
HAL Id: hal-04573444
https://hal.science/hal-04573444v2

Preprint submitted on 18 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Towards Efficient k-Mer Set Operations via
Function-Assigned Masked Superstrings

Ondřej Sladký, Pavel Veselý, Karel Břinda

To cite this version:
Ondřej Sladký, Pavel Veselý, Karel Břinda. Towards Efficient k-Mer Set Operations via Function-
Assigned Masked Superstrings. 2024. �hal-04573444v2�

https://hal.science/hal-04573444v2
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Towards Efficient 𝑘-Mer Set Operations via1

Function-Assigned Masked Superstrings2

Ondřej Sladký Envelope3

Computer Science Institute of Charles University, Prague, Czechia4

ETH Zürich, Switzerland5

Pavel Veselý Envelope6

Computer Science Institute of Charles University, Prague, Czechia7

Karel Břinda Envelope8

Inria, Irisa, Univ. Rennes, 35042 Rennes, France9

Abstract10

The design of efficient dynamic data structures for large 𝑘-mer sets belongs to central chal-11

lenges of sequence bioinformatics. Recent advances in compact 𝑘-mer set representations via12

simplitigs/Spectrum-Preserving String Sets, culminating with the masked superstring framework,13

have provided data structures of remarkable space efficiency for wide ranges of 𝑘-mer sets. However,14

the possibility to perform set operations remained limited due to the static nature of the underlying15

compact representations. Here, we develop 𝑓-masked superstrings, a concept combining masked16

superstrings with custom demasking functions 𝑓 to enable efficient 𝑘-mer set operations via string17

concatenation. Combined with the FMSI index for masked superstrings, we obtain a memory-efficient18

𝑘-mer index supporting set operations via Burrows-Wheeler Transform merging. The framework19

provides a promising theoretical solution to a pressing bioinformatics problem and highlights the20

potential of 𝑓-masked superstrings to become an elementary data type for 𝑘-mer sets.21

2012 ACM Subject Classification Applied computing → Bioinformatics; Theory of computation →22

Pattern matching23

Keywords and phrases 𝑘-mer sets, data structures, set operations, masked superstrings24

Funding Ondřej Sladký: Supported by GA ČR project 22-22997S and ERC-CZ project LL2406 of25

the Ministry of Education of Czech Republic.26

Pavel Veselý: Supported by GA ČR project 22-22997S, ERC-CZ project LL2406 of the Ministry of27

Education of Czech Republic, and Center for Foundations of Modern Computer Science (Charles28

Univ. project UNCE 24/SCI/008).29

Karel Břinda: Supported by French National Research Agency (ANR) under Grant ANR-24-CE45-30

1226 for the REALL project.31

mailto:ondra.sladky@gmail.com
https://orcid.org/0000-0002-7465-8222
mailto:vesely@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-1169-7934
mailto:karel.brinda@inria.fr
https://orcid.org/0000-0003-0200-557X

2 𝑓-Masked Superstrings for 𝑘-mer set operations

1 Introduction32

To store and analyze the vast volumes of DNA sequencing data [61], modern bioinformatics33

methods increasingly rely on 𝑘-mers to bypass the computationally expensive sequence34

alignment and mitigate data heterogeneity. 𝑘-mer-based methods are used in a range of35

applications, including large-scale data search [6, 8, 14, 33], metagenomic classification [15, 62],36

infectious disease diagnostics [9, 13], assembly evaluation [52], and transcript abundance37

quantification [10, 48]. All such applications depend on the efficiency of the underlying 𝑘-mer38

data structures.39

The design of efficient 𝑘-mer data structures is a central challenge of contemporary40

sequence bioinformatics [18, 43]. We summarize the desired properties of an ideal data41

structure in Section 1.1, but the two main requirements are as follows. First, as even a42

single 𝑘-mer set can be large, potentially containing up to hundreds of billions distinct43

𝑘-mers [33], the main challenge is to provide data structures that are efficient in space and44

time simultaneously. Second, as modern genomic databases undergo rapid development,45

thanks to their growing content and curation efforts, rapid and space-efficient updates across46

𝑘-mer indexes are increasingly needed to avoid repetitive and costly index recomputations.47

This includes scenarios such as 𝑘-mer set operations across sets, and additions or removals of48

individual 𝑘-mers.49

The space efficiency has been particularly well addressed using the (repetitive) Spectrum-50

Preserving String Sets, (r)SPSS, that exploit 𝑘-mer non-independence [17]. In particular,51

the key observation is that genomic 𝑘-mer sets can be typically represented by 𝑘-long52

substrings of a small number of (arbitrarily long) strings, which is the so-called spectrum-like53

property (SLP) [18]. Building on this observation, several textual representations of 𝑘-mer54

sets were proposed. The first ones were based on de Bruijn graphs, to which we jointly55

refer as (repetitive) Spectrum Preserving String Sets or (r)SPSS [11, 12, 19, 20, 51, 57, 58].56

(r)SPSS are currently highly standard and many data structures for 𝑘-mer sets base upon57

them [2, 7, 45, 49, 55],58

Masked superstrings (MS) have provided additional space gains [59], by the virtue of59

a better 𝑘-mer set compaction. The core improvement over (r)SPSS lies in modeling the60

structure of 𝑘-mer sets by overlap graphs instead of de Bruijn graphs, thus being able to61

exploit overlaps of any length. MS represent 𝑘-mer sets using an approximately shortest62

superstring of all 𝑘-mers and a binary mask to avoid false positive 𝑘-mers. MS generalize63

any existing (r)SPSS representation as these can always be encoded as MS, but provide64

further compression power, especially for sets without the SLP, such as those arising from65

sketching or subsampling. The resulting representation is well indexable using a technique66

called Masked Burrows Wheeler Transform [60], resulting in a 𝑘-mer data structure with67

2 + 𝑜(1) bits per 𝑘-mer under the SLP.68

However, the lack of dynamicity of both (r)SPSS and MS – and of their derived data69

structures – has been limiting their wider applicability. To the best of our knowledge, the70

only supported operations were union, either via merging (r)SPSS of several 𝑘-mer sets71

resulting in an rSPSS of their union, or by the Cdbg-Tricks [28] to calculate the union unitigs72

from unitigs of mutliple original 𝑘-mer sets. However, other operations than union, such as73

intersection or symmetric difference have never been considered.74

Here, we develop a dynamic variant of masked superstrings (and thus also of (r)SPSS)75

called the 𝑓-masked superstrings (𝑓-MS). The key idea is to equip masked superstrings76

with so-called demasking functions 𝑓 for more flexible mask interpretation (Section 3).77

When complemented with the concatenation operation, this provides support for any set78

O. Sladký and P. Veselý and K. Břinda 3

operation, including union, intersection, and symmetric or asymmetric difference on the79

represented 𝑘-mer sets, resulting in a complete algebraic type for 𝑘-mer sets (Section 4). We80

implement the whole approach in the FMSI index for masked superstrings [60] (Section 5),81

and demonstrate applicability of the concept on an example dataset (Section 6).82

1.1 Problem formulation83

Before delving into technical details of our contribution, we formulate properties of an ideal84

𝑘-mer data structure. The desired data structure for representing a set of 𝑘-mers should85

support the following operations in a space- and time-efficient way:86

(i) 𝑘-mer set index construction, with time complexity linear with the number of 𝑘-mers.87

(ii) 𝑘-mer membership queries, with low bits-per-𝑘-mer memory requirements, approach-88

ing 2 bits per distinct 𝑘-mer for datasets following the Spectrum-Like Property [18] and89

proportionally for more complex datasets.90

(iii) Set operations, including union, intersection, difference, and symmetric difference.91

(iv) Single 𝑘-mer deletion and insertion, or at least one of these.92

In this paper, we make progress on efficient set operations while retaining high space93

efficiency for 𝑘-mer membership queries and other desirable properties of (r)SPSS- or MS-94

based data structures.95

Naïve approaches for performing set operations. We note that one can add support96

for set operations to a static data structure in a straightforward way: One option is extracting97

the 𝑘-mer sets from the input indexes, performing the given operation with the sets, and98

computing the new index for the resulting set; however, this process requires substantial time99

and memory. Another option is to keep the indexes for input 𝑘-mer sets and process a 𝑘-mer100

query on the set resulting from the operation by asking each index for the presence/absence101

of the 𝑘-mer in each input set, which is however time and memory inefficient as all the102

indexes need to be loaded into memory, as also noted in [30]. Therefore, we seek to perform103

set operations without the costly operation of recomputing the index or making multiple104

queries to original indexes.105

1.2 Related Work106

Many works have recently focused on data structures for single 𝑘-mer sets and their collections;107

we refer to [18, 43] for recent surveys. Here, we primarily focus on those that offer some kind108

of dynamicity, i.e., an efficient support for set operations or, at least, insertions/deletions of109

individual 𝑘-mers. The recently introduced Conway-Bromage-Lyndon (CBL) structure [46]110

builds on the work of Conway and Bromage [21] on sparse bit-vector encodings and combines111

them with smallest cyclic rotations of 𝑘-mers (a.k.a. Lyndon words), which yields a dynamic112

and exact 𝑘-mer index supporting set operations, such as union, intersection, and difference,113

as well as insertions or deletions of 𝑘-mers. However, the memory requirements for processing114

queries on dataset satisfying the spectrum-like property are substantially worse than for115

other, static methods [46].116

While, to the best of our knowledge, other 𝑘-mer indexes do not support efficient117

set operations such as the intersection or difference, other tools, including BufBoss [1],118

DynamicBoss [4], and FDBG [22] allow for efficient insertions and deletions of individual119

𝑘-mers. Bifrost [29], VARI-merge [47], Metagraph [33], dynamic Mantis [5], or the very120

recent Cdbg-Tricks [28] support insertions but not deletions. Other data structures, such as121

COBS [6], RAMBO [27], or kmtricks [35] trade exactness for space compression, allowing a122

certain false probability rate. These employ variants of the Bloom filter that can also process123

4 𝑓-Masked Superstrings for 𝑘-mer set operations

insertions and compute unions efficiently but other set operations such as the intersection124

are not directly possible. We note that there are many more highly efficient but static data125

structures for individual or multiple 𝑘-mer sets, e.g., [2, 3, 7, 24, 25, 29, 40, 44, 45, 49].126

Finally, one can also use the textual representations of (r)SPSS, with efficient string indexes127

such as the FM index [26] or BWA [36–39], but this only yields static indexes.128

Another line of work, e.g. [23, 32, 34, 41, 42, 52, 53], focused on 𝑘-mer counting, where129

we additionally require to compute the 𝑘-mer frequencies. Out of the many 𝑘-mer counters130

available, GenomeTester4 [32], KMC3 [34], or Meryl [52] support operations such as union,131

intersection, or difference on multisets. However, 𝑘-mer counters require substantially larger132

memory than the most efficient 𝑘-mer indexes or heavily utilize disk.133

2 Preliminaries134

Strings and 𝑘-mers. We use constant-size alphabets Σ, typically the nucleotide alphabet135

Σ = {A, C, G, T} (unless stated otherwise). The set Σ∗ contains all finite strings over Σ, with136

𝜖 representing the empty string. For a given string 𝑆 ∈ Σ∗, |𝑆| denotes its length, and |𝑆|𝑐137

the number of occurrences of the letter 𝑐 in 𝑆. For two strings 𝑆 and 𝑇, 𝑆 + 𝑇 denotes their138

concatenation. A 𝑘-mer is a 𝑘-long string over Σ, and unless stated otherwise, we assume139

canonical 𝑘-mers, i.e., a 𝑘-mer and its reverse complement are considered equal. For a string140

𝑆 and a fixed length 𝑘, the 𝑘-mers generated by 𝑆 are all 𝑘-long substrings of 𝑆, and similarly141

for a set of strings ℛ, they are those generated by the individual strings 𝑆 ∈ ℛ.142

(r)SPSS representations of 𝑘-mer sets. For a given 𝑘-mer set 𝐾 (comprising 𝑘-mers of the143

same size 𝑘), a set of strings ℛ (called simplitigs) constitutes its Spectrum Preserving String144

Set (SPSS) [11, 12, 50, 51] if (1) it generates 𝐾 and (2) each 𝑘-mer occurs only once among145

the simplitigs (uniqueness). Repetitive Spectrum Preserving String Sets (rSPSS) [56, 58],146

including its members called matchtigs, are defined similarly, except that condition (2) is147

omitted. To refer to either of these concepts, we use the abbreviation (r)SPSS .148

Masked superstrings. Given a 𝑘-mer set 𝐾, a masked superstring (MS) [59] consists of a149

pair (𝑆, 𝑀), where 𝑆 is an arbitrary superstring of the 𝑘-mers in 𝐾 and 𝑀 is a binary mask150

of the same length. An occurrence of a 𝑘-mer in an MS is said to be on if there is 1 at the151

corresponding position in the mask (i.e., the initial position of the occurrence), and off152

otherwise. The set of 𝑘-mers generated by 𝑆 are referred to as the appearing 𝑘-mers, and are153

further classified based on their values in the mask into represented 𝑘-mers (at least one on154

occurrence) and ghost 𝑘-mers (all occurrences off). All masks 𝑀 that represent a given 𝐾155

in a combination with a given superstring are called compatible.156

Encoding conventions. To implicitly encode 𝑘 in MS, the last 𝑘 − 1 positions of masks157

are always set to 0 and preceded by 1 (always feasible). In this paper, MS are presented158

using their mask-case encoding, i.e., the superstring with individual letters in either lower or159

upper case indicating a 1 or 0 in the mask, respectively.160

▶ Example 1. Consider the 𝑘-mer set 𝐾 = {ACG, GGG}. One possible superstring is ACGGGG,161

with three compatible masks: 101100, 100100, 101000, resulting in the encodings AcGGgg,162

AcgGgg, AcGggg, respectively. The latter mask would contravene our encoding assumptions,163

and thus, would not be used for MS storage. When parsing AcgGgg, the suffix implies 𝑘 = 3,164

and the 𝑘-mers are decoded as {ACG, GGG}.165

O. Sladký and P. Veselý and K. Břinda 5

3 Function-Assigned Masked Superstrings166

Let (𝑀, 𝑆) be an MS (Masked Superstring) and suppose that our objective is to determine167

whether a given 𝑘-mer 𝑄 is among the MS-represented 𝑘-mers. Conceptually, this process168

consists of two steps: (1) identify the occurrences of 𝑄 in 𝑆, and (2) verify using the mask169

𝑀 whether at least one occurrence of 𝑄 is on. We can formalize this process via a so-called170

occurrence function.171

▶ Definition 2. For a superstring 𝑆, a mask 𝑀, and a 𝑘-mer 𝑄, the occurrence function172

𝜆(𝑆, 𝑀, 𝑄) → {0, 1}∗ is a function returning a finite binary sequence with the mask symbols173

of the corresponding occurrences, i.e.,174

𝜆(𝑆, 𝑀, 𝑄) ∶= (𝑀𝑖 ∣ 𝑆𝑖 ⋯ 𝑆𝑖+𝑘−1 = 𝑄) . (1)175

In this notation, verifying 𝑘-mer presence corresponds to evaluating the composite function176

‘or ∘ 𝜆’; that is, a 𝑘-mer is present if 𝜆(𝑆, 𝑀, 𝑄) is non-empty and the logical or operation on177

these values yields 1. For instance, for AcgGgg from Example 1, and query 𝑘-mer 𝑄 = GGG,178

it holds that 𝜆(𝑆, 𝑀, 𝑄) = (0, 1), as the first occurrence is off and the second is on, with179

the or of these values being 1; therefore, GGG is represented.180

The set of all MS-represented 𝑘-mers can thus be expressed as181

𝐾 = {𝑄 ∈ Σ𝑘 | or(𝜆(𝑆, 𝑀, 𝑄)) = 1}. (2)182

The key observation of this work is that or is only one member of a large class of possible183

“demasking functions” (see examples in Table 1). For instance, MS could have been defined184

using the xor function, with a 𝑘-mer considered present if the number of its on occurrences185

is odd. Indeed, 𝑘-mer demasking can use any symmetric Boolean function, which we further186

equip with a special return value, invalid, as a means to impose criteria on mask validity.187

▶ Definition 3. We call a symmetric function 𝑓 ∶ {0, 1}∗ → {0, 1, invalid} a 𝑘-mer188

demasking function.189

In addition, we will typically require our demasking functions to have several natural190

properties. First, the non-appearing 𝑘-mers should be treated as non-represented (P1) (unless191

we aim to compactly represent set complements). Second, all appearing 𝑘-mers should be192

encodable using a compatible mask as present or absent, irrespective of the number of their193

occurrences (P2). Third, a single 𝑘-mer occurrence that is also on should be interpreted194

as 𝑘-mer presence (P3). Fourth, the function should be efficiently computable from the195

frequencies of 0s and 1s (P4).196

▶ Definition 4. A demasking function 𝑓 is comprehensive if it satisfies the following four197

properties:198

(P1) 𝑓(𝜖) = 0.199

(P2) For every 𝑛 > 0, exist 𝑥, 𝑦 ∈ {0, 1}𝑛 such that 𝑓(𝑥) = 0 and 𝑓(𝑦) = 1.200

(P3) 𝑓((1)) = 1 and 𝑓((0)) = 0.201

(P4) Given |𝑥|0 and |𝑥|1, one can evaluate 𝑓(𝑥) in constant time in the wordRAM model.202

With the notation of demasking functions 𝑓, we can now generalize the concept of MS to203

so-called 𝑓-masked superstrings (𝑓-MS).204

▶ Definition 5. Given a demasking function 𝑓, a superstring 𝑆, and a binary mask 𝑀, such205

that |𝑀| = |𝑆|, we call a triplet 𝒮 = (𝑓, 𝑆, 𝑀) a function-assigned masked superstring or206

𝑓-masked superstrings, and abbreviate it as 𝑓-MS.207

If ∃𝑄 ∈ Σ𝑘 such that 𝑓(𝜆(𝑆, 𝑀, 𝑄)) = invalid, we call the 𝑓-MS invalid.208

6 𝑓-Masked Superstrings for 𝑘-mer set operations

Function 𝑓 Definition Compre-
hensive Use cases

or 1 if |𝜆|1 > 0
0 if |𝜆|1 = 0 yes • MS (Sec. 3) and (r)SPSS (App. A)

• 𝑓 for union (Sec. 4)

xor 1 if |𝜆|1 is odd
0 if |𝜆|1 is even yes • 𝑓 for sym. difference (Sec. 4)

and 1 if 𝜆 ≠ 𝜖 ∧ |𝜆|0 = 0
0 if 𝜆 = 𝜖 ∨ |𝜆|0 > 0 yes • allowing on occurrences for ghost

𝑘-mers (App. C)
[𝑎,𝑏]-threshold
(1 ≤ 𝑎 ≤ 𝑏)

1 if 𝑎 ≤ |𝜆|1 ≤ 𝑏
0 otherwise iff 𝑎 = 1 • 𝑓𝑜 for intersection (Sec. 4)

• 𝑓𝑜 for set difference (Sec. 4)

one-or-
nothing

1 if |𝜆|1 = 1
0 if |𝜆|1 = 0
invalid otherwise

yes
• 𝑓1, 𝑓2 for sym. difference (Sec. 4)
• 𝑓1, 𝑓2 for intersection (Sec. 4)
• 𝑓1 for set difference (Sec. 4)

two-or-
nothing

1 if |𝜆|1 = 2
0 if |𝜆|1 = 0
invalid otherwise

no • 𝑓2 for set difference (Sec. 4)

all-or-nothing
1 if 𝜆 ≠ 𝜖 ∧ |𝜆|0 = 0
0 if |𝜆|1 = 0
invalid otherwise

yes • omitting mask rank in membership
queries (App. C)

Table 1 Common demasking functions used throughout the paper. 𝜆(𝑓, 𝑆, 𝑀) is
abbreviated as 𝜆. All the mentioned non-comprehensive functions still satisfy properties (P1,4) from
Definition 4.

Now, for a valid 𝑓-MS, we can generalize Equation (2) for 𝑘-mer decoding as209

𝐾 = {𝑄 ∈ Σ𝑘 | 𝑓(𝜆(𝑆, 𝑀, 𝑄)) = 1}. (3)210

As shown in [59], the most expensive part of MS computation (and thus also 𝑓-MS) is211

finding a short superstring. It is therefore natural to ask whether we require a superstring212

recomputation after performing a set operation. We now show that as long as function 𝑓 in213

the 𝑓-MS representation is comprehensive, the superstring may remain the same and only a214

typically much simpler mask optimization may be needed.215

▶ Lemma 6 (encoding). Let 𝑓 be a comprehensive demasking function, 𝐾 be a 𝑘-mer set,216

and 𝑆 its arbitrary superstring. Then, there exists a mask 𝑀 such that (𝑓, 𝑆, 𝑀) is valid and217

represents 𝐾.218

Proof. The lemma is a direct consequence of property (P2) in Definition 4. ◀219

Similarly, we can change the demasking functions 𝑓 to another comprehensive function220

only by recoding the mask accordingly. For functions that are not comprehensive, such221

recording may be impossible.222

▶ Lemma 7 (recoding). Let (𝑓, 𝑆, 𝑀) be a valid 𝑓-MS representing a 𝑘-mer set 𝐾. Then,223

for every comprehensive demasking function 𝑓 ′, there exists a valid mask 𝑀 ′ such that224

(𝑓 ′, 𝑆, 𝑀 ′) represents 𝐾.225

Proof. The existence of mask 𝑀 ′ follows directly from Lemma 6 for the 𝑘-mer set 𝐾,226

superstring 𝑆, and function 𝑓 ′. ◀227

▶ Example 8. Consider Example 1 with the set of 3-mers 𝐾 = {ACG, GGG} and the masked228

superstring AcGGgg. For the query 𝑘-mer 𝑄 = GGG, the occurrence function for is 𝜆(𝑆, 𝑀, 𝑄) =229

(1, 1). The result of demasking then 𝑓(𝜆(𝑆, 𝑀, 𝑄)) then depends on the specific function 𝑓:230

for or it evaluations to 1 and thus GGG is represented; however, for xor the result would be 0231

O. Sladký and P. Veselý and K. Břinda 7

and GGG would be a ghost 𝑘-mer, and thus not represented. As xor is comprehensive, we can232

recode the 𝑓-MS from or to xor in a way it would still represent 𝐾 by changing the mask,233

for instance, to AcgGgg.234

4 𝑓-MS as an Algebraic Framework235

In this section, we describe on the conceptual level how to perform set operations on 𝑘-mer236

sets by simply concatenating individual 𝑓-MS and choosing suitable demasking functions237

𝑓. In Section 5, we deal with implementing this concept into data structures for 𝑘-mers,238

specifically, into the FMSI index [60].239

4.1 Concatenation as an Elementary Low-Level Operation240

We define concatenation on 𝑓-MS as concatenating the underlying superstrings and masks241

for all possible input and output functions 𝑓.242

▶ Definition 9. Given 𝑓-MS (𝑓1, 𝑆1, 𝑀1) and (𝑓2, 𝑆2, 𝑀2), we define (𝑓1, 𝑓2, 𝑓𝑜)-concatena-243

tion as the operation taking these two 𝑓-MS and producing the result (𝑓𝑜, 𝑆1 + 𝑆2, 𝑀1 + 𝑀2).244

We denote this operation by +𝑓1,𝑓2,𝑓𝑜
.245

Note that Definition 9 can be easily extended to more than two input 𝑓-MS. In the case246

that all the functions are the same, i.e. 𝑓 = 𝑓1 = 𝑓2 = 𝑓𝑜, we call it 𝑓-concatenation or just247

concatenation if 𝑓 is obvious from the context.248

▶ Definition 10. We call the set operations that can be performed with 𝑓1 = 𝑓2 = 𝑓𝑜249

function-preserving set operations. The operations that cannot be performed with a single250

function are called function-transforming set operations.251

Furthermore, note that while the set of appearing 𝑘-mers of 𝑆1 + 𝑆2 clearly contains252

the union of appearing 𝑘-mers of 𝑆1 and of 𝑆2, additional new occurrences of 𝑘-mers may253

appear at the boundary of the two superstrings. These newly appearing 𝑘-mers may not be254

appearing in any of the superstrings 𝑆1 and 𝑆2, and we refer to them as boundary 𝑘-mers.255

The occurrences of appearing 𝑘-mers of 𝑆1 + 𝑆2 that overlap both input superstrings are256

called boundary occurrences.257

4.2 Function-Preserving Set Operations258

Union. As implicitly shown in [59], concatenating MS, which are or-MS in our notation,259

acts as union on the represented sets, that is, the resulting represented set is the union260

of the original represented sets. This allows or-MS to generalize (r)SPSS representations,261

since any set of 𝑘-mers in the (r)SPSS representation can be directly viewed as an or-MS by262

concatenating the individual simplitigs/matchtigs.263

We show that or is the only comprehensive demasking function that acts as union on the264

represented sets; see Appendix A for details. We further demonstrate this uniqueness even265

on the level of matchtigs and therefore, or-MS are the only 𝑓-MS that generalize (r)SPSS266

representations.267

Symmetric difference. Next, we observe that xor naturally acts as the symmetric268

difference set operation, i.e., concatenating two xor-MS results in a xor-MS representing269

the symmetric difference of the original sets. Indeed, recall that using xor implies that a270

𝑘-mer is represented if and only if there is a odd number of on occurrences of that 𝑘-mer.271

8 𝑓-Masked Superstrings for 𝑘-mer set operations

Observe that the boundary occurrences of 𝑘-mers do not affect the resulting represented272

set as those have zeros in the mask. Thus, if a 𝑘-mer is present in both sets, it has an even273

number of on occurrences in total and hence, is not represented in the result. Likewise, if a274

𝑘-mer belongs to exactly one input set, it has an odd number of on occurrences in this input275

set and an even number (possibly zero) in the other; thus, it is represented in the result. As276

any appearing 𝑘-mer is either boundary or appears in one of the MS, the result corresponds277

to the symmetric difference.278

4.3 Function-Transforming Set Operations279

Intersection. After seeing functions for union and symmetric difference operations, it might280

seem natural that there should be a function for intersection. This is however not the case281

as there exists no comprehensive demasking function acting as intersection, which we show282

in Appendix B.283

We can circumvent the non-existence of a single demasking function acting as intersection284

by using possibly non-comprehensive demasking functions that are different for the result285

than for the input. We further show that such schemes have other applications beyond286

intersection.287

To this end, we will need two different types of demasking functions:288

[𝑎,𝑏]-threshold function (where 0 < 𝑎 ≤ 𝑏) is a demasking function that returns 1289

whenever it receives an input of at least 𝑎 ones and at most 𝑏 ones and 0 otherwise. Note290

that unless 𝑎 = 1, [𝑎,𝑏]-threshold functions are not comprehensive as they do not satisfy291

properties (P2) and (P3). The corresponding 𝑓-MS are denoted [𝑎,𝑏]-threshold-MS.292

The one-or-nothing function is a demasking function that returns 1 if there is exactly293

one 1 in the input, 0 if there are no 1s, and invalid if there is more than a single on294

occurrence of the 𝑘-mer. Note that this function is comprehensive.295

We now use these functions to perform any symmetric set operation on any number of296

input 𝑘-mer sets. Given 𝑁 sets of 𝑘-mers, we compute a one-or-nothing-MS for each. This297

is always possible since one-or-nothing is a comprehensive demasking function and can be298

done by directly using the superstrings and masks computed by KmerCamel [59].299

We then concatenate the individual one-or-nothing-MS. The result is not a valid300

one-or-nothing-MS in general, but it has the special property that each 𝑘-mer has as301

many on occurrences as the number of sets in which it appears. We can therefore change302

the demasking function of the resulting 𝑓-MS from one-or-nothing to an [𝑎,𝑏]-threshold303

function. This will result in an [𝑎,𝑏]-threshold-MS that is always valid and the represented304

set will be exactly the 𝑘-mers that appear in at least 𝑎 sets and at most 𝑏 sets. Important305

[𝑎,𝑏]-threshold-MS in this setting include the following:306

The [𝑁,𝑁]-threshold-MS corresponds to taking the intersection of the represented sets.307

The [1,𝑁]-threshold-MS is the or-MS and corresponds to taking the union.308

The [1,1]-threshold-MS corresponds to taking those 𝑘-mers that appear in exactly one309

of the original sets. In case of 𝑁 = 2, this corresponds to the symmetric difference.310

It is important to emphasize that we can use different [𝑎,𝑏]-threshold functions to alter311

the resulting 𝑘-mer set without changing the superstring or the mask. For instance, we can312

use the same superstring and mask to consider intersection and union simply by changing313

the function from [𝑁,𝑁]-threshold to [1,𝑁]-threshold.314

Arbitrary symmetric set operations. The same scheme, with more general demasking315

functions, can be used to implement any symmetric set operation op on any number of sets.316

O. Sladký and P. Veselý and K. Břinda 9

Indeed, given 𝑁, we again concatenate their one-or-nothing-MS in an arbitrary order. The317

symmetry of op implies that there is a set 𝑆𝑁 ⊆ {0, 1, … , 𝑁} such that a 𝑘-mer belongs318

to the set resulting from applying op if and only if it is in 𝑎 input sets for some 𝑎 ∈ 𝑆𝑁.319

The sets 𝑆𝑁 for 𝑁 = 1, 2, … can be directly transferred into a demasking function 𝑓op that320

models op; however, 𝑓op may not satisfy the property (P4) from Definition 4, i.e., that we321

can compute it in 𝑂(1) time.322

Set difference. Having seen how to perform symmetric set operations, we deal with323

asymmetric ones, focusing on the set difference of 𝑘-mer sets 𝐴 ∖ 𝐵. Clearly, we cannot324

use the same demasking function 𝑓 to represent both 𝐴 and 𝐵 as it would be impossible to325

distinguish the sets after concatenation. Hence, we use different functions to represent 𝐴326

and 𝐵, namely,327

represent 𝐴 using a [1,1]-threshold-MS,328

represent 𝐵 using a [2,2]-threshold-MS, and329

interpret the result as a [1,1]-threshold-MS.330

This computes the difference correctly as all 𝑘-mers represented in 𝐵 are treated as ghosts331

in the result, the 𝑘-mers from 𝐴 but not from 𝐵 still have a single on occurrence and thus332

are correctly considered represented, and finally, the ghost 𝑘-mers in either of the initial sets333

or the boundary 𝑘-mers have no influence on the result. The same functions can be used if334

we subtract more than a single set. Furthermore, this scheme can be generalized to any set335

operations on any number of sets, by representing the 𝑖-th input set with [𝑖,𝑖]-threshold-MS336

and using a suitable demasking function for the result of the concatenation (constructed337

similarly as 𝑓op for symmetric operation op above).338

The downside to this approach is that the [2,2]-threshold function is not comprehensive339

and we cannot simply use any superstring of 𝑘-mers in 𝐵, but we need a superstring such340

that every 𝑘-mer of 𝐵 appears at least twice, which can for instance be achieved by doubling341

the computed superstring of 𝐵. We remark that this is the best we can do as set difference342

cannot be achieved with comprehensive functions solely as we show in Appendix B.343

Other applications. Furthermore, there are many more demasking functions that can be344

used with 𝑓-MS, although they may not correspond to set operations; we mention the and345

and all-or-nothing demasking functions in Appendix C (see also Table 1).346

5 Indexing 𝑓-MS with the FMSI index347

To support set operations on 𝑘-mer sets, while allowing fast 𝑘-mer queries, we utilize the348

FMSI index [60] introduced in our concurrent work. We first give an overview of the FMSI349

index [60] and then describe how to generalize the query algorithm in FMSI to support350

arbitrary demasking functions 𝑓. Next, we show that performing set operations narrows351

down to merging the Burrows-Wheeler Transform and provide algorithms for changing the352

demasking function 𝑓. Last, if after several set operations the size of the index gets too large,353

one can improve space efficiency by a compaction, i.e., recomputing the representation.354

FMSI index. The FMSI index [60] for a 𝑘-mer set 𝐾 is constructed from its masked355

superstring (𝑀, 𝑆) maximizing the number of ones, which can also be seen as all-or-nothing-356

masked superstring (Appendix C). The FMSI index consists of the Burrows-Wheeler transform357

(BWT) [16] of 𝑆 with an associated rank data structure [31], and the SA-transformed mask358

𝑀 ′ which is a bit-vector of the same length as 𝑆, where 𝑀 ′[𝑖] = 𝑀[𝑗𝑖 − 1 mod |𝑀|] where359

𝑗𝑖 is the starting position of the lexicographically 𝑖-th suffix of 𝑆. Optionally, FMSI index360

can also construct the 𝑘LCP array [54], where 𝑘𝐿𝐶𝑃 [𝑖] = 1 if the 𝑖-th and (𝑖 + 1)-th suffix361

10 𝑓-Masked Superstrings for 𝑘-mer set operations

share a prefix of 𝑘 − 1 characters. FMSI can be constructed in linear time through Masked362

BWT [60], a tailored variant of the classical BWT [16]. FMSI can index a 𝑘-mer 𝑄 in 𝑂(𝑘)363

time by first computing the range of occurrences of 𝑄 in the suffix-array coordinates. Then,364

since the bits of the SA-transformed mask in this range correspond to the mask symbols365

of occurrences of 𝑄 and since the mask has the maximum number of ones, the presence or366

absence of 𝑄 in the represented 𝑘-mer set can be determined from any of those bits [60].367

If 𝑘LCP is used, streaming queries can be answered in 𝑂(1) time per 𝑘-mer [60]. Here, we368

only consider the FMSI index without 𝑘LCP, which requires 2 + 𝑜(1) bits of memory per369

distinct 𝑘-mer under the spectrum-like property and at most 3 + 𝑜(1) bits per superstring370

character in the general case [60]. In addition, we consider the rank data structure also for371

the SA-transformed mask, which does not asymptotically increase complexity, i.e., costs only372

another 𝑜(1) bits per superstring character [31].373

Efficient queries with arbitrary demasking functions. In [60, Algorithm 2] we describe374

the 𝑂(𝑘)-time query algorithm for or-MS with masks having the maximum number of ones,375

which can be viewed as all-or-nothing-MS (Appendix C). In Lemma 11 we generalize the376

result of [60, Lemma 4] to 𝑓-MS with comprehensive 𝑓, which can be directly translated to377

an algorithm for querying general 𝑓-MS with the same time guarantees.378

▶ Lemma 11. Consider a query for 𝑘-mer 𝑄 on an 𝑓-MS (𝑓, 𝑆, 𝑀) representing a 𝑘-mer379

set 𝐾 such that 𝑓 is comprehensive. Let 𝑀 ′ be the corresponding SA-tranformed mask [60]380

and let [𝑖, 𝑗) be the range of sorted rotations of 𝑆 starting with a 𝑘-mer 𝑄. Then the presence381

or absence of 𝑄 in 𝐾 can be determined in 𝑂(1) time.382

Proof. From [60, Lemma 1], 𝑀 ′[𝑥] for 𝑥 ∈ [𝑖, 𝑗) corresponds to the mask symbol of a383

particular occurrence of 𝑄. Therefore |𝜆(𝑆, 𝑀, 𝑄)|1 = rank1(𝑀 ′, 𝑗) − rank1(𝑀 ′, 𝑖), which384

can be computed in 𝑂(1) time using two rank queries on the mask; here, rank1(𝑀 ′, 𝑖) =385

∑𝑖−1
𝑎=0 𝑀 ′[𝑎] is the number of ones on coordinates 0, … , 𝑖−1 in 𝑀 ′, computed by the rank data386

structure. Furthermore, |𝜆(𝑆, 𝑀, 𝑄)|0 = |𝜆(𝑆, 𝑀, 𝑄)|−|𝜆(𝑆, 𝑀, 𝑄)|1 = 𝑗−𝑖−|𝜆(𝑆, 𝑀, 𝑄)|1.387

Since 𝑓 is comprehensive and in particular, commutative, 𝑓(𝜆(𝑆, 𝑀, 𝑄)) can be evaluated388

from the two quantities in constant time. ◀389

To query a 𝑘-mer we can then simply use backwards search to get the range of occurrences390

of 𝑄 and then apply Lemma 11. The same adjustment works also for positive streaming391

queries which only require 𝑂(1) time per query 𝑘-mer [60].392

Set operations in linear time in the index sizes. In Section 4, we describe how to393

implement set operations with 𝑓-MS via masked superstring concatenation. Performing394

the operation on indexes boils down to merging two BWTs using any algorithm for BWT395

merging, for example [30] which runs in linear time. To merge the SA-tranformed masks,396

we attach the mask symbols to the corresponding characters of BWT, as described in [60];397

hence, the existing algorithms for BWT merging can be adjusted in a straightforward way to398

merge the SA-tranformed masks.399

𝑓-MS mask recasting for 𝑓 transformation. To change the demasking function 𝑓 to400

a different one without altering the represented 𝑘-mer set and the underlying superstring,401

we may need to recast the mask. Although the recasting procedure depends on the specific402

function 𝑓 used, for all comprehensive functions mentioned in Table 1, recasting can be403

done either by maximizing the number of 1s in the mask (and and all-or-nothing), or by404

minimizing the number of 1s (all other functions in Table 1). If an 𝑓-MS is represented in the405

original string form, this can be achieved in linear time using a single/two-pass algorithms,406

respectively, as described in [59]. For 𝑓-MS in the suffix-array coordinates, we can export407

the 𝑓-MS, then recast the mask, and index the result.408

O. Sladký and P. Veselý and K. Břinda 11

𝑓-MS compaction. If an 𝑓-MS contains too many redundant copies of individual 𝑘-mers,409

e.g., if an 𝑓-MS is obtained by concatenating multiple input 𝑓-MS, it might be desirable to410

compact it, i.e., reoptimize its support superstring. This can be performed in time 𝑂(𝑘|𝐾|),411

by exporting the 𝑓-MS, counting the number of on and off occurrences of each 𝑘-mer,412

constructing the represented 𝑘-mer set, and computing its or-MS [59]. We leave it to future413

work to design algorithms for compaction and for mask recasting directly in the FMSI index414

without the need to export the 𝑓-MS.415

6 Implementation and a Proof-of-Concept Experiment416

Implementation in the FMSI tool. We implemented this functionality as a proof-of-417

concept in the FMSI program [60], which is available under the MIT license on GitHub (https:418

//github.com/OndrejSladky/fmsi) and distributed via BioConda. Merging of several419

indexes is currently implemented only by exporting individual superstrings, concatenating420

them as masked superstrings, and reindexing the result. Querying is a slight modification421

of the original implementation as described in [60], according to Lemma 11. We emphasize422

the our implementation is prototype, to demonstrate feasibility of performing set operations423

without the necessity to recompute a representation, and can be substantially optimized.424

Proof-of-concept experiment. We conducted a simple experiment with genomes of C.425

elegans (NC_003279.8, 100M base pairs) and C. briggsae (NC_013489.2, 108M base pairs),426

performing the union, intersection, and symmetric difference operations on their sets of427

𝑘-mers. Our proposed pipeline for these operations, as depicted in Figure 1, consists of five428

steps: First, we compute a textual representation of the 𝑘-mer sets interpreted as or-MS. In429

our experiments, this was done using KmerCamel’s global greedy algorithm [59]. Second, we430

recast the mask to the desired demasking function, specifically we keep or for union and431

change to one-or-nothing for intersection and to xor for symmetric difference. In the case432

of or-MS computed by KmerCamel, mask recasting is actually not needed as the output433

already minimizes the number of 1s in the mask. Then we index the 𝑓-MS using FMSI [60]434

(this can be done even before mask recasting). The last two steps are concatenating the two435

indexes by index merging and compacting the resulting index if needed. Note that once436

indexed, we can ask membership queries on the resulting 𝑘-mer sets.437

We evaluated the superstring length of each computed 𝑓-MS, and the memory requirements438

to perform queries on the indexed individual and concatenated 𝑓-MS, both before and after439

compaction. The results for intersection of the two roundworm genomes for 𝑘 = 21 are440

depicted in Figure 1. On the 𝑘-mer sets of both source genomes, which satisfy the spectrum-441

like property (SLP), the indexed 𝑓-MS required around 2.7 bits per distinct 𝑘-mer to perform442

queries. After taking the intersection, however, only about 1% of distinct 𝑘-mers remained,443

and the resulting 𝑘-mer set is far from SLP as the new MS representation after compaction444

requires three times more characters than the number of distinct 𝑘-mers. The memory445

requirements of FMSI per distinct 𝑘-mer are high as the resulting set has relatively few446

𝑘-mers, less than one million, so latent memory to run FMSI was relatively significant. Note447

also that the fact that compaction significantly reduces the MS length highly depends on448

the particular use case, namely on the proportion of represented 𝑘-mers in the result. For449

union and symmetric difference for the same data, the compaction lead to negligible length450

reduction.451

https://github.com/OndrejSladky/fmsi
https://github.com/OndrejSladky/fmsi
https://github.com/OndrejSladky/fmsi

12 𝑓-Masked Superstrings for 𝑘-mer set operations

k-mer set 1

Masked superstring / (r)SPSS
(OR-MS)

1) Compute representation

one-or-nothing-MS

2) Recast mask

Indexed
one-or-nothing-MS

Indexed [2,2]-threshold-MS
for intersection

4) Merge

3) Index

Indexed OR-MS
for intersection

5) Compact the index

Example:
{ACG, GCG, CGC}

ACGCGC
111100

ACGCGC
101100

C$GGACC; $101001
(each with rank)

T$CGGAACCCG; $1101010100
(each with rank)

G$AC; $100
(each with rank)

C. briggsae, k=21
(91M k-mers)

KmerCamel🐫
used

In this case
not needed

31.1MB memory

57.7MB memory
(886K k-mers)

4.8MB memory
(2.8M chars in MS)

k-mer set 2

Masked superstring / (r)SPSS
(OR-MS)

1) Compute representation

one-or-nothing-MS

2) Recast mask

Indexed
one-or-nothing-MS

3) Index

Example:
{ACG, CGT}

ACGT
1100

ACGT
1100

T$ACG; $1100
(each with rank)

C. elegans, k=21
(91M k-mers)

KmerCamel🐫
used

In this case
not needed

30.6MB memory

94M chars

94M chars 93M chars

93M chars

Figure 1 Illustration of the 𝑘-mer set operations workflow using 𝑓-masked super-
strings: an example of intersection of two sets using FMSI [60]. The workflow also contains
an illustrative example on a set of 3-mers as well as experimental results on C. briggsae and C.
elegans genomes with 𝑘 = 21; namely, we show the number of masked superstring characters after
each change, the number of distinct 𝑘-mers in each set, and for each indexed representation, the
memory required to perform queries on the underlying set.

In contract, CBL [46]1 required about 950 MB of memory for processing queries for both452

original genomes, which translates to about 83 bits per distinct 𝑘-mer. After computing the453

index for the intersection (from the indexes of the source genomes), the memory dropped to454

46.5 MB, still significantly larger than the memory of FMSI.455

For results with symmetric difference, union, and other values of 𝑘, see the supplementary456

repository (https://github.com/OndrejSladky/f-masked-superstrings-supplement).457

7 Conclusion and Outlook458

We have proposed 𝑓-masked superstrings (𝑓-MS) as an algebraic data type for 𝑘-mer sets459

that allows for seamless execution of set operations. It is primarily based on equipping460

masked superstrings (MS) from [59] with a demasking function 𝑓, and we have thoroughly461

investigated several natural demasking functions, demonstrating that set operations on462

𝑘-mer sets can be carried out simply by masked superstring concatenation or, if indexed, by463

merging their masked Burrows-Wheeler transform from [60]. This leads to a simple data464

structure that simultaneously allows for beyond worst-case compressibility, answering exact465

membership queries, and efficiently performing set operations on the 𝑘-mer sets, without the466

1 Obtained from https://github.com/imartayan/CBL, version at commit ‘328bcc6’. The index was
computed on canonical 𝑘-mers, to handle reverse complements, that is, we ran ‘cbl build -c’. CBL
was compiled using ‘RUSTFLAGS="-C target-cpu=native" K={kmer-size} PREFIX_BITS=28 \\
cargo +nightly build ---release ---examples ---target-dir target.k_{kmer-size}’.

https://github.com/OndrejSladky/f-masked-superstrings-supplement
https://github.com/imartayan/CBL

REFERENCES 13

costly operation of recomputing the underlying representation. Another major advantage467

is the versality of our concept as it can in fact be combined with (repetitive) Spectrum468

Preserving String Sets [12, 51, 58] instead of (more general) masked superstrings.469

The main practical limitation of our work is the current implementation of the index merg-470

ing, which is very slow and not using the state-of-the-art algorithms for BWT merging [30].471

Furthermore, our proof-of-concept experiment is only meant to demonstrate feasibility, and472

we leave a more thorough evaluation, using various datasets and including a comparison to473

other tools for set operations, such as CBL [46], to future work.474

Our work opens up several research directions for future theoretical investigation. Cur-475

rently, to deal with non-comprehensive demasking functions, which are necessary for asym-476

metric set operations, multiple copies of input masked superstrings are needed. This leads to477

a natural question whether this framework can be further generalized, possibly by extending478

the mask alphabet, to allow for more efficient asymmetric set operations. On the algorithmic479

level, our work relies on efficient algorithms for merging the Burrows-Wheeler transform, as480

well as merging the supporting data structures such as the 𝑘LCP array [54]. Moreover, it is481

open how to directly perform certain operations with 𝑓-masked superstrings indexed with the482

masked Burrows-Wheeler transform [60], namely, we seek algorithms for mask recasting and483

index compaction that do not necessitate to export the masked superstring, but rather work484

locally with the BWT of the superstring and the SA-transformed mask. Furthermore, as our485

work deals only with set operations, we open the question of performing single insertions486

and deletions in a more efficient way than performing these through set operations; note487

that for comprehensive demasking functions, deletions in the representation can be handled488

efficiently by changing the corresponding mask bits.489

In conclusion, while the primary contributions of this paper are conceptual, they pave490

the path towards a space- and time-efficient library for 𝑘-mer sets that would include all of491

these features. In the light of advances in efficient superstring approximation algorithms492

and BWT-based indexing, we believe that the 𝑓-masked superstring framework is a useful493

step towards designing appropriate data structures for this library, which is now mainly an494

engineering challenge.495

References496

1. Jarno Alanko, Bahar Alipanahi, Jonathen Settle, Christina Boucher, and Travis Gagie.497

Buffering updates enables efficient dynamic de bruijn graphs. Computational and498

structural biotechnology journal, 19:4067–4078, 2021.499

2. Jarno N Alanko, Simon J Puglisi, and Jaakko Vuohtoniemi. Small searchable 𝜅-spectra500

via subset rank queries on the spectral Burrows-Wheeler transform. In SIAM Conference501

on Applied and Computational Discrete Algorithms (ACDA23), pages 225–236. SIAM,502

2023. doi:10.1137/1.9781611977714.20.503

3. Jarno N Alanko, Jaakko Vuohtoniemi, Tommi Mäklin, and Simon J Puglisi. Themisto: a504

scalable colored k-mer index for sensitive pseudoalignment against hundreds of thousands505

of bacterial genomes. Bioinformatics, 39(Supplement_1):i260–i269, 2023. doi:10.1093/506

bioinformatics/btad233.507

4. Bahar Alipanahi, Alan Kuhnle, Simon J Puglisi, Leena Salmela, and Christina Boucher.508

Succinct dynamic de bruijn graphs. Bioinformatics, 37(14):1946–1952, 2021.509

5. Fatemeh Almodaresi, Jamshed Khan, Sergey Madaminov, Michael Ferdman, Rob John-510

son, Prashant Pandey, and Rob Patro. An incrementally updatable and scalable system511

https://doi.org/10.1137/1.9781611977714.20
https://doi.org/10.1093/bioinformatics/btad233
https://doi.org/10.1093/bioinformatics/btad233
https://doi.org/10.1093/bioinformatics/btad233

14 REFERENCES

for large-scale sequence search using the Bentley-Saxe transformation. Bioinformatics,512

38(12):3155–3163, 2022. doi:10.1093/bioinformatics/btac142.513

6. Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal. COBS: a compact bit-514

sliced signature index. In String Processing and Information Retrieval: 26th International515

Symposium, SPIRE 2019, Segovia, Spain, October 7–9, 2019, Proceedings 26, pages516

285–303. Springer, 2019. doi:10.1007/978-3-030-32686-9_21.517

7. Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de518

Bruijn graphs. In Benjamin J. Raphael and Jijun Tang, editors, Algorithms in Bioin-519

formatics - 12th International Workshop, WABI 2012, Ljubljana, Slovenia, September520

10-12, 2012. Proceedings, volume 7534 of Lecture Notes in Computer Science, pages521

225–235. Springer, 2012. doi:10.1007/978-3-642-33122-0_18.522

8. Phelim Bradley, Henk C Den Bakker, Eduardo PC Rocha, Gil McVean, and Zamin Iqbal.523

Ultrafast search of all deposited bacterial and viral genomic data. Nature Biotechnology,524

37(2):152–159, 2019.525

9. Phelim Bradley, N Claire Gordon, Timothy M Walker, Laura Dunn, Simon Heys, Bill526

Huang, Sarah Earle, Louise J Pankhurst, Luke Anson, Mariateresa De Cesare, et al.527

Rapid antibiotic-resistance predictions from genome sequence data for staphylococcus528

aureus and mycobacterium tuberculosis. Nature Communications, 6(1):10063, 2015.529

doi:10.1038/ncomms10063.530

10. Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal531

probabilistic RNA-seq quantification. Nature Biotechnology, 34(5):525–527, 2016.532

doi:10.1038/nbt.3519.533

11. Karel Břinda. Novel computational techniques for mapping and classification of Next-534

Generation Sequencing data. PhD thesis, Université Paris-Est, 2016. doi:10.5281/535

zenodo.1045317.536

12. Karel Břinda, Michael Baym, and Gregory Kucherov. Simplitigs as an efficient and537

scalable representation of de Bruijn graphs. Genome Biology, 22(96), 2021. doi:538

10.1186/s13059-021-02297-z.539

13. Karel Břinda, Alanna Callendrello, Kevin C Ma, Derek R MacFadden, Themoula540

Charalampous, Robyn S Lee, Lauren Cowley, Crista B Wadsworth, Yonatan H Grad,541

Gregory Kucherov, et al. Rapid inference of antibiotic resistance and susceptibility by542

genomic neighbour typing. Nature Microbiology, 5(3):455–464, 2020. doi:10.1038/543

s41564-019-0656-6.544

14. Karel Břinda, Leandro Lima, Simone Pignotti, Natalia Quinones-Olvera, Kamil Salikhov,545

Rayan Chikhi, Gregory Kucherov, Zamin Iqbal, and Michael Baym. Efficient and robust546

search of microbial genomes via phylogenetic compression. bioRxiv, 2023.04.15.536996,547

2023. doi:10.1101/2023.04.15.536996.548

15. Karel Břinda, Kamil Salikhov, Simone Pignotti, and Gregory Kucherov. Prophyle549

0.3.1.0. Zenodo, 5281, 2017. URL: https://prophyle.github.io, doi:10.5281/550

zenodo.5237391.551

16. Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm.552

Technical Report 124, Digital Equipment Corporation, 1994.553

17. Rayan Chikhi. K-mer data structures in sequence bioinformatics. HDR thesis, Insti-554

tut Pasteur Ecole Doctorale “EDITE”, 2021. URL: http://rayan.chikhi.name/pdf/555

RChikhi-HDR.pdf.556

18. Rayan Chikhi, Jan Holub, and Paul Medvedev. Data structures to represent a set557

of k-long DNA sequences. ACM Computing Surveys, 54(1):17:1–17:22, 2022. doi:558

10.1145/3445967.559

https://doi.org/10.1093/bioinformatics/btac142
https://doi.org/10.1007/978-3-030-32686-9_21
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1038/ncomms10063
https://doi.org/10.1038/nbt.3519
https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1038/s41564-019-0656-6
https://doi.org/10.1038/s41564-019-0656-6
https://doi.org/10.1038/s41564-019-0656-6
https://doi.org/10.1101/2023.04.15.536996
https://prophyle.github.io
https://doi.org/10.5281/zenodo.5237391
https://doi.org/10.5281/zenodo.5237391
https://doi.org/10.5281/zenodo.5237391
http://rayan.chikhi.name/pdf/RChikhi-HDR.pdf
http://rayan.chikhi.name/pdf/RChikhi-HDR.pdf
http://rayan.chikhi.name/pdf/RChikhi-HDR.pdf
https://doi.org/10.1145/3445967
https://doi.org/10.1145/3445967
https://doi.org/10.1145/3445967

REFERENCES 15

19. Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T. Simpson, and Paul Medvedev.560

On the representation of de Bruijn graphs. In Roded Sharan, editor, Research in561

Computational Molecular Biology, pages 35–55, Cham, 2014. Springer International562

Publishing. doi:10.1007/978-3-319-05269-4_4.563

20. Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de Bruijn graphs564

from sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208, 2016.565

doi:10.1093/bioinformatics/btw279.566

21. Thomas C. Conway and Andrew J. Bromage. Succinct data structures for assembling large567

genomes. Bioinformatics, 27(4):479–486, 2011. doi:10.1093/bioinformatics/btq697.568

22. Victoria G. Crawford, Alan Kuhnle, Christina Boucher, Rayan Chikhi, and Travis569

Gagie. Practical dynamic de Bruijn graphs. Bioinformatics, 34(24):4189–4195, 2018.570

doi:10.1093/bioinformatics/bty500.571

23. Sebastian Deorowicz, Agnieszka Debudaj-Grabysz, and Szymon Grabowski. Disk-based572

k-mer counting on a pc. BMC bioinformatics, 14:1–12, 2013.573

24. Jason Fan, Jamshed Khan, Giulio Ermanno Pibiri, and Rob Patro. Spectrum preserving574

tilings enable sparse and modular reference indexing. In Haixu Tang, editor, Research in575

Computational Molecular Biology - 27th Annual International Conference, RECOMB576

2023, Istanbul, Turkey, April 16-19, 2023, Proceedings, volume 13976 of Lecture Notes in577

Computer Science, pages 21–40. Springer, 2023. doi:10.1007/978-3-031-29119-7_2.578

25. Jason Fan, Jamshed Khan, Noor Pratap Singh, Giulio Ermanno Pibiri, and Rob Patro.579

Fulgor: a fast and compact k-mer index for large-scale matching and color queries.580

Algorithms for Molecular Biology, 19(1):3, 2024. doi:10.1186/S13015-024-00251-9.581

26. Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications.582

In Proceedings 41st Annual Symposium on Foundations of Computer Science, SFCS-00.583

IEEE Comput. Soc, 2000. doi:10.1109/sfcs.2000.892127.584

27. Gaurav Gupta, Minghao Yan, Benjamin Coleman, Bryce Kille, R. A. Leo Elworth,585

Tharun Medini, Todd Treangen, and Anshumali Shrivastava. Fast processing and586

querying of 170TB of genomics data via a Repeated And Merged BloOm filter (RAMBO).587

In Proceedings of the 2021 International Conference on Management of Data, SIGMOD588

’21, page 2226–2234, New York, NY, USA, 2021. Association for Computing Machinery.589

doi:10.1145/3448016.3457333.590

28. Khodor Hannoush, Camille Marchet, and Pierre Peterlongo. Cdbgtricks: Strategies591

to update a compacted de bruijn graph. bioRxiv, 2024. URL: https://www.biorxiv.592

org/content/early/2024/05/28/2024.05.24.595676, arXiv:https://www.biorxiv.593

org/content/early/2024/05/28/2024.05.24.595676.full.pdf, doi:10.1101/2024.594

05.24.595676.595

29. Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and indexing596

of colored and compacted de Bruijn graphs. Genome Biology, 21(1):1–20, 2020. doi:597

10.1186/s13059-020-02135-8.598

30. James Holt and Leonard McMillan. Merging of multi-string bwts with applications. Bioin-599

formatics, 30(24):3524–3531, August 2014. doi:10.1093/bioinformatics/btu584.600

31. Guy Joseph Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon601

University, USA, 1988. AAI8918056.602

32. Lauris Kaplinski, Maarja Lepamets, and Maido Remm. GenomeTester4: a toolkit for603

performing basic set operations - union, intersection and complement on k-mer lists.604

GigaScience, 4(1):s13742–015–0097–y, 12 2015. doi:10.1186/s13742-015-0097-y.605

https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btq697
https://doi.org/10.1093/bioinformatics/bty500
https://doi.org/10.1007/978-3-031-29119-7_2
https://doi.org/10.1186/S13015-024-00251-9
https://doi.org/10.1109/sfcs.2000.892127
https://doi.org/10.1145/3448016.3457333
https://www.biorxiv.org/content/early/2024/05/28/2024.05.24.595676
https://www.biorxiv.org/content/early/2024/05/28/2024.05.24.595676
https://www.biorxiv.org/content/early/2024/05/28/2024.05.24.595676
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2024/05/28/2024.05.24.595676.full.pdf
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2024/05/28/2024.05.24.595676.full.pdf
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2024/05/28/2024.05.24.595676.full.pdf
https://doi.org/10.1101/2024.05.24.595676
https://doi.org/10.1101/2024.05.24.595676
https://doi.org/10.1101/2024.05.24.595676
https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1093/bioinformatics/btu584
https://doi.org/10.1186/s13742-015-0097-y

16 REFERENCES

33. Mikhail Karasikov, Harun Mustafa, Daniel Danciu, Marc Zimmermann, Christopher606

Barber, Gunnar Rätsch, and André Kahles. Indexing all life’s known biological sequences.607

bioRxiv, 2020.10.01.322164, 2024. doi:10.1101/2020.10.01.322164.608

34. Marek Kokot, Maciej Długosz, and Sebastian Deorowicz. KMC 3: counting and609

manipulating k-mer statistics. Bioinformatics, 33(17):2759–2761, 05 2017. doi:610

10.1093/bioinformatics/btx304.611

35. Téo Lemane, Paul Medvedev, Rayan Chikhi, and Pierre Peterlongo. kmtricks: efficient and612

flexible construction of Bloom filters for large sequencing data collections. Bioinformatics613

Advances, 2(1):vbac029, 04 2022. doi:10.1093/bioadv/vbac029.614

36. Heng Li. Exploring single-sample SNP and INDEL calling with whole-genome de novo615

assembly. Bioinformatics, 28(14):1838–1844, 2012. doi:10.1093/bioinformatics/616

bts280.617

37. Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.618

arXiv preprint arXiv:1303.3997, 2013. doi:10.48550/arXiv.1303.3997.619

38. Heng Li and Richard Durbin. Fast and accurate short read alignment with620

Burrows-Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009. doi:10.1093/621

bioinformatics/btp324.622

39. Heng Li and Richard Durbin. Fast and accurate long-read alignment with623

Burrows-Wheeler transform. Bioinformatics, 26(5):589–595, 2010. doi:10.1093/624

bioinformatics/btp698.625

40. Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast and626

scalable minimal perfect hashing for massive key sets. In Costas S. Iliopoulos, Solon P.627

Pissis, Simon J. Puglisi, and Rajeev Raman, editors, 16th International Symposium628

on Experimental Algorithms, SEA 2017, June 21-23, 2017, London, UK, volume 75629

of LIPIcs, pages 25:1–25:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.630

doi:10.4230/lipics.sea.2017.25.631

41. Abdullah-Al Mamun, Soumitra Pal, and Sanguthevar Rajasekaran. Kcmbt: ak-mer632

counter based on multiple burst trees. Bioinformatics, 32(18):2783–2790, 2016.633

42. Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient parallel634

counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.635

43. Camille Marchet, Christina Boucher, Simon J Puglisi, Paul Medvedev, Mikaël Salson,636

and Rayan Chikhi. Data structures based on k-mers for querying large collections of637

sequencing data sets. Genome Research, 31(1):1–12, 2021. doi:10.1101/gr.260604.119.638

44. Camille Marchet, Zamin Iqbal, Daniel Gautheret, Mikaël Salson, and Rayan Chikhi.639

REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets.640

Bioinformatics, 36(Supplement-1):i177–i185, 2020. doi:10.1093/bioinformatics/641

btaa487.642

45. Camille Marchet, Maël Kerbiriou, and Antoine Limasset. Blight: efficient exact asso-643

ciative structure for k-mers. Bioinformatics, 37(18):2858–2865, 2021. doi:10.1093/644

bioinformatics/btab217.645

46. Igor Martayan, Bastien Cazaux, Antoine Limasset, and Camille Marchet. Con-646

way–bromage–lyndon (cbl): an exact, dynamic representation of k-mer sets.647

Bioinformatics, 40(Supplement_1):i48–i57, 06 2024. arXiv:https://academic.oup.648

com/bioinformatics/article-pdf/40/Supplement_1/i48/58354678/btae217.pdf,649

doi:10.1093/bioinformatics/btae217.650

47. Martin D. Muggli, Bahar Alipanahi, and Christina Boucher. Building large updatable651

colored de Bruijn graphs via merging. Bioinformatics, 35(14):i51–i60, 2019. doi:652

10.1093/bioinformatics/btz350.653

https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioadv/vbac029
https://doi.org/10.1093/bioinformatics/bts280
https://doi.org/10.1093/bioinformatics/bts280
https://doi.org/10.1093/bioinformatics/bts280
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.4230/lipics.sea.2017.25
https://doi.org/10.1101/gr.260604.119
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1093/bioinformatics/btab217
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/40/Supplement_1/i48/58354678/btae217.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/40/Supplement_1/i48/58354678/btae217.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/40/Supplement_1/i48/58354678/btae217.pdf
https://doi.org/10.1093/bioinformatics/btae217
https://doi.org/10.1093/bioinformatics/btz350
https://doi.org/10.1093/bioinformatics/btz350
https://doi.org/10.1093/bioinformatics/btz350

REFERENCES 17

48. Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford. Salmon654

provides fast and bias-aware quantification of transcript expression. Nature Methods,655

14(4):417–419, 2017. doi:10.1038/nmeth.4197.656

49. Giulio Ermanno Pibiri. Sparse and skew hashing of K-mers. Bioinformatics, 38(Supple-657

ment_1):i185–i194, 2022. doi:10.1093/bioinformatics/btac245.658

50. Amatur Rahman. Compression algorithms for de Bruijn graphs and uncovering hidden659

assembly artifacts. PhD thesis, The Pennsylvania State University, 2023.660

51. Amatur Rahman and Paul Medevedev. Representation of k-mer sets using spectrum-661

preserving string sets. Journal of Computational Biology, 28(4):381–394, 2021. PMID:662

33290137. doi:10.1089/cmb.2020.0431.663

52. Arang Rhie, Brian P Walenz, Sergey Koren, and Adam M Phillippy. Merqury: reference-664

free quality, completeness, and phasing assessment for genome assemblies. Genome665

biology, 21:1–27, 2020.666

53. Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. Dsk: k-mer counting with very667

low memory usage. Bioinformatics, 29(5):652–653, 2013.668

54. Kamil Salikhov. Efficient algorithms and data structures for indexing dna sequence data.669

PhD thesis, Université Paris-Est, 2017.670

55. Kamil Salikhov, Karel Břinda, Simone Pignotti, and Gregory Kucherov. ProPhex.671

https://github.com/prophyle/prophex, 2018. doi:10.5281/zenodo.1247432.672

56. Sebastian Schmidt. Unitigs are not enough: the advantages of superunitig-based algo-673

rithms in bioinformatics. PhD thesis, University of Helsinki, 2023.674

57. Sebastian Schmidt and Jarno N. Alanko. Eulertigs: minimum plain text representation of675

k-mer sets without repetitions in linear time. Algorithms for Molecular Biology, 18(1):5,676

2023. doi:10.1186/s13015-023-00227-1.677

58. Sebastian Schmidt, Shahbaz Khan, Jarno N. Alanko, Giulio E. Pibiri, and Alexandru I.678

Tomescu. Matchtigs: minimum plain text representation of k-mer sets. Genome Biology,679

24(1):136, 2023. doi:10.1186/s13059-023-02968-z.680

59. Ondřej Sladký, Pavel Veselý, and Karel Břinda. Masked superstrings as a unified681

framework for textual k-mer set representations. bioRxiv, 2023.02.01.526717, 2023.682

doi:10.1101/2023.02.01.526717.683

60. Ondřej Sladký, Pavel Veselý, and Karel Břinda. FroM Superstring to Indexing: a space-684

efficient index for unconstrainedk-mer sets using the masked burrows-wheeler transform685

(MBWT). bioRxiv, November 2024. URL: http://dx.doi.org/10.1101/2024.10.30.686

621029, doi:10.1101/2024.10.30.621029.687

61. Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxiang Zhai,688

Miles J Efron, Ravishankar Iyer, Michael C Schatz, Saurabh Sinha, and Gene E Robinson.689

Big data: Astronomical or genomical? PLoS Biology, 13(7):e1002195, 2015. doi:690

10.1371/journal.pbio.1002195.691

62. Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence692

classification using exact alignments. Genome Biology, 15(3):1–12, 2014. doi:10.1186/693

gb-2014-15-3-r46.694

695

696

A Proof of Uniqueness of Union Function697

Masked superstrings [59], which we call or-MS, have the important property that concatenat-698

ing them results in the union of represented 𝑘-mers. This property makes it possible for MS699

https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1093/bioinformatics/btac245
https://doi.org/10.1089/cmb.2020.0431
https://github.com/prophyle/prophex
https://doi.org/10.5281/zenodo.1247432
https://doi.org/10.1186/s13015-023-00227-1
https://doi.org/10.1186/s13059-023-02968-z
https://doi.org/10.1101/2023.02.01.526717
http://dx.doi.org/10.1101/2024.10.30.621029
http://dx.doi.org/10.1101/2024.10.30.621029
http://dx.doi.org/10.1101/2024.10.30.621029
https://doi.org/10.1101/2024.10.30.621029
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46

18 REFERENCES

to generalize (r)SPSS representations [59] as unifying individual simplitigs/matchtigs results700

in correctly representing the union of respective represented 𝑘-mer sets. In this section,701

we show that or-MS are the only 𝑓-MS with any of these properties (acting as union and702

generalizing (r)SPSS).703

▶ Theorem 12. or is the only comprehensive demasking function 𝑓 such that for any two704

𝑘-mer sets 𝐾 and 𝐾′ and any of their valid 𝑓-MS (𝑓, 𝑆, 𝑀) and (𝑓, 𝑆′, 𝑀 ′), respectively,705

their concatenation (𝑓, 𝑆 + 𝑆′, 𝑀 + 𝑀 ′) is a valid 𝑓-MS representing the set 𝐾 ∪ 𝐾′.706

Proof. For a contradiction assume there is a comprehensive demasking function 𝑓 different707

than or that satisfies the above. Consider the smallest 𝑛 such that 𝑓 behaves differently708

than or for a length-𝑛 input, meaning that there is 𝑥 ∈ {0, 1}𝑛 not equal to the all-zeros709

vector such that 𝑓(𝑥) ≠ 1. As 𝑓 is comprehensive, it cannot happen that 𝑓(𝑥) = 1 for all710

𝑥 ∈ {0, 1}𝑛 by Definition 4, and moreover, 𝑓((1)) = 1, implying 𝑛 > 1. Fix a 𝑘-mer, for711

simplicity A𝑘 (although similar approach works for all 𝑘-mers). We take the first 𝑓-MS to712

be the 𝑘-mer with mask being 𝑀0 = 𝑥0 and 𝑀𝑖 = 0 for the remaining 𝑘 − 1 positions 𝑖 > 0.713

The second 𝑓-MS is CA … A where A appears 𝑛 + 𝑘 − 2 times with the mask being: 𝑀0 = 0,714

𝑀𝑖 = 𝑥𝑖 for 𝑖 = 1, … , 𝑘, and 𝑀𝑖 = 0 for 𝑖 > 𝑘. At least one of the represented sets contains715

the 𝑘-mer as 𝑥 ≠ 0 and 𝑛 is the but the resulting 𝑓-MS is either invalid or does not contain716

the 𝑘-mer in the represented set as 𝑓(𝑥) ≠ 1, a contradiction. ◀717

▶ Theorem 13. or is the only comprehensive demasking function 𝑓 such that for any718

sequence of 𝑓-MS, where individual superstrings are matchtigs, the concatenation of all the719

𝑓-MS represents the union of represented 𝑘-mers.720

Proof. It is sufficient to find a construction of matchtigs such that we can construct an721

arbitrary sequence of ones and zeros at the occurrences of a given 𝑘-mer and the rest follows722

similarly as in Theorem 12.723

We do this with 𝑘-mer CG and matchtigs Cg and Gc. Consider the counterexample sequence724

of occurring ones and zeros from Theorem 12. For every one in the sequence, we add the725

matchtig Cg and for each 𝑚 consecutive zeros, we add 𝑚 + 1 times the matchtig Gc, since726

at the boundary of two Gc matchtigs an off occurrence of 𝑘-mer CG appears. At any other727

boundary, the 𝑘-mer CG does not appear, therefore the construction is correct. The rest of728

the proof follows a similar argument as in Theorem 12. ◀729

Note, however, that the same does not hold if we want to represent simplitigs/SPSS730

solely. As an individual 𝑘-mer cannot appear more than once with an on occurrence, any731

comprehensive function generalizes SPSS representations if it satisfies that if there is one on732

occurrence of a 𝑘-mer, it returns 1, and if there is none, it returns 0.733

B Limits of Performing Set Operations using Comprehensive Functions734

In this section, we prove theoretical limitations of performing set operations by concatenation735

of 𝑓-MS with comprehensive demasking functions. First, we show that intersection cannot736

be a function-preserving set operation and second, we prove that it is impossible to use737

only comprehensive demasking functions for input sets for the set difference operation. In738

Section 4, we show how to overcome these limits via careful choice of demasking functions739

that are not comprehensive.740

REFERENCES 19

B.1 Non-Existence of a Preserved Comprehensive Function for741

Intersection.742

We show that there is no comprehensive demasking function that acts as the intersection743

when concatenating 𝑓-MS. In a nutshell, this impossibility is caused by the fact that if744

there is a 𝑘-mer 𝑄 that occurs exactly once in the input MS with 1 in the mask, then after745

concatenation, it will still occur once with 1 in the mask, so under any comprehensive 𝑓 the746

𝑘-mer would appear as if it was in the intersection.747

▶ Theorem 14. There is no comprehensive demasking function 𝑓 with the property that the748

result of 𝑓-concatenation of two 𝑓-MS always represents the intersection of the originally749

represented 𝑘-mer sets.750

Proof. Let 𝑓 be any comprehensive demasking function. Consider MS A and C, each repre-751

senting a single 1-mer. Their concatenation is AC. Since 𝑓((1)) = 1 by the comprehensiveness752

of 𝑓, the concatenation represents both 1-mer A and C. However, the intersection is empty753

and thus, 𝑓 cannot be used to compute the intersection from the concatenation. ◀754

Note that the proof cannot be generally extended to all demasking function as there exist755

non-comprehensive demasking functions acting as the intersection on the represented sets756

upon concatenation, for instance the constant zero function. However, since the constant757

zero function always represents the empty set, it is of no use in practice.758

We further remark that although we have for convenience used the property (P3) from759

the definition of comprehensive functions, the proof in fact relies only on the property (P2)760

and holds even if we consider not only 1-mers, that is, a similar example can be constructed761

for any 𝑘.762

B.2 Non-Existence of Comprehensive Input Functions for Set Difference.763

We show that it is impossible to perform set difference of 𝑘-mer sets using 𝑓-MS with764

comprehensive functions solely.765

▶ Theorem 15. There is no demasking function 𝑓𝑜 and no comprehensive demasking766

functions 𝑓1 and 𝑓2, such that the result of (𝑓1, 𝑓2, 𝑓𝑜)-concatenation would always represent767

the set difference of the originally represented 𝑘-mer sets.768

Proof. Consider two masked superstrings and a 𝑘-mer 𝑄 which appears only once in each of769

the superstring. As an example, takse the set of 2-mers 𝐾1 = {CA, CG} and 𝐾2 = {AC} and770

their (shortest) superstrings 𝑆1 = CACG and 𝑆2 = AC. Since the 𝑘-mer 𝑄 appears only once,771

from comprehesiveness, it must be represented as on if it is present and as off otherwise,772

resulting that it is represented only based on its presence, the same in both MS. By symmetry773

of the output function, the result is the same if we concatenate 𝒮1 and 𝒮2 or the other way774

around. But it is not true in general that 𝐾1 − 𝐾2 = 𝐾2 − 𝐾1 (consider the example above).775

This gives a contradiction and concludes the proof.776

◀777

C Alternative Demasking Functions778

In this section, we provide two other demasking functions that can be useful for some779

applications.780

20 REFERENCES

C.1 The all-or-nothing-masked superstrings781

Perhaps the simplest approach to representing a set of 𝑘-mers is to mark all occurrences of782

represented 𝑘-mers with one, all ghost 𝑘-mers with zero, and treat all other masks as invalid.783

This corresponds to a function that returns 1 if it receives a list of ones, 0 if a list of zeros784

(or an empty list), and invalid otherwise. Alternatively, all-or-nothing-MS can be viewed785

as or-MS that maximize the number of ones in the mask.786

This representation has been use in the FMSI index [60] as it allows to determine the787

presence of a 𝑘-mer from the mask symbol at an arbitrary occurrence of a particular 𝑘-mer,788

which enables the FMSI index to infer 𝑘-mer presence without any rank queries on the789

mask [60].790

As another possible use case of all-or-nothing-MS, we could potentially achieve higher791

compressibility of the mask by realizing that we can infer the presence or absence of a 𝑘-mer792

from its first occurrence, which comes from the fact that a mask for a given set is unique.793

Thus, we can omit all symbols in the mask corresponding to any further occurrences of the794

𝑘-mer, making the mask shorter and easier to store, while it can be easily reconstructed795

afterwards.796

C.2 The and-MS797

We could easily replace the or function with and. That is, we could consider a 𝑘-mer present798

if it is marked as present at all its occurrences, with the small difference that we consider a799

𝑘-mer not represented if it does not appear, i.e., we consider the and of an empty binary800

string equal to 0, unlike in typical definitions of and. This ensures that the and function is801

comprehensive.802

The potential advantage of and-MS over or-MS is that we can mark ghost 𝑘-mers with803

ones at some occurrences and therefore obtain masks with more ones in them, which could804

be beneficial, for instance, for additional improvements in mask compressibility.805

	1 Introduction
	1.1 Problem formulation
	1.2 Related Work

	2 Preliminaries
	3 Function-Assigned Masked Superstrings
	4 f-MS as an Algebraic Framework
	4.1 Concatenation as an Elementary Low-Level Operation
	4.2 Function-Preserving Set Operations
	4.3 Function-Transforming Set Operations

	5 Indexing f-MS with the FMSI index
	6 Implementation and a Proof-of-Concept Experiment
	7 Conclusion and Outlook
	A Proof of Uniqueness of Union Function
	B Limits of Performing Set Operations using Comprehensive Functions
	B.1 Non-Existence of a Preserved Comprehensive Function for Intersection.
	B.2 Non-Existence of Comprehensive Input Functions for Set Difference.

	C Alternative Demasking Functions
	C.1 The all-or-nothing-masked superstrings
	C.2 The and-MS

