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Abstract
Hybrid artificial intelligence is rapidly advancing, particularly in the

domain of combining ontology and machine learning models. However,
existing approaches in this field still encounter several limitations. Most
current works tend to combine a single ontology model with a specific
learning algorithm and often have a strong focus on specific application
domains, which can complicate system adaptation and generalization.

To address these limitations, we introduce in this paper an objective-
driven, hybrid, and modular approach that promotes the integration of
multiple machine learning and ontology models. The approach consists of
decomposing the studied application into several tasks, each of them using
the most appropriate ontological and machine learning models applied to
a subset of knowledge and data. Our approach enhances adaptability and
flexibility by tailoring artificial intelligence models to specific goals and
reasoning requirements, thereby promoting a more effective hybrid artificial
intelligence system and enabling the abstraction and reuse of developed
solutions in various application domains. The proposed approach is applied
in the design of a hybrid artificial intelligence model for the development
of a compact all-optical Arithmetic and Logic Unit.

1 Introduction
To acquire new knowledge, the human brain employs two main processes: in-
duction and deduction. Induction enables the discovery of general laws by
synthesizing specific facts, typically derived from observations and data. De-
duction, conversely, allows for the decomposition and analysis of objects by
starting from the general, as described by several propositions assumed to be
true, and arriving at the particular in the form of a logical conclusion. These
two approaches are naturally combined to create various methods for accessing
and inferring specific knowledge.
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In artificial intelligence, inductive reasoning is possible through using machine
learning models, while deductive reasoning can be provided by using ontologies.
By combining these two models, it becomes possible to build a hybrid reasoning
model closer to the human cognitive process [1–3].

Hybrid artificial intelligence has emerged as a dynamic area of research
and innovation. The approaches proposed in the literature promise to create
artificial intelligence systems that are not only highly proficient in learning from
data but also possess structured knowledge and inferential capabilities to make
informed decisions. However, despite the significant progress made in this field,
the proposed combined models still face limitations.

One of the main limitations is that existing methods often combine a specific
machine learning algorithm, operating on all data, with a singular ontological
model that integrates all available knowledge. This type of hybrid model can
become unwieldy when dealing with diverse, multi-domain applications, leading
to challenges such as scalability and maintenance complexities [4]. Moreover,
relying on a single machine learning algorithm for all data types and tasks can
lead to suboptimal performance, since different algorithms may be better suited
to specific contexts [5].

To enhance the flexibility and adaptability of hybrid artificial models, it is
essential to consider more modular and objective-aware concepts. In particular,
the commonly used one-to-one strategy of standard hybrid systems could be
significantly improved by synergetically involving multiple domain-specific models
and machine learning algorithms.

In this paper, we present a modular and objective-driven hybrid concept
that integrates several different machine learning and ontology models. We
illustrate its application in the DALHAI1 (Design of plasmonic ALU by Hybrid
Artificial Intelligence) collaborative project, which aims at developing a compact
all-optical Arithmetic and Logic Unit (ALU) using hybrid artificial intelligence
guidance. Our objective is to design a flexible and adaptable hybrid architecture
capable of orchestrating combinations of artificial intelligence models tailored to
the specific goals and reasoning requirements of the sub-systems.

2 Combining Machine Learning and Ontologies
Several studies have explored the integration of both inductive reasoning, typically
implemented using machine learning techniques, and deductive reasoning, often
performed through the use of ontologies, within artificial intelligence systems.
They can be gathered into three main categories of hybrid models: Learning
and Reasoning System, Semantic Data Mining and Learning-Enhanced
Ontology, as well as their main subcategories [6], as shown in Fig. 1.

Learning and Reasoning System refers to a computer system that uses
machine learning and ontologies to solve complex problems and perform specific
tasks in the same domain (e.g., a decision support system for the management

1https://anr.fr/Project-ANR-20-CE24-0001
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Figure 1: Main categories of approaches combining ontology and machine
learning.

of cardiac pathology [7]). These complete systems correspond to two main
subcategories: Expert System Embedded Learning and Hybrid Application.

The Expert System Embedded Learning subcategory represents ontology-
based expert systems using machine learning to perform specific tasks, such
as handling missing values [8]. An expert system is designed to simulate the
reasoning and decision-making of a human expert in a particular domain. It
comprises several modules including the knowledge base, the inference engine,
and the interface [9]. In this subcategory, the machine learning component is
considered as a subprogram of the system. It is used to analyze and learn from
data in order to improve the overall system’s performance.

The Hybrid Application subcategory includes all systems that integrate
machine learning on raw data with ontological knowledge. The output of these
systems results from the hybridization of the two techniques, where the result of
one can be used to improve the functionality of the other. In this subcategory,
some authors propose a pipeline that employs machine learning to classify data,
populate the ontology with this data, and use a reasoning system to analyze,
validate, and correct the result [10–13]. Other approaches complete the pipeline
by transforming ontological entities into data that can be manipulated by machine
learning algorithms, as well as the semantic relations of the ontology to create
expert neural networks [14,15].

Studies in Semantic Data Mining systematically integrate domain knowl-
edge into the machine learning process in order to enhance its efficiency [16].
These approaches can be divided into two main subcategories: Informed Machine
Learning and Ontologies Explain Black-Box.

In Informed Machine Learning, prior knowledge is incorporated into the
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machine learning process at various stages [17]. Prior knowledge is often rep-
resented by an ontology that can be used in the feature engineering phase for
selection [18,19], extraction [20–22], or augmentation [23,24], in order to acquire
more relevant features. They can also be used to facilitate the choice of the most
suitable model structure [25] or be directly integrated into the machine learning
algorithm [26–31].

Studies classified in the subcategory Ontologies Explain Black-Box aim to
add a posteriori explainability to learning models using ontological knowledge.
These explanations can be applied globally in decision-making [32], or locally for
each individual [33]. This type of research work represents recent contributions
in the field of explainable artificial intelligence, compared with LIME (Local
Interpretable Model-agnostic Explanations) [34] and SHAP (SHapley Additive
exPlanations) [35].

In Learning-Enhanced Ontology, the use of ontologies is improved through
machine learning. This category can be divided into three main subcategories.
The first subcategory considers that the creation and maintenance of ontolo-
gies can be (partially) automated using machine learning techniques. In this
case, we refer to Ontology Learning, where ontologies can be “learned" from
different resources [36–41]. The second subcategory, Ontology Mapping, groups
studies that aim to improve ontology alignment through machine learning to
ensure interoperability between the two models [42–46]. Finally, the subcategory
Learning-based Reasoning covers approaches that seek to facilitate the deductive
reasoning of an ontology using machine learning [47–51].

This overview highlights the importance and evolving nature of hybrid
artificial intelligence approaches that integrate machine learning and ontological
reasoning to model systems combining data analysis and expert knowledge.
Despite the advances in this field, this combination remains a significant scientific
challenge, facing several methodological and practical difficulties. In addition
to the complexity of combining these approaches, the main issue is that the
proposed models often rely on a sequential pipeline using a global ontology and
all available data at each stage. Existing methods frequently involve using a
specific learning model applied to the entire dataset, combined with a single
ontology covering all domain knowledge. This concept is often unsuitable for
complex, multitasking applications. In fact, depending on the data type and
the task to be performed, some machine learning models may be more suitable
and efficient than others. Consolidating all knowledge into a single ontology also
presents limitations. In practice, most reasoning processes are based on selecting
knowledge relevant to the specific subject. Using all available knowledge can
burden the reasoning process and make the task more complex. This can lead
to problems with processing capacity and increase costs in terms of time and
resources. Furthermore, the proposed solutions are often problem-specific and
heavily dependent on the application domain and the addressed issue. This
makes it challenging to reuse, evolve, or adapt these models for other types of
applications.
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3 Objective-Driven Hybrid and Modular Approach
To address the question of adaptability and flexibility in existing hybrid models,
we propose a modular approach that supports the decomposition of the model
into distinct modules based on specific data processing, reasoning requirements,
and application objectives. This approach enables a seamless integration of
machine learning and ontological reasoning, based on the needs of each stage in
the application. This modular approach not only enhances the hybrid model’s
capacity to adapt to various types of applications but also enhances its scalability
and ease of maintenance.

3.1 Presentation of the Approach
We propose a comprehensive, optimized, and adaptable hybrid model that encom-
passes various combinations of hybrid artificial intelligence models, depending on
the system’s objectives and reasoning requirements. Before defining the machine
learning and logical reasoning models to be used, we decompose the application
into simpler and autonomous modules, each focused on specific tasks to achieve
a given objective. These individual modules can be developed and updated
independently, and they can communicate and exchange results according to the
application needs.

The modular approach creates hybrid and interoperable modules, each using a
subset of data and knowledge, depending on the specific objective. Therefore, the
development of goal-driven hybrid models is facilitated and results in enhanced
adaptability and optimized performance compared to a global integrated system.

Among other assets, the modular concept increases model performance by
using the most appropriate knowledge and learning techniques. Moreover, it
improves reusability, parallel development, and cost reduction. The resulting
models are more flexible, adaptable, and scalable, hence they can be integrated
at several levels with other systems. An overview of our approach is presented
in Fig. 2.

3.2 Application for the design of a photonic ALU
An ALU (Arithmetic and Logic Unit) is a key part of a computer processor.
It is responsible for executing the arithmetic and logic operations required to
process the data in a computer program. The ALU uses logic circuits to execute
these operations, which are generally implemented using transistors and basic
logic gates. Although transistors have been reduced to nanometric scales to
increase device density, they still have physical and technical limitations that
affect processor performance, particularly in terms of clock rate and power
consumption.

The DALHAI project aims at developing a new generation of compact,
interconnect-free, all-optical ALUs that use optical technology to process infor-
mation faster, with reduced energy dissipation. In this approach, the operations
are realized by a single resonant cavity object without resorting to an inter-device
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Figure 2: Global view of the objective-driven hybrid and modular approach

cascade. The classical challenge of circuit design is replaced by elaborating the
appropriate cavity shape that can perform the desired processing logic func-
tions. To achieve this objective, it is necessary to find the ALU device shape
and excitation parameters for operating the holistic logic gate devices. The
first successful experimental results were obtained using a double-hexagon (DH)
structure for a set of logic gates [52]. However, the discovery of more complex
ALU configurations may be limited by the choice of structure and simulation
parameters, often defined based on domain experts’ intuitive assumptions. To
address this limitation, we propose to use a modular and hybrid artificial in-
telligence approach to facilitate the exploration of new shapes and excitation
parameters for solving the inverse design of complex and reconfigurable ALUs.

To identify the learning and reasoning models to be implemented in the
DALHAI project, we have conducted a knowledge acquisition process based on
the cooperative knowledge elicitation approach [53] to collect domain constraints
and expert knowledge. According to the knowledge elicitation results and
the application requirements, the developed model must achieve three main
objectives: finding an optimal shape of the device (objective 1) by optimizing
the excitation parameters (objective 2) to support various logic gates (objective
3).

This presents a multi-objective optimization problem, requiring precise mod-
eling and evaluation of proposed solutions. Solving this type of question in
artificial intelligence involves using optimization methods and machine learning
techniques to find possible solutions and evaluate them according to specific
performance criteria. To attain this goal, we propose a modular, hybrid archi-
tecture combining machine learning models to generate optimal solutions, and
ontological reasoning models to verify whether the selected solution is feasible
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according to the knowledge and physical constraints defined by domain experts.
In this context, the machine learning part can be seen as a generator part
proposing different solutions, while the ontological part can be assimilated to a
discriminator part evaluating the solution’s viability and, if required, proposing
adjustments to the learning model.

Fig. 3 shows a global view of the proposed architecture for the DALHAI
project. First, we use a genetic evolutionary algorithm [54–56] to create and
optimize the shape and excitation parameters (Part 1 in Fig. 3). Evolutionary
algorithms are suitable for addressing multi-objective optimization problems.
These algorithms are inspired by the principles of natural selection and evolution
to iteratively improve potential solutions over generations. When dealing with
multi-objective optimization, where multiple conflicting objectives need to be
considered simultaneously, evolutionary algorithms allow the exploration of
solution spaces and the identification of trade-offs among these objectives.

Depending on the targeted logic gates, the evolutionary algorithm generates a
shape on which a numerical simulation of the laser field propagation is calculated
using the PyGDM tool2 [57]. This first algorithm includes a second evolutionary
algorithm dedicated to optimizing the excitation parameters (laser position,
polarization, and phase) for a particular shape (Part 2 in Fig. 3).

Each solution produced by the genetic algorithm must respect the physics
constraints defined by the domain experts in order to ensure the feasibility
and reproducibility of the results in experimentation. We have identified three
main types of knowledge required to define: (1) the shape, (2) the excitation
parameters, and (3) the detection parameters of the logic gates.

This has led to the definition of three ontologies. The first, Shape Ontology,
gathers knowledge and constraints related to the description of the device shape
according to constraints imposed by the experimental implementation. In the
context of this project, we are targeting polygon-type shapes (a closed planar
figure made up of connected segments) with specific constraints linked to the
physical realization of the shape in experimentation, such as the minimum and
maximum size of a segment, the minimum value of an angle, the minimum and
maximum surface area of the shape, etc. This ontology takes as input the shape
generated by the learning part, and determines whether it is valid and respects
all the specified constraints.

The second ontology, Excitation parameter ontology, concerns excitation pa-
rameters (laser characteristics, input/output port locations, etc.). It corresponds
to physical knowledge related to the concrete feasibility of the experiment, such
as the location of the two laser spots, which must respect a certain distance from
each other or the difference between two polarizations enabling the unambiguous
encoding of the logic input values. The third ontology, Logic gate ontology, is
used to capture knowledge about logic gates and their connection. Its objective
is to verify the correct assembly between input and output points and ensure
that the result corresponds to the desired logic gate. The reasoning result of the
three ontologies can also be used to make adjustments to the learning model

2https://homepages.laas.fr/pwiecha/pygdm_doc/
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Figure 3: Objective-driven hybrid and modular approach applied to the DALHAI
project

parameters, resulting in a powerful, efficient, and faster hybrid and modular
reasoning model.

4 Conclusion
Human reasoning involves several cognitive processes for problem-solving and
decision-making. Because of this complexity, the real-life systems that we need
to implement are also often complex and multifaceted. These systems can
be difficult to solve satisfactorily using only deductive or inductive reasoning
methods. Hybrid artificial reasoning is therefore essential for simulating and
digitalizing a cognitive process closer to human reasoning. It combines the
advantages of both reasoning methods and overcomes their respective limitations.
Moreover, reasoning models are often based on data and knowledge from different,
heterogeneous, and sometimes contradictory sources. Hybrid reasoning aims to
facilitate the processing of this data and knowledge, using methods adapted to
their nature, source, and use, in order to obtain more robust and reliable results.

In recent years, the hybridization of reasoning combining ontological models
and machine learning algorithms has been widely developed, but the proposed
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approaches face a number of limitations. After studying existing approaches, we
identified a particular challenge related to the complexity and lack of adaptability
of existing models. Indeed, the approaches presented in the literature are often
based on a sequential pipeline that uses a global ontology and all the data in
each of its operating stages. All logical knowledge is grouped together in a single
ontology, which can quickly become complex and difficult to maintain, resulting
in high costs in terms of time and resources. Moreover, these models are often
constrained by a specific machine learning model on all the data and are built
according to the specific needs of the studied application in a particular domain.
This makes them difficult to update and adapt to other types of applications.

To address this issue, this article proposes a hybrid, modular, and objective-
driven approach. The idea is to decompose the problem to be solved into several
tasks according to the objectives to be achieved. Each of these tasks uses the most
appropriate ontological and machine learning models on a subset of knowledge
and data in order to achieve more flexible, adaptable, and easily scalable systems.
On the one hand, this approach allows modules to evolve separately, and on
the other, it encourages the abstraction and reuse of modules in other types of
applications.

We have successfully applied our approach in the DALHAI collaborative
project aimed to develop a hybrid artificial intelligence model for constructing
a photonic ALU. The resulting model allowed independent development and
maintenance of the various modules and facilitated the use of the data and
knowledge required for each stage, demonstrating our approach’s application in
a real project.
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