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1 Description of the problem

In medical imaging, cancer tumours are known to have irregular boundaries,
which are best modelled by non-Lipschitz shapes such as fractals.
We consider an imaging problem set on a domain Ω of Rn, n ≥ 2, inside
which is an inclusion D characterized by its conductivity k:
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Here,
• Ω is a bounded domain,
• ∂Ω is connected,

• D ⊂⊂ Ω is a domain,
• k > 0 and k 6= 1,
• 1D is the indicator function of D.

We wish to identify the inclusion D from boundary measurement
on ∂Ω when Ω (and D) can be an irregular or fractal domain.

• Domain regularity: Ω is a (two-sided) extension domain:

(i) Ω is an H1-extension domain: ∃ a linear continuous extension operator
H1(Ω) → H1(Rn),

(ii) Ωc := R
n\Ω is an H1-extension domain,

(iii) the Hausdorff dimension of ∂Ω is (locally) in [n − 1, n[.

◮ ∂Ω can have a changing Hausdorff dimension.
◮ Ω cannot have a cusp (conditions (i) and (ii)).

2 Trace and weak normal derivatives

• Trace operators– Dirichlet boundary conditions [2]:

Tri u(x) = lim
r→0

1

λ(n)(Ω ∩ Br(x))

∫

Ω∩Br(x)

u dx, u ∈ H1(Ω), x ∈ ∂Ω q.e.,

is the interior trace operator, where λ(n) is Lebesgue’s measure on R
n.

◮ Ker(Tri) = H1
0(Ω) = C∞

0 (Ω)
‖·‖H1(Ω)

◮ Ker(Tri)
⊥ is the space of 1-harmonic functions on Ω.

◮ B(∂Ω) := Tri(H
1(Ω)) is a Hilbert space for the norm:

‖f‖B(∂Ω) := min
{

‖v‖H1(Ω)

∣

∣ Tri v = f
}

= ‖ṽ‖H1(Ω),

where ṽ is 1-harmonic on Ω and Tri ṽ = f .
Similarly, we define the exterior trace operator Tre : H1(Ωc) → B(∂Ω).

• Weak normal derivatives – Neumann boundary conditions [3]:
for u ∈ H1(Ω) with ∆u ∈ L2(Ω), denoting B′(∂Ω) := L(B(∂Ω),R),

∀v ∈ H1(Ω),

〈

∂iu

∂ν
, Tri v

〉

B′(∂Ω), B(∂Ω)

=

∫

Ω

(∆u)v dx +

∫

Ω

∇u · ∇v dx,

is the weak interior normal derivative of u.
Similarly, we define the weak exterior normal derivative ∂eu

∂ν
∈ B′(∂Ω)

for u ∈ H1(Ωc) with ∆u ∈ L2(Ωc).

3 Layer potential operators

Transmission problem:















−∆u = 0 on R
n\∂Ω,

Tri u − Tre u = −f on ∂Ω,
∂iu

∂ν
−

∂eu

∂ν
= g on ∂Ω.

(2)

• If Ω is Lipschitz, f, g ∈ L2(∂Ω, σ) with σ Lebesgue’s measure on ∂Ω and
∫

∂Ω g dσ = 0, then u = S∂Ωg − D∂Ωf [4], where:

S∂Ω g(x) =

∫

∂Ω

G(x − y)g(y) σ(dy), x ∈ R
n,

D∂Ωf (x) =

∫

∂Ω

∂G

∂νy

(x − y)f (y) σ(dy), x ∈ R
n\∂Ω,

with G Green’s function for −∆ on R
n, are the single and double layer

potential operators respectively.
The Neumann-Poincaré operator is the singular integral:

K∂Ωf (x) =
1

ωn

p.v.

∫

∂Ω

〈y − x, νy〉

|x − y|n
f (y) σ(dy),

with ωn the area of the unit sphere and νy the outward normal to ∂Ω.
It holds:

K∂Ω =
1

2
(Tri + Tre) ◦ D∂Ω. (3)

• If Ω is an extension domain, f ∈ B(∂Ω), g ∈ B′(∂Ω) with 〈g, 1〉B′, B = 0
(i.e., g ∈ B′

0(∂Ω)), then u = S∂Ω g − D∂Ωf , where

S∂Ω : g ∈ B′
0(∂Ω) 7−→ uS weak sol. to (2) for f = 0,

D∂Ω : f ∈ B(∂Ω) 7−→ uD weak sol. to (2) for g = 0,

are the generalized layer potential operators.
The Neumann-Poincaré operator is defined as K∂Ω : B(∂Ω) → B(∂Ω) by (3).

4 Imaging results

We generalize imaging results given in [1] in the Lipschitz case.

• Representation formula: let Ω be an extension domain and
g ∈ B′

0(∂Ω). Then, the unique weak solution to (1) is:

u = H − S∂D ϕ with H = S∂Ω g − D∂Ωf,

where f = Tri u|∂Ω ∈ B(∂Ω) and ϕ ∈ B′
0(∂D) such that:

(

k + 1

2k − 1
I + K∗

∂D

)

ϕ =
∂H

∂ν

∣

∣

∣

∣

∂D

.

• Monotonous identification: let D1 ⊂ D2 ⊂⊂ Ω be extension
domains of Rn. If for some g ∈ B′

0(∂Ω)\{0}, the solutions u1 and u2 to
problem (1) for D = D1 and D = D2 resp. satisfy Tri u1|∂Ω = Tri u2|∂Ω,
then D1 = D2.

• Identification of disks: let Ω be an extension domain of R
2 and

D1, D2 ⊂⊂ Ω be disks. If for some g ∈ B′
0(∂Ω)\{0}, the solutions u1 and

u2 to problem (1) for D = D1 and D = D2 resp. satisfy Tri u1|∂Ω = Tri u2|∂Ω,
then D1 = D2.
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