
HAL Id: hal-04573444
https://hal.science/hal-04573444

Preprint submitted on 13 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Function-Assigned Masked Superstrings as a Versatile
and Compact Data Type for k -Mer Sets

Ondřej Sladký, Pavel Veselý, Karel Břinda

To cite this version:
Ondřej Sladký, Pavel Veselý, Karel Břinda. Function-Assigned Masked Superstrings as a Versatile and
Compact Data Type for k -Mer Sets. 2024. �hal-04573444�

https://hal.science/hal-04573444
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Function-Assigned Masked Superstrings as a1

Versatile and Compact Data Type for 𝑘-Mer Sets2

Ondřej Sladký Envelope3

Computer Science Institute of Charles University, Prague, Czech Republic4

Pavel Veselý Envelope5

Computer Science Institute of Charles University, Prague, Czech Republic6

Karel Břinda Envelope7

Inria, Irisa, Univ. Rennes, 35042 Rennes, France8

Abstract9

The exponential growth of genome databases calls for novel space-efficient algorithms for data10

compression and search. State-of-the-art approaches often rely on 𝑘-merization for data tokenization,11

yet efficiently representing and querying 𝑘-mer sets remains a significant challenge in bioinformatics.12

Our recent work has introduced the concept of masked superstring for compactly representing 𝑘-mer13

sets, designed without reliance on common structural assumptions on 𝑘-mer data. However, despite14

their compactness, the practicality of masked superstrings for set operations and membership queries15

was previously unclear. Here, we propose the 𝑓-masked superstring framework, which additionally16

integrates demasking functions 𝑓, enabling efficient 𝑘-mer set operations through concatenation.17

When combined with the FMS-index, a new index for 𝑓-masked superstrings based on a simplified18

FM-index, we obtain a versatile, compact data structure for 𝑘-mer sets. We demonstrate its power19

through the FMSI program, which, when evaluated on bacterial pan-genomic data, achieves memory20

savings of a factor of 3 to 10 compared to state-of-the-art single 𝑘-mer-set indexing methods such as21

SBWT and CBL. Our work presents a theoretical framework with promising practical advantages22

such as space-efficiency, demonstrating the potential of 𝑓-masked superstrings in 𝑘-mer-based methods23

as a generic data type.24

2012 ACM Subject Classification Applied computing → Computational genomics; Applied comput-25

ing → Bioinformatics26

Keywords and phrases computational genomics, 𝑘-mer sets, masked superstrings, set operations,27

indexing28

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2329

Supplementary Material Data and pipelines used for experiments, as well as additional results and30

plots, are available at https://github.com/OndrejSladky/f-masked-superstrings-supplement.31

Software (Source Code): https://github.com/OndrejSladky/fmsi32

Funding Ondřej Sladký: Supported by GA ČR project 22-22997S.33

Pavel Veselý: Supported by GA ČR project 22-22997S and by Center for Foundations of Modern34

Computer Science (Charles Univ. project UNCE 24/SCI/008).35

mailto:ondra.sladky@gmail.com
https://orcid.org/0000-0002-7465-8222
mailto:vesely@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-1169-7934
mailto:karel.brinda@inria.fr
https://orcid.org/0000-0003-0200-557X
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://github.com/OndrejSladky/f-masked-superstrings-supplement
https://github.com/OndrejSladky/fmsi

O. Sladký and P. Veselý and K. Břinda 23:1

1 Introduction36

Storage and analyses of the exponentially growing collections of genomic data [41, 62] require37

novel sublinear approaches that could cope with highly heterogeneous data. Many modern38

bioinformatics methods use 𝑘-merization of input data as the central tokenization technique,39

since this allows to represented data of various forms such as assemblies, sequencing reads,40

genes, or transcripts in a unified form. Furthermore, 𝑘-mer sets can easily be combined41

with subsampling and sketching. Notable applications of 𝑘-mer-based methods include42

large-scale data search [7, 4, 30, 13], metagenomic classification [63, 14], infectious disease43

diagnostics [8, 12], and transcript abundance quantification [9, 50], to name at least a few.44

Moreover, 𝑘-mers find their use in the direct study of biological phenomena, such as in45

Genome-Wide Association Studies [34] or the studies of bacterial defense systems [59].46

The widespread use of 𝑘-mer sets across computational biology calls for efficient techniques47

for their space-efficient storage and memory-efficient operations such as membership queries48

or 𝑘-mer set operations. However, the development of such methods is complicated by the49

enormous heterogeneity of 𝑘-mer sets encountered in practice. The size of 𝑘-mer sets can50

range from several tens to billions, with 𝑘-mer sizes from values below ten to more than 10051

(the most typical value being 31).52

As general information-theory-based methods provide unsatisfactory guarantees for the53

efficiency, methods based on inexactness or non-independence of 𝑘-mers have emerged [15].54

In particular, typical 𝑘-mer sets encountered in genomic applications have the property that55

the 𝑘-mers are substrings of a small number of larger strings, typically referred to as the56

spectrum-like property (SLP) [16].57

Textual representations of 𝑘-mer sets have been particularly efficient under SLP. Sim-58

plitigs/Spectrum Preserving String Sets (SPSS) [11, 10, 53, 52, 57] were introduced as a59

representation of 𝑘-mer sets via a set of strings such that each 𝑘-mer appears exactly once as60

a substring. Simplitigs/SPSS provide a more concise representations compared to classical61

unitigs [17, 18], which correspond to non-branching paths in the de Bruijn graph of the62

𝑘-mer set. Matchtigs (a.k.a. repetitive Spectrum Preserving String Sets, or rSPSS) [58, 56]63

generalized over simplitigs/SPSS by only requiring that each 𝑘-mer appears in at least one of64

the strings, allowing for representations with even smaller number of strings.65

All of these representations can be easily turned into efficient membership data structures66

by combining with a full-text index or a minimum perfect hash function. Likewise, they67

provide an efficient storage format when combined with a generalized or specialized data68

compressor. However, all of these representations still rely on (𝑘 −1)-long overlaps between 𝑘-69

mers that might not be present among 𝑘-mers, particularly in modern applications combining70

subsampling techniques with long-read sequencing data.71

In our previous work [61], we have developed the concept of masked superstring for 𝑘-mer72

set representations. Masked superstrings are based on the overlap graph of 𝑘-mers, instead73

of the de Bruijn graph, and thus removing the dependency on the SLP. They can be seen74

as a generalization of representations above, thus unifying the theory and also the practice75

of their use. However, despite their generality and obvious compression capabilities, their76

application in 𝑘-mer based data structures remained an open problem, especially in the77

context of membership queries and 𝑘-mer set operations.78

Here, we present a generalization of masked superstrings by adding additional flexibility of79

𝑘-mer mask interpretation by different functions 𝑓, resulting in so-called 𝑓-masked superstrings.80

We characterize properties of functions 𝑓 that can be used and demonstrate that 𝑓-masked81

superstrings provide a sufficiently general structure to be used as a standalone data type82

CVIT 2016

23:2 𝑓-Masked Superstrings as a Data Type

for 𝑘-mer sets, supporting operations such as union, intersection, symmetric difference, and83

querying 𝑘-mers. Finally, we support our theoretical results with practical implementations of84

the individual algorithms and demonstrate that 𝑓-masked superstrings are more space-efficient85

compared to other existing representations.86

1.1 Related Work87

A large body of work focused on data structures for 𝑘-mer sets and their collections; we88

refer to [16, 42] for recent surveys. One approach for individual 𝑘-mer sets is to combine89

the aforementioned textual 𝑘-mer set representations based on the de Bruijn graph of the90

set [17, 11, 53, 58], i.e., (r)SPSS, with efficient string indexes such as the FM index [24] or91

BWA [38, 39, 36, 37] (see also ProPhex [55, 54]). Another approach based on BWT is the92

BOSS data structure [6] that was implemented as an index for a collection of 𝑘-mer sets in93

VARI [47], VARI-merge [46], and Metagraph [30]. Taking BOSS as an inspiration, Spectral94

Burrows-Wheeler Transform (SBWT) [1] has been proposed as a compact representation of95

the de Bruijn graph, together with various approaches for its indexing. Themisto [2] further96

builds on SBWT and provides an index for collections of 𝑘-mer sets.97

Hashing techniques have also been successful in the design of 𝑘-mer data structures. In98

particular, Bifrost [27] uses hash tables for indexing colored de Bruijn graphs, which encode99

collections of 𝑘-mer sets. Other popular data structures, such as BBHash [40], BLight [44],100

and SSHash [51], employ minimal perfect hash functions and serve as a base for constructing101

indexes such as FDBG [20], REINDEER [43], Fulgor [23], and pufferfish2 [22].102

While the aforementioned approaches yield exact data structures, further space com-103

pression may be achieved by employing probabilistic techniques and allowing for a certain104

low-probability error, such as false positives. Namely, the counting quotient filter was used105

for 𝑘-mers in Squeakr [49], and this data structure was extended to an efficient index called106

dynamic Mantis [3]. Another line of work, e.g., [7, 4, 26, 35], employs variants of the107

Bloom filter to further reduce space requirements. Recently, Invertible Bloom Lookup Tables108

combined with subsampling have been used to estimate the Jaccard similarity coefficient [60].109

Very recently, the Conway-Bromage-Lyndon (CBL) structure [45] builds on the work110

of Conway and Bromage [19] and combines smallest cyclic rotations of 𝑘-mers with sparse111

bit-vector encodings, to yield a dynamic and exact 𝑘-mer index supporting set operations,112

such as union, intersection, and difference. Finally, we note that set operations can also be113

carried out using some 𝑘-mer lists and counters, e.g., [29, 32]; however, these methods are114

unable to exploit structural properties of 𝑘-mer sets such as the SLP.115

1.2 Our Contribution and Organization of the Paper116

In this paper, we propose function-assigned masked superstrings, a data structure for 𝑘-mers,117

which fully leverages overlaps among the 𝑘-mers, while also supporting efficient set operations118

and indexing.119

First, in Section 3, we develop the theoretical foundations of function-assigned masked120

superstrings (𝑓-MS), which can be seen as an algebraic generalization of masked superstrings121

from our earlier work [61]. While our previous work [61] considered a 𝑘-long substring122

of 𝐾 represented by (𝑆, 𝑀) if any of its occurrences in 𝑆 is unmasked, that is, the or of123

corresponding mask bits equals 1, here we use other functions 𝑓 for determining the presence124

or absence of a 𝑘-mer from (𝑆, 𝑀), allowing besides or-masked superstrings also xor-MS,125

and-MS, and many others types.126

O. Sladký and P. Veselý and K. Břinda 23:3

Then, in Section 4, we demonstrate that this formalism enables set operations such127

as union, intersection, and symmetric difference. In a nutshell, this reduces to just con-128

catenating the corresponding 𝑓-masked superstrings and possibly changing the function129

𝑓 used (Section 4.1). While for union and symmetric difference, this is possible via a130

simple concatenation using or and xor, respectively, for both the input and the output131

𝑓-MS (Section 4.2), intersection requires more careful treatment (Section 4.3). Indeed, we132

observe that no function 𝑓 with certain natural properties corresponds to the intersection if133

the input and output masked superstrings use the same 𝑓 (Appendix B). We circumvent134

this impossibility by transforming 𝑓 alongside these operations (Section 4.3). We further135

show that the resulting scheme for intersection generalizes to any set operation on any136

number of sets. One key advantage of our approach is that a single masked superstring,137

obtained by concatenating masked superstrings of several datasets, can be used for indexing138

the results of multiple set operations, just by changing the function 𝑓.139

Building on the algebraic framework of 𝑓-masked superstrings, in Section 5 we design a140

standalone data type for 𝑘-mer sets. This data type is based on FMS-index, an adaptation141

of the FM index [24] to our framework (Section 5.1). We show how to efficiently process142

membership queries (Section 5.3) and perform basic operations, such as concatenation of143

𝑓-MSes or compaction to remove redundant 𝑘-mers (Section 5.2), that allow for executing144

set operations (Section 5.4). Finally, in Section 6, we support our theoretical results with145

a prototype implementation that we use to demonstrate that 𝑓-masked superstrings are more146

space-efficient compared to other existing methods.147

2 Preliminaries148

Alphabet and strings. We consider strings over a constant-size alphabet Σ, typically the149

ACGT or binary alphabets. Let Σ∗ be the set of all finite strings over Σ. For an empty150

sequence of alphabet letters, we use 𝜖. By |𝑆| we denote the length of a string 𝑆 and by |𝑆|𝑐151

we denote the number of occurrences of the letter 𝑐 in 𝑆. For two strings 𝑆 and 𝑇, let 𝑆 + 𝑇152

be their concatenation.153

𝑘-mers and their sets. We refer to strings of size 𝑘 over the ACGT alphabet as 𝑘-mers154

and we typically denote by 𝑄 an individual 𝑘-mer and by 𝐾 a set of 𝑘-mers. Further, we155

distinguish the uni-directional model and the bi-directional model where we consider 𝑘-mer156

and its reverse complement as equivalent. Unless explicitly stated otherwise, our results apply157

both in the uni-directional and bi-directional model, but for clarity we provide examples in158

the uni-directional model.159

SPSS-based representations of 𝑘-mer sets. Simplitigs/Spectrum Preserving String160

Sets [11, 10, 53, 52] (SPSS) and matchtigs [58, 56] are formed by a set of strings such that161

every 𝑘-mer of these strings is in the represented set and vice versa. Thus, they correspond162

to a path cover of the de Bruijn graph of the set, with SPSS having the restriction that each163

𝑘-mer appears exactly once. Since a 𝑘-mer may appear multiple times in matchtigs, we also164

refer to them as Repetitive Spectrum Preserving String Sets (rSPSS). We use (r)SPSS to165

denote any of these representations based on the de Bruijn graph.166

Masked superstrings. A masked superstring is a pair (𝑆, 𝑀) where 𝑆 is a superstring and167

𝑀 an associated binary mask of the same length. We call all the 𝑘-mers that appear as a168

substring in 𝑆 as the appearing 𝑘-mers. The appearing 𝑘-mers that are in the set represented169

by the masked superstring are called the represented 𝑘-mers and the remaining appearing170

𝑘-mers are called ghost 𝑘-mers. For a given superstring 𝑆 and a 𝑘-mer set 𝐾, we call a171

compatible mask every mask 𝑀 such that (𝑆, 𝑀) represents 𝐾. Furthermore, as a 𝑘-mer can172

CVIT 2016

23:4 𝑓-Masked Superstrings as a Data Type

have multiple occurrences in the superstring, an occurrence is called on if there is 1 at the173

corresponding position in the mask, and off otherwise. Note that being a represented 𝑘-mer174

then corresponds to having at least one on occurrence.175

Encoding conventions. The last 𝑘 − 1 positions of every mask are always set to 0. When176

discussing specific masked superstrings, we present them in their masked-cased superstring177

encoding (enc2 in [61]), where each character of the superstring is upper-case if it corresponds178

to 1 in the mask, and lower-case if it corresponds to 0.179

▶ Example 1. Consider the set of 3-mers 𝐾 = {ACG, GGG} of the 𝑘-mers to be represented180

and the superstring ACGGGG resulting from their concatenation. There are three compatible181

masks – 101100, 101000 and 100100 – since each of the two 𝑘-mers must have at least one182

on occurrence, and the occurrence of the ghost 𝑘-mer CGG must always be off. With the183

last mask, the masked-cased encoding would be AcgGgg. Conversely, when parsing AcgGgg184

as a masked superstring for 𝑘 = 3, we decode the set of represented 𝑘-mers {ACG, GGG}.185

3 Function-Assigned Masked Superstrings186

Suppose we are given a masked superstring (𝑀, 𝑆) and our objective is to determine whether187

a given 𝑘-mer 𝑄 is among the represented 𝑘-mers. Conceptually, this process consists of two188

steps: first, identify the occurrences of 𝑄 in 𝑆 and retrieve the corresponding mask symbols;189

then, verify whether at least one 1 is present. We can formalize this process via a so-called190

occurrence function.191

▶ Definition 2. For a superstring 𝑆, a mask 𝑀, and a 𝑘-mer 𝑄, the occurrence function192

𝜆(𝑆, 𝑀, 𝑄) → {0, 1}∗ is a function returning a finite binary sequence with the mask symbols193

of the corresponding occurrences, i.e.,194

𝜆(𝑆, 𝑀, 𝑄) ∶= (𝑀𝑖 ∣ 𝑆𝑖 ⋯ 𝑆𝑖+𝑘−1 = 𝑄) .195

In this notation, verifying 𝑘-mer presence corresponds to evaluating the composite function196

‘or ∘ 𝜆’; i.e., 𝑘-mer is present if 𝜆(𝑆, 𝑀, 𝑄) is non-empty and or of the values is 1. For197

instance, in Example 1 for the 𝑘-mer 𝑄 = GGG, it holds that 𝜆(𝑆, 𝑀, 𝑄) = (0, 1), as the198

first occurrence is off and the second on, and the or of these values is 1; therefore, GGG is199

represented. The set of all represented 𝑘-mers for a masked superstring (𝑆, 𝑀) is then200

𝐾 = {𝑄 ∈ {A, C, G, T}𝑘 | 𝑓(𝜆(𝑆, 𝑀, 𝑄)) = 1} ,201

where 𝑓 is the or function.202

Nevertheless, or is not the only function 𝑓 that is applicable for such a “demasking”,203

since for instance, with xor, we would consider a 𝑘-mer present if and only if there is an odd204

number of on occurrences of 𝑄; see Table 2 for an example. In fact, 𝑘-mer demasking can be205

done with any Boolean function; see an overview in Table 1. Furthermore, it is convenient206

to allow the function to reject some input sequences as invalid by returning a special value207

called invalid, which can also be viewed as restricting mask domain and thus enforcing208

certain criteria on mask validity. Finally, we limit ourselves to symmetric functions only, as209

these will later provide useful guarantees for indexing.210

▶ Definition 3. We call a symmetric function 𝑓 ∶ {0, 1}∗ → {0, 1, invalid} a 𝑘-mer211

demasking function.212

O. Sladký and P. Veselý and K. Břinda 23:5

Function name Definition
Com-
prehen-
sive

Use cases

or
0 if |𝜆|1 = 0
1 if |𝜆|1 > 0
invalid never

yes

• The default 𝑓-masked superstring
(Section 3)
• Generalizes (r)SPSS representa-
tions (Appendix A)
• Union input and output function
(Section 4)

xor
0 if |𝜆|1 is even
1 if |𝜆|1 is odd
invalid never

yes • Symmetric difference input and
output function (Section 4)

and
0 if 𝜆 = 𝜖 or |𝜆|0 > 0
1 if 𝜆 ≠ 𝜖 and |𝜆|0 = 0
invalid never

yes • Allows for on occurrences of ghost
𝑘-mers (Appendix C)

[𝑎,𝑏]-threshold
(1 ≤ 𝑎 ≤ 𝑏)

0 if |𝜆|1 < 𝑎 or |𝜆|1 > 𝑏
1 if 𝑎 ≤ |𝜆|1 ≤ 𝑏
invalid never

iff 𝑎 = 1 • Intersection and set difference out-
put function (Section 4)

one-or-nothing
0 if |𝜆|1 = 0
1 if |𝜆|1 = 1
invalid otherwise

yes

• Union, symmetric difference and in-
tersection input function (Section 4)
• Set difference left input function
(Section 4)

two-or-nothing
0 if |𝜆|1 = 0
1 if |𝜆|1 = 2
invalid otherwise

no • Set difference right input function
(Section 4)

all-or-nothing
0 if |𝜆|1 = 0
1 if 𝜆 ≠ 𝜖 and |𝜆|0 = 0
invalid otherwise

yes • No need for mask rank in queries
(Appendix C)

Table 1 Overview of selected demasking functions 𝑓 for 𝑓-masked superstrings. The
table includes functions used for set operations as well as in other contexts throughout the paper.
In the definitions, we abbreviate 𝜆(𝑓, 𝑆, 𝑀) as 𝜆. Note also that even non-comprehensive functions
in this table satisfy properties (P1) and (P4) from Definition 4.

However, not all demasking functions are practically useful, and we will typically require213

them to have several natural properties. First, we require the non-appearing 𝑘-mers to214

be treated as non-represented, which is ensured by property (P1) in Definition 4 below.215

(Naturally, if we want to represent the complement of a set, we would treat the non-appearing216

𝑘-mers as represented.) Second, property (P2) guarantees that for any appearing 𝑘-mer 𝑄217

with any number of occurrences in a given superstring, we can set the mask bits in order218

to both make 𝑄 represented and not represented. Third, even with (P1) and (P2), there is219

an ambiguity in the meaning of 0 and 1 in the mask and thus, in (P3), we require the 1 to220

have the meaning of a 𝑘-mer being represented; namely, if it has a single occurrence masked221

with 1, it should be treated as represented. Finally, in (P4), we require the function to be222

efficiently computable, specifically in 𝑂(1) time from the frequencies of 0s and 1s in its input.223

We call demasking functions satisfying these properties comprehensive.224

▶ Definition 4. We say that a demasking function 𝑓 is comprehensive if it satisfies the225

following three properties:226

(P1) 𝑓(𝜖) = 0.227

(P2) For every 𝑛 > 0, there exist 𝑥, 𝑦 ∈ {0, 1}𝑛 such that 𝑓(𝑥) = 0 and 𝑓(𝑦) = 1.228

(P3) 𝑓((1)) = 1 and 𝑓((0)) = 0.229

CVIT 2016

23:6 𝑓-Masked Superstrings as a Data Type

(P4) Given |𝑥|0 and |𝑥|1, one can evaluate 𝑓(𝑥) in constant time in the wordRAM model.230

With the notion of demasking functions 𝑓 in hand, we generalize the concept of masked231

superstrings to so-called 𝑓-masked superstrings.232

▶ Definition 5. Given a demasking function 𝑓, a superstring 𝑆, and a binary mask 𝑀233

with |𝑀| = |𝑆|, we call a triplet 𝒮 = (𝑓, 𝑆, 𝑀) a function-assigned masked superstring or234

𝑓-masked superstrings, abbreviated as 𝑓-MS.235

Since we allow the output of 𝑓 to be invalid, it may happen that for some 𝑓-masked236

superstring (𝑓, 𝑆, 𝑀) and some 𝑘-mer 𝑄, the result of 𝑓 for the occurrences of 𝑄 turns out237

to be invalid. We call such 𝑓-masked superstring invalid and will always ensure validity for238

all masked superstrings that we will work with.239

For a valid 𝑓-masked superstring, the set of represented 𝑘-mers is240

𝐾 = {𝑄 ∈ {A, C, G, T}𝑘 | 𝑓(𝜆(𝑆, 𝑀, 𝑄)) = 1}.241

The following observation is a consequence of property (P2) in Definition 4 of comprehen-242

sive demasking functions.243

▶ Observation 6. For a comprehensive demasking functions 𝑓, it holds that for any 𝑘-mer244

set 𝐾 and any superstring 𝑆 of 𝑘-mers in 𝐾, there exists a mask 𝑀 such that (𝑓, 𝑆, 𝑀)245

represents exactly 𝐾.246

This further means that for any 𝑓-MS (𝑓, 𝑆, 𝑀) and any comprehensive demasking247

function 𝑔, it is possible to find a mask 𝑀 ′ such that (𝑔, 𝑆, 𝑀 ′) represents exactly the same248

set as (𝑓, 𝑆, 𝑀).249

▶ Example 7. Consider Example 1 with the set of 3-mers 𝐾 = {ACG, GGG}, a superstring250

𝑆 = ACGGGG, and a mask 𝑀 = 101100. Then the occurrence function for 𝑄 = GGG is251

𝜆(𝑆, 𝑀, 𝑄) = (1, 1). If we choose the 𝑓 to be or, then 𝑓(𝜆(𝑆, 𝑀, 𝑄)) = 1 and thus, GGG is252

represented. However, if we choose xor instead, GGG is considered as a ghost 𝑘-mer.253

For or, the represented set is {ACG, GGG} and since xor is a comprehensive function,254

there always exists a mask 𝑀 ′ such that (xor, 𝑆, 𝑀 ′) represents the same set as (or, 𝑆, 𝑀).255

In our case 𝑀 ′ could be 100100. For functions which are not comprehensive, this is in256

general impossible. For instance, considering the (impractical) constant-zero function, the257

represented set will always be empty.258

4 𝑓-Masked Superstrings as an Algrebraic Framework259

In this section, we describe on the conceptual level how to perform set operations on 𝑘-260

mer sets by simply concatenating 𝑓-masked superstrings and choosing suitable demasking261

functions 𝑓. We deal with practical aspects of efficient implementation of this concept in262

Section 5.263

4.1 Concatenation as an Elementary Low-Level Operation264

We define concatenation on 𝑓-masked superstrings as concatenating the underlying super-265

strings and masks for all possible input and output functions 𝑓.266

▶ Definition 8. Given a function-assigned masked superstring (𝑓1, 𝑆1, 𝑀1) and (𝑓2, 𝑆2, 𝑀2),267

we define (𝑓1, 𝑓2, 𝑓𝑜)-concatenation as the operation taking these two function-assigned masked268

superstrings and producing the result (𝑓𝑜, 𝑆1 + 𝑆2, 𝑀1 + 𝑀2). We denote this operation by269

+𝑓1,𝑓2,𝑓𝑜
.270

O. Sladký and P. Veselý and K. Břinda 23:7

Note that Definition 8 can be easily extended to more than two input 𝑓-masked superstrings.271

In the case that all the functions are the same, i.e. 𝑓 = 𝑓1 = 𝑓2 = 𝑓𝑜, we call it 𝑓-concatenation272

or just concatenation if 𝑓 is obvious from the context.273

▶ Definition 9. We call the set operations that can be performed with 𝑓1 = 𝑓2 = 𝑓𝑜 function-274

preserving set operations. The operations that cannot be performed with a single function275

are called function-transforming set operations.276

Furthermore, note that while the set of appearing 𝑘-mers of 𝑆1 + 𝑆2 clearly contains277

the union of appearing 𝑘-mers of 𝑆1 and of 𝑆2, additional new occurrences of 𝑘-mers may278

appear at the boundary of the two superstrings. These newly appearing 𝑘-mers may not be279

appearing in any of the superstrings 𝑆1 and 𝑆2. We refer to them as boundary 𝑘-mers and280

to the occurrences of appearing 𝑘-mers of 𝑆1 + 𝑆2 that overlap both input superstrings as281

boundary occurrences. See Table 2 for an example of function-preserving set operations.282

𝑘-mer set 1 𝑘-mer set 2 set from concatenation
Example 𝑓-MSes 𝒮1 = AGc 𝒮2 = CgGCg 𝒮 = 𝒮1 + 𝒮2 = AGcCgGCg
On occurrences 1 × AG, 1 × GC 1 × GC, 2 × CG 1 × AG, 2 × GC, 2 × CG
Off occurrences none 1 × GG 1 × CC, 1 × GG

𝑓 interpreted as or
represented set 𝐾 {AC, GC} {CG, GC} {AC, CG, GC}
ghost set 𝑋 {} {GG} {CC, GG}

𝑓 interpreted as xor
represented set 𝐾 {AC, GC} {GC} {AC}
ghost set 𝑋 {} {CG, GG} {CC, GC, CG, GG}

Table 2 Represented 2-mer sets with or and xor for masked superstrings and their
concatenation. The second and third row depict the on and off occurrences of 2-mers, respectively,
in the uni-directional model for masked superstrings 𝒮1 = AGc, 𝒮2 = CgGCg and their concatenation.
Note that after the concatenation new off occurrences of boundary 𝑘-mers emerge; in this case, it
is just the blue-colored 2-mer CC. The bottom part depicts the represented sets 𝐾 and ghost sets 𝑋
for these 𝑓-masked superstring when interpreted using or and xor. Note that 𝐾or = 𝐾1 ∪ 𝐾2 in the
case of or and 𝐾xor = 𝐾1Δ𝐾2 for xor.

4.2 Function-Preserving Set Operations283

Union. As implicitly shown in [61], concatenating masked superstrings, which are or-284

masked superstrings in our notation, acts as union on the represented sets, that is, the285

resulting represented set is the union of the original represented sets. This allows or-masked286

superstrings to generalize (r)SPSS representations, since any set of 𝑘-mers in the (r)SPSS287

representation can be directly viewed as an or-masked superstring by concatenating the288

individual simplitigs/matchtigs.289

We show that or is the only comprehensive demasking function that acts as union on290

the represented sets; see Appendix A for details. We further demonstrate this uniqueness291

even on the level of matchtigs and therefore, or-masked superstrings are the only 𝑓-masked292

superstrings that generalize (r)SPSS representations.293

Symmetric difference. Next, we observe that xor naturally acts as the symmetric294

difference set operation, i.e., concatenating two xor-masked superstring results in a xor-MS295

representing the symmetric difference of the original sets. Indeed, recall that using xor296

implies that a 𝑘-mer is represented if and only if there is a odd number of on occurrences of297

that 𝑘-mer. Observe that the boundary occurrences of 𝑘-mers do not affect the resulting298

CVIT 2016

23:8 𝑓-Masked Superstrings as a Data Type

represented set as those have zeros in the mask. Thus, if a 𝑘-mer is present in both sets, it299

has an even number of on occurrences in total and hence, is not represented in the result.300

Likewise, if a 𝑘-mer belongs to exactly one input set, it has an odd number of on occurrences301

in this input set and an even number (possibly zero) in the other; thus, it is represented302

in the result. As any appearing 𝑘-mer is either boundary or appears in one of the masked303

superstrings, the result corresponds to the symmetric difference.304

4.3 Function-Transforming Set Operations305

Intersection. After seeing functions for union and symmetric difference operations, it might306

seem natural that there should be a function for intersection. This is however not the case307

as there exists no comprehensive demasking function acting as intersection, which we show308

in Appendix B.309

We can circumvent the non-existence of a single demasking function acting as intersection310

by using possibly non-comprehensive demasking functions that are different for the result311

than for the input. We further show that such schemes have other applications beyond312

intersection.313

To this end, we will need two different types of demasking functions:314

[𝑎,𝑏]-threshold function (where 0 < 𝑎 ≤ 𝑏) is a demasking function that returns 1315

whenever it receives an input of at least 𝑎 ones and at most 𝑏 ones and 0 otherwise.316

Note that unless 𝑎 = 1, [𝑎,𝑏]-threshold functions are not comprehensive as they do not317

satisfy properties (P2) and (P3). The corresponding 𝑓-masked superstrings are denoted318

[𝑎,𝑏]-threshold-masked superstrings.319

The one-or-nothing function is a demasking function that returns 1 if there is exactly320

one 1 in the input, 0 if there are no 1s, and invalid if there is more than a single on321

occurrence of the 𝑘-mer. Note that this function is comprehensive.322

We now use these functions to perform any symmetric set operation on any number323

of input 𝑘-mer sets. Given 𝑁 sets of 𝑘-mers, we compute a one-or-nothing-masked324

superstring for each. This is always possible since one-or-nothing is a comprehensive325

demasking function and can be done by directly using the superstrings and masks computed326

by KmerCamel [61].327

We then concatenate the individual one-or-nothing-masked superstring. The result is328

not a valid one-or-nothing-masked superstring in general, but it has the special property329

that each 𝑘-mer has as many on occurrences as the number of sets in which it appears. We330

can therefore change the demasking function of the resulting 𝑓-masked superstring from one-331

or-nothing to an [𝑎,𝑏]-threshold function. This will result in an [𝑎,𝑏]-threshold-masked332

superstring that is always valid and the represented set will be exactly the 𝑘-mers that appear333

in at least 𝑎 sets and at most 𝑏 sets. Important [𝑎,𝑏]-threshold-masked superstrings in this334

setting include the following:335

The [𝑁,𝑁]-threshold-masked superstring corresponds to taking the intersection of the336

represented sets.337

The [1,𝑁]-threshold-masked superstring is the or-masked superstring and corresponds338

to taking the union.339

The [1,1]-threshold-masked superstring corresponds to taking those 𝑘-mers that appear340

in exactly one of the original sets. In case of 𝑁 = 2, this corresponds to the symmetric341

difference.342

O. Sladký and P. Veselý and K. Břinda 23:9

It is important to emphasize that we can use different [𝑎,𝑏]-threshold functions to alter343

the resulting 𝑘-mer set without changing the superstring or the mask. For instance, we can344

use the same superstring and mask to consider intersection and union simply by changing345

the function from [𝑁,𝑁]-threshold to [1,𝑁]-threshold.346

Arbitrary symmetric set operations. The same scheme, with more general demasking347

functions, can be used to implement any symmetric set operation op on any number of348

sets. Indeed, given 𝑁, we again concatenate their one-or-nothing-masked superstrings349

in an arbitrary order. The symmetry of op implies that there is a set 𝑆𝑁 ⊆ {0, 1, … , 𝑁}350

such that a 𝑘-mer belongs to the set resulting from applying op if and only if it is in 𝑎351

input sets for some 𝑎 ∈ 𝑆. The sets 𝑆𝑁 for 𝑁 = 1, 2, … can be directly transferred into a352

demasking function 𝑓op that models op; however, 𝑓op may not satisfy the property (P4)353

from Definition 4.354

Set difference. Having seen how to perform symmetric set operations, we deal with355

asymmetric ones, focusing on the set difference of 𝑘-mer sets 𝐴 ∖ 𝐵. Clearly, we cannot356

use the same demasking function 𝑓 to represent both 𝐴 and 𝐵 as it would be impossible to357

distinguish the sets after concatenation. Hence, we use different functions to represent 𝐴358

and 𝐵, namely,359

represent 𝐴 using a (1, 1)-masked superstring,360

represent 𝐵 using a (2, 2)-masked superstring, and361

interpret the result as a (1, 1)-masked superstring.362

This computes the difference correctly as all 𝑘-mers represented in 𝐵 are treated as ghosts363

in the result, the 𝑘-mers from 𝐴 but not from 𝐵 still have a single on occurrence and thus364

are correctly considered represented, and finally, the ghost 𝑘-mers in either of the initial sets365

or the boundary 𝑘-mers have no influence on the result. The same functions can be used if366

we subtract more than a single set. Furthermore, this scheme can be generalized to any set367

operations on any number of sets, by representing the 𝑖-th input set with (𝑖, 𝑖)-MS and using368

a suitable demasking function for the result of the concatenation (constructed similarly as369

𝑓op for symmetric operation op above).370

The downside to this approach is that the (2, 2) function is not comprehensive and we371

cannot simply use any superstring of 𝑘-mers in 𝐵, but we need a superstring such that372

every 𝑘-mer of 𝐵 appears at least twice, which can for instance be achieved by doubling373

the computed superstring of 𝐵. We remark that this is the best we can do as set difference374

cannot be achieved with comprehensive functions solely as we show in Appendix B.375

Other applications. Furthermore, there are many more demasking functions that can be376

used with 𝑓-masked superstrings, although they may not correspond to set operations. In377

Appendix C, we mention the and and all-or-nothing demasking functions that could be378

useful for some applications (see also Table 1).379

5 𝑓-Masked Superstrings as a Data Type380

After seeing 𝑓-masked superstrings as an algebraic framework in Section 4, here we demon-381

strate how to turn them into a standalone data type for 𝑘-mer sets supporting all the key382

operations. This consists of using the FMS-index, an adaptation of the FM-index [24], as an383

underlying support structure for indexing, and using its capabilities for implementing all384

the operations. One specific prototype implementation is then described and evaluated in385

Section 6.386

CVIT 2016

23:10 𝑓-Masked Superstrings as a Data Type

5.1 FMS-Index: An FM-Index Tailored to 𝑓-Masked Superstrings387

As 𝑓-masked superstrings form a textual representation 𝑘-mer sets, it is natural to index388

them using full-text indexes (see, e.g., review in [48]). Given its intrinsic properties and the389

availability of high-quality implementations, the most natural choice is the FM-index [24].390

However, due to the presence of the mask, applying the FM-index directly does not work.391

We thus introduce the FMS-index, a modified version of the FM-index, which omits392

sampled suffix arrays and adds an auxiliary table for the mask. The key idea is to store393

the BWT image of the superstring and transformed mask such that the 𝑖-th symbol of394

the transformed mask corresponds to the mask symbol at the starting position of the 𝑖-th395

lexicographically smallest suffix of the superstring. Since the transformed mask can be396

computed alongside the construction of the superstring FM-index, the mask transformation397

requires only linear time.398

In the remainder of this section, we first describe operations such as exporting, merging,399

mask recasting, and compaction, which are used as building blocks of more high-level400

operations. Then we focus on answering membership queries on 𝑓-masked superstrings and401

how to efficiently perform the set operations as conceptually described in Section 4 using402

merging of FM-indexes.403

5.2 Basic Operations with 𝑓-Masked Superstrings404

To implement operations for 𝑓-masked superstrings using this index, we need to decompose405

individual 𝑓-MS operations into primitive operations with the index. On a low level, these406

involve exporting the 𝑓-MS to its string representation from the index, 𝑓-MS concatenation,407

changing the demasking function, and compaction to decrease its size by data deduplication.408

Exporting an 𝑓-MS to its string representation. To retrieve a 𝑓-MS representation409

in the string form from the index, it is sufficient to revert the Burrows-Wheeler transform410

using the LF mapping and translate the mask bits from suffix array coordinates to the string411

coordinates.412

𝑓-MS concatenation by index merging. We can export the 𝑓-masked superstrings,413

concatenate them in their string form and index the result, which achives linear time414

complexity. Alternatively, it is possible merge the indexes without exporting by directly415

merging the BWTs [28] and masks alongside it.416

𝑓-MS mask recasting for 𝑓 transformation. To change the demasking function 𝑓 to417

a different one without altering the represented 𝑘-mer set and the underlying superstring,418

we may need to recast the mask. Although the recasting procedure depends on the specific419

function 𝑓 used, for all comprehensive functions mentioned in Table 1, recasting can be420

done either by maximizing the number of 1s in the mask (and and all-or-nothing), or by421

minimizing the number of 1s (all other functions in Table 1). If an 𝑓-MS is represented in422

the original string form, this can be achieve in linear time using a single/two-pass algorithms,423

respectively [61]. For 𝑓-MS in the suffix-array coordinates, we can export the 𝑓-MS, then424

recast the mask, and index the result.425

𝑓-MS compaction. If an 𝑓-MS contains too many redundant copies of individual 𝑘-mers,426

e.g., if an 𝑓-MS is obtained by concatenating multiple input 𝑓-MSes, it might be desirable to427

compact it, i.e., reoptimize its support superstring. This can be performed in linear time,428

using two different approaches: One option is exporting the 𝑓-masked superstring, counting429

the number of on and off occurrences of each 𝑘-mer, constructing the represented 𝑘-mer430

set, and computing its or-MS [61]. Alternatively, one may directly compute an 𝑓-masked431

O. Sladký and P. Veselý and K. Břinda 23:11

superstring using the local greedy algorithm [61] executed on the FMS-index, as described in432

Appendix D for the uni-directional model.433

5.3 Membership Queries via FMS-Index434

The process of answering membership queries on indexed 𝑓-masked superstrings can be split435

into two steps. First, we use the FMS-index of the superstring to find the range in the436

suffix-array coordinates corresponding to the queried 𝑘-mer and also the range for its reverse437

complement. Note that unlike in the FM-index, we do not have to translate each occurrence438

to the original coordinates.439

Second, we determine the presence of the 𝑘-mer using the transformed mask. Since440

demasking functions are by Definition 3 symmetric, in order to evaluate them, we do not441

need to know the exact order of on and off occurrences as the respective frequencies are442

sufficient. We compute these frequencies by rank queries on the transformed mask in the443

corresponding range as the occurrences of 𝜆 for a particular 𝑘-mer are located next to each444

other. Given the number of on and off occurrences (in total for the queried 𝑘-mer and its445

reverse complement), we evaluate the demasking function to answer the membership query.446

The first step can be performed in 𝑂(𝑘) time. The complexity of the second step depends447

on how efficiently we can evaluate 𝑓. For functions satisfying the property (P4) from448

Definition 4, the time complexity is constant.449

5.4 Performing Set Operations on Indexed 𝑘-Mer Sets450

Using an indexed 𝑓-MS, set operations such as union, (a)symmetric difference, or intersection451

can be performed directly via their associated abstract operations in Section 4. Indeed, we452

implement concatenation of masked superstrings via index merging. Prior to concatenating,453

we only need to ensure that each input set is represented using a correct demasking function454

as required by the operation (Table 1), and to recast the mask if it is not the case.455

After the concatenation, depending on our use-case, we recast the mask if we need a456

different demasking function than the one resulting from individual operations. Finally,457

it may be desirable to compact the 𝑓-masked superstring in case the resulting 𝑓-masked458

superstring is unnecessarily large for the set it represents; more precisely, when many 𝑘-mers459

appear in the 𝑓-MS multiple times. Given that we either perform a symmetric set operation460

or the number of input sets is constant, all of these steps can be implemented in linear time461

and thus, the total time complexity of each set operation is also linear.462

6 Experimental Evaluation463

Implementation of 𝑓-masked superstring operations in FMSI. We implemented464

indexing 𝑓-masked superstring and the associated 𝑘-mer set operations in a tool called FMSI465

(𝑓-Masked Superstring Index). The tool supports membership queries on indexed 𝑓-masked466

superstrings and further provides an implementation of basic building-block operations such467

as exporting, merging, and compaction that are used to perform set operations.468

Index merging is implemented via export, concatenation of the underlying 𝑓-MSes, and469

then reindexing. Compaction is implemented in two variants: first, using 𝑘-mer counting and470

KmerCamel [61] to construct a superstring; second, using a version of the local algorithm471

on FMS-index described in Appendix D to work in the bi-directional model at the cost of472

having 𝑂(𝑘)-times higher time complexity. All the demasking functions mentioned in Table 1473

are supported directly by FMSI, and users can possibly add their custom ones.474

CVIT 2016

23:12 𝑓-Masked Superstrings as a Data Type

BWA (on ProphAsm output) SBWT CBL FMSI (on ’s local with d = 1) FMSI (on ’s global)

−
+

−+

−

+

−

+

−

+0.003

0.010

0.030

4 8 16 32
query RAM usage bits / kmer

tim
e

pe
r

qu
er

y
in

 m
s

(a) 𝑘 = 23, without subsampling 𝑘-mers.

−
+

−+

−

+
−

+

−

+
0.003

0.010

0.030

64 256 1024
query RAM usage bits / kmer

tim
e

pe
r

qu
er

y
in

 m
s

(b) 𝑘 = 23, subsampled 𝑘-mers at rate 0.1.

Figure 1 Query time and memory for the E. coli pan-genome. For each of the algorithms, we
plot two points, one for positive queries (+) and one for negative (-), connected by a line.

FMSI was developed in C++ and is available from GitHub (https://github.com/475

OndrejSladky/fmsi) under the MIT license. The implementation is based on the sdsl-476

lite library [25], available at https://github.com/simongog/sdsl-lite/, and also uses477

KmerCamel , available at https://github.com/OndrejSladky/kmercamel.478

Benchmarking methodology. We evaluated the performance of FMSI (version at commit479

a36c2e3) on bacterial and viral pan-genomes and on a nematode genome, both in its efficiency480

of construction and querying as well as in performance on set operations, namely computing481

intersections, symmetric differences, and unions of 𝑘-mer sets. We measured the storage482

requirements for each index, both the time and memory requirements for construction and483

the time and memory requirements for queries with isolated 𝑘-mers. We tested both positive484

and negative queries; to generate positive queries, we took a random subset of 106 distinct485

𝑘-mers from the queried dataset, and to obtain negative queries, we took a random subset of486

106 distinct 𝑘-mers from a part of chromosome 1 of the human genome (genome assembly487

GRCh38.p14), excluding those in the queried dataset. All the algorithms were run on a488

single thread on a server with AMD EPYC 7302 (3 GHz) processor and 251 GB RAM.489

Experimental evaluation of indexing. We compared time and memory requirements490

for processing both positive and negative queries of FMSI to state-of-the-art programs for491

indexing individual 𝑘-mer sets, namely,492

BWA1 [38], a state-of-the-art aligner based on the FM index; for processing queries,493

we used the fastmap command [36], run with parameter 𝑤 = 999999 on the simplitigs494

computed by ProphAsm [11],495

SBWT2 [1], an index based on the spectral Burrows-Wheeler transform; we used the496

default plain-matrix variant as it achieves the best query times in [1] and added all reverse497

complements to the index, and498

1 https://github.com/lh3/bwa, commit 139f68f.
2 https://github.com/algbio/SBWT, commit c433b53.

https://github.com/OndrejSladky/fmsi
https://github.com/OndrejSladky/fmsi
https://github.com/OndrejSladky/fmsi
https://github.com/simongog/sdsl-lite/
https://github.com/OndrejSladky/kmercamel
https://github.com/lh3/bwa
https://github.com/algbio/SBWT

O. Sladký and P. Veselý and K. Břinda 23:13

CBL3 [45], a very recent method based on smallest cyclic rotations of 𝑘-mers.499

We have run FMSI on the masked superstrings computed by KmerCamel [61], specifically500

the global and local greedy algorithms (local is run with 𝑑 = 1).501

This experiment was done using an E. coli pan-genome (obtained as a union of 𝑘-mers of502

E. coli genomes from the 661k collection [5]) and S. pneumoniae pan-genome (computed503

from 616 assemblies from a study of children in Massachusetts, USA [21]) and further verified504

on a SARS-CoV-2 pan-genome (n=14.7 M, total genome length 430 Gbp). To verify the505

behavior across diverse datasets, we also provide experimental results for subsampled 𝑘-mer506

sets of these three pan-genomes; we note that after subsampling the spectrum-like property507

(SLP) no longer hold. Specifically, for a given subsampling rate 𝑟 ∈ [0, 1], we selected a508

uniformly random subset of 𝑟 ⋅ 𝑁 distinct 𝑘-mers of the original pan-genome, where 𝑁 is the509

total number of 𝑘-mers of the pan-genome.510

The results on the E. coli pan-genome for 𝑘 = 23 without subsampling and with511

subsampling at rate 0.1 are presented in Figure 1; for further results, we refer to the512

supplementary repository4. Across all of the datasets, values of 𝑘, and subsampling rates,513

FMSI run on the masked superstring computed by KmerCamel ’s global greedy required514

3-10 times less memory for processing queries than all of the other methods, attaining515

around 3-4 bits per 𝑘-mer on non-subsampled E. coli pan-genome. However, FMSI needed516

substantially more time for processing queries than the other programs; this is mainly due to517

the prototype nature of our implementation, and we believe that the query time of FMSI518

can be substantially optimized. SBWT (in the plain-matrix variant) and CBL are generally519

the fastest algorithms for processing queries. We note that SBWT required substantial disk520

space during index construction (up to tens of GBs for the E. coli pan-genome). We also521

remark that while the memory usage per 𝑘-mer grows with decreasing subsampling rate, the522

query time remains roughly the same for all algorithms.523

Experimental evaluation of set operations. We demonstate the feasibility of using524

FMSI to perform set operations on 𝑘-mer sets. Our proposed pipeline for set operations,525

as depicted in Figure 2, consists of five steps: First, we compute a textual representation526

of the 𝑘-mer sets interpreted as or-masked superstrings. In our experiments, this was527

done using KmerCamel ’s global greedy algorithm. Second, we recast the mask to the528

desired demasking function, specifically we keep or for union and change to one-or-nothing529

for intersection and to xor for symmetric difference. In the case of or-MS computed by530

KmerCamel , mask recasting is actually not needed as the output already minimizes the531

number of 1s in the mask. Then we index the 𝑓-masked superstrings using FMSI (this can be532

done even before mask recasting). The last two steps are concatenating the two FMS-indexes533

by index merging and compacting the resulting FMS-index if needed. Note that once indexed,534

we can ask membership queries on the resulting 𝑘-mer sets.535

For this experiment, we used genomes of C. elegans (NC_003279.8, 100M base pairs)536

and C. briggsae (NC_013489.2, 108M base pairs). We evaluated the superstring length of537

each computed 𝑓-masked superstring, and the memory requirements to perform queries538

on the indexed individual and concatenated 𝑓-masked superstrings, both before and after539

compaction. The results for intersection of the two roundworm genomes for 𝑘 = 23 are540

depicted in Figure 2. Overall, at every step, the memory required to query the indexed541

𝑓-masked superstring was around 3 bits per superstring character, which in case of the542

roundworms was almost the same as the number of 𝑘-mers. This trend continues even for543

3 https://github.com/imartayan/CBL, commit 8e8f28e.
4 https://github.com/OndrejSladky/f-masked-superstrings-supplement

CVIT 2016

https://github.com/imartayan/CBL
https://github.com/OndrejSladky/f-masked-superstrings-supplement

23:14 𝑓-Masked Superstrings as a Data Type

k-mer set 1

Masked superstring / (r)SPSS
(OR-MS)

1) Compute representation

one-or-nothing-MS

2) Recast mask

Indexed
one-or-nothing-MS

Indexed [2,2]-threshold-MS
for intersection

4) Merge

3) Index

Indexed OR-MS
for intersection

5) Compact the index

Example:
{ACG, GCG, CGC}

ACGCGC
111100

ACGCGC
101100

C$GGACC; $101001
(each with rank)

T$CGGAACCCG; $1101010100
(each with rank)

G$AC; $100
(each with rank)

C. briggsae, k=23
(92M k-mers)

KmerCamel🐫
used

In this case
not needed

31.3MB memory

58.2MB memory
(443K k-mers)

4.5MB memory
(1.5M chars in MS)

k-mer set 2

Masked superstring / (r)SPSS
(OR-MS)

1) Compute representation

one-or-nothing-MS

2) Recast mask

Indexed
one-or-nothing-MS

3) Index

Example:
{ACG, CGT}

ACGT
1100

ACGT
1100

T$ACG; $1100
(each with rank)

C. elegans, k=23
(92M k-mers)

KmerCamel🐫
used

In this case
not needed

30.8MB memory

95M chars

95M chars 94M chars

94M chars

Figure 2 Set operations workflow using 𝑓-masked superstrings: example on inter-
section. The workflow also contains illustrative example on a set of 3-mers as well as time for the
operations and experimental data for running the workflow on C. briggsae and C. elegans genomes
with 𝑘 = 23. The experimental data contains the number of MS characters after each change,
number of represented 𝑘-mers and for each indexed representation the memory required for quering
the underlying set.

the merged FMS-index, albeit for the compacted concatenated result the per-𝑘-mer memory544

was higher as it was as low as latent memory required to run FMSI. Note also that the fact545

that compaction significantly reduces the masked superstring length highly depends on the546

particular use case, namely on the proportion of represented 𝑘-mers in the result. For union547

and symmetric difference for the same data, the compaction lead to almost negligible length548

reduction. For data about symmetric difference and union as well as for other values of 𝑘,549

see the supplementary repository4.550

7 Discussion and Conclusions551

We have proposed 𝑓-masked superstrings as an abstract data type for 𝑘-mer sets that552

allows for seamless execution of set operations. It is primarily based on equipping masked553

superstrings from [61] with a demasking function 𝑓, and we have studied the effect of using554

several natural demasking functions. For symmetric set operations (e.g., union, intersection,555

symmetric difference), our approach is efficient even on a larger number of input sets as it556

reduces to simple concatenation of masked superstrings and possibly changing the demasking557

function. We have also shown how to perform asymmetric operations (e.g., set difference) in558

linear time on a constant number of input sets. However, from a practical point of view, the559

algorithm for asymmetric operations appears to be less efficient as it requires concatenating560

multiple copies of masked superstrings for some input sets. We leave open how to perform561

set difference and other asymmetric operations in a more efficient way.562

Next, we have combined 𝑓-masked superstrings with FMS-Index, an adaptation of the563

O. Sladký and P. Veselý and K. Břinda 23:15

FM index and shown how to perform basic operations on the index and process 𝑘-mer564

membership queries efficiently. To demonstrate practicality, we have provided a prototype565

implementation in a tool called FMSI. While our experimental evaluation already shows566

significant reduction of memory usage, it still lacks behind state-of-the-art methods in terms of567

query time. However, we believe that FMSI can be substantially optimized; this is supported568

by the fact that both FMSI and BWA [38, 36] are based on the FM index and therefore,569

it should be possible to reduce query times of FMSI on the level of BWA. We also note570

that we did not optimize other subroutines of FMSI, such as index merging. Furthermore,571

we leave as an open question how to design efficient algorithms for mask recasting in the572

suffix-array coordinates and compaction in the bi-directional model without the need to573

export the 𝑓-masked superstring.574

Our work opens up several research directions for future investigation. First, our main575

focus was on processing individual 𝑘-mer sets that can be combined via set operations and576

queried for individual 𝑘-mers. The support for querying consecutive 𝑘-mers of a genomic577

sequence (e.g., a read obtained from sequencing) can be added by using the bi-directional FM-578

index [33] (details left to future work). Another significant direction is to extend 𝑓-masked579

superstrings for indexing large collections of 𝑘-mer sets (see, e.g., a review in [42]). Finally,580

our focus was on set operations, while we leave maintaining 𝑘-mer sets under insertions and581

deletions to future work.582

In conclusion, our long-term goal is a space- and time-efficient library for analyzing583

𝑘-mer sets that includes all of these features, and we believe that the 𝑓-masked superstring584

framework is a useful step towards designing appropriate data structures for this library.585

References586

1 Jarno N Alanko, Simon J Puglisi, and Jaakko Vuohtoniemi. Small searchable 𝜅-spectra587

via subset rank queries on the spectral Burrows-Wheeler transform. In SIAM Conference588

on Applied and Computational Discrete Algorithms (ACDA23), pages 225–236. SIAM, 2023.589

doi:10.1137/1.9781611977714.20.590

2 Jarno N Alanko, Jaakko Vuohtoniemi, Tommi Mäklin, and Simon J Puglisi. Themisto: a591

scalable colored k-mer index for sensitive pseudoalignment against hundreds of thousands592

of bacterial genomes. Bioinformatics, 39(Supplement_1):i260–i269, 2023. doi:10.1093/593

bioinformatics/btad233.594

3 Fatemeh Almodaresi, Jamshed Khan, Sergey Madaminov, Michael Ferdman, Rob Johnson,595

Prashant Pandey, and Rob Patro. An incrementally updatable and scalable system for large-596

scale sequence search using the Bentley-Saxe transformation. Bioinformatics, 38(12):3155–3163,597

2022. doi:10.1093/bioinformatics/btac142.598

4 Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal. Cobs: a compact bit-599

sliced signature index. In String Processing and Information Retrieval: 26th International600

Symposium, SPIRE 2019, Segovia, Spain, October 7–9, 2019, Proceedings 26, pages 285–303.601

Springer, 2019. doi:10.1007/978-3-030-32686-9_21.602

5 Grace A. Blackwell, Martin Hunt, Kerri M. Malone, Leandro Lima, Gal Horesh, Blaise T. F.603

Alako, Nicholas R. Thomson, and Zamin Iqbal. Exploring bacterial diversity via a curated604

and searchable snapshot of archived dna sequences. PLOS Biology, 19(11):1–16, 11 2021.605

doi:10.1371/journal.pbio.3001421.606

6 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de Bruijn607

graphs. In Benjamin J. Raphael and Jijun Tang, editors, Algorithms in Bioinformatics608

- 12th International Workshop, WABI 2012, Ljubljana, Slovenia, September 10-12, 2012.609

Proceedings, volume 7534 of Lecture Notes in Computer Science, pages 225–235. Springer,610

2012. doi:10.1007/978-3-642-33122-0_18.611

CVIT 2016

https://doi.org/10.1137/1.9781611977714.20
https://doi.org/10.1093/bioinformatics/btad233
https://doi.org/10.1093/bioinformatics/btad233
https://doi.org/10.1093/bioinformatics/btad233
https://doi.org/10.1093/bioinformatics/btac142
https://doi.org/10.1007/978-3-030-32686-9_21
https://doi.org/10.1371/journal.pbio.3001421
https://doi.org/10.1007/978-3-642-33122-0_18

23:16 𝑓-Masked Superstrings as a Data Type

7 Phelim Bradley, Henk C Den Bakker, Eduardo PC Rocha, Gil McVean, and Zamin Iqbal.612

Ultrafast search of all deposited bacterial and viral genomic data. Nature Biotechnology,613

37(2):152–159, 2019.614

8 Phelim Bradley, N Claire Gordon, Timothy M Walker, Laura Dunn, Simon Heys, Bill Huang,615

Sarah Earle, Louise J Pankhurst, Luke Anson, Mariateresa De Cesare, et al. Rapid antibiotic-616

resistance predictions from genome sequence data for staphylococcus aureus and mycobacterium617

tuberculosis. Nature Communications, 6(1):10063, 2015. doi:10.1038/ncomms10063.618

9 Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabilistic619

RNA-seq quantification. Nature Biotechnology, 34(5):525–527, 2016. doi:10.1038/nbt.3519.620

10 Karel Břinda. Novel computational techniques for mapping and classification of Next-621

Generation Sequencing data. PhD thesis, Université Paris-Est, 2016. doi:10.5281/zenodo.622

1045317.623

11 Karel Břinda, Michael Baym, and Gregory Kucherov. Simplitigs as an efficient and scal-624

able representation of de Bruijn graphs. Genome Biology, 22(96), 2021. doi:10.1186/625

s13059-021-02297-z.626

12 Karel Břinda, Alanna Callendrello, Kevin C Ma, Derek R MacFadden, Themoula Char-627

alampous, Robyn S Lee, Lauren Cowley, Crista B Wadsworth, Yonatan H Grad, Gregory628

Kucherov, et al. Rapid inference of antibiotic resistance and susceptibility by genomic neighbour629

typing. Nature Microbiology, 5(3):455–464, 2020. doi:10.1038/s41564-019-0656-6.630

13 Karel Břinda, Leandro Lima, Simone Pignotti, Natalia Quinones-Olvera, Kamil Salikhov,631

Rayan Chikhi, Gregory Kucherov, Zamin Iqbal, and Michael Baym. Efficient and robust632

search of microbial genomes via phylogenetic compression. bioRxiv, 2023. doi:10.1101/2023.633

04.15.536996.634

14 Karel Břinda, Kamil Salikhov, Simone Pignotti, and Gregory Kucherov. Prophyle 0.3.1.0.635

Zenodo, 5281, 2017. doi:10.5281/zenodo.5237391.636

15 Rayan Chikhi. K-mer data structures in sequence bioinformatics. HDR thesis, Institut Pasteur637

Ecole Doctorale “EDITE”, 2021.638

16 Rayan Chikhi, Jan Holub, and Paul Medvedev. Data structures to represent a set of k-long639

DNA sequences. ACM Computing Surveys, 54(1):17:1–17:22, 2022. doi:10.1145/3445967.640

17 Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T. Simpson, and Paul Medvedev. On641

the representation of de Bruijn graphs. In Roded Sharan, editor, Research in Computational642

Molecular Biology, pages 35–55, Cham, 2014. Springer International Publishing. doi:10.1007/643

978-3-319-05269-4_4.644

18 Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de Bruijn graphs from645

sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208, 2016. doi:646

10.1093/bioinformatics/btw279.647

19 Thomas C. Conway and Andrew J. Bromage. Succinct data structures for assembling large648

genomes. Bioinformatics, 27(4):479–486, 2011. doi:10.1093/bioinformatics/btq697.649

20 Victoria G. Crawford, Alan Kuhnle, Christina Boucher, Rayan Chikhi, and Travis Gagie.650

Practical dynamic de Bruijn graphs. Bioinformatics, 34(24):4189–4195, 2018. doi:10.1093/651

bioinformatics/bty500.652

21 Nicholas J. Croucher, Jonathan A. Finkelstein, Stephen I. Pelton, Julian Parkhill, Stephen D.653

Bentley, Marc Lipsitch, and William P. Hanage. Population genomic datasets describing the654

post-vaccine evolutionary epidemiology of streptococcus pneumoniae. Scientific Data, 2, 2015.655

doi:10.1038/sdata.2015.58.656

22 Jason Fan, Jamshed Khan, Giulio Ermanno Pibiri, and Rob Patro. Spectrum preserving657

tilings enable sparse and modular reference indexing. In Haixu Tang, editor, Research in658

Computational Molecular Biology - 27th Annual International Conference, RECOMB 2023,659

Istanbul, Turkey, April 16-19, 2023, Proceedings, volume 13976 of Lecture Notes in Computer660

Science, pages 21–40. Springer, 2023. doi:10.1007/978-3-031-29119-7_2.661

https://doi.org/10.1038/ncomms10063
https://doi.org/10.1038/nbt.3519
https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1038/s41564-019-0656-6
https://doi.org/10.1101/2023.04.15.536996
https://doi.org/10.1101/2023.04.15.536996
https://doi.org/10.1101/2023.04.15.536996
https://doi.org/10.5281/zenodo.5237391
https://doi.org/10.1145/3445967
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btq697
https://doi.org/10.1093/bioinformatics/bty500
https://doi.org/10.1093/bioinformatics/bty500
https://doi.org/10.1093/bioinformatics/bty500
https://doi.org/10.1038/sdata.2015.58
https://doi.org/10.1007/978-3-031-29119-7_2

O. Sladký and P. Veselý and K. Břinda 23:17

23 Jason Fan, Jamshed Khan, Noor Pratap Singh, Giulio Ermanno Pibiri, and Rob Patro. Fulgor:662

a fast and compact k-mer index for large-scale matching and color queries. Algorithms for663

Molecular Biology, 19(1):3, 2024. doi:10.1186/S13015-024-00251-9.664

24 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,665

2005. doi:10.1145/1082036.1082039.666

25 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug667

and play with succinct data structures. In 13th International Symposium on Experimental668

Algorithms, (SEA 2014), pages 326–337, 2014.669

26 Gaurav Gupta, Minghao Yan, Benjamin Coleman, Bryce Kille, R. A. Leo Elworth, Tharun670

Medini, Todd Treangen, and Anshumali Shrivastava. Fast processing and querying of 170TB of671

genomics data via a Repeated And Merged BloOm filter (RAMBO). In Proceedings of the 2021672

International Conference on Management of Data, SIGMOD ’21, page 2226–2234, New York,673

NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3448016.3457333.674

27 Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and indexing of675

colored and compacted de Bruijn graphs. Genome Biology, 21(1):1–20, 2020. doi:10.1186/676

s13059-020-02135-8.677

28 James Holt and Leonard McMillan. Merging of multi-string bwts with applications. Bioinfor-678

matics, 30(24):3524–3531, August 2014. URL: http://dx.doi.org/10.1093/bioinformatics/679

btu584, doi:10.1093/bioinformatics/btu584.680

29 Lauris Kaplinski, Maarja Lepamets, and Maido Remm. GenomeTester4: a toolkit for per-681

forming basic set operations - union, intersection and complement on k-mer lists. GigaScience,682

4(1):s13742–015–0097–y, 12 2015. doi:10.1186/s13742-015-0097-y.683

30 Mikhail Karasikov, Harun Mustafa, Daniel Danciu, Christopher Barber, Marc Zimmermann,684

Gunnar Rätsch, and André Kahles. Metagraph: Indexing and analysing nucleotide archives at685

petabase-scale. BioRxiv, pages 2020–10, 2020. doi:10.1101/2020.10.01.322164.686

31 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-Time687

Longest-Common-Prefix Computation in Suffix Arrays and Its Applications, pages 181–192.688

Springer Berlin Heidelberg, 2001. doi:10.1007/3-540-48194-x_17.689

32 Marek Kokot, Maciej Długosz, and Sebastian Deorowicz. KMC 3: counting and manipulating690

k-mer statistics. Bioinformatics, 33(17):2759–2761, 05 2017. doi:10.1093/bioinformatics/691

btx304.692

33 T. W. Lam, Ruiqiang Li, Alan Tam, Simon Wong, Edward Wu, and S. M. Yiu. High693

throughput short read alignment via bi-directional bwt. In 2009 IEEE International Conference694

on Bioinformatics and Biomedicine. IEEE, 2009. doi:10.1109/bibm.2009.42.695

34 John A Lees, Marco Galardini, Stephen D Bentley, Jeffrey N Weiser, and Jukka Corander.696

pyseer: a comprehensive tool for microbial pangenome-wide association studies. Bioinformatics,697

34(24):4310–4312, 2018. doi:10.1093/bioinformatics/bty539.698

35 Téo Lemane, Paul Medvedev, Rayan Chikhi, and Pierre Peterlongo. kmtricks: efficient and699

flexible construction of Bloom filters for large sequencing data collections. Bioinformatics700

Advances, 2(1):vbac029, 04 2022. doi:10.1093/bioadv/vbac029.701

36 Heng Li. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly.702

Bioinformatics, 28(14):1838–1844, 2012. doi:10.1093/bioinformatics/bts280.703

37 Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.704

arXiv preprint arXiv:1303.3997, 2013. doi:10.48550/arXiv.1303.3997.705

38 Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler706

transform. Bioinformatics, 25(14):1754–1760, 2009. doi:10.1093/bioinformatics/btp324.707

39 Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows-Wheeler708

transform. Bioinformatics, 26(5):589–595, 2010. doi:10.1093/bioinformatics/btp698.709

40 Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast and scalable710

minimal perfect hashing for massive key sets. In Costas S. Iliopoulos, Solon P. Pissis, Simon J.711

Puglisi, and Rajeev Raman, editors, 16th International Symposium on Experimental Algorithms,712

CVIT 2016

https://doi.org/10.1186/S13015-024-00251-9
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/3448016.3457333
https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1186/s13059-020-02135-8
http://dx.doi.org/10.1093/bioinformatics/btu584
http://dx.doi.org/10.1093/bioinformatics/btu584
http://dx.doi.org/10.1093/bioinformatics/btu584
https://doi.org/10.1093/bioinformatics/btu584
https://doi.org/10.1186/s13742-015-0097-y
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1007/3-540-48194-x_17
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1109/bibm.2009.42
https://doi.org/10.1093/bioinformatics/bty539
https://doi.org/10.1093/bioadv/vbac029
https://doi.org/10.1093/bioinformatics/bts280
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp698

23:18 𝑓-Masked Superstrings as a Data Type

SEA 2017, June 21-23, 2017, London, UK, volume 75 of LIPIcs, pages 25:1–25:16. Schloss713

Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/lipics.sea.2017.25.714

41 Po-Ru Loh, Michael Baym, and Bonnie Berger. Compressive genomics. Nature Biotechnology,715

30(7):627–630, July 2012. URL: http://dx.doi.org/10.1038/nbt.2241, doi:10.1038/nbt.716

2241.717

42 Camille Marchet, Christina Boucher, Simon J Puglisi, Paul Medvedev, Mikaël Salson, and718

Rayan Chikhi. Data structures based on k-mers for querying large collections of sequencing719

data sets. Genome Research, 31(1):1–12, 2021. doi:10.1101/gr.260604.119.720

43 Camille Marchet, Zamin Iqbal, Daniel Gautheret, Mikaël Salson, and Rayan Chikhi. REIN-721

DEER: efficient indexing of k-mer presence and abundance in sequencing datasets. Bioinfor-722

matics, 36(Supplement-1):i177–i185, 2020. doi:10.1093/bioinformatics/btaa487.723

44 Camille Marchet, Maël Kerbiriou, and Antoine Limasset. Blight: efficient exact associative724

structure for k-mers. Bioinformatics, 37(18):2858–2865, 2021. doi:10.1093/bioinformatics/725

btab217.726

45 Igor Martayan, Bastien Cazaux, Antoine Limasset, and Camille Marchet. Conway-Bromage-727

Lyndon (CBL): an exact, dynamic representation of k-mer sets. bioRxiv, 2024. doi:10.1101/728

2024.01.29.577700.729

46 Martin D. Muggli, Bahar Alipanahi, and Christina Boucher. Building large updatable730

colored de Bruijn graphs via merging. Bioinformatics, 35(14):i51–i60, 2019. doi:10.1093/731

bioinformatics/btz350.732

47 Martin D. Muggli, Alexander Bowe, Noelle R. Noyes, Paul S. Morley, Keith E. Belk, Robert733

Raymond, Travis Gagie, Simon J. Puglisi, and Christina Boucher. Succinct colored de Bruijn734

graphs. Bioinformatics, 33(20):3181–3187, 2017. doi:10.1093/bioinformatics/btx067.735

48 Gonzalo Navarro. Texts, page 395–449. Cambridge University Press, 2016.736

49 Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. Squeakr: an exact737

and approximate k-mer counting system. Bioinformormatics, 34(4):568–575, 2018. doi:738

10.1093/bioinformatics/btx636.739

50 Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford. Salmon provides740

fast and bias-aware quantification of transcript expression. Nature Methods, 14(4):417–419,741

2017. doi:10.1038/nmeth.4197.742

51 Giulio Ermanno Pibiri. Sparse and skew hashing of K-mers. Bioinformatics, 38(Supple-743

ment_1):i185–i194, 2022. doi:10.1093/bioinformatics/btac245.744

52 Amatur Rahman. Compression algorithms for de Bruijn graphs and uncovering hidden745

assembly artifacts. PhD thesis, The Pennsylvania State University, 2023.746

53 Amatur Rahman and Paul Medevedev. Representation of k-mer sets using spectrum-preserving747

string sets. Journal of Computational Biology, 28(4):381–394, 2021. PMID: 33290137. doi:748

10.1089/cmb.2020.0431.749

54 Kamil Salikhov. Efficient algorithms and data structures for indexing dna sequence data. PhD750

thesis, Université Paris-Est, 2017.751

55 Kamil Salikhov, Karel Břinda, Simone Pignotti, and Gregory Kucherov. ProPhex. https:752

//github.com/prophyle/prophex. doi:10.5281/zenodo.1247432.753

56 Sebastian Schmidt. Unitigs are not enough: the advantages of superunitig-based algorithms754

in bioinformatics. PhD thesis, University of Helsinki, 2023.755

57 Sebastian Schmidt and Jarno N. Alanko. Eulertigs: minimum plain text representation of756

k-mer sets without repetitions in linear time. Algorithms for Molecular Biology, 18(1):5, 2023.757

doi:10.1186/s13015-023-00227-1.758

58 Sebastian Schmidt, Shahbaz Khan, Jarno N. Alanko, Giulio E. Pibiri, and Alexandru I.759

Tomescu. Matchtigs: minimum plain text representation of k-mer sets. Genome Biology,760

24(1):136, 2023. doi:10.1186/s13059-023-02968-z.761

59 Liam P Shaw, Eduardo P C Rocha, and R Craig MacLean. Restriction-modification systems762

have shaped the evolution and distribution of plasmids across bacteria. Nucleic Acids Research,763

51(13):6806–6818, 2023. doi:10.1093/nar/gkad452.764

https://doi.org/10.4230/lipics.sea.2017.25
http://dx.doi.org/10.1038/nbt.2241
https://doi.org/10.1038/nbt.2241
https://doi.org/10.1038/nbt.2241
https://doi.org/10.1038/nbt.2241
https://doi.org/10.1101/gr.260604.119
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1101/2024.01.29.577700
https://doi.org/10.1101/2024.01.29.577700
https://doi.org/10.1101/2024.01.29.577700
https://doi.org/10.1093/bioinformatics/btz350
https://doi.org/10.1093/bioinformatics/btz350
https://doi.org/10.1093/bioinformatics/btz350
https://doi.org/10.1093/bioinformatics/btx067
https://doi.org/10.1093/bioinformatics/btx636
https://doi.org/10.1093/bioinformatics/btx636
https://doi.org/10.1093/bioinformatics/btx636
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1093/bioinformatics/btac245
https://doi.org/10.1089/cmb.2020.0431
https://doi.org/10.1089/cmb.2020.0431
https://doi.org/10.1089/cmb.2020.0431
https://github.com/prophyle/prophex
https://github.com/prophyle/prophex
https://github.com/prophyle/prophex
https://doi.org/10.5281/zenodo.1247432
https://doi.org/10.1186/s13015-023-00227-1
https://doi.org/10.1186/s13059-023-02968-z
https://doi.org/10.1093/nar/gkad452

O. Sladký and P. Veselý and K. Břinda 23:19

60 Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Efficient Reconciliation of765

Genomic Datasets of High Similarity. In Christina Boucher and Sven Rahmann, editors, 22nd766

International Workshop on Algorithms in Bioinformatics (WABI 2022), volume 242 of Leibniz767

International Proceedings in Informatics (LIPIcs), pages 14:1–14:14, Dagstuhl, Germany, 2022.768

Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.WABI.2022.14.769

61 Ondřej Sladký, Pavel Veselý, and Karel Břinda. Masked superstrings as a unified framework770

for textual k-mer set representations. bioRxiv, 2023. doi:10.1101/2023.02.01.526717.771

62 Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxiang Zhai, Miles J772

Efron, Ravishankar Iyer, Michael C Schatz, Saurabh Sinha, and Gene E Robinson. Big data:773

Astronomical or genomical? PLoS Biology, 13(7):e1002195, 2015. doi:10.1371/journal.774

pbio.1002195.775

63 Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence classification776

using exact alignments. Genome Biology, 15(3):1–12, 2014. doi:10.1186/gb-2014-15-3-r46.777

CVIT 2016

https://doi.org/10.4230/LIPIcs.WABI.2022.14
https://doi.org/10.1101/2023.02.01.526717
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1186/gb-2014-15-3-r46

23:20 𝑓-Masked Superstrings as a Data Type

A Proof of Uniqueness of Union Function778

Masked superstrings [61], which we call or-masked superstrings, have the important property779

that concatenating them results in the union of represented 𝑘-mers. This property makes780

it possible for masked superstring to generalize (r)SPSS representations [61] as unifying781

individual simplitigs/matchtigs results in correctly representing the union of respective782

represented 𝑘-mer sets. In this section, we show that or-masked superstrings are the only783

𝑓-masked superstrings with any of these properties (acting as union and generalizing (r)SPSS).784

▶ Theorem 10. or is the only comprehensive demasking function 𝑓 such that for any785

two 𝑘-mer sets 𝐾 and 𝐾′ and any of their valid 𝑓-masked superstrings (𝑓, 𝑆, 𝑀) and786

(𝑓, 𝑆′, 𝑀 ′), respectively, their concatenation (𝑓, 𝑆+𝑆′, 𝑀+𝑀 ′) is a valid 𝑓-masked superstring787

representing the set 𝐾 ∪ 𝐾′.788

Proof of Theorem 10. For a contradiction assume there is a comprehensive demasking789

function 𝑓 different than or that satisfies the above. Consider the smallest 𝑛 such that 𝑓790

behaves differently than or for a length-𝑛 input, meaning that there is 𝑥 ∈ {0, 1}𝑛 not equal791

to the all-zeros vector such that 𝑓(𝑥) ≠ 1. As 𝑓 is comprehensive, it cannot happen that792

𝑓(𝑥) = 1 for all 𝑥 ∈ {0, 1}𝑛 by Definition 4, and moreover, 𝑓((1)) = 1, implying 𝑛 > 1. Fix793

a 𝑘-mer, for simplicity A𝑘 (although similar approach works for all 𝑘-mers). We take the794

first 𝑓-masked superstring to be the 𝑘-mer with mask being 𝑀0 = 𝑥0 and 𝑀𝑖 = 0 for the795

remaining 𝑘 − 1 positions 𝑖 > 0. The second 𝑓-masked superstring is CA … A where A appears796

𝑛 + 𝑘 − 2 times with the mask being: 𝑀0 = 0, 𝑀𝑖 = 𝑥𝑖 for 𝑖 = 1, … , 𝑘, and 𝑀𝑖 = 0 for 𝑖 > 𝑘.797

At least one of the represented sets contains the 𝑘-mer as 𝑥 ≠ 0 and 𝑛 is the but the resulting798

𝑓-masked superstring is either invalid or does not contain the 𝑘-mer in the represented set as799

𝑓(𝑥) ≠ 1, a contradiction. ◀800

▶ Theorem 11. or is the only comprehensive demasking function 𝑓 such that for any sequence801

of 𝑓-masked superstrings, where individual superstrings are matchtigs, the concatenation of802

all the 𝑓-masked superstrings represents the union of represented 𝑘-mers.803

Proof of Theorem 11. It is sufficient to find a construction of matchtigs such that we can804

construct an arbitrary sequence of ones and zeros at the occurrences of a given 𝑘-mer and805

the rest follows similarly as in Theorem 10.806

We do this with 𝑘-mer CG and matchtigs Cg and Gc. Consider the counterexample sequence807

of occurring ones and zeros from Theorem 10. For every one in the sequence, we add the808

matchtig Cg and for each 𝑚 consecutive zeros, we add 𝑚 + 1 times the matchtig Gc, since809

at the boundary of two Gc matchtigs an off occurrence of 𝑘-mer CG appears. At any other810

boundary, the 𝑘-mer CG does not appear, therefore the construction is correct. The rest of811

the proof follows a similar argument as in Theorem 10. ◀812

Note, however, that the same does not hold if we want to represent simplitigs/SPSS813

solely. As an individual 𝑘-mer cannot appear more than once with an on occurrence, any814

comprehensive function generalizes SPSS representations if it satisfies that if there is one on815

occurrence of a 𝑘-mer, it returns 1, and if there is none, it returns 0.816

O. Sladký and P. Veselý and K. Břinda 23:21

B Limits of Performing Set Operations using Comprehensive Functions817

In this section, we prove theoretical limitations of performing set operations by concatenation818

of 𝑓-masked superstrings with comprehensive demasking functions. First, we show that819

intersection cannot be a function-preserving set operation and second, we prove that it is820

impossible to use only comprehensive demasking functions for input sets for the set difference821

operation. In Section 4, we show how to overcome these limits via careful choice of demasking822

functions that are not comprehensive.823

B.1 Non-Existence of a Preserved Comprehensive Function for824

Intersection.825

We show that there is no comprehensive demasking function that acts as the intersection826

when concatenating 𝑓-masked superstrings. In a nutshell, this impossibility is caused by the827

fact that if there is a 𝑘-mer 𝑄 that occurs exactly once in the input masked superstrings828

with 1 in the mask, then after concatenation, it will still occur once with 1 in the mask, so829

under any comprehensive 𝑓 the 𝑘-mer would appear as if it was in the intersection.830

▶ Theorem 12. There is no comprehensive demasking function 𝑓 with the property that the831

result of 𝑓-concatenation of two 𝑓-masked superstrings always represents the intersection of832

the originally represented 𝑘-mer sets.833

Proof of Theorem 12. Let 𝑓 be any comprehensive demasking function. Consider masked834

superstrings A and C, each representing a single 1-mer. Their concatenation is AC. Since835

𝑓1(1) = 1 by the comprehensiveness of 𝑓, the concatenation represents both 1-mer A and C.836

However, the intersection is empty and thus, 𝑓 cannot be used to compute the intersection837

from the concatenation. ◀838

Note that the proof cannot be generally extended to all demasking function as there exist839

non-comprehensive demasking functions acting as the intersection on the represented sets840

upon concatenation, for instance the constant zero function. However, since the constant841

zero function always represents the empty set, it is of no use in practice.842

We further remark that although we have for convenience used the property (P3) from843

the definition of comprehensive functions, the proof in fact relies only on the property (P2)844

and holds even if we consider not only 1-mers, that is, a similar example can be constructed845

for any 𝑘.846

B.2 Non-Existence of Comprehensive Input Functions for Set Difference.847

We show that it is impossible to perform set difference of 𝑘-mer sets using 𝑓-masked super-848

strings with comprehensive functions solely.849

▶ Theorem 13. There is no demasking function 𝑓𝑜 and no comprehensive demasking850

functions 𝑓1 and 𝑓2, such that the result of (𝑓1, 𝑓2, 𝑓𝑜)-concatenation would always represent851

the set difference of the originally represented 𝑘-mer sets.852

Proof sketch. Consider a 𝑘-mer 𝑄 appearing exactly once in both of the input superstrings853

such that it is represented in one of the input sets and does not have a boundary occurrence854

after concatenating the superstrings. By the symmetry of the demasking function 𝑓𝑜, we get855

the same result if 𝑄 appears in the first set, implying that it should be represented in the856

result, as if 𝑄 appears in the second set, in which case it should be treated as ghost in the857

result. Hence, the function 𝑓𝑜 cannot be correctly representing the difference. ◀858

CVIT 2016

23:22 𝑓-Masked Superstrings as a Data Type

C Alternative Demasking Functions859

In this section, we provide two other demasking functions that can be useful for some860

applications.861

C.1 The all-or-nothing-masked superstrings862

Perhaps the simplest approach to representing a set of 𝑘-mers is to mark all occurrences of863

represented 𝑘-mers with one, all ghost 𝑘-mers with zero, and treat all other masks as invalid.864

This corresponds to a function that returns 1 if it receives a list of ones, 0 if a list of zeros865

(or an empty list), and invalid otherwise.866

This representation has its clear benefits. Most importantly, one can determine the867

presence or absence of a 𝑘-mer by looking at the mask at any occurrence of the 𝑘-mer. For868

example, this makes indexing of all-or-nothing-masked superstrings easier than indexing869

general 𝑓-masked superstrings, as we do not need to query the rank to determine the number870

of on occurrences. Instead, we can simply determine the presence or absence of a 𝑘-mer871

based on any of its occurrences, as discussed in Section 5.3.872

We could potentially achieve higher compressibility of the mask by realizing that we873

can infer the presence or absence of a 𝑘-mer from its first occurrence, which comes from874

the fact that a mask for a given set is unique. Thus, we can omit all symbols in the mask875

corresponding to any further occurrences of the 𝑘-mer, making the mask shorter and easier876

to store, while it can be easily reconstructed afterwards.877

We further note that all-or-nothing-masked superstrings can be viewed as or-masked878

superstrings that maximize the number of ones in the mask.879

C.2 The and-masked superstrings880

We could easily replace the or function with and. That is, we could consider a 𝑘-mer present881

if it is marked as present at all its occurrences, with the small difference that we consider a882

𝑘-mer not represented if it does not appear, i.e., we consider the and of an empty binary883

string equal to 0, unlike in typical definitions of and. This ensures that the and function is884

comprehensive.885

The potential advantage of and-masked superstrings over or-masked superstrings is that886

we can mark ghost 𝑘-mers with ones at some occurrences and therefore obtain masks with887

more ones in them, which could be beneficial, for instance, for additional improvements in888

mask compressibility.889

O. Sladký and P. Veselý and K. Břinda 23:23

D Local Greedy Using FMS-Index890

In this section, we present an implementation of the local greedy algorithm [61] for masked891

superstring computation in the uni-directional model (i.e., without considering a 𝑘-mer and892

its reverse complement as equivalent) that uses FMS-index of Section 5.1. More precisely, we893

require a bi-directional version of FMS-index, based on the bi-directional FM-index [33], as894

the underlying data structure alongside with the transformed mask.895

Additionally to the bi-directional FMS-index and the mask, we require a 𝑘𝐿𝐶𝑃0−1 [54]896

data structure, that for each position determines whether the longest common prefix of897

the two neighbouring suffixes is of length at least 𝑘. The 𝑘𝐿𝐶𝑃0−1 array can be computed898

trivially from the 𝐿𝐶𝑃 array which, for an input string 𝑆, can be computed in 𝑂(|𝑆|) time899

during the construction of FM-index [31].900

The local greedy algorithm with parameter 𝑑𝑚𝑎𝑥 proceeds as follows. It first chooses an901

arbitrary 𝑘-mer that has not been represented yet. Then it tries to extend it to both sides902

via extensions of length 𝑑 starting with 𝑑 = 1 and going up to 𝑑 = 𝑑𝑚𝑎𝑥; see Appendix C903

of [61] for more details. Regarding the implementation of the local greedy, there are two904

issues to address: First, how to maintain the 𝑘-mers that have not been represented yet, and905

second, how to quickly check whether a 𝑘-mer exists.906

We start with the lexicographically smallest 𝑘-mer, which is the one that appears first in907

the suffix coordinates, and based on the 𝑘𝐿𝐶𝑃0−1 array, we find the last occurrence of this908

𝑘-mer. From the mask, we determine whether the 𝑘-mer is represented. If not we continue909

to the next 𝑘-mer, and otherwise, we delete it. This can be done by finding the number of 1s910

such that 𝑓 evaluates to zero and then setting the mask symbols in the range to that many911

1s.912

Then we try to extend the selected 𝑘-mer in both directions. Adding the extension913

characters to either direction can be done directly using the bi-directional FM-index and914

removing the characters in order to keep the string a 𝑘-mer can be done using the 𝑘𝐿𝐶𝑃0−1915

array [54]. We check whether this 𝑘-mer is represented, if so delete the 𝑘-mer, extend the916

string, and continue.917

Apart from extending the current string, which takes 𝑂(4𝑑𝑚𝑎𝑥) per extension, each918

position is visited at most once per deletion and once when scanning for initial 𝑘-mers.919

Thus, the time complexity of the algorithm is 𝑂(|𝑆| + 𝑁4𝑑𝑚𝑎𝑥) where 𝑁 is the number of920

represented 𝑘-mers, which is linear for constant values of 𝑑𝑚𝑎𝑥.921

To implement this approach in the bi-directional model (where a 𝑘-mer is equivalent to922

its reverse complement), we would need to locate the reverse complement of each 𝑘-mer,923

which would worsen the time complexity by a factor of 𝑘. We leave it as an open question924

whether the same time complexity as in the uni-directional model can be obtained in the925

bi-directional model as well. However, we note that for practical usage, the uni-directional926

algorithm is usable also in the bi-directional model as only the canonical 𝑘-mer from the pair927

(i.e., the lexicographically smaller one) can be stored and queried.928

CVIT 2016

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution and Organization of the Paper

	2 Preliminaries
	3 Function-Assigned Masked Superstrings
	4 f-Masked Superstrings as an Algrebraic Framework
	4.1 Concatenation as an Elementary Low-Level Operation
	4.2 Function-Preserving Set Operations
	4.3 Function-Transforming Set Operations

	5 f-Masked Superstrings as a Data Type
	5.1 FMS-Index: An FM-Index Tailored to f-Masked Superstrings
	5.2 Basic Operations with f-Masked Superstrings
	5.3 Membership Queries via FMS-Index
	5.4 Performing Set Operations on Indexed k-Mer Sets

	6 Experimental Evaluation
	7 Discussion and Conclusions
	A Proof of Uniqueness of Union Function
	B Limits of Performing Set Operations using Comprehensive Functions
	B.1 Non-Existence of a Preserved Comprehensive Function for Intersection.
	B.2 Non-Existence of Comprehensive Input Functions for Set Difference.

	C Alternative Demasking Functions
	C.1 The all-or-nothing-masked superstrings
	C.2 The and-masked superstrings

	D Local Greedy Using FMS-Index

