source
of energy. Transactions with ET consist in pulling energy from the
source or injecting energy to it. Its cost function factors in the prices
of importing 𝑃 imp ∈ 𝐼𝑑𝑒𝑣 and exporting 𝑃exp ∈ 𝐼𝑑𝑒𝑣 energy:

𝑝ET (τ) < 0, 𝑓ET (τ) = 𝑃exp ∗ 𝑝ET (τ)
𝑝ET (τ) = 0, 𝑓ET (τ) = 0

𝑝ET (τ) > 0, 𝑓ET (τ) = 𝑃 imp ∗ 𝑝ET (τ)
(9)

where 𝑝ET is the amount of pulled (positive value) or injected (neg-
ative value). Its constraint 𝑐ET ∈ 𝐶𝑑𝑒𝑣 restricts importing and ex-
porting energy by some specified limit 𝑃𝑚𝑎𝑥 , formally: |𝑝ET (τ) | ≤
𝑃𝑚𝑎𝑥 , τ = 1, ..., 𝐻 .

4.4 Constraints, privacy, and dynamics
4.4.1 Constraints. Device constraints 𝐶𝑑𝑒𝑣 and the device user’s
preferences Pref are imparted to a device agent as a part of its
knowledge when the agent is instantiated. While conducting its
local optimisation, the agent ensures that the constraints and pref-
erences are not violated.

4.4.2 Privacy. User preferences and device constraints are known
only to the corresponding device agent. They are not shared with
other agents. Moreover, employing ADMM enables the coordina-
tion exchanges in which the preferences, the constraints, and the
cost structures of each device are reflected in its private cost func-
tion. More precisely, as described in Section 3, the coordinated
messages 𝑝𝑘+1

𝑑
sent to the associated net agent are simply the repre-

sentation of the device agent’s response to the net agent’s request
< ¤𝑝𝑘

𝑑
+ 𝑣𝑘

𝑑
>.

4.4.3 Dynamics. We address two types of dynamics: devices’ evolv-
ing state and activation/deactivation of devices. First, to handle the

evolving state of the devices, device agents are equipped with the
ability to acquire the information concerning the current state of
the devices. This allows device agents to perform the optimisation
with accurate information about the devices. Second, a device that
is already registered in the system may be activated or deactivated
at any time by its user, which results in including the device in or
excluding it from the optimisation, respectively. To address this
situation, the device agent responsible, upon having detected the
activation or deactivation, informs its associated net agent of the
event. Accordingly, the net agent includes the device in or excludes
it from the optimisation.

The result of the optimisation is the consumption and/or produc-
tion profile of each device for the next time horizon discretised into
a number of time periods (e.g., 24 hours divided into 96 time periods
of 15 minutes). During the horizon in which the optimised profiles
are applied to the devices, changes impacting the environment and
thus rendering the current profiles non-optimal may occur. The
agents, having detected such changes, trigger a new optimisation
process with the update-to-date state of the environment.

5 EVALUATIONS
The evaluations are conducted using a case study of a prosumer
building with a connection to an energy supplier (i.e., external tie)
and equipped with a photovoltaic (PV) for local uses. The time
horizon for the experiments is 24 hours divided into 96 time pe-
riods (TP) of 15-minute interval. We use the consumption data
from UK Elexon’s non-domestic unrestricted customers1. In each
scenario, the fixed consumption represents a certain percentage of
the overall consumption, and a certain percentage is considered
flexible. PV production is based on data from one of our projects.
We use two-banded Time-Of-Use tariffs from EDF (i.e., an energy
supplier in France) consisting of a peak price (between 7:00 and
23:00): e0.158/kWh and an off-peak price (between 23:00 and 7:00):
e0.11/kWh. In the experiments, flexibility is concretely modelled by
means of shiftable devices, which consume the amount of flexibility
provided in each scenario.

User preferences and device constraints are encoded in the cor-
responding device agents. It is important to note that each device
agent is instantiated with the knowledge of its user preferences and
device constraints, unknown to other agents, in order to preserve
privacy. To address the dynamics and openness, the optimisation
is executed iteratively every TP (i.e., 15 minutes). The pertinent
changes to the devices or addition/removal of devices happening
during the previous TP are detected by each device agent and taken
into account in the next iteration.

5.1 Result analysis
In the first evaluation, we experiment with four different scenarios,
with varying percentages of flexibility proportional to the total
consumption of the building. The first scenario has no flexibility
at all, second 20% flexibility, third 50%, and fourth 100%. Figure 1
depicts the energy imported for each of the scenarios. The imported
energy is the energy pulled from the supplier via the external tie.
Since the building also produces energy, the imported energy is the
amount required after self-consumption using the energy from PV.
1https://www.elexon.co.uk/knowledgebase/profile-classes/
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The first scenario (shown as Import baseline) supposes that all
the consumption is fixed. Therefore, the system is not able to opti-
mise the consumption based on the energy tariffs. By introducing
flexibility, the system can optimise the flexible consumption to ben-
efit the off-peak price, the result of which can be seen in Figure 1.
The imported energy during peak period between TP 29 (i.e., 7:00)
and TP 91 (i.e., 23:00) decreases as the flexibility increases, with no
import when the flexibility reaches 100%. The reason is that the
system schedules the flexible consumption in the off-peak periods.

Figure 1: Comparison of energy imported for different
amounts of flexibility

Figure 2 illustrates the reduction of energy bills as the amount
of flexibility increases. In the best-case scenario, in which all the
consumption is flexible and can be shifted, the reduction attains
over 20%. In a more realistic scenario where approximately 20%2 of
the consumption is shiftable, the energy bill decreases roughly 5%.

Figure 2: Reduction of energy bills

It is noteworthy that, in the aforementioned results, all the flexi-
ble consumption can be scheduled freely by the system without any
constraints. In reality, it is common for users to specify the interval
in which the shiftable consumption is allowed to be scheduled. To
evaluate the system’s capacity to respect such preferences from
users, in the second evaluation, we simulate user preferences on
shiftable devices. For this evaluation, a set of shiftable devices are
2Different studies have shown that around 10-20% of demand can be time-shifted [14]

only allowed to be shifted within an interval between TP 41 and 61
(i.e., 10:00-15:00).

Figure 3 demonstrates the comparison of imported energy be-
tween the scenario of 20% flexibility without any constraint and
that with the previously mentioned constraint. Without constraints,
all the shiftable devices are scheduled to operate in off-peak periods,
while, with the constraint, they are set to execute as specified in
the constraint regardless of the energy price.

Figure 3: Satisfying user preferences on shiftable loads

6 DISCUSSION AND CONCLUSION
Currently, each agent detects the changes and acts accordingly.
These changes are taken into account in the next optimisation. A
remaining question is when to carry out the next optimisation to
consider the changes. A promising solution may be to determine
which types of changes should trigger immediate re-execution of
the optimisation and which types can wait for the next periodic
iteration (e.g., every 15 minutes). Further investigation is neces-
sary to determine the compatible mechanism for different types of
environment dynamics.

It has been shown that the system is able to reduce energy bills
up to over 20% in the best-case scenario, while respecting user
preferences and device constraints. The distributed architecture of
the system and the inherent characteristics of ADMM enable each
agent’s knowledge to be private, thus preserving privacy. Detecting
and handling such dynamics and openness of the environment are
carried out by the agents in cooperation. The system is designed
to support dynamic changes of their components and to allow
dynamic additions of new components.
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