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June 14, 2024

Abstract

In recent years, machine learning algorithms have been widely adopted across many fields due
to their efficiency and versatility. However, the complexity of predictive models has led to a lack of
interpretability in automatic decision-making. Recent works have improved general interpretabil-
ity by estimating the contributions of input features to the predictions of a pre-trained model.
Drawing on these improvements, practitioners seek to gain causal insights into the underlying
data-generating mechanisms. To this end, works have attempted to integrate causal knowledge
into interpretability, as non-causal techniques can lead to paradoxical explanations. In this paper,
we argue that each question about a causal effect requires its own reasoning and that relying on
an initial predictive model trained on an arbitrary set of variables may result in quantification
problems when estimating all possible effects. As an alternative, we advocate for a query-driven
methodology that addresses each causal question separately. Assuming that the causal structure
relating the variables is known, we propose to employ the tools of causal inference to quantify a
particular effect as a formula involving observable probabilities. We then derive conditions on the
selection of variables to train a predictive model that is tailored for the causal question of interest.
Finally, we identify suitable eXplainable AI (XAI) techniques to estimate causal effects from the
model predictions. Furthermore, we introduce a novel method for estimating direct effects through
intervention on causal mechanisms.

1 Introduction

Recent machine learning (ML) methods are increasingly sophisticated and generally improve the accu-
racy of the models constructed but at the expense of greater difficulty of interpretation. Interpretability
is crucial in various fields, such as medical prescription or legal domain [34, 9]. Indeed, using models
for automated decision-making entails understanding their behavior to justify choices.

Practitioners are often interested in causal insights into the underlying data-generating mechanisms,
which machine learning methods do not generally provide. Common causal questions include the
identification of causes and effects, predicting the effects of interventions, and answering counterfactual
questions. If we assume that the underlying causal model of the data generation process can be
represented as a causal Bayesian network (i.e. a Bayesian network where orientations have a causal
interpretation), the ideal solution is to utilize the causal framework and specialized tools such as do-
calculus[28] to answer those queries. However, obtaining the complete causal model can be challenging
due to the multiplicity of parents for the target or the impossibility of querying latent variables. Hence,
we may have to rely solely on assumptions about the structure of the causal model for the identification
of causal effects and to involve additional predictive models learned from data for numerical estimates.

Various works deal with quantifying causal effects (direct and/or indirect) from a predictive model,
presuming knowledge of the causal structure that depicts the relations among features [19, 43]. These
studies fall within the current focus of the eXplainable AI (XAI) field [2]: their starting point is a
predictive model, typically trained from all known variables for a classification or regression task, and
their purpose is to explain how each input feature contributes to the model predictions. The objective
of this paper is to show the benefits of an alternative approach, wherein a predictive model is no longer
pre-existing but is rather tailored to address a specific causal query.

As in previous works [13, 19, 43, 45], the paper assumes prior knowledge about the causal structure,
but we propose using it before building, training, and analyzing query-driven predictive models from
observational data.

This paper introduces an innovative methodology for quantifying a total causal effect using a
predictive model and estimating a direct causal impact using a novel extension of the causal structure.

The first section explores explainability paradigms and tools for predictive models. The second
discusses the limitations of predefined models. The third introduces a new methodology for accurate
causal effect estimation. Finally, the last section presents our new framework for interventions on
causal mechanisms.

2 Different explainability paradigms

Apart from predictive ability, there is a growing interest in the capacity to explain predictions. Trans-
parent white-box models reveal their inner mechanisms in human-readable forms. So graphical and
causal models, especially in classification, are intuitive white boxes that facilitate understanding

1



through visuals. However, the accuracy-explainability trade-off may favor complex black-box mod-
els, effective but less transparent to humans [17], thus motivating dedicated explanation tools [3].

In this section, we will briefly introduce the white-box and black-box approaches, from the expla-
nation perspective.

2.1 Graphical models, causal models

Graphical and causal models visually show relationships between variables, aiding human understand-
ing of influences and, thus, explaining the decision-making process. Explaining a prediction for humans
means analyzing its causes, a straightforward task for a graphical model with causal semantics (causal
model).

2.1.1 Graphical Models

A Bayesian network, also known as a probabilistic graphical model, represents probabilistic relation-
ships among a set of variables. The variables are represented as nodes, and the relationships between
variables are represented as directed edges between the nodes. Each node in the network corresponds
to a random variable, and the edges indicate the (direct) probabilistic dependencies between vari-
ables. Its structure is based on a directed acyclic graph (DAG), meaning the edges form a directed
flow without any cycles. This structure encodes that each variable is conditionally independent of
its non-descendants given its parents (Local Markov Property), leading to a factorization of the joint
distribution P of the N variables in the model :

P(X1, · · · , XN ) =

N∏
i=1

P(Xi|Pa(Xi)) (1)

where Pa(Xi) is the set of parents of Xi in the DAG.

Definition 2.1 (Markov Compatibility) [28]
If a joint distribution P admits the factorization of Eq.1 compatible to a DAG G, we say that G and

P are compatible and that P is Markov relative to G.

A practical way to describe the set of distributions compatible with a DAG G is to list the set of
conditional independencies each distribution must satisfy. These independencies can be read from G
via a graphical criterion called d -Separation [28]. The concept of d -separation allows us to identify
conditional independence relationships in Bayesian networks. Thus connecting probability and graph-
ical considerations. If X is d-separated from Y given Z, then X and Y are conditionally independent
given Z. In other words, knowing the values of the nodes in set Z ”blocks” the information flow
between X and Y , making them independent of each other. To determine whether two sets of nodes
X and Y are d-separated given a set of nodes Z, Pearl in [28] established two criterions:

Definition 2.2 (Blocked path)
A path p is said to be blocked by a set of nodes Z if and only if :

(i) either p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is in Z,

(ii) or p contains a collider i→ m← j such that Z does not contain m or one of its descendants.

Definition 2.3 (d-Separation)
A set Z is said to d-separate the sets X and Y if and only if Z blocks every path from a node in X

to a node in Y .

Building on the insights from d -separation, we introduce the Markov boundary of a target variable
[27]. It represents the minimal set of variables that renders the target conditionally independent of all
other variables. In other words, the Markov boundary contains the minimal set of variables that are
necessary for predicting the target. Grasping the Markov boundary of a target variable helps specify
key influential features for predictions. This insight into the directly affecting variables enhances
explanation clarity and asserts Bayesian networks as white-box models.

2.1.2 Causal Models

In [28, 31], Pearl proposes a complete causal framework based on a probabilistic graphical model or
structural equation model [30]. Unlike correlation, which only measures the strength of statistical
dependencies, Pearl’s causality aims to uncover and quantify the underlying mechanisms that generate
these relationships. In the subsequent discussion, we will distinguish between the ”causal structure”
(i.e. the graphical representation of causal relations) and the ”causal model” (i.e. the causal structure
along with its learnable parameters derived from observations).

The causal graphical model is often represented using DAGs as Bayesian Networks. However,
Bayesian networks represent probabilistic relationships between variables, whereas causal graphs ex-
plicitly represent causal relationships, allowing for an intuitive understanding of the cause-effect struc-
ture among variables. The directed edges in the graph indicate causal relationships, and the absence
of an edge implies the absence of a direct causal link. Unlike Bayesian networks, a variable can be
unobserved but still be in the causal model (latent variables).
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Another method for illustrating causal relationships is found in the framework of Functional Causal
Models (FCM). These models express causal links using deterministic functional equations, and the
incorporation of probabilities arises from the assumption that certain variables within these equations
remain unobserved. A Functional Causal Model comprises a series of equations formulated as follows.

Definition 2.4 (Pearl’s Functional Causal Model)
In [30], Pearl defines a functional causal model as:

(1) A set U = {U1, · · · , UN} of background or exogenous variables, representing factors outside the
model, which still affect relations within the model.

(2) A set V = {V1, · · · , VN} of observed endogenous variables, where each Vi is functionally dependent
on a subset Pa(vi) of U ∪ V \ {Vi}.

(3) A set F of functions {FV1
, · · · , FVN

} such that each FVi
determines the value vi of Vi ∈ V,

vi = FVi
(Pa(vi), ui)

(4) A joint probability distribution P(u) over U.

A FCM Ψ is then written as a set of functional equations :

Ψ :


V1 = FV1

(Pa(V1), u1)

· · ·
VN = FVN

(Pa(VN ), uN )

(2)

It is important to note that no assumptions are made regarding the nature of the distribution for
U. However, under assumptions of acyclicity and joint independencies of U, Pearl and Verma in [32]
and then Druzdzel and Simon [10] established that Bayesian networks and functional models share
an essential equivalence in probabilistic modeling. They showed that any Bayesian network G on V,
characterized by a distribution P(V) (as in Eq.1), can be associated with an equivalent FCM(as in Def
2.4). This model, in turn, can generate a distribution identical to P. This equivalence illustrates the
smooth interchangeability of probabilistic applications with Bayesian networks, including statistical
estimation, prediction, and diagnosis, to functional models, and vice versa, and highlights the value
of functional models as an alternative representation of joint distribution functions, providing a dual
perspective that enhances reasoning and analysis across both modelings.

2.1.3 Causal Discovery

Despite employing careful statistical and computational techniques, certain aspects of a causal model
remain unattainable to automatic learning from observations. For instance, latent variables, con-
founders, symmetrical relations between pairs of variables, and other factors can complicate the learn-
ing process.

For Bayesian networks, there exist several algorithms for structural learning [15] which fall into two
categories: constraint-based methods and score-based methods. The latter scores different potential
structures and chooses the one with the highest score w.r.t the data [7]. Constraint-based methods rely
on the dependencies that can be tested in the data; see Fig.1. They start by locating independencies
and then remove edges when independence is observed. The next step is to determine edge direction
thanks to tested conditional independence or constraint propagation. Notable algorithms within this
family include PC[37], FCI[36], RFCI [8], and MIIC [25]. As a distinguishing feature, MIIC sets itself
apart by basing its independence tests on the principle of mutual information.

As depicted in Fig.1 Step 3, these algorithms may end in an incomplete DAG known as a Par-
tial Directed Acyclic Graph (PDAG). This mixed structure represents the Markov-equivalence class,
containing all Bayesian networks achieved by assigning directions to non-oriented edges.

Assuming that within this class, only one structure represents the causal model, the PDAG also
acts as the partial causal graph inferred from available data. However, it’s essential to acknowledge
that this assumption overlooks factors like latent variables that influence causal relationships.

0

1 2

3 4

(Step1) Fully connected graph

0

1 2

3 4

(Step2) Independencies removal

2 4

3

0

1

(Step3) Orientations

Figure 1: Steps for constraint-based algorithm

2.1.4 A common causal query: the Average Causal Effect

Learning a causal structure supports qualitative causal insights about a target variable Y , such as
identifying variables with a direct or indirect causal effect on Y . However, quantitative insights about
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the effect of a specific variable on the target Y involve numerical estimates, such as the Average
Causal Effect (ACE) [20, 28, 21]. For a binary variable X, the ACE is defined as the difference of the
predictions for the target Y when one forces the value of X to 1 or 0.

Definition 2.5 (ACE)

ACE[Y |do(X)] = E[Y |do(X = 1)]− E[Y |do(X = 0)]

When a causal graphical model is applied to a classification task, computing the ACE for each
known variable would be a step towards explaining the model. However, there are several practical
limitations to this approach. Discovering a complete causal graph is a hard problem, as discussed in
Subsection 2.1.3. The existence of latent variables, or numerous parents for some nodes, may further
compound the estimation of conditional probabilities involved in do-calculus formulas.

On the other hand, the statistical learning theory [41] has led to effective algorithms and models
to accurately estimate a dependent variable from data without any prior knowledge.

2.2 Predictive models and Explainability

Classification is a common task in supervised learning, i.e. to predict a (binary) class Y of an object
from a vector of features X = {X1, · · · , Xj , · · · , XN}. An ML model is trained from a database of
observations D about the class and the features. It is defined as a real-valued function f(.) that takes
a vector of features as input and returns an estimate of the probability of the target class:

f(X) ≃ P(Y = 1|X)

While there exist numerous other explainability methods [2, 40], we will focus on two techniques:
Partial Dependence Plot and Shapley values, because of their extensive usage and the existing research
on linking them to causal knowledge.

2.2.1 Partial Dependence Plots

A Partial Dependence Plot(PDP ) displays the marginal effect that a subset S (of input features) has
on the output of a predictive model [12]. The partial dependency between the model output and the
vector of features XS is estimated by marginalizing the predictions over the remaining input features:

∀S ⊂ [[1, · · · , N ]], PDP (XS) =
1

|D|

|D|∑
i=1

f(XS,x
(i)

S̄
) (3)

where S̄ = [[1, · · · , N ]] \ S, XS = {Xj , j ∈ S} and x
(i)

S̄
= {x(i)

j , j ∈ S̄} with x
(i)
j being the value of

the j-th variable in the i-th sample in the database D.

A PDP offers valuable insights into dependencies between model predictions and a subset of in-
put features. Each PDP is typically computed per feature to gauge strength, linearity, nonlinearity,
monotonicity, or threshold influence, etc.

The Individual Conditional Expectation Plot (ICE) [16] complements PDP by assessing whether a
feature’s contribution to predictions hinges on interactions with other features. It also visually verifies
if the function implemented by the model is additive. In contrast to a PDP which illustrates the
average marginal effect of an input feature on predictions, each line in an ICE plot represents the
marginal effect for a sample observation when varying the feature of interest and fixing the other
features to their observed value.

∀S ⊂ [[1, · · · , N ]],

∀i ∈ [[1, · · · , |D|]], ICE(i)(XS) = f
(
XS,x

(i)

S̄

)
PDP (XS) =

1
|D|

∑|D|
i=1 ICE

(i)(XS)
(4)

Parallel ICE lines suggest an additive feature contribution without evident feature interactions.
Alternatively, interaction analysis can be eased by centering ICE, aligning all lines through a given
point in the plot.

PDP and ICE plots depict a model’s reliance on an input feature X. Dependency indicates that
the model uses X to predict the target Y , yet doesn’t necessarily imply that X causally affects Y in
data generation. For instance, information could come from any Y -correlated variable, even a causal
consequence of Y .

Zhao and Hastie [45] observed that Equation 11 is a Monte-Carlo approximation of Pearl’s backdoor
adjustment (see below section 4.2.2). They identified three requirements for the PDP of a feature to
support a successful causal interpretation: (i) an accurate predictive model closely approximating
conditional probabilities from the data generation process, (ii) domain knowledge about the causal
structure to ensure that Pearl’s back-door condition is satisfied by the remaining model inputs, and
(iii) visualization tools like PDP and ICE to spot unexpected behaviors from unmeasured confounding
or flawed causal structure assumptions.
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Figure 2: Partial Dependence Plot (named average) represented as a dashed orange line and Individual
Conditional Expectation Plots drawn as solid blue lines, an example from scikit-learn[33].

2.2.2 Shapley values

Another extensively employed XAI technique is derived from game theory: Shapley values [35] are a
method to spread credit among a set of players X in a coalition game [42]. It is a “fair” attribution
in the sense that it rewards each player according to his contribution, and it is the unique solution
that satisfies four desirable properties: efficiency, linearity, symmetry, and nullity, as well as other
properties such as monotonicity[44].

In this framework, a value function v associates a real number v(S) to any coalition S ⊆ X of
players. v(S) represents the total expected payoff that the members of S can obtain by cooperating.
Shapley values are estimated by imagining that coalitions grow incrementally, one player at a time.
Each player entering a previously formed coalition S may then demand a fair compensation for its
expected marginal contribution v(S ∪ {i}) − v(S). A player’s contribution is estimated by averaging
their marginal contribution over all possible coalition permutations.

The Shapley value for the variable Xi is then :

ϕi =
∑

S⊆X\{Xi}

|S|!(N − |S| − 1)!

N !

(
v(S ∪ {Xi})− v(S)

)
(5)

To transpose this framework to XAI, a parallel is drawn between a model’s input features X and
the players who cooperate in a game [38]. Shapley values can then provide a solution, backed by a
solid theory, to the feature attributions problem. A challenge for applying Shapley values to ML is the
definition, from the model, of a coalition game and its value function v. When the coalition is the full
set of features, a natural value function is the prediction made by the model. For a subset of features,
the influence of missing features on model predictions can be assessed through several variants, such
as fixing the values in S and estimating the expected model prediction over some distribution of the
remaining features. Since each variant defines a specific coalition game, the corresponding Shapley
values are named after the variant. Two popular variants in the literature are conditional Shapley
values [1] and marginal Shapley values [39]:

vcond(S)=E
[
f(XS , xS)|XS=xS

]
(6) vmarg(S)=E

[
f(XS , xS)

]
(7)

Both variants present mathematical issues, as discussed in [24] and [4]. Conditional Shapley values
tend to spread credit between correlated features, even redundant features discarded by the learning
algorithm. Moreover, their exact calculation involves modeling an exponential number of multivariate
distributions. On the other hand, marginal Shapley values may require evaluating the model on ”out-
of-distribution” samples, risking extrapolation into unobserved or implausible parts of the feature
space.

Causality and Shapley values

Janzing et al. in [22] present a causal perspective on Shapley values by substituting observational
conditioning with intervention-based conditioning as in Pearl’s do-calculus [28]. They argue that a
formal distinction can be made between the algorithm’s inputs and the real-world context features
when seeking causal insights. Consequently, the authors propose that Interventional Shapley values
reduce to Marginal Shapley values, thereby justifying the use of the latest for causal inquiry. This
proposal explains the causal mechanism linking model inputs to outputs and is agnostic about the
causal relations between real-world features.

Other authors aimed at a different goal: providing an explanation that considers real-world causal
relations so that credit may be attributed appropriately to root causes. In line with this goal, Frye
et al. introduced a method to incorporate causality into Shapley values, called Asymmetric Shapley
values [13]. The reasoning is as follows: if Xi is known to be the deterministic causal ancestor of
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Figure 3: Variable X has predictive power about Y but no causal effect

Xj , then we might want to attribute all the predictive contributions to Xi and none to Xj . To
achieve this, the authors only consider permutations that are consistent with a partial causal order.
Moreover, they consider that unconditional marginalization may extrapolate outside the data domain.
In agreement with [1], they propose to use observational conditioning while introducing techniques to
handle high-dimensional data.

Heskes et al. propose to consider a more detailed causal structure in the form of a causal chain
graph, and to use Pearl’s do-calculus to estimate the real-world effect of interventions on in-coalition
features. The characteristic function for these Causal Shapley values [19] is:

vcaus(S) = E
[
f(XS , xS)|do(XS = xS)

]
For each permutation, the authors identify the contribution of a feature as a total causal effect and

show that it can then be decomposed into a direct and indirect effect.
We remark that an arbitrary predictive model may have been trained on features that are neither

direct nor indirect causes of the target; such features can still offer the model non-redundant infor-
mation about the target. For instance, when a variable X has no causal descendant and is a direct
consequence of a latent cause L of the target Y (see fig. 3), X has unique predictive power about
Y . Since X has no outgoing arc, intervening on X will not change the distribution of other variables.
However, the intervention will influence the model predictions in vcaus, and may thus obfuscate the
causal interpretation of other variables (e.g. Z).

In [43], Wang et al. observe that a Shapley value depends on the other variables included in the
model and that credit for causal effects is divided among upstream and downstream variables in a
causal path. They develop Shapley Flows by reformulating the problem to assign credit to edges
rather than nodes in a causal graph. Shapley Flows highlight an issue that is common to all causal
interpretations of predictive models: given a model and the causal structure of its variables, a root
cause input variable that is outside the Markov boundary of the target may have been ignored by the
model learning algorithm, either implicitly or during an explicit feature selection step [14]. Estimating
the total causal effect of such a variable must then involve additional statistical models (in the case of
Shapley Flows, extra linear regression or gradient boosting models).

The following section introduces an experimental protocol for formally calculating ground truth
causal effects. Then, it illustrates how standard XAI techniques are sensitive to feature selection prior
to training a predictive model and may lead to paradoxical explanations.

3 Paradoxical insights from XAI

In practice, models learned from datasets may be biased. To overcome these problems, we propose a
study based on an experimental setting.

3.1 Experimental Protocol

We propose a causal Bayesian network as the ground truth reference. We designed a synthetic example
with pyAgrum, a library for probabilistic graphical models [11]. To facilitate the reasoning, we assigned
a semantic to this example: the task of predicting whether the customer will renew his cell phone
subscription. The prediction is based on several features:

Figure 4: The causal Bayesian that gen-
erates the dataset.

• Economy (noted as E) represents economics condi-
tions
• the client profile (e.g. residential vs commercial) is
represented by the variable Customer Profile (noted as
C),
• the yearly consumption of the customer is tracked by Us-
age (noted U)
• an offer granted to the client illustrated by Discount
(noted as D),
• the Loyalty of the client cannot be directly observed
and will be handled as a latent variable (noted as
L),
• Visits (noted as V ) indicates whether the customer has
visited the provider website recently,
• finally Renewal (noted R) informs about subscrip-
tion renewal and will be the target for binary classifica-
tion.

To limit the feature space size and train accurate clas-
sification models, most variables are binary except Usage,
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which can take five distinct values. Figure 4 represents the
causal Bayesian network used to generate data samples.

Two explanations of interest are the effect of the Economy and the Discount. The fictitious model
has been designed so that granting a discount (D=1 ) has a positive causal effect on renewals for one
customer profile (C=0 ) and no causal effect for the other profile (C=1 ):

P(R|do(D = 1), C = 0) > P(R|do(D = 0), C = 0)

P(R|do(D = 1), C = 1) = P(R|do(D = 0), C = 1)

P(R|do(D = 1)) > P(R|do(D = 0))

Similarly, Economy (E=1 ) has a total negative effect on Renewal when C=0 and no causal effect
when C=1.

A database is generated from this reference model. This data is used as a learning base for the
predictive models we are trying to explain. Using a causal Bayesian network as ground truth allows
us to quantify the exact causal effects of the features of interest using analytical methods such as do-
calculus [28]. Thus, we can examine a classification model’s interpretations and assess their consistency
with the underlying causal model.

The purpose of the next sections is to show in different contexts how the causal interpretation
of classical XAI results can be ambiguous (section 3.2) and how our proposition can lead to more
consistent estimations of causal effects from specific prediction tasks.

3.2 Sensitivity to feature selection

It is known that feature selection has a significant impact in predictive modeling [23]. This section
illustrates how selecting features without causal analysis can lead to paradoxes when applying common
XAI techniques to the learned model.

3.2.1 Paradoxical insights from SHAP

We used the well-known XGBoost algorithm [6] to train two models on the same dataset but using
different sets of features. A first model was trained on all known features (i.e., all variables except the
target and the unobserved Loyalty), and a second model was trained after dropping Visits. For these
two models, we used the SHAP library [26] to compute the marginal Shapley values of the features.
The results are given in Figure 5a and Figure 5b.

(a) Explanation of a model on all variables. (b) Explanation of a model excluding Visits.

Figure 5: Summary Plot from SHAP

The two plots display the marginal Shapley values of every feature for a sample population, as
documented in the SHAP library. Each dot represents the marginal Shapley value of a feature for a
sample observation, in the log-odds space. The dot color represents the feature value (red high, blue
low).

A reading of these two plots suggests that granting a discount (Discount red dots) contributes
negatively to the predictions in the first model Figure 5a, while it has a positive contribution in the
second model Figure 5b. If marginal Shapley values were naively interpreted as direct causal effects
happening in the data generation process, an analyst might draw opposite conclusions from the two
models.

3.2.2 PDP sensitivity to feature selection

In the previous section, we used marginal Shapley values that are considered ”true to the model”
in literature [22], [4]. To address the risk that the paradox could be an artifact of the learning and
interpreting pipeline, we replicated the experiment on 100 different populations of 10k observations
generated from the same data generation process, and used the Partial Dependence Plot technique
that relies on simpler marginal expectations (the PDP formula for X is indeed equivalent to v(X) in
marginal Shapley calculations). In Figure 6, we present the PDP results for the variable Discount,
demonstrating its influence on predictions for the two variable selections. Each boxplot represents
100 results obtained through the PDP analysis. Upon initial observation, it becomes evident that the
results do not exhibit qualitative consistency. The right plot demonstrates a positive impact, while
the other indicates a negative impact on the model’s predictions.
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(a) Explanation of a model on all variables. (b) Explanation of a model excluding Visits.

Figure 6: PDP of Discount on Renewal

Transitioning from the sensitivity of SHAP to feature selection to that of PDP it is crucial to
acknowledge the significant impact variable selection can have on the interpretability of partial depen-
dence plots. When including irrelevant variables or omitting essential features, the plot’s reliability,
and accuracy may diminish, leading to misinterpretations.

3.2.3 Discussion

We observed that the widespread SHAP and PDP interpretation methods are sensitive to feature
selection: they provide conflicting insights when applied to different models trained using the same
ML algorithm, on the same population, but with different selections of features. An analyst may thus
wonder whether the model explanations are consistent with real-world causal effects.

Several authors have proposed incorporating knowledge about the causal structure when interpret-
ing a given predictive model. However, the quantification of causal effects may require information
that cannot be extracted from the model. For instance, a root cause (e.g. Economy) may be outside
the Markov boundary of the target in the causal graph of the model features, and may thus be ignored
during the learning process. On the other hand, a variable that is not a causal ancestor of the target
(e.g. Visits) may have a strong predictive power that obfuscates the interpretation of other variables.
Therefore, in order to assess the real-world causal effect of a specific input variable from an arbitrary
predictive model, an XAI technique may not get all relevant information from the model itself and
may depend on additional probabilistic models.

Thus, we argue that a predictive model that is typically optimized for accurate prediction of a
target from all available information is not the ideal starting point to analyze a causal effect involving
a specific variable. This motivates the methodology that we propose in the next section to address
precise causal queries.

4 Towards a hybrid methodology

4.1 Our proposition to combine causal and predictive models

XAI methods typically aim at explaining the predictions made by a previously trained model. Some
methods incorporate causality via a graphical model of causal relationships of variables [13, 19]. How-
ever, these methods inherit from general XAI, the premise that a single pre-trained predictive model
is the main source of estimates to answer causal queries about multiple variables, see Figure 7.

Figure 7: Classic XAI Approach.

In this paper, we propose a new methodology, illustrated in Figure 8, which extends the common
framework previously described. Our approach consists of several phases. First, we start with a
training population, a causal graph, and a specific query about a causal effect. We then use the tools
of causal inference to quantify the causal effect in terms of observable probabilities. Next, we train an
ML model to estimate these probabilities. Finally, we use an interpretability method to compute the
requested causal effect from the model predictions.

A key difference between our proposal and previous methods is that we do not assume a pre-
trained model. The main argument is that a single general predictive model cannot systematically
answer different causal questions.
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Figure 8: Proposed approach for two distinct queries.

4.2 Methodology for estimating a total causal effect

With the methodology now introduced, the approach can be utilized to answer various causal queries.
Let us assume that the objective is to analyze the effect of a discount on subscriber renewal.

4.2.1 Exact solution using do-calculus

Within a probabilistic causal framework, the query for the total causal effect is the quantification of
the probability P(Y |do(X)). In such a framework, do-calculus provides multiple techniques, such as
frontdoor or backdoor adjustments, to compute such causal effects [28]. In particular, the backdoor
adjustment defines a set of variables that should be considered.

Definition 4.1 (Backdoor Criterion)
Given an ordered pair of variables (X,Y ) in a directed acyclic graph G, a set of variables Z satisfies

the backdoor criterion relative to (X,Y ):

• (i) if no node in Z is a descendant of X, and

• (ii) Z blocks every path between X and Y that contains an arrow into X.

If a set of variable Z satisfies the backdoor criterion relatively to (X,Y ), then the causal effect of
X on Y is identifiable and is given by the following adjustment:

Definition 4.2 (Backdoor Adjustment)
If Z satisfies the backdoor criterion relative to (X,Y ):

P(Y |do(X = x)) =
∑
z

P(Y |X = x, Z = z)P(Z = z) (8)

Applied to our example (Figure 4), the backdoor adjustment is suitable for quantifying the causal
effect of Discount on Renewal with {Usage} as a set satisfying the backdoor criterion.

4.2.2 Estimates from a sample data

Estimating the causal effect through the backdoor adjustment in Equation 8 only involves the variables
Y , X, and Z. Equation 8 can be generalized and reformulated using XS = {X}, XS̄ = Z :

P(Y |do(xS)) =

∫
P(Y |XS = xS , XS̄ = xS̄)dP(xS̄)

To compute this quantity from observational data, a proper process is to build a probabilistic model
f of Y knowing only X = XS ∪XS̄ and then to rely on a Monte-Carlo integration over the training
data where the probability P(Y |X) is estimated by f(X) :

P(Y |do(xS)) ≃ 1

N

N∑
i=1

P(Y |XS = xS , X
i
S̄) (9)

≃ 1

N

N∑
i=1

f(xS , X
i
S̄). (10)

Zhao and Hastie (2019) already demonstrated the analogy between the backdoor adjustment and
the PDP .

Given a predictive model f(X), a PDP grants visualization and analysis of the dependence of the
predictions on an input feature of interest S (let S̄ be its complement). The PDP can be computed as
shown in Equation 11.

fS(xS) = EXS̄
[f(xS , XS̄)] =

∫
f(xS , xS̄)dP(xS̄) (11)

Indeed, the Monte-Carlo integration of Equation 11 over the training data has precisely the same
equation as Equation 10. This development demonstrates that prior causal knowledge guides toward
relevant selections of variables for building predictive models so that tools such as PDP acquire a
causal meaning.
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4.2.3 Illustration: effect of Discount on Renewal

By construction, the causal model of the synthetic data generation process grants access to the true
causal effect that pyAgrum can compute directly through do-calculus. The calculation involves a back-
door adjustment with {Usage} as the minimal set that satisfies the backdoor criterion (see Equation
12). Indeed two sets satisfy the criterion 4.1: {Usage} and {Usage, Customer profile}. For the first
set Equation 8 becomes:

P(R|do(D = d)) =
∑
U

P(R|D = d, U)P(U) (12)

We refer to this value as the exact ACE.

Figure 9: Average Effect of an Intervention using PDP method for different feature selections. Exact
ACE is computed using do-calculus.

As previously discussed, the backdoor adjustment can be estimated from a sample population using
a predictive model trained with an off-the-shelf algorithm such as XGBoost. The calculation involves
a Monte-Carlo integration over a sample population of size |D|.

P(R|do(D = d)) ≃ 1

|D|

|D|∑
i=1

P(R|D = d, U)

≃ 1

|D|

|D|∑
i=1

f(D = d, U)

f is a classifier model trained to estimate the probability of Renewal conditional on Discount and
Usage. f is applied to a sample population, taking Usage from the data and forcing Discount to the
value d, as per the PDP technique.

We then compare the exact ACE with estimates from 100 sample populations of size N = 10 000.
For each sample population, we trained four predictive models involving different selections of features:

• minimal : minimal set of features that satisfies the backdoor criterion, here {Discount,Usage},

• compatible: a larger set of features compatible with the backdoor criterion, adding {Customer
Profile} to the minimal set,

• missing confounder : a set of features that does not satisfy the backdoor criterion because it
excludes a variable needed to block a path between the action and the target, here excluding
Usage from the compatible set,

• all variables: the set of all known features; incompatible with the backdoor criterion because it
contains a consequence of the action, namely Visits.

The PDP technique is then applied to estimate the average effect on predictions of intervention
from Discount=0 to Discount=1.

Figure 9 shows the experimental results. Both the minimal and compatible feature selections
provide an accurate estimate of the Average Causal Effect for Discount. On the other hand, the
two feature selections that are incompatible with the backdoor criterion lead to significantly different
estimates. The calculation from the model with a missing confounder overestimates the causal effect.
It is worth mentioning that when employing the traditional approach that utilizes the complete set of
known features, the estimate ACE becomes inverted.

In short, starting with a causal model and a query about a variable’s total causal effect, we employed
do-calculus to quantify this effect using observable data. The probabilities can be estimated via a
predictive model, trained on a well-chosen feature selection. In our case, the table below presents
compatible feature selections for estimating the ACE of known variables (denoted by their first letter).
It illustrates the importance of training separate models to estimate the causal effect of different
variables.
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ACE on R Feature Selection for Predictive Model
E {E} or {E, C}
C {C} or {E, C}
U {U,C} or {U,C,E}
D {D,U}, {D,U,C}, {D,U,E} or {D,U,C,E}
V impossible (confounding path)

Table 1: Feature selection that satisfies a criterion provided by do-calculus.

X Y

M

Figure 10: An unconfounded mediation model with treatment (X), mediator (M) and target (Y)

Having presented the methodology for determining the total causal effect of a variable, in the
following sections, we will proceed with the same approach to explore other causal questions. Partic-
ularly, we will delve into discussions concerning direct effects. Note that additional exploration of its
application for uplift analysis was detailed in [18].

5 Direct Effect

Up to this point, the study has primarily centered on total causal effects, which are the most straight-
forward causal relationships to comprehend, identify, and estimate. Yet, the main interest might be
understanding the direct influence of a variable X on the outcome Y . In other words, the ”direct
causal effect” of an exposure X on an outcome Y measures how responsive Y is to changes in X while
blocking for mediator effects.

5.1 Controlled Direct Effect

The Controlled Direct Effect (CDE) is the direct effect observed when fixing mediators to a fixed value,
effectively blocking the influence of the exposure on them.

5.1.1 Exact computation of the CDEConsider the mediation model in Figure 10. In this setup, the treatment X is assumed to affect the
outcome Y both directly and indirectly through the mediator M . The CDE measures the part of
the effect of X on Y that is not due to changes in M . Formally, the CDE of X on an outcome Y ,
controlling for a mediator M at level m, is defined by Pearl [29] as:

CDE(x, x′,m) = P(Y |do(X = x,M = m))− P(Y |do(X = x′,M = m)) (13)

Considering that CDE is a do-expression, its identification can be fully achieved utilizing the principles
of do-calculus [30].

5.1.2 Illustration: Controlled Direct Effect of Usage on Renewal

In our example, we can compute the controlled direct effect of Usage on Renewal with Discount as a
mediator: P(R|do(U = u,D = d)) The CDE formula is identified accordingly to do-calculus:

P(R|do(U = u,D = d)) =
∑
C

P(R|C,D = d, U = u)P(C)

As in section 4.2.2, to compute this quantity from observational data, the proper procedure is to
build a probabilistic model f of R, knowing only C,D,U . Then use a Monte Carlo integration and a
population of size |D| and apply the model f(.) to quantify the probability P(R|C,D,U):

P(R|do(U = u,D = d)) ≃ 1
|D|

∑|D|
i=1 P(R|U = u,D = d,C = ci)

≃ 1
|D|

∑|D|
i=1 f(U = u,D = d,C = ci)

5.2 Intervention on a causal mechanism

By analogy with the analysis of a total causal effect as the effect of an intervention on a variable, we
propose in this section to analyze a direct causal effect by studying the effect of an intervention on a
direct causal mechanism in a graphical model.

Definition 5.1 (Intervention on a causal mechanism)
In a FCMΨ (see Def.2.4), we define an intervention on the causal mechanism X → Y through

which X influences Y as a modification of the structural equation of Y , where X becomes fixed to a
value x:

Y = FY (Pa(Y ) \ {X}, X, uY )
becomes−−−−−→ Y = FY (Pa(Y ) \ {X}, X = x, uY )

where FY is an arbitrary function, Pa(Y ) is the set of variables that directly determines the value of
Y , and uY represents disturbances due to omitted factors. The remaining equations involving X are
unaffected by the intervention.
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X Y

M

(a) Original Graph G

X XY Y

M

(b) Insertion of arc-variable and ob-
taining G′

X XY Y

M

(c) Intervention on the arc-variable

Figure 11: Intervention on a causal mechanism and construction of extended graph G′

To represent the intervention on the mechanism X → Y as an intervention on a variable, we
propose to introduce the variable XY , mirroring X within the equation for Y , thus transforming the
FCM Ψ into Ψ′.

Definition 5.2 (Modified FCM isolating the causal mechanism from X to Y )
Let Ψ be an FCM representing the relationships between the variables {V 1 · · · , VN , X, Y }. To

represent interventions on the causal mechanism X → Y , we define an equivalent FCM Ψ′ as a copy
of the structural equations of Ψ, except for the insertion of XY as a virtual copy of X:

Ψ


V1 = FV1

(Pa(V1), u1)

· · ·
X = FX(Pa(X), uX)

Y = FY (Pa(Y ), uY )

becomes−−−−−→ Ψ′



V1 = FV1
(Pa(V1), u1)

· · ·
X = FX(Pa(X), uX)

XY = Id(X)

Y = FY (Pa(Y ) \ {X}, XY , uY )

Intervening on the mechanism X → Y in Ψ is then equivalent to intervening on the variable XY

in Ψ′.
This definition of an intervention on a causal mechanism can be transposed into the domain of causal

graphs. From a graphical perspective, this intervention is equivalent to a two-step modification of the
graphical model: (i) inserting a virtual copy XY of X between X and Y , and then (ii) performing an
intervention do(XY = x) on the new variable. Inserting variables in causal arcs transforms a graphical
model G into G′, where the arc X → Y from G can be replaced with X → XY → Y in G′, XY being
a virtual copy of X.

It’s worth remarking that the insertion of a variable between X and Y doesn’t disrupt the graph’s
acyclicity. Thus, maintaining the link between FCM and Bayesian Networks as discussed in the
paragraph following Definition 2.4.

Definition 5.3 (Extended graph G′ and Arc-variable XY ) Let G be a causal graph representing a
FCMΨ. The extended graph G′ is obtained from G by inserting a variable between X and Y and its
FCM is the modified FCMΨ′, associated with the causal mechanism between X and Y .

This newly introduced variable is identified as an arc-variable, also termed an A-variable, labeled
as XY . It functions as a virtual copy of X inserted between X and Y . By construction G′respects the
following criterion:

• ∀v ∈ V \ {Y }, PaG(v) = PaG′(v) where PaG(v) (resp.PaG′(v)) is the set of parents of v in G
(resp.G′).

• PaG′(XY ) = {X}

• PaG′(Y ) = {XY } ∪ PaG(Y ) \ {X}
Having observed the translation of the definition into graphical terms, we hereby present this

definition applied to the probability within the new graph G′.

Definition 5.4 (Probabilities of the extended graphical model)
Let G be a causal graphical model representing the set of variable V and PG its joint distribution.

Let G′ the causal graphical model obtained by inserting an A-variable XY into the arc X → Y of G,
V ′ the variables of G′ and PG′ its joint distribution. By construction, we then have :

homogeneity

{
∀v ∈ V \ {Y }, PaG(v)) = PaG′(v)

∀v ∈ V \ {Y }, PG(v|PaG(v)) = PG′(v|PaG′(v))

copy insertion


Ω(X) = Ω(XY )

PaG(Y ) \ {X} = PaG′(Y ) \ {XY }
∀(x, x′) ∈ Ω(X)2,PG′(XY = x′|X = x) = Jx′ = xK

copy replacement

{
PG′(Y |XY = x) = PG(Y |X = x)

∀x ∈ Ω(X),PG′(Y |PaG′(Y ), XY =x)=PG(Y |PaG(Y ), X=x)

where Ω(X) the range of X and Jx = x′K is the Iverson bracket notation:

Jx = x′K =

{
1 if x = x′

0 otherwise
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Inserting an A-variable does not change the probabilistic model for the pre-existing variables, so the
distributions and join probabilities of pre-existing variables are unchanged. Thus, we get the following
rules to rewrite joint probabilities involving a mix of pre-existing and A-variables.

Theorem 5.1 (The joint distribution of G′comes from G)
Let G be a causal graphical model representing the set of variable V. Let G′ the causal graphical

model obtained by inserting the A-variable XY into the arc X → Y of G, and V ′ the variables of G′.
We have:

∀(x, x′) ∈ Ω(X), PG′(V ′ \{XY, X}, XY=x′, X=x) = Jx = x′KPG(V \{X}, X=x)

Proof: of Theorem 5.1

PG(V) =
∏
v∈V

PG(v|PaG(v)) =
∏

v∈V\{Y }

PG(v|PaG(v))× PG(Y |PaG(Y ))

=
∏

v∈V\{Y }

PG′(v|PaG′(v))× PG(Y |PaG(Y ) \X,X)

=
∏

v∈V\{Y }

PG′(v|PaG′(v))× PG′(Y |PaG′(Y ) \XY , XY = X)

=
∏

v∈V\{Y }

PG′(v|PaG′(v))× PG′(Y |PaG′(Y )) =
∏
v∈V

PG′(v|PaG′(v))

∀(x, x′) ∈ Ω(X),

PG′(V ′) =
∏
v∈V′

PG′(v|PaG′(v)) =
∏

v∈V′\{XY }

PG′(v|PaG′(v))×PG′(XY = x′|X = x)

=
∏
v∈V

PG′(v|PaG′(v))× PG′(XY= x′|X= x)= PG(V)× PG′(XY= x′|X= x)

= PG(V)× Jx′ = xK

□

Proposition 5.1 (Rewriting rules for A-variables)
Let G be a causal graphical model representing the set of variable V. Let G′ the graphical model

obtained by inserting A-variables into G, and V ′ the variables of G′.

(a) ∀S ⊂ V, PG′(S) = PG(S)

(b) ∀S ⊂ V ′ \ {X,XY }, PG′(S,X = x,XY = x′) = Jx′ = xKPG′(S,X = x)

(c) ∀S ⊂ V ′ \ {X,XY }, PG′(S,XY = x) = PG′(S,X = x)

Proof: of Prop.5.1

(a) ∀S ⊂ V, PG′(S) = PG(S):

PG(S) =
∑
v/∈S

PG(V) =
∑
v/∈S

∏
v∈V

PG(v|PaG(v))

From Theorem 5.1:

=
∑
v/∈S

∏
v∈V

PG′(v|PaG′(v)) =
∑
v/∈S

PG′(V) = PG′(S)

Thus : ∀S ⊂ V, PG′(S) = PG(S)

(b) ∀S⊂V ′\{X,XY },∀(x, x′)∈Ω(X), PG′(S,X=x,XY=x′)=Jx′ = xKPG′(S,X=x)

PG′(S,XY=x′, X=x)= PG′(S|XY=x′, X=x)PG′(XY=x′|X=x)PG′(X=x)

over and above PG′(XY=x′|X=x)=Jx′=xK, hence in the following we have x=x′. Thus:

PG′(S,XY = x′, X = x) = Jx′ = xKPG′(S|XY = x′, X = x)PG′(X = x)

= Jx′ = xKPG′(S|XY = x,X = x)PG′(X = x)

= Jx′ = xKPG′(S|X = x)PG′(X = x)

= Jx′ = xKPG′(S,X = x)

(c) ∀S ⊂ V ′ \ {X,XY }, PG′(S,XY = x′) = PG′(S,X = x′)
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Figure 12: Insertion of an intervention on an A-variable.

PG′(S,XY = x′) =
∑
x

PG′(S,XY = x′, X = x)

=
∑
x

Jx′ = xKPG′(S,X = x)

Only the terms with x′ remain:

PG′(S,XY = x′) = PG′(S,X = x′)

□
Intervening on the causal mechanism we defined as modifying the direct effect of X on Y is the

same as intervening on the A-variable XY in the extended graph G′. This setup enables us to employ
do-calculus and Property 5.1 to identify and estimate interventions on A-variables with observable
data.

Usual formulas about causal effects can still be used in G′. Let V be the set of variables of G. This
set is a subset of the variables of G′, and values are transported from G to G′. Since the arcs inserted
in G′ have the same direction as the arcs they replace, an information path involving variables in V is
active (resp. blocked) in G′ if and only if it is also active (resp. blocked) in G when conditioning on
any subset of V. Thus, do-calculus rules applicable in G can also be applied in G′, and the total causal
effect of a G variable can be estimated in G′ as in previous sections.

Lastly, we can derive from the identity XY = Id(X) additional properties about interventions on
A-variables.

Proposition 5.2 (Insertion of interventions on A-variables)
Let G be a causal graphical model, G′ the causal graphical model obtained by inserting A-variables

into G, X and Y variables copied from to G to G′, and XY the A-variable from X to Y in G′. The
intervention do(X = x) in G′ is equivalent to the intervention do(X = x,XY = x).

Proof: Applying the do(.) operator to X is equivalent to removing the arrows directed towards
X, while preserving the arrows going away from X, and forcing the value of X to x [28]. Since
XY = Id(X), this intervention forces the value XY to x, which can only propagate from XY to its
single child Y . It follows that the intervention on X (Fig. 12b) is equivalent to an intervention on
both X and XY (Fig. 12c). □

Proposition 5.3 (Equivalence between an intervention on a variable and interventions on its outgoing
arcs)

Let G be a causal graphical model, G′ the causal graphical model obtained by inserting A-variables
into G. Let Y , X, X⋆, K and W five disjoint sets of variables of G′, where X is a single variable
copied from G and X⋆ is the set of A-variables inserted between X and each of its children in G.

PG′(y|do(x), do(k), w) = PG′(y|do(X⋆ = x), do(k), w)

where do(X⋆ = x) represents the do(.) intervention on all variables of X⋆, forcing them to x.

Proof: of 5.3 From repeated applications of property 5.2, the intervention on X is equivalent to an
intervention on X and X⋆:

PG′(y|do(x), do(k), w) = PG′(y|do(x), do(X⋆ = x), do(k), w)

That we can reorder as:

PG′(y|do(X = x), do(k), w) = PG′(y|do(X⋆ = x, k), do(x), w)

After removing from G′ the arrows into X and the arrows into each variable in X⋆, X becomes discon-
nected, and thus (Y⊥⊥X|X⋆,K,W )G′

X⋆X
(where G′X⋆,X is the causal graph obtained by removing all

arrows pointing to nodes in X⋆, X). Removing further arrows would not invalidate this independence,
and variables in X do not have any descendant once all arrows into X⋆ have been deleted, so the
condition to apply rule 3 of do-calculus is satisfied, and:

PG′(y|do(x), do(k), w) = PG′(y|do(X⋆ = x, k), w)

□
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Figure 13: Graphical models before and after adding A-variable.

5.2.1 Identification and estimation of direct effects

To analyze the direct effect represented by the causal arc X → Y , we can assess the outcome of an
intervention do(XY = x) in G′. Identification of this intervention can rely on do-calculus, with the
caveat that PG′(...|XY = x,X = x′, ...) is only defined for x = x′, due to PG′(XY = x,X = x′) = 0 for
x ̸= x′.

Proposition 5.4 (Controlled direct effect)
We can infer that for all mediator M (child of X and parent of Y ):

PG(Y |do(X = x,M = m)) = PG′(Y |do(XY = x,M = m))

Proof: of 5.4
From proposition 5.2,

PG′(y|do(x), do(m)) = PG′(y|do(x), do(XY = x,m))

After removing arrows intoX, XY andM , X is disconnected, so the condition (Y⊥⊥X|XY ,M)G′
XY ,MX

of rule 3 of do-calculus is satisfied and we can delete the intervention on X:

PG′(y|do(x), do(m)) = PG′(y|do(XY = x), do(m))

The same rules of do-calculus apply in PG and PG′ for variables common to the two graphs, and
variables in PG′ are identical copies of those in PG , so any rewriting of PG(y|do(x), do(m)) is valid in
PG′ , and:

PG′(y|do(XM = x), do(m)) = PG(y|do(x), do(m))

□
This property allows us to propose an alternate definition of the Controlled Direct Effect (CDE)

in the modified graphical model G′ (Fig.13b):

CDEG′(u, u′, d) = PG′(R|do(UR = u,D = d))− PG′(R|do(UR = u′, D = d))

From proposition 5.4:

CDEG′(u, u′, d) = PG(R|do(U = u,D = d))− PG(R|do(U = u′, D = d))

We retrieve the formula of the classic definition of the CDE.

5.2.2 Exploring new causal questions

Now that we can represent an intervention on a causal mechanism using the do(.) operator, we can
leverage the large corpus about do-calculus to address further questions about direct causal effects.

For instance, we might want to quantify the effect of a hypothetical intervention that would increase
Usage without impacting Discount. A real-world equivalent could be a spot intervention that observes
current usage, grants any discount accordingly, and then triggers an increment in usage. Let’s define
the direct effect of a hypothetical intervention that specifically alters the causal mechanism from U to
R, from an observed value UR = u to the modified value UR = u′, as:

Definition 5.5 (Direct Effect Through A-variables)

DE(u, u′) = P(R = 1|do(UR = u′), U = u)− P(R = 1|U = u)

Let’s assume that Usage is represented by a finite set of integer values {0, 1, ..., l}. By computing
the direct effect of increasing Usage by 1 for all its discrete values and by averaging the results over
the observed distribution of Usage, we can estimate the direct causal effect of growing usage without
modifying the budget allocated to discounts as:∑

0≤u<l

DE(u, u+ 1)P(u) + P(R = 1|U = l)P(U = l)− P(R = 1)

Do-calculus computations in PyAgrum identify DE(u, u′) with:

DE(u, u′) =

∑
c,d,e P(R = 1|c, d, u′)P(d|u)P(u|c, e)P(c)P(e)

P(u)
− P(R = 1|u)

15



CE

U

D

R

L

V

(a) Ground Truth

CE

U

D

R

(b) Causal Bayesian Model

CE

U

D

R̂

DR UR CRER

(c) Predictive Model

Figure 14: Ground Truth, Causal and Predictive Models

The formula from PyAgrum relies on the Conditional Probability Tables associated with nodes in
a graphical model. Since we intend to use a different technique for the estimate, we can use Markov
factorization rules to simplify the formula:

DE(u, u′) =
∑
c,d

P(R = 1|c, d, u′)P(c, d|u)− P(R = 1|U = u)

This formula can indeed be estimated by training a predictive model f of R on {C,D,U} and
performing a Monte-Carlo integration of f on a sample population PU=u filtered on U = u:

D̂E(u, u′) =
1

|PU=u|
∑
PU=u

f(C,D,U = u′)− EPU=u
(R = 1)

5.3 XAI interpreted as a quantification of direct causal effects

5.3.1 Example

Let’s consider a data generation process represented by the ground truth model in Fig. 14a. This is
the model we used throughout the article, with each variable defined by its first letter. In this model,
L is latent, and all other variables can be observed.

Let G be the graphical causal model relating R and all its direct or indirect causes (Fig. 14b). We
assumed that domain expertise allowed us to properly exclude V from the set of causal ancestors of R
(AnG(R) = {C,D,E,U}), and that R has no unknown confounder.

The Markov boundary of R in G reduces to the set PaG(R) = {C,D,U} of direct parents of R in
G. PG(R|AnG(R)) = PG(R|PaG(R)) (14)

Finally, let’s consider a model f(.) trained on AnG(R) to produce predictions about R. The data
extraction process used to feed the learning algorithm with training observations is represented in
Fig.14c, with XR=Id(X).

A model learned according to the principles of the Statistical Learning Theory [41] is expected to
produce minimal generalization errors on a population sampled from the same data generation process:

f(AnG(R)) ≈ PG(R = 1|PaG(R))

The model Figure 14c is equivalent to a model G′ with A-variables between Y and its parents. A
reasonable assumption when training a predictive model is that any known ancestor of R might have
a small direct effect on it. From this assumption, we first insert the direct arc E → R before inserting
ER.

5.3.2 Partial Dependence Plots

Let Y be a target variable, A the set of its causal ancestors in the graph G, G′ the graph obtained by
inserting a set M of A-variables between A and Y .

We note a subset S ⊂ M , and S̄ = M \ S. The effect PG′(Y |do(xS)) of an intervention on S
variables can be identified using the same do-calculus steps involved in the backdoor theorem for an
intervention on a single variable. Using marginalization and the chain rule for joint probabilities:

PG′(Y |do(xS)) =
∑
xS̄

PG′(Y |do(xS), xS̄)PG′(xS̄ |do(xS)) (15)

By definition, each A-variable in M has the target as an only child. Furthermore, all the parents
of the target are present in M so S̄=M\S blocks all backdoor paths from S into Y , and (Y⊥⊥S|S̄)G′

S
.

By application of rule 2 of do-calculus, we obtain:

PG′(Y |do(xS), xS̄) = PG′(Y |xS , xS̄) (16)

After cutting all arrows into S̄, the only paths connecting S and S̄ collide on Y , and (S̄⊥⊥S)G′
¯̄S
.

By application of rule 3 of do-calculus:

PG′(xS̄ |do(xS)) = PG′(xS̄) (17)
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From Equations 15, 16 and 17:

PG′(Y |do(xS)) =
∑
xS̄

PG′(Y |xS , xS̄)PG′(xS̄)

Since XS and XS̄ are exact copies of observed variables, an intervention on a set of direct causal
arcs, represented as a do(.) operation on A-variables, is thus identified as observable probabilities, that
can be estimated by a Monte-Carlo integration over a sample population B:

PG′(Y = 1|do(XS = xS)) ≈
1

|B|

|B|∑
i=1

f(xS , X
(i)

S̄
)

We recognize Eq.3 involved in calculating the PDP of S.
Hence, estimating the direct effects of a cause set S on a target Y involves training a predictive

model for Y using all its causal ancestors, and so excluding other known variables. Then, the PDP
can be used to determine the effects of S.

In our example, to estimate direct causal effects on R, we propose to train a predictive model of R
on the feature selection {E,C,D,U}, and then apply the PDP formula to each input feature.

5.3.3 Marginal Shapley values

The characteristic function of marginal Shapley values is vmarg defined for a set S of variables as:
vmarg(S) = E

[
f(xS , XS̄)

]
.

Where S and S̄ have the same definition as the previous paragraph 5.3.2.
vmarg is typically estimated over a sample background population B as [5]:

vmarg(S) =
1

|B|

|B|∑
i=1

f(xS , X
(i)

S̄
)

Again, we recognize the equation 3 of the PDP of S: each calculation of the characteristic function
vmarg on a coalition S of direct causes of Y amounts to the calculation of interventions on the causal
arcs from S to Y .

Thus, provided that a predictive model has been trained on the set of direct (or ancestral) causes
of the target, at the exclusion of other variables, marginal Shapley values give a quantification of
all direct effects on Y under the constraints of efficiency, linearity, symmetry and nullity. For our
example, the Shapley values in Fig.5b estimate the direct effects of four input features on Renewal,
whereas the Shapley values in Fig.5a do not support straightforward causal interpretations about the
data generation process (aside from Economy being outside the Markov boundary of the target).

Calculating marginal Shapley values involves considering every conceivable combination of variable
interventions. However, not all interventions are practical or feasible in real-world settings. In our
example: altering a customer’s profile might be unfeasible while encouraging usage and applying
discounts can be executed. Hence, employing the PDP technique on a limited variable set is more
pertinent for estimating actionable causal effects.

In this section, we showed how incorporating a copy variable allowed us to effectively isolate and
estimate the direct effect. This technique was then applied within our case study, where knowledge
of the causal structure allowed for identifying the effect. Using the methodology detailed earlier, we
estimated this direct effect.

6 Conclusion

This paper presents a novel XAI approach for better quantifying causal effects from observational data
and a graphical method for gaining insights into direct effects.

Bluntly applying XAI tools to classifiers trained on all known features without considering causality
can lead to flawed interpretations. To address this issue, we propose a new framework that begins
with a training population, a causal graph, and a specific query about a causal effect. Employing tools
of causal inference, we identify the causal impact in terms of observable probabilities. Subsequently,
we train a machine learning model to estimate these probabilities. Then, an interpretability method
quantifies the requested causal effect from the model predictions. Additionally, to assess a direct
effect of X on Y , we introduce A-variables, effectively isolating the causal mechanism to perform an
intervention.

In the XAI community, there is a debate between adhering to the model’s behavior (true-to-the-
model) or staying faithful to the data (true-to-the-data) [4]. Relaxing the constraint of a pre-existing
model is a step towards enabling XAI to be faithful to both the model and the data for a variable of
interest. However, addressing multiple causal queries might involve training several predictive models.

Our approach uses causality to build and analyze predictive models. Despite its practical value,
it faces some challenges, particularly in the task of learning a causal graph when latent variables or
multiple parents for specific nodes are involved. Various methods can at least yield a partially directed
causal graph (PDAG). As a possible next step, we could explore how such a partial causal graph could
be used in our approach.

Finally, we emphasize that our proposal is not intended to replace randomized controlled trials or
carefully designed studies on natural experiments. Our purpose is instead to improve the insights that
can be gained from observational data.
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