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Abstract Satellite measurements of urban CO, plumes offer a global approach to track CO, emissions for
large cities. To examine and to quantify the feasibility of space-based monitoring, an intensive measurement
campaign (MERCI-CO,) using seven solar-tracking Fourier transform infrared (FTIR) spectrometers has been
conducted over the Mexico City Metropolitan Area (MCMA) to monitor urban emissions and to evaluate
Snapshot Area Map (SAM) observations from the NASA's Orbiting Carbon Observatory-3 (OCO-3) mission.
Once adjusted for their respective averaging kernels, we diagnosed a positive difference between OCO-3 and
FTIR column measurements (1.06 ppm). Thanks to this unprecedented amount of column observations over a
large city, we demonstrate that XCO, gradients within OCO-3 SAMs align with the inter-calibrated FTIR
measurements (mean bias of 0.3 ppm), confirming the potential to track CO, emissions from space over large
metropolitan areas. XCO, urban-rural differences across the FTIR network, show a strong correlation with
observed gradients, with Pearson's correlation coefficients (R) around 0.92. The correlation is significantly
lower when considering intra-urban gradients, where R drop to around 0.24. Simulated XCO, enhancements
(AXCO,) based on X-STILT for both FTIR and OCO-3 show relatively high correlations (R is around 0.6)
using high-resolution footprints and two gridded inventories. Spatial correlations with OCO-3 improve when
aggregating satellite retrievals at coarser resolutions (10 km). Our study demonstrates the capabilities of
detecting urban gradients by FTIR network and OCO-3 SAM observations over MCMA, a promising result to
evaluate the evolution of MCMA's emissions over the coming decade.

Plain Language Summary Despite the fact that large metropolitan areas across the world account
for a significant fraction of the global CO, emissions from fossil fuels, city-scale CO, emissions estimates from
inventories remain highly uncertain and usually lag real time by several years. Observations obtained from
satellites and ground-based sensors are expected to improve the quantification of CO, emissions in urban
regions. Observed CO, gradients (site-to-site differences) over urban areas is essential for quantifying CO,
emissions. In this study, we assess intra-urban CO, gradients over the Mexico City Metropolitan Area utilizing
dense observations from both space and ground. Our analysis reveals that space and ground observations exhibit
greater consistency when comparing urban-to-rural gradients, as opposed to gradients observed exclusively
within urban areas. Furthermore, simulated urban gradients based on inventories show good coherence with our
observed gradients, underscoring the potential for utilizing both space and ground spatial gradients in city-scale
CO, emissions estimation.

1. Introduction

Urban areas are home to billions of people, sources of about 70% of fossil-fuel CO, emissions at the global scale.
Hence, metropolitan areas offer unique opportunities for carbon emission mitigation through local policies to
combat climate change (Stocker, 2014). But decarbonization requires widely different strategies across cities
(Linton et al., 2022). International consortiums (such as C40 City, Covenant of Mayors) have formed to provide
guiding principles and to support mitigation plans for large metropolitan regions. Effective urban-scale mitigation
strategies require a deep understanding of CO, emissions at city-scale (Hsu et al., 2020).
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Both bottom-up and top-down approaches have been applied across multiple metropolitan areas to quantify
urban-scale CO, emissions (Gately & Hutyra, 2017; Lauvaux et al., 2016, 2020). While bottom-up methods
provide a mechanistic and sectoral understanding of anthropogenic emissions, large uncertainties (such as
downscaling method, spatial-temporal proxies, self-reported data etc.) still affect current gridded bottom-up
inventories at urban scale (Gately & Hutyra, 2017), most often leading to under-estimation of urban direct
emissions (Gurney et al., 2021). Observed variations in atmospheric CO, are used to constrain urban CO,
emissions in inversion frameworks (top-down method) and provide powerful support to emission verification
(Lauvaux et al., 2020). To date, only few studies have examined the potential use of column-integrated data to
constrain urban emissions. Vogel et al. (2019) used five portable FTIR sensors over Paris to identify that the local
XCO, gradient in Paris is primarily influenced by fossil fuel CO, with a strong impact from biospheric CO, sink
on diurnal CO, variations. Jones et al. (2021) used five portable FTIR sensors to estimate diffuse methane
emissions over Indianapolis, revealing a significant underestimation by bottom-up inventories. Similarly, Ionov
et al. (2021) assimilated XCO, retrievals from two mobile FTIR sensors to quantify the anthropogenic CO,
emissions from St Petersburg, resulting in a 3-fold increase in whole-city emissions compared to the municipal
inventory. Che et al. (2022) inverted anthropogenic CO, emissions from Beijing using urban-rural differential
FTIR observations and narrowed the uncertainties across several inventories. Zhao et al. (2022) identified missing
methane sources near Munich using a network of five FTIR sensors. Compared to near-surface in-situ ground-
based measurements, column-integrated measurements represent a larger area and are less affected by vertical
transport errors (Lauvaux & Davis, 2014; Wu et al., 2018).

Satellite missions like NASA's Orbiting Carbon Observatory-3 (OCO-3) can also provide column-averaged CO,
measurements over a specific region in “Snapshot Area Map” (SAM) mode with shorter revisit time compared to
the polar orbital carbon-observing satellites like GOSAT (Shim et al., 2019), OCO-2 (Rimann et al., 2022; Ye
et al., 2020) or TanSat (Yang et al., 2020, 2023). SAMs assembled with several swaths from OCO-3 can capture
spatial gradients across CO, city plumes, enhancing the potential for source detection and quantification
compared to single swaths from typical orbits (Kiel et al., 2021). Assimilating multiple SAMs can potentially
reduce emissions uncertainties as demonstrated with synthetic data (Kuhlmann et al., 2020; Roten et al., 2022).
However, satellite-borne sensors are sensitive to scattering effects by aerosols or by artifacts from different land
coverages (Crisp et al., 2004). Hence, satellite observations require precise evaluation and validation using
ground-based column observations (Yang et al., 2020; Yoshida et al., 2013) especially at the city scale to quantify
spatial gradients across a complex landscape (Butz et al., 2022). The NDACC (Network for the Detection of
Atmospheric Composition Change) (De Maziere et al., 2018), Total Carbon Column Observing Network
(TCCON) (Wunch et al., 2011) and COCCON (Collaborative Carbon Column Observing Network) (Frey
etal., 2019) are three international remote sensing Fourier Transform Infrared Spectrometer (FTIR) networks that
provide ground-based column measurements to evaluate several satellite products. All TCCON sites use IFS-
125HR or similar high resolution FTIR spectrometers (Bruker Optics GmbH), which uses the direct solar
near-infrared absorption spectrum to retrieve the column concentrations of CO, with an accuracy of 0.25% or less
than 1 ppm (Wunch et al., 2011). Because TCCON stations remain sparsely distributed, portable EM27/SUN
spectrometers have been developed by the Karlsruhe Institute of Technology (KIT) in cooperation with Bruker
Optics GmbH (Gisi et al., 2012; Hase et al., 2016) and can be an effective complement to cover various surface
types and regions across the globe. The COCCON network has been established with these instruments in order to
standardize the calibration procedures, measurements and spectral analysis and have been widely used in studies
to derive urban emissions, like in Berlin (Hase et al., 2015; Zhao et al., 2019), Paris (Vogel et al., 2019), Munich
(Dietrich et al., 2021; Rilmann et al., 2022; Zhao et al., 2022), Indianapolis (Jones et al., 2021), Beijing (Cai
et al., 2021; Che et al., 2022), and St Petersburg (Ionov et al., 2021).

The separation of anthropogenic urban signals from the highly-variable background inflow remains challenging
(Schuh et al., 2021). Strategic deployment of FTIR stations have usually been involved both in upwind-rural and
polluted city deployments in order to extract the urban signals (Chen et al., 2016; Shekhar et al., 2020). However,
dominant winds often overlap with fossil fuel sources from other regions (Hu et al., 2018; Wei et al., 2020).
Boundary inflow concentrations can also be determined from global coarse-resolution models combined with
finer-grid simulations to determine the background values (Monteil & Scholze, 2021; Rastogi et al., 2021; Schuh
et al., 2021). Sargent et al. (2018) filtered Carbon-Tracker background values by comparing modeled concen-
trations to near-surface measurements to reduce the boundary inflow errors. Improving the background values
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along with the city emissions within the inversion framework is also an effective way to obtain more robust results
(Jones et al., 2021; Maasakkers et al., 2022).

The Mexico City Metropolitan Area (MCMA) contains around 21 million inhabitants, or about 20% of the entire
population of Mexico. MCMA has become the most populous urban region in North America and the fourth
largest megacity worldwide according to the United Nations's estimates in their 2022 revision of World Ur-
banization prospects. Pollutants from MCMA have been detected and measured by ground- and space-based
column observations (Borsdorff et al., 2020; Stremme et al., 2013). According to the inventories, CO, emis-
sions in MCMA represent around 9% of the national emissions of Mexico, dominated by transportation (Molina
etal., 2019). Mexico City's government has pledged to reduce its greenhouse gas emissions by 30% by 2030 from
their business-as-usual scenario and to achieve carbon neutrality by 2050. The MCMA has been selected as a
frequent SAM target by OCO-3. In parallel, a dense network of seven ground-based column sensors located
within MCMA has been deployed as part of the Mexico City's Regional Carbon Impacts (MERCI-CO,) project in
2020-2021, offering a unique opportunity to evaluate XCO, gradients observed by the OCO-3 SAM's, and for the
quantification of intra-city XCO, gradients.

In this study, we focus on the intra-city XCO, gradients over MCMA based on two column data sets: FTIRs and
OCO-3. To validate the detection capability of OCO-3 over the MCMA, we present the comparison of XCO, and
site-to-site XCO, differences from these two observing strategies. Then, we applied a Lagrangian particle
dispersion model (WRF-XSTILT) to simulate XCO, urban enhancements based on two independent emission
inventories (UNAM_EMI and ODIAC). We constructed vertical columns of CO, from a global inversion system
as background. Finally, we compared the simulated and observed enhancements from FTIR and OCO-3 to
evaluate the accuracy of our two inventories over MCMA.

2. Data Set and Methodology
2.1. MERCI-CO, FTIR Campaign

Seven solar-viewing Fourier transform infrared (FTIR) spectrometers were deployed during an intensive 7-month
field campaign (part of the French-Mexican project MERCI-CO,) in the MCMA area during October 2020 to
May 2021 (Figure 1). One FTIR has been continuously operated since 2012 from an NDACC station (Altzomoni
Atmospheric Observatory) located on a mountain top (3,985 m a.s.l), which is 60 km from Mexico City. This
high-resolution IFS 120/5HR (spectral resolution <0.02 cm™") spectrometer performs regular NDACC and XCO,
TCCON-like measurements using alternate optical components and retrieval strategies (Baylon et al., 2017) but
producing similar results. Two low-resolution portable EM27/SUN (spectral resolution <0.5 cm™) (Gisi
et al., 2012; Hase et al., 2016) FTIR instruments are permanently operated at the university campus (UNAM)
South of the city, and at a northern site (Vallejo) since 2016 and 2019, respectively. The other 4 EM27/SUN
instruments were deployed as part of the MERCI-CO, project and the results of this intensive field campaign are
presented here.

FTIR observations were collected in cloudless daylight during 07:00-18:00 CDT (corresponding to 13:00-24:00
UTC). Each FTIR site was equipped with a weather station to measure the surface pressure and temperature. Non-
linear least-squares fitting retrieval algorithms, PROFFASTVO0 (03/2020) (Alberti et al., 2022) and PROFFITv9.6
(Hase et al., 2004) were used to process all EM27/SUN and IFS 120/5HR spectra, respectively, into the column-
averaged carbon dioxide dry-air mole fraction (XCO,). For the EM27/SUN, according to the COCCON pro-
cedure, the TCCON a priori profiles and meteorological data (GGG2014 version of MAP files) are used in the
scaling retrievals (Tu et al., 2020). For the IFS 120/5HR, we used the WACCM (Whole Atmosphere Community
Climate Model) a priori profiles, and followed the strategy described in Baylon et al. (2017). Several pre- and
post-process quality filters were applied to discard data affected by clouds or volcanic ash, or with low signal,
based on DC intensity signal, retrieval quality indicators (relative RMS, signal-to-noise ratio, wavenumber shift)
and statistical criteria (standard errors). Noisy outliers were largely removed according to the 3-sigma criterion.
All the EM27/SUN instruments are part of the COCCON network and have been calibrated at KIT next to the
TCCON-KIT site and their measurements are traceable back to the World Meteorological Organization standards
(Messerschmidt et al., 2011). Additionally, the six EM27/SUN were recalibrated once again in Mexico per-
forming side-by-side measurements at the UNAM site for a duration of several days before and after the intensive
campaign and it is introduced in detail in Taquet et al. (2024). Using as reference the EM27/SUN located at the
UNAM (for which the longer time series was recorded since 2016), the KIT calibration coefficients were refined
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Figure 1. (a) The topography map for Mexico City Metropolitan Area (MCMA). Seven FTIR sites used in this study are marked with black stars. The outlier of MCMA
is indicated with a black closed line and CDMX with gray; (b) Overall footprints for averaged footprint of all sites during study period with footprint contours of its 50,
75, 90 percentile level. The footprints depicted are based on the column footprints from X-STILT; (c) Cumulative sum of ordered footprints (high to low). 50%, 75% and
90% of the footprint sum values are indicated with dark red, orange, and dark blue dotted line.

by the inter-comparison. The high resolution (IFS 120/5HR) measurements were also calibrated using the same
EMZ27/SUN reference instrument.

Detailed geographic information and measurement periods for each FTIR site are shown in Table 1. MCMA is in
a valley surrounded by high mountains (Figure 1a), trapping polluted air parcels in the basin (Figure 1b). Two
FTIRs were deployed in rural areas, one near the basin (AMEC) and the other on a mountain top (ALTZ), with
significantly lower CO, emissions (<1 pmol/ms) to observe background air masses around Mexico. Five in-
struments were located across the urban basin of Mexico City: three of them (UNAM, VALL and BOXO sites) in
the core urban area (CO, emissions >10 pmol/m?s); the other two (CUAT and TECA sites) in peri-urban areas to
characterize the full extent of the MCMA. Additionally, one EM27/SUN was temporarily deployed at the ALTZ
site for the side-by-side inter-calibration and to circumvent an interruption in the IFS 120/5SHR measurements
between November 2020 and February 2021 due to the need of the laser replacement.

2.2. OCO-3 Observations

OCO-3 was launched in May 2019 and provides continuous online products since August 2019. Compared to
0CO-2, OCO-3 added an agile 2-D pointing technique to capture XCO, 80 x 80 km? SAMs with
~1.29 x 2.25 km® spatial resolution (Taylor et al., 2020). Thanks to its SAM mode, OCO-3 provides an
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Table 1

The Information About the Position and Observation Period for Seven FTIR Sites Located Over Mexico City

CO, flux (umol/m®s)

Site name Location Instrument Observation period Class UNAM_EMI ODIAC
CUAT 19.72°N, 99.20°W 2.26 km EM27/SUN 2020.10-2021.5 Inflow 6.24 6.05
TECA 19.74°N, 98.96°W 2.28 km EM27/SUN 2020.10-2021.5 Inflow 1.32 2.07
UNAM 19.33°N, 99.18°W 2.28 km EM27/SUN Since 2016.3 Urban 14.93 10.47
VALL 19.48°N, 99.15°W 2.26 km EM27/SUN Since 2019.9 Urban 23.72 13.49
BOXO 19.42°N, 99.02°W 2.21 km EM27/SUN 2021.2-2021.5 Urban 13.47 10.47
AMEC 19.13°N, 98.79°W 2.45 km EM27/SUN 2020.10-2021.5 Background 0.25 0.64
ALTZ 19.12°N, 98.66°W 3.99 km EM27/SUN 2020.10-2021.2 Background 0.03 0.09
IFS125 HR Since 2012.5

Note. It specifies each site's geographical coordinates (latitude and longitude) and altitude above sea level (a.s.l.). CO, fluxes within a surrounding circle with a 10 km
radius for each site is also shown. Class column categorizes each site based on the CO, emissions in its vicinity.

unprecedented coverage of XCO, fine-scale spatial maps and more frequent revisit time to study sub-city scale
CO, emissions performances (Kiel et al., 2021). MCMA has been selected for frequent scanning by OCO-3. Here,
we used OCO-3 Level 2 bias-corrected XCO, data (version 10.4r) generated by the Atmospheric CO, Obser-
vations from Space (ACOS) algorithm (O'dell et al., 2018; Osterman et al., 2020). Inferior quality data are filtered
based on the quality flag in the data set (xco,_quality_flag = 0).

Ground-based FTIR observations are less affected by the heterogeneous surface properties or by scattering effects
caused by cirrus and/or aerosols. Consequently, the accuracy of ground-based observations is usually higher than
satellite observations (Wunch et al., 2011). Different colocation methodologies have been developed to compare
FTIR and OCO-3 retrievals. Most approaches use averages of satellite retrievals within a predefined area (circle
or square) centered on the ground-based site location. Similarly, an averaged FTIR value is computed within a
specific time window, around the satellite overpass time. Nguyen et al. (2014) used a modified distance to
calculate a weighted average of collocated data. Belikov et al. (2017) proposed a footprint-based method only
selecting the satellite measurements influenced by the ground-based site to determine if the same air mass affected
both column measurements. Over the intensive observation period, 34 co-located OCO-3 SAMs were collected
with 20, 980 screened soundings (44.02% of the total satellite points). We only picked 20 high-quality overpasses
with sufficient data density over MCMA. For OCO-3 XCO, validation, we selected and averaged FTIR data
within 30 min of OCO-3 overpass times. OCO-3 data were averaged within a 10 km radius of each FTIR site.
Each comparison requires at least 20 OCO-3 and 5 FTIR soundings to reduce the measurement errors.

After selecting matched data, we apply an averaging kernel correction following Rodgers and Connor (2003) and
substitute the satellite a priori profile into the each FTIR retrieval before comparing FTIR data to OCO-3 data, as
expressed by Equations 1-2:

"
Xerr = Xrrg + Z PWK(AK — D(x, prir — Xa,0c0-3) (1
p
AP,
PWK; = — 2
Psurf

where Xﬁm represents the FTIR retrieved total column using the satellite's a priori profile, while X,z denotes
the original FTIR retrieval, AK is the FTIR column averaging kernel, I is the unit vector, x, zr;z and x, oco—3
correspond to the a priori partial column profiles of FTIR and OCO-3 retrievals, respectively. PWK; is the
pressure weighing function of layer i, it weight the pressure thicknesses of each level (AP) relative to the surface
pressure (Pg,,) and used to integrate profile into column. Subsequently, XGF%R is employed for the comparison
with X,o_3. Based on the matching criteria introduced previously, we found 47 to 50 FTIR observations within
+30 min of each OCO-3 overpass. Within a 10 km radius of an FTIR site, the number of OCO-3 observations
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Figure 2. Map of CO, emissions (log10 (ymol/mzs) from ODIAC (a, d) and UNAM_EMI (b, e) over Mexico (top row) and Mexico City Metropolitan Area (MCMA)
(bottom row). (c, f) Differences between UNAM_EMI and ODIAC in CO, emissions (umol/m®s). The region denoted by CDMX corresponds to the political boundary
of Mexico City (enclosed with a gray line). MCMA is indicated with black line.

ranged from 37 to 111. The a priori profiles for OCO-3 exhibit spatial variability, changing with latitude and
across different pixels, while the a priori used for FTIR observations at each site is consistent, employing the same
profile for all measurements within a single day. We applied the matched OCO-3 a priori profiles to all selected

FTIR soundings, then averaged these values to obtain the X‘}‘%R averages, and compared them with the averaged
original OCO-3 data. This method was employed to reduce the impact of different a priori profiles between the
data sets.

2.3. Modeling System
2.3.1. Emission Inventories and Biogenic Fluxes

Two fossil fuel emissions products were used as a priori emissions: the Open-source Data Inventory for At-
mospheric Carbon dioxide (ODIAC) version 2020 (Oda & Maksyutov, 2015), and a national bottom-up inventory
developed by the Environmental Ministry and converted for model use by National Autonomous University of
Mexico (UNAM_EMI). ODIACv2020 provides monthly gridded emissions at 1 km X 1 km spatial resolution for
the year 2019, it is worth noting that the ODIAC version 2020 data set is not the most current version available
now, however, it was the latest data set at the onset of our study (Oda & Maksyutov, 2015). The Temporal
Improvements for Modeling Emissions by Scaling (TIMES) product offers global weekly and diurnal scaling
factors (Nassar et al., 2013). These factors are applied to downscale monthly ODIAC estimates, converting them
into hourly estimates. UNAM_EMI, anchored in the 2016 Mexico National Inventory, yields hourly anthropo-
genic CO, emissions estimates and is instrumental for air quality management in Mexico City. Developed with
support from the Environmental Secretariat of Mexico City (SEDEMA, 2018), its validity and precision have
been corroborated through evaluations by Rodriguez Zas and Garcia-Reynoso (2021), along with Pacheco
et al. (2020). CO, emissions have been organized into three main sectors: area sources (residential/commercial),
mobile sources (traffic), and point sources (industrial). The data underpinning these spatial and temporal profiles
are openly accessible via UNAM_EMI model created by the National Autonomous University of Mexico
(UNAM) (Garcia-Reynoso et al., 2018). The procedure for converting from annual to hourly can be found in
Garcia-Reynoso et al. (2018). Leveraging this model, we have meticulously generated 3 km hourly CO, 4 (fossil
fuel CO,) emissions profiles. UNAM_EMI CO, emissions calculated with a spatial resolution of 3 km over
central Mexico were then regrided at 1 km resolution using a flux conservative method. Fossil fuel CO, emissions
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from both inventories are affected by the Tula power plant using oil and gas (Sosa et al., 2020) (Figures 2a—2c).
The two inventories show significant differences in the intra-urban region (Figures 2d—2f): the total UNAM_EMI
emissions are 33.3% higher than ODIAC over the MCMA (black enclosed line) and 44.4% higher over Mexico
City (Ciudad de México, CDMX, gray enclosed line). Spatially, the UNAM_EMI shows higher values than
ODIAC (37.0%) in the most central part of MCMA, while ODIAC emissions extend further away from the city
center (Figure 2f). Because ODIAC downscales national-level emission statistics from the Carbon Dioxide In-
formation Analysis Center using nighttime light data from the Defense Meteorological Satellite Program satellite,
sources are usually more diffuse, increasing differences at the urban-rural transitioning areas (Oda et al., 2018).
The correlation between night light intensity and CO, emissions also tends to be not significant from dense urban
areas, especially for developing countries (Chen et al., 2020). CO, emissions from energy production are based on
worldwide large point emission sources (power plants/companies) from Carbon Monitoring for Action database
(CARMA), corrected for misattribution (Oda et al., 2018).

For the biogenic fluxes, we used the Net Ecosystem Exchange (NEE) data sets simulated by the Carnegie-Ames-
Stanford Approach (CASA) biosphere model (Feng et al., 2021; Y. Zhou et al., 2020). The CASA model version,
based on a light-use efficiency parameterization and including historical forest disturbance data, was run in
ensemble mode using various perturbed parameters to represent the uncertainties in NEE fluxes. The simulations
cover North America and Central America at high spatial and temporal resolutions (5-km, 3-hr) over Mexico. As
previously used in atmospheric studies (Feng et al., 2021), we coupled the parameter-based ensemble member
corresponding to intermediate values for both maximum photosynthesis (E,,,,) and respiration (Q10), producing
the best performances over North America (Y. Zhou et al., 2020).

2.3.2. Atmospheric Modeling System

The influence functions of column-averaged measurements were computed using the column version of the
Stochastic Time-Inverted Lagrangian Transport model (X-STILT based on Hysplit v5.1) (Wu et al., 2018) to
establish a source-receptor sensitivity link of the column measurements to the upstream emissions. X-STILT was
driven by hourly meteorological fields simulated by the Weather Research and Forecasting (WRF) model
(version 3.9.1.1). In our case, the WRF model configuration includes three horizontal grid spacing ranging from
15 km for the outermost domain, telescoping to 3 km in the middle domain and 1 km for the innermost grid
(encompassing the whole MCMA region). ECMWF Reanalysis v5 (ERAS) data set were used as the initial and
boundary conditions (Hersbach et al., 2022). 50 vertical levels are used from the surface to 50 hPa. Mellor-
Yamada Nakanishi and Niino Level 2.5 (MYNN) was selected for the PBL physics option and the single-
layer urban canopy model was chosen to represent the urban surface interactions. The performance of this
configuration was evaluated in (Xu, 2023) and Deng et al. (2017). WRF model performances were evaluated
using meteorological surface stations across the MCMA region, both for wind speed and direction, in addition to
the PBL height evaluation using a Lidar instrument deployed at the UNMA site to the South of MCMA. During
the afternoon time period, the mean errors vary from —580 m (in January) to 110 m (in May) for the PBL height.
Considering wind speed near the surface, the mean error and mean absolute errors vary from —0.36 to —0.72 m/s
and from 1.28 to 2.00 m/s, respectively. These model performances remain equivalent to other previous modeling
studies in mountainous metropolitan areas such as Feng et al. (2016) over the basin of Los Angeles, or Pérez-
Landa et al. (2007) over Valencia, Spain.

X0 from X-STILT model represents the sensitivity of the column measurements to the surrounding surface-
atmosphere fluxes. For each receptor (r), X,,, with units of ppm/umol/m?s is calculated as follows:

air 1 al
Xfool (xrvtr|xk!yk’tm) = ™ Z Alk (xk’yk’tm)AK(r)PWK(r) (3)
k=1

hﬁ(xk’yk’tm) N =

where (x,, t,) is the receptor (r) location, (x;, y; 1,,) is the model's initial time set, denoted by the model grid
coordinates that encompass both location and time, is the mean molar mass of dry air (defined as 29 g mol™"), i is
the atmospheric column height, p is the mean density of the air below A, N is the total number of released particles,
Ar, is the residence time of particle k spent in the grid cell (x;, Yy, #,,). The total column footprint (Xg,,,) is obtained
by integrating the footprints from different altitudes, convolved with a pressure weighting function PWK(r) and
an averaging kernel AK(r) at the receptor location.
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The locations of receptors correspond to the seven FTIR sites and to all the available OCO-3 XCO, retrievals
measurements. For each receptor, an ensemble of 5,500 particles evenly distributed between 0 and 5,500 m (a.g.1)
altitudes were traced backward in time for 24 hr. For the release of the particle at each altitude, the latitude and
longitude coordinate was adjusted to follow the path dictated by the solar zenith angle (SZA) and solar azimuth
angle at each observation time. As defined by our cumulative statistics in Figure 1c, most particles can be traced
around 85 km outside of MCMA.. 5,500 m was set as our maximum released altitude. We determined that less than
0.1% of the particles released near the surface could reach 5,500 m altitude based on the backward tracking
simulation. Turbulent motions within the PBL for urban sites remain below 2,000 m. PBL depth for mountain
sites is below 500 m. Only convective systems are able to transport air masses above the PBL. Because FTIR
instruments are operated only during clear-sky conditions, the probability of encountering strong convective
events remains low. The backward trajectory duration is determined through a sensitivity analysis that spanned
the entire observation period, utilizing settings extending 48 hr into the past. By integrating the column footprints
(generated by X-STILT) with emissions data (UNAM_EMI for anthropogenic sources and CASA for biogenic
sources), we noted that the enhancements in XCO, are significantly diminished with a 24-hr backward setting
(Figure S1 in Supporting Information S1), indicating that adopting a 24-hr period as an optimal backward setting
for our analysis.

2.4. Local Influence and Background Concentrations

The X-STILT model simulates particles backward-in-time from the measurement locations to their final
geographic locations (24 hr before). While the surface influence is defined by particles traveling near the surface,
their final locations are used to generate the background concentration (initial conditions) of each column
measurement. We describe here the simulation of local enhancements and the calculation of the background
concentrations. Footprints from X-STILT (X,,,) are convolved with emission inventories to simulate the XCO,
enhancements (AXCO, ,;,,) over each receptor (Equation 4). Anthropogenic emissions (E,,,,,,,) are from ODIAC
and UNAM_EMI, while the biogenic contribution (E,,,) is from the CASA biosphere model.

AXCOZ,sim = AXCOZ,anthm + AXCOZ,I;[O

4)
= )(fuut X Eanthm + )(fum‘ X Ebi()

The Observed XCO, enhancements (AXCO, ;) are computed by using XCO, measurements obtained from both
urban and background sites:

AXCO, s = XCO; gy — XCOy pycx )

However, observed background values are not always accessible and relying exclusively on background site data
for background values results in under-utilization of data. To address this, we used modeled boundary values from
the Copernicus Atmosphere Monitoring Service (CAMS) data set as substitutes. According to Equation 6, Our
simulated backgrounds (XCO, ;1. cams) comprises the weighted slant columns extracted from CAMS (global
inversion-optimized greenhouse gas fluxes and concentrations, version: v21r2) and contribution from a priori
profiles. The trajectory endpoints were extracted from the 4-D CO, mole fraction fields of the CAMS OCO-2
inversion product with a horizontal resolution of 1.9° X 3.75° and a temporal resolution of 3 hr (Chevallier
et al., 2019). Concentrations at higher altitudes (>5,500 m a.g.l) are complemented by the CAMS CO, profiles
(xcanms) at the receptor locations. AK, a prior profile from FTIR and OCO-3 (x,) and PWK are used to integrate
vertical layers into column (Equation 6).

XCOy pack,cams = PWK(AKxcpys + (I — AK)x,) 6)

XCOZ,back,oh.\‘ = XCOZ,hack,CAMS + AXCOZ,antrh() + AXCOZ,bi(} (7)

Background values from CAMS introduce uncertainty. Observed XCO, background values (XCOy ek ops)
comprise three components: background XCO, (XCO, 4. cams)» fossil fuel-related AXCO, enhancements
along the particles backward path (AXCO, ,,,,). and biogenic AXCO, enhancements along the particles
backward path (AXCO,,,,), as represented by Equation 7. To address this, we utilize the observed values

CHE ET AL.

8 of 22

5UBO1T SUOWILIOD BAIR1D) 3|edt|dde a3 Aq pauseAoh ae sapie O ‘esn Jo Sajnt 10} ARiq i aUtuQ AS|IAN UO (SUO I IPUOD-pUe-SWLIBY /WO A3 | IM"AReiq 1 U1 |UO//SANY) SUOIPUOD pue SWiB | 3Y} 88S *[7202/S0/ET] Uo ARiqiautuQ A8|ian ‘9ouelH aueiyooD AQ £900¥0ArEZ02/620T OT/I0pw0d A8 |1m Arelq 1 puljuosgndnfe//sdny wo.j papeojumod ‘6 ‘v20Z ‘96686912



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Atmospheres

10.1029/2023JD040063

=
&3 4 (a) ‘ ‘ ! amec: R = 0.77; y = 1.0(+0.72)x; Bias = -1.35( 1.35) ppm
88 o Y " 5 . @® unam:R =0.87;y = 1.0(x0.18)x; Bias = -1.28(% 1.06) ppm
g n_'c ] 4 ® © - e ® val:R=0.98;y =1.0(x0.1)x; Bias = -1.08(* 0.64) ppm
ek 4 L L e L L L ‘ boxo: R = 0.48; y = 1.0(+0.96)x; Bias = -1.11(+ 1.02) ppm
(=} “R = g . Ri —
2020/10/01 2020/11/01 2020/12/01 2021/01/01 2021/02/012021/03/01 2021/04/01 2021/05/01 cuat: R = 0.48; y = 1.0(x0.56)x; Bias = -0.25(+ 1.17) ppm
425 ‘ ‘ ‘ ‘ ‘ ‘ 420 ‘ ‘
(b) ® unam e vall cuat boxo (C)
e altz amec teca A 0OCO-3
R =0.88; y = 1.0(£0.1)x
. Bias = -1.06(+ 1.08) ppm—e—,
20 | !1 w p
2 . *h _ 416 |- -
ak A €
- CEl Al &
g A 2
a i ~
< 415 ! 8
(@) 1] g <
£ b x
o
w
412 N
410 R
405 | | | | | | 408 | |

2020/10/01 2020/11/01 2020/12/01 2021/01/01 2021/02/012021/03/01 2021/04/01 2021/05/01

408 412 416

0CO0-3 XCO; (ppm)

420
Time

Figure 3. Difference (a), time series (b), and correlation plots (c) of XCO, from seven sites and co-located OCO-3 measurements. R represents the Pearson correlation
coefficient. The thick black line represents the linear regression curve that is forced to pass through the origin point. Bias represents the mean and one standard deviation
of the differences between y and x-axis.The error bars represent the uncertainty in the FTIR and OCO-3 measurements.

unaffected by anthropogenic and biogenic emissions for correction purposes. The selection criteria is to choose
data points where absolute values of AXCO, ., (from UNAM_EMI and ODIAC), AXCO, ,,, are all less than
0.1 ppm and the AXCO, ;,, is also less than 0.1 ppm. When AXCO, is close to zero, the observed XCO, 1,1 ops
can be directly compared with XCO, ;. cams from CAMS. This correction method may introduce bias if certain
emission sources or sinks are not adequately considered in the inventories. However, requiring several conditions
to meet the specified requirements should help in reducing this uncertainty.

3. Results
3.1. Validation of XCO, From OCO-3 Using FTIR Measurements

The seven FTIR instruments were deployed at urban and rural sites across the MCMA based on the known
anthropogenic inventory (UNAM_EMI, ODIAC) to collect column-averaged concentrations of CO,. Measured
XCO, for each site shows large variations at monthly (3.9-7.1 ppm) and daily (1.2-3.4 ppm) timescales. Column
footprints were simulated by X-STILT to link the variations in concentrations observed in these sites with the
different emission regions (Figure 1). These footprints are gridded at a 1 km resolution in both latitude and
longitude. We arranged the footprint data in order and then performed a cumulative summation from highest to
lowest values. Percentiles were determined as points at or below the fractional cutoffs (50%, 75%, 90%) of the
summed ordered footprints. The impact of excluding points outside each contour region is clearly demonstrated
by the steepness of the curve beyond each respective vertical cutoff (Figure 1c). Different percentile levels (50%,
75%, 90%) of the column footprints are outlined by dotted lines in both maps (Figure 1b) and for cumulative
footprints (Figure 1c). The shape of the top-50% column footprint contour line overlaps with the topography
contour lines, indicating that the particles stagnate in the basin with trapped air masses during the 24-hr backward
simulations.

OCO-3 collects urban-focused XCO, measurements at high-resolution since its launch in 2019. A total of 20
partial XCO, maps are available over our intensive deployment period, with 16 of these maps being matched after
applying the matching method introduced in Section 2.2. Figure 3b shows the observed XCO, retrievals as a
function of time and Figure 3c shows the direct comparison of FTIR and OCO-3. The influence of different
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averaging kernels and a priori profiles between ground-based and satellite measurements have been taken into
account, as detailed introduced in Section 2.2. The difference between the original and the AK-adjusted FTIR data
using satellite a priori profile is around 0.3 ppm. The average surface pressure used in OCO-3 (774.92 = 7.17 hPa)
is in agreement with the values used in FTIR (778.06 £ 6.79 hPa). Figure 3 (a, c¢) shows the comparison between
FTIR observations from five stations and their co-located OCO-3 retrievals. We note here that TECA and ALTZ
sites are not co-located with any OCO-3 retrievals. OCO-3 XCO, observations are highly-correlated with FTIR
XCO, with a correlation coefficient (R) of 0.88 and a fitting slope near unity. OCO-3 XCO, values are however
higher than FTIR values with a systematic bias of 1.06 = 1.08 ppm and a Root Mean Square Error (RMSE) of 1.51
ppm. At most sites, FTIR XCO, measurements correlate with OCO-3 (R ranges from 0.77 ~0.98) except for
BOXO and CUAT sites (R of 0.48). The mean systematic bias at each site varies from —1.35 to —0.25 ppm.
AMEC shows the maximum bias (—1.35 &+ 1.35 ppm), possibly due to the complex terrain in the vicinity of the
station.

3.2. Comparison of the Urban-To-Rural XCO, Differences

XCO, differences between different sites (AXCO, ) are assumed to be representative of the local emissions.
The AMEC and ALTZ sites, situated in rural regions with limited impact from human activities, serve as
background sites for other sites. The other five sites located within the basin are heavily-influenced by anthro-
pogenic emissions (seen from Table 1). The observed values at each urban site and their corresponding upwind
values from background sites were separately analyzed under different wind conditions (see Figure S2 in Sup-
porting Information S1). The time it takes for particles to travel from the background site to the urban site is
determined by the footprint distribution at each backward time point. Our findings indicate that particles from
urban sites typically reach the background sites within a maximum of 1 hour, with the majority (76.56%) arriving
within 30 min (as shown in the insets in Figure S1 in Supporting Information S1). Over the 7-month period, the
average XCO, values from VALL and UNAM were respectively 1.38 + 1.16 ppm and 1.28 + 0.84 ppm higher
than the background values. In contrast, the XCO, values from BOXO, CUAT, and TECA, which are less
influenced by anthropogenic emissions, showed only slight increases compared to the background sites
(0.65 = 0.77 ppm, 0.49 £ 1.04 ppm, and 0.36 £ 0.66 ppm, respectively). The XCO, differences between urban
and background sites can be positive or negative, strongly dependent on the wind patterns (Figure S1 in Sup-
porting Information S1). We categorize the wind direction as north and south, excluding the values with less
significant north/south directions (comprising 23.41% of the total data). The main wind direction was north,
representing 48.97% of the total, while the south direction accounted for 27.62%. Table S1 in Supporting In-
formation S1 presents the relative frequencies of positive and negative urban-background differences for each
urban site, specifically categorized under the wind directions of north and south. When the wind comes from the
south, the AMEC/ALTZ sites serve as optimal background stations, and the observed enhancements at urban sites
are predominantly attributed to the emissions within the MCMA. In this scenario, 92.63% of the urban-
background XCO, gradients are positive. Conversely, with the wind coming from the north, the AMEC/ALTZ
sites may be affected by urban emissions, resulting in a lower percentage of positive gradients (70.67%). The
presence of negative gradients can be attributed to instances when northerly winds navigate paths that circumvent
major urban emission sources. Consequently, these air-masses reach the rural sites (AMEC/ALTZ) without
carrying urban contaminants. Furthermore, it is evident from Table S1 and Figure S2 in Supporting Informa-
tion S1, that there are significant variations in the urban-to-rural differences and their positive percentages among
different sites. Sites surrounded by high emissions, such as UNAM and VALL, consistently exhibit high positive
gradient proportions around 90%, while the urban-to-rural differences remain consistent in different directions.
On the other hand, TECA and CUAT show notable sensitivity to wind directions, with the positive percentage
decreasing from 97.37% to 48.15% as we move from south to north, and a corresponding decrease in bias toward
nearly zero.

The comparison of site-to-site differences from OCO-3 and FTIR observations is shown in Figure 4. There is no
OCO-3 overpass over ALTZ, offering only AMEC as the main rural station for this comparison. The AXCO, .,
representing the difference in XCO, between sites, exhibits variations within a maximum range of 3.03 ppm for
FTIR and 1.56 ppm for OCO-3. The overall bias between the differences in pairs of sites for OCO-3 and FTIR is
0.3 £ 1.16 ppm, with R a equal to 0.45. OCO-3 is more compatible with FTIR (R = 0.92) when looking at the
differences between urban and rural sites. But the intra-urban gradients show a lower correlation value (R = 0.24),
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detailed in /6012 + 64322 The differences between urban and rural sites are shown in triangles. The difference between
sites within the city is shown in circle points.

especially when considering the large degree of inhomogeneity around the urban sites with large enhancements
caused by local fossil fuel emissions.

After using FTIR measurements to evaluate the OCO-3 intra-city gradients, we proceed to assess the simulated
XCO, gradients corresponding to urban-to-background differences observed by FTIR. In this assessment,
background values are obtained from observed values in either AMEC or ALTZ and exclude the incorporation of
CAMS background values. As mentioned earlier (Section 3.2), the travel time between the background and urban
sites is shorter than our time resolution (1 hr). Therefore, we utilized simultaneous observed data from both the
urban and background sites for our analysis. Figure 5 presents the comparison results between the observed and
simulated urban-to-background differences. Simulated AXCO,  results correlate with observations with an R
value of 0.57 for UNAM_EMI and 0.53 for ODIAC. The slopes of the regression lines are 0.99 ppm ppm ™' for
UNAM_EMI and 0.67 ppm ppm ™" for ODIAC. Histograms in Figure 5 (panels c—d) show the residuals, following
a Gaussian distribution, with both biases around zero (0.48 £ 0.98 ppm for UNAM_EMI and —0.02 + 0.94 ppm
for ODIAC). Bias values suggest that the urban-to-rural gradients are slightly overestimated when considering the
UNAM_EMLI, but the higher values for R and near unity regression slope indicate the emission distribution seems
more closely related to the actual emissions. We further analyze the impact of traveling time and observed that

CHE ET AL.

11 of 22

5UBO1T SUOWILIOD BAIR1D) 3|edt|dde a3 Aq pauseAoh ae sapie O ‘esn Jo Sajnt 10} ARiq i aUtuQ AS|IAN UO (SUO I IPUOD-pUe-SWLIBY /WO A3 | IM"AReiq 1 U1 |UO//SANY) SUOIPUOD pue SWiB | 3Y} 88S *[7202/S0/ET] Uo ARiqiautuQ A8|ian ‘9ouelH aueiyooD AQ £900¥0ArEZ02/620T OT/I0pw0d A8 |1m Arelq 1 puljuosgndnfe//sdny wo.j papeojumod ‘6 ‘v20Z ‘96686912



NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Atmospheres 10.1029/20231D040063

(b)
4 [R=0.53 y
y = 0.66(+0.01)x

-6 L L L L L -6 L L L L L
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Observed A XCO;, sts from FTIR (ppm) Observed A XCO3, s from FTIR (ppm)

Simulated A XCO3, sts from UNAM_EMI (ppm)
o
|
Simulated A XCO;, st from ODIAC (ppm)
o
T

1000

1000

(c) (d)

800 | Bias = 0.48(=+ 0.98) ppm | 800 - Bias = -0.02(% 0.94) ppm |

600 - N 600 |- N

400 - N 400 - N

Frequency
Frequency

200 - N 200 - N

0 | | 1 L 0 | 1 I 1 |
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Bias (sim-obs) Bias (sim-obs)

Figure 5. Upper panel: Scatter plots of observed and simulated urban to background site XCO, differences based on
(a) UNAM_EMI and (b) ODIAC. Lower panel: Histograms of observed and simulated residuals for (¢c) UNAM_EMI and
(d) ODIAC.

cases with traveling time exceeding 0.5 hr accounted for 23.44% of the total number of observations, while cases
with traveling time less than 0.5 hr accounted for 76.56%. Our findings reveal that when the traveling time ex-
ceeds half an hour, the correlation decreases (R = 0.48 for UNAM_EMI, R = 0.47 for ODIAC), and the bias
increases (0.65 = 0.81 ppm for UNAM_EMI, 0.22 + 0.75 ppm for ODIAC). However, when we only consider
data points with a traveling time of less than 0.5 hr, the correlation increases (R = 0.59 for UNAM_EMI, R = 0.54
for ODIAC), and the bias decreases or remains nearly unchanged (0.43 + 0.81 ppm for UNAM_EMI,
—0.09 = 0.75 ppm for ODIAC). These results suggest that shorter traveling time benefits the simulation of
gradients between urban and background sites, as it leads to improved correlation and reduced bias.

When employing the differential approach (observed minus background) to derive urban gradients, it is notable
that this method yields a low data utilization rate of 59.4% for urban FTIR sites, consequently leading to the
under-utilization of background FTIR sites. OCO-3 data present limited coverage in the background region, with
only three overpasses near the AMEC site, and exhibit significant variation in this region. This variability poses
challenges in selecting suitable background values for each urban measurement.

3.3. Comparison of the Simulated and Observed Urban Enhancements

To enhance the utilization of observations, we now utilize the trajectory-endpoint CO, concentrations obtained
from CAMS to determine the background concentrations (as described in Section 2.4). However, the uncertainty
from the CAMS background should be taken into consideration. We also calculate the CAMS background for the
observations which are barely affected by the anthropogenic or biogenic emissions and then compare to assess the
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Figure 6. Scatter plots of observed XCO, values with minor anthropogenic or biogenic effects from (a) FTIR and (b) OCO-3
with the corresponding Copernicus Atmosphere Monitoring Service modeled background. Gray points represent the
comparison for each observation. The green errorbar represents the daily mean and its one standard deviation.

error brought by the CAMS background. High correlations (R of 0.97 for FTIR, 1.0 for OCO-3) were found
between the simulated and observed background XCO, values but with a systematic bias: 1.34 + 0.55 ppm for
FTIR and 0.11 £+ 0.25 ppm for OCO-3 (Figure 6). We note that OCO-3 XCO, background values are more
consistent with CAMS than FTIR. To determine if this lower bias of OCO-3 is a consequence of the OCO-2
assimilation in CAMS, we examined the CAMS product assimilating in-situ data (v21rl). However, the dif-
ference between CAMS-in situ and CAMS OCO-2 remains small (about 0.12 ppm). These biases from FTIR and
OCO-3 exhibited an average difference of 1.22 ppm (1.337-0.115 ppm, with Figure 6 displaying only two
significant numbers), which can be attributed to the inherent differences in observed values between the two
instruments (1.35 ppm for AMEC background site, as depicted in Figure 3c). These biases were utilized to correct
the CAMS background for both FTIR and OCO-3, respectively. This correction aimed to reduce the modeled
background error and ensure consistent gradients across these two data sets. When comparing the observed
AXCO, variations using CAMS as the background, we observe that the originally modeled CAMS background
using AK and a priori from FTIR is consistently 0.39 (£0.11) ppm higher than OCO-3 (see Figure S3c in
Supporting Information S1). We then applied corrections of —1.34 (£0.55) ppm and —0.11 (£0.25) ppm to
CAMS in FTIR and OCO-3, respectively (see Figure 5). Consequently, the XCO, k. cams in FTIR is 0.83 ppm
lower than OCO-3. Considering that XCO, ,,, in OCO-3 is, on average, 1.06 (+1.08) ppm higher than in FTIR
(Figure 3c), we infer that the observed AXCO, (using CAMS as the background) in OCO-3 should be 0.23 ppm
higher than in FTIR. This bias (0.23 ppm) aligns with the fact that the observed AXCO, (using observations as the
background) in OCO-3 is 0.3 ppm higher than in FTIR (see Figure 4). Therefore, our correction aimed to reduce
the modeled background error and ensure consistent gradients across these two data sets.

Figure 7 shows the comparison of simulated and observed urban enhancements after applying the corrective shift
into the CAMS backgrounds. The simulated XCO, concentrations are highly-correlated with the observations (R
of 0.9), with regression slopes approaching 1 for both UNAM_EMI and ODIAC emissions. The simulation also
captures the spatial variability (R varied from 0.65 ~0.96) across the different sites. The contribution of urban
enhancements resulting from anthropogenic and biogenic sources is relatively small compared to the CAMS
background values, accounting for large fraction (99.7%) of the total XCO, values. As a result, different
anthropogenic inventory (UNAM_EMI or ODIAC) would not be expected to significantly impact the XCO,
comparison. The comparison to the observed urban enhancements (AXCO,) using corrected CAMS values as
background are shown in the second column of Figure 7. The correlation between simulated and observed
AXCO, shows lower correlation values (R is 0.61 for UNAM_EMI and 0.57 for ODIAC). We note here that the
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Figure 7. Comparison of the simulated and observed XCO, and XCO, enhancements (AXCO,) at each FTIR site. The first row utilizes UNAM_EMI for anthropogenic
emissions input in the simulation, while the second row uses the ODIAC inventory; both incorporate biogenic emissions data from CASA. The first column presents
XCO, comparisons, the second column showcases AXCO, comparisons, and the third column displays histograms of the bias between simulated and observed values.
Statistical values (R, fitting function, and bias) for each site are displayed beneath each subplot.

computed AXCO, values are a very small fraction of the total XCO, values (approximately 0.3% of XCO, values
in magnitude), which could explain the lower statistical performances.

The range of simulated AXCO, and the relative contribution of the biogenic fluxes are shown in Table 2. For
UNAM_EM]I, the simulated AXCO, for each site ranges from: —0.32 ~7.58 ppm for UNAM; —0.29 ~5.17 ppm
for VALL; —0.54 ~3.79 ppm BOXO; —0.85 ~2.67 ppm AMEC; —0.68 ~3.85 ppm for CUAT; —0.72 ~1.94 ppm
for TECA; —0.58 ~0.39 ppm for ALTZ. For ODIAC, the simulated AXCO, value ranges vary from site to site:
—0.34 ~5.26 ppm for UNAM; —0.35 ~3.53 ppm for VALL; —0.78 ~2.84 ppm for AMEC; —0.47 ~3.04 ppm for
BOXO; —0.64 ~2.25 ppm for CUAT; —0.70 ~1.93 ppm for TECA; —0.63 ~0.41 ppm for ALTZ. The order of
maximum simulated AXCO, differs in UNAM_EMI and ODIAC due to different distributions of statistical data.
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Table 2

Simulated and Observed XCO, Enhancements (AXCO,) for Each Site

Site name  Simulated AXCO, UNAM_EMI + CASA (Biogenic proportion)  Simulated AXCO, ODIAC + CASA (Biogenic proportion)  Observed AXCO,

CUAT
TECA
UNAM
VALL
BOXO
AMEC
ALTZ

—0.68 ~3.85 ppm (24.04%) —0.64 ~2.25 ppm (25.95%) —1.66 ~3.64 ppm
—0.72 ~1.94 ppm (33.16%) —0.70 ~1.93 ppm (33.65%) —1.22 ~2.92 ppm
—0.32 ~7.58 ppm (10.01%) —0.34 ~5.26 ppm (12.99%) —0.89 ~4.92 ppm
—0.29 ~5.17 ppm (9.93%) —0.35 ~3.53 ppm (13.00%) —1.17 ~5.47 ppm
—0.54 ~3.79 ppm (10.58%) —0.47 ~3.04 ppm (12.06%) —0.89 ~3.34 ppm
—0.85 ~2.67 ppm (44.78%) —0.78 ~2.84 ppm (43.04%) —1.58 ~3.29 ppm
—0.58 ~0.39 ppm (78.33%) —0.63 ~0.41 ppm (77.12%) —1.49 ~1.21 ppm

The influence of biogenic CO, emissions differs across sites: urban sites (UNAM, VALL, BOXO) with reduced
biogenic signatures (biogenic only takes into account ~10%), inflow sites (CUAT, TECA) with intermediate
influences (~28%) and background sites showing large biogenic contributions (especially for ALTZ site with
78% from biogenic fluxes). While AMEC was initially categorized as a background site due to its relatively low
surrounding CO, emissions (Table 1), the wind direction over MCMA is mainly from the North over our study
period, which brings more urban polluted air masses to the site. ALTZ is less susceptible to the local sources due
to its high altitude, located further away from the basin.

Simulated and observed bias based on UNAM_EMI shows higher values (0.26 £ 0.93 ppm) compared to ODIAC
(—0.08 = 0.88 ppm), on average over the time period, especially for the higher CO, emissions in the center of the
MCMA (Figure 2f). The regression slopes were 0.92 ppm ppm™" for UNAM_EMI and 0.65 ppm ppm ™" for
ODIAC. When focusing exclusively on the urban sites, the biases (0.38 = 0.94 ppm for UNAM_EMI,
—0.06 + 0.9 ppm for ODIAC) and regression slopes (0.99 ppm ppm ™' for UNAM_EMI, 0.69 ppm ppm™" for
ODIAC) exhibit similarities to the results obtained from comparing urban-rural gradients without involving
CAMS modeled background values. Specifically, the biases were found to be 0.48 ppm for UNAM_EMI and
—0.02 ppm for ODIAC, while the regression slopes were 0.99 ppm ppm ™' for UNAM_EMI and 0.66 for ODIAC,
as mentioned in the previous section. For the other urban sites, results from UNAM_EMI show correlation values
from 0.31 ~0.53, and from 0.22 ~0.5 with ODIAC. For UNAM_EM]I, the regression slope at urban sites is closest
to 1 at UNAM (slope = 1.09 ppm ppm™"), followed by VALL (slope = 0.98 ppm ppm™"), BOXO (slope = 0.85
ppm ppm~"), CUAT (slope = 0.72 ppm ppm "), and TECA (slope = 0.61 ppm ppm~"). For ODIAC, the slope
values ranked from high to low values is similar to slopes of UNAM_EMI: UNAM (slope = 0.76 ppm ppm ™),
VALL (slope = 0.67 ppm ppm "), BOXO (slope = 0.63 ppm ppm™"), CUAT (slope = 0.51 ppm ppm '), and
TECA (slope = 0.5 ppm ppm™~"). The mean errors and the standard deviations between simulated and observed
XCO, values are 0.26 + 0.93 ppm for UNAM_EMI and —0.08 = 0.88 ppm for ODIAC. Compensating errors with
UNAM_EMI emissions result in a combination of positive and negative biases across the different sites: UNAM
and VALL show positive biases of 0.44 ~0.56 ppm; BOXO shows a slightly positive bias of 0.26 ppm; CUAT,
TECA show 0.14 ~0.16 bias; AMEC and ALTZ show negative biases of —0.14 ~—0.01 ppm. As for ODIAC,
biases are more consistent across our different sites with values varying from —0.18 to —0.07 ppm.

When directly comparing the OCO-3 XCO, values with the simulation, the correlation is about 0.9, with a
regression slope near unity for UNAM_EMI and ODIAC (Figure 8). We evaluated the simulated AXCO, at high
resolution (1 km), revealing a large random error around a mean value of 0.05 £+ 0.95ppm with UNAM_EMI, and
0.15 = 0.93 ppm with ODIAC. We then aggregated the simulated and observed OCO-3 values using coarser
spatial resolutions (2, 3, 5, 10, 20 and 30 km) to evaluate the random errors (measurement noise or small scale
transport errors). At coarser resolutions, the correlation significantly increased (R increased from 0.3 to 0.76 for
UNAM_EMI, and from 0.27 to 0.64 for ODIAC) in AXCO,. For the aggregation, we filtered out grid cells with
few data points (less than 25% of the maximum number of points within one grid cell) to avoid partially-observed
pixels. After aggregating OCO-3 data into 10- and 20-km grid cells, the regression slope tends to stabilize around
unity for UNAM_EMI and 0.7 for ODIAC, which align with FTIR results. Mean differences between simulated
and observed values are —0.02 ~0.07 ppm with UNAM_EMI and —0.21 ~-0.13 ppm with ODIAC.

The biases observed in the aggregated OCO-3 data (as shown in Figures 8c and 8f) are notably lower than those in
the FTIR results (as shown in Figures 7c and 7f). Specifically, when applying a 10-30 km grid length, biases
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Figure 8. Comparison of the simulated and observed XCO, and XCO, enhancements for the OCO-3 across various spatial resolutions (1 km, 2 km, 3 km, 5 km, 10 km,
20 km, 30 km). The first row presents simulated results based on UNAM_EMI and CASA, while the second row displays results based on ODIAC and CASA. The first
column illustrates XCO, values, the second column showcases AXCO, values, and the third column provides a histogram depicting simulated and observed values.

decrease by approximately 0.26 ppm for UNAM_EMI (from 0.26 to O ppm) and by 0.13 ppm for ODIAC (from
—0.08 ppm to —0.21 ppm). These discrepancies arise from two main factors: (a) Differences in the AK and SZA
from the FTIR and OCO-3 instruments influence the simulated anthropogenic and biogenic AXCO, values. (b)
Observed AXCO, variations between OCO-3 and FTIR. Regarding point (a), Figure S3 in Supporting Infor-
mation S1 illustrates how disparities in AK and SZA influence the simulated anthropogenic AXCO, values for
FTIR and OCO-3, leading to biases of 0.27 (£0.43) ppm for UNAM_EMI and 0.15 (£0.29) ppm for ODIAC.
Regarding point (b), the observed AXCO, variations with CAMS background in FTIR are 0.23 ppm lower than in
OCO-3 (as introduced in the first paragraph of Section 3.3). Therefore, the simulated-observed bias for FTIR and
OCO-3 should be around 0.5 ppm (0.27 ppm from point a minus —0.23 ppm from point b) in UNAM_EMI, and
0.38 ppm (0.15 ppm minus —0.23 ppm) in ODIAC. Finally, as mentioned earlier, the difference is 0.26 ppm in
UNAM_EMI and 0.13 ppm in ODIAC, which is lower than when using only the average bias to calculate (0.5
ppm for UNAM_EMI and 0.38 ppm for ODIAC).
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4. Discussion

The ability of OCO-3 SAMs to provide detailed intra-urban observations offers a unique opportunity to enhance
our understanding of urban carbon dioxide emissions. However, acknowledging the uncertainty in satellite
observation precision, we employed a dense FTIR network over MCMA to validate the accuracy of OCO-3
measurements. Our analysis indicates that OCO-3 XCO, levels are higher than those measured by the FTIR
network, with a mean bias of 1.06 £ 1.08 ppm. Kiel et al. (2021) discovered that OCO-3 measurements closely
align with co-located TCCON observations in Los Angeles, yielding an RMSE of 0.23 ppm. M. Zhou et al. (2022)
observed that OCO-3 measurements consistently surpassed ground-based readings in various settings. Specif-
ically, at the COCCON site in Beijing, OCO-3 XCO, were 0.64 ppm higher than FTIR measurements, and at the
TCCON station in Xianghe, the difference increased to 1.2 ppm. Remarkably, this discrepancy widened during
exclusive examinations of SAM observations, escalating to 0.92 ppm in Beijing and 1.48 ppm in Xianghe.

The differences in XCO, between two sites are directly proportional to the emissions between those sites (Chen
et al., 2016), making the XCO, gradients crucial for inferring the sources of emissions. Our analysis revealed that
site-to-site differences observed by OCO-3 and FTIR exhibit a bias of approximately 0.3 ppm. Notably, these
differences become more pronounced and aligned when focusing exclusively on urban-rural sites, which show a
strong correlation (R = 0.92), as opposed to intra-urban sites, where the correlation significantly drops (R = 0.24).
These results closely align with the findings of Rimann et al. (2022), who documented XCO, differences of 0.31
ppm and R of 0.68 for OCO-2 and FTIR measurements in Munich. Additionally, observations from Beijing
indicate that the urban-rural differences captured through 5 OCO-3 SAM overpasses correlate strongly with FTIR
measurements, showing a mean bias of 0.35 ppm and a correlation coefficient of 0.82 (M. Zhou et al., 2022).
These studies consistently show that the site-to-site gradients observed by FTIR are approximately 0.3 ppm lower
than those observed by OCO-3. This discrepancy primarily stems from differences in the averaging kernels
between FTIR (specifically EM27/SUN in these instances) and OCO-3, with the impact of varying a priori values
across instruments being minimal.

The comparison of simulated XCO, enhancements with observed values reveals that UNAM_EMI, exhibiting
regression slopes closer to 1 than ODIAC, more accurately mirrors the spatial distribution of actual CO, emis-
sions. However, the lower bias in ODIAC suggests that its estimates of the total emissions over MCMA may more
closely reflect the true emissions. Upon evaluating the simulated values across different sites, it becomes evident
that urban sites yield better performance metrics than rural sites (e.g., AMEC, ALTZ). Notably, both AMEC and
ALTZ exhibit weak or even negative correlations with the models (R of —0.2 for both UNAM_EMI and ODIAC).
This reduced accuracy/quality of the simulations at the AMEC and ALTZ sites is potentially due to low
anthropogenic emissions and thus proportionally higher biogenic emissions, which have higher uncertainties
associated with them because of the mismatched years in the biogenic emissions data. In the OCO-3 simulation
analysis, the initial data at 1 km resolution demonstrated a limited alignment with the observed measurements,
evidenced by weak correlation and notable bias. However, substantial enhancements in agreement with obser-
vational data were observed upon aggregating the spatial resolution of OCO-3 soundings. By adjusting the
resolution to a range of 10-30 km, the results achieved a notable consistency, closely mirroring those derived
from FTIR simulations. This indicates that OCO-3 can capture the urban signals, but largely affected by the
observation errors. Consolidating the data and reducing the resolution proves effective in minimizing these
random errors, thereby ensuring a closer alignment with the FTIR simulation results. This observed uniformity
between FTIR and OCO-3 observational and simulation data underscores the reliability of the inventory's
performance.

Due to the limited number of observed values at the background site, we constructed boundary values using the 4-
D CAMS model. Prior to this, we carefully selected observations from background sites minimally influenced by
anthropogenic or biogenic sources to correct CAMS background values. The background measurements from
OCO-3 exhibited closer alignment with the CAMS results (0.11 £+ 0.25 ppm) compared to those from FTIR
(1.34 £+ 0.55 ppm). However, this does not allow us to definitively conclude which of CAMS or OCO-3 is more
accurate. Our approach aimed to adjust the CAMS background values for OCO-3 and FTIR individually, thus
ensuring the urban gradients observed by OCO-3 and FTIR were in alignment. This step is vital for refining
emissions calculations and guarantees that the emission estimates remain unaffected by the discrepancies in
XCO, measurements across different instruments. Subsequently, we utilized the corrected CAMS boundaries
values as background, combined them with simulated XCO, enhancements from anthropogenic and biogenic
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sources for each site. A comparison of statistical metrics (e.g., correlation coefficients, bias, or fitting functions)
with those derived solely from observed values revealed similar results. This similarity suggests that corrected
CAMS can serve as a viable alternative when complete background observations are unavailable. Such findings
underscore the reliability of CAMS background concentrations, reinforcing the model's potential as a substitute in
the absence of comprehensive background observations.

Our analysis suggests that the approach of utilizing CAMS corrections as a background can be effectively applied
to other studies, particularly those involving FTIR. Given that FTIR operates exclusively under cloudless con-
ditions, obtaining simultaneous observed values from urban areas and their backgrounds is challenging. Thus,
employing corrected CAMS enhances the efficiency and maximizes the utility of observations. In the Lagrangian
inversion methodology, it is crucial that the enhancements observed in urban areas relative to the background
serve as the primary factor for refining the final outcomes. Without adjusting the background, the input urban
enhancements may appear anomalous and misaligned with actual observations. Our study highlights the prom-
ising potential of integrating OCO-3 and FTIR data for urban CO, emissions studies.

5. Conclusion

The MCMA is a densely populated region, confined within a large basin where the emitted anthropogenic CO,
molecules are easily trapped under low wind conditions due to the steep terrain. Our study demonstrates the
potential use of FTIR and OCO-3 SAMs observations to characterize intra-urban and urban-to-rural gradients
from the MCMA. The locations of each FTIR site were selected mainly based on the current inventories, which
are classified as urban (UNAM, VALL, BOXO), suburban (CUAT, TECA) and background sites (AMEC,
ALTZ). Observations in urban sites are usually higher than background sites by 0.36 ~1.38 ppm on average. We
matched the observed XCO, from FTIRs and OCO-3, both spatially and temporally, with a positive bias of
1.06 = 1.08 ppm in OCO-3 retrievals compared to FTIR data. XCO, concentrations from our FTIR background
site (AMEC) show a larger bias compared to the rest of the network (1.35 £ 1.35 ppm). OCO-3 was in better
agreement with FTIR when considering urban-to-rural gradients (R of 0.92, mean bias of 0.3ppm) compared to
intra-urban gradients (R of 0.24, mean bias of 0.31ppm). When analyzing the absolute XCO, concentrations, both
background sites (AMEC and ALTZ) were insufficient to provide a continuous data set (clouds, aerosols,...) able
to characterize the urban gradients over the entire observation period. To address this, we reconstructed the
background concentrations by extracting slant background columns from CAMS 4D fields (depending on the AK
and a priori profiles) at the trajectory endpoints, enabling us to enhance our urban gradient analysis. The com-
parison of modeled and observed background values shows high correlation values (R of 0.97 for FTIR, R of 1.0
for OCO-3) but with a systematic error affecting the entire network (mean bias of 1.34 ppm for FTIR, 0.11 ppm
for OCO-3). A bias correction was applied to calibrate our network before examining the XCO, gradients.

The simulated XCO, using X-STILT footprints shows a high correlation with observations (R of ~0.9) but the
simulations of urban enhancements (AXCO,) are more challenging to simulate (R of ~0.6) for both FTIR and
OCO-3. For FTIR sensors, the correlation and regression slopes of the simulated CAMS-based urban-rural
gradients (R of 0.53 ~0.58, slopes of 0.69 ~0.99 ppm ppm~') are close to the urban gradients without
involving any CAMS background (R of 0.53 ~0.57, slopes of 0.66 ~0.99 ppm ppm™"), indicating the good
performance of our background calculation method. Simulated AXCO, at urban sites were more comparable to
the observed values than background sites for FTIR, mostly due to larger biogenic signatures impacting back-
ground stations. For OCO-3, our simulations showed a better agreement with observations when aggregating
them at coarser resolutions, suggesting that measurement noise plays an important role in OCO-3 SAM's. After
aggregating, both correlation coefficients and regression slopes are similar to FTIR's urban sites. Finally, we
examined the mean errors in our simulations and in the observations, with noticeable differences in FTIR (—0.12
~0.18 ppm) and OCO-3 concentrations (0.13 ~0.22 ppm). But these biases remain low, mostly caused by dif-
ferences in the Averaging Kernels and the a priori profile differences from these two instruments. Correlation
coefficients calculated from UNAM_EMI (R of 0.61) are larger than ODIAC (R of 0.52) and the regression slope
based on UNAM_EMI (slope of 0.88 ppm ppm™") are closer to 1:1 line than ODIAC (slope of 0.65 ppm ppm™"),
either in overall situation or single site, indicating the distribution of CO, emissions in UNAM_EMI might be in
better agreement with actual emissions.

Urban gradients across XCO, measurement sites have been assimilated in previous inversion studies to produce
city-scale emissions. But combining diverse data streams (e.g., from FTIR and OCO-3) might enable us to better
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identify intra-urban gradients and to quantify urban CO, emissions at high resolution. XCO, values from OCO-3
were found to be positively biased compared to FTIR's, but their urban gradients remain similar in magnitude,
once corrected for instrument specificities. XCO, simulations required column footprints generated by X-STILT
and trajectory-based column background values from the CAMS global model. However, modeled background
values from coarser global models still contain large uncertainties. A simple bias correction method was used in
this study but the real background correction varies with time and location (Jones et al., 2021). Therefore, a
Lagrangian inversion framework with state vectors involving background values is essential to refine the
background corrections, and to potentially improve current inventories at fine scales (district level or gridded
across the MCMA).

Data Availability Statement

The FTIR observation data are accessible on (Ramonet et al., 2024). The OCO-3 Level 2 bias-corrected XCO,
data (version 10.4r) are available for download from (OCO-2/0OCO-3 Science Team et al., 2022). The ERAS data
are accessible at (Hersbach et al., 2022). CAMS global inversion-optimized greenhouse gas concentrations are
accessible at the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (Chevallier, 2013;
Chevallier et al., 2019, 2023). The ODIAC emission inventory is documented in Oda and Maksyutov (2015). The
source code for the WRF version 3.9.1.1 model (freely available) are available https://www2.mmm.ucar.edu/wrf.
Additionally, the source code for the UNAM_EMI model employed in this research (freely available) is detailed
in Garcia-Reynoso et al. (2018), and the source code for the X-STILT model used in this study (freely available)
can be found in Wu et al. (2019). All figures were produced using the matplotlib package version 3.3.4 in Python
3.7, as introduced by Hunter (2007).
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