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Abstract We describe the baseline model configuration and simulation characteristics of the Geophysical
Fluid Dynamics Laboratory (GFDL)'s Land Model version 4.1 (LM4.1), which builds on component and
coupled model developments over 2013–2019 for the coupled carbon‐chemistry‐climate Earth System Model
Version 4.1 (ESM4.1) simulation as part of the sixth phase of the Coupled Model Intercomparison Project.
Analysis of ESM4.1/LM4.1 is focused on biophysical and biogeochemical processes and interactions with
climate. Key features include advanced vegetation dynamics and multi‐layer canopy energy and moisture
exchanges, daily fire, land use representation, and dynamic atmospheric dust coupling. We compare LM4.1
performance in the GFDL Earth System Model (ESM) configuration ESM4.1 to the previous generation
component LM3.0 in the ESM2G configuration. ESM4.1/LM4.1 provides significant improvement in the
treatment of ecological processes from GFDL's previous generation models. However, ESM4.1/LM4.1 likely
overestimates the influence of land use and land cover change on vegetation characteristics, particularly on
pasturelands, as it overestimates the competitiveness of grasses versus trees in the tropics, and as a result,
underestimates present‐day biomass and carbon uptake in comparison to observations.

Plain Language Summary The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a
new Land Model (LM4.1) as part of its 4th generation coupled model development. This model includes
advances from the previous generation and introduces a new vegetation demography model, multi‐layer canopy,
plant hydraulics, fire, and land use representation as well as dynamic atmospheric dust coupling. Coupled within
an Earth System Model (ESM4.1), LM4.1 features an improved representation of many ecological processes
from the previous generation of GFDL ESMs.

1. Introduction
More than four decades ago, the possibility of anthropogenic climate change driven by CO2 emissions from fossil
fuel consumption and deforestation motivated global carbon cycle studies with a simplified representation of
climate‐carbon interactions (Broecker et al., 1979; Siegenthaler & Oeschger, 1978). Grassl (2000) argued that to
increase understanding of climate system variability and to make long‐term projections of climate change, the
scientific community needs to develop “a 3D general circulation model of the global atmosphere coupled to the
3D world ocean, including sea ice dynamics and a representation of land surface processes (including vegeta-
tion).” Concurrently, Cox et al. (2000) demonstrated the possibility of carbon‐cycle feedback that amplified
climate change using a fully coupled, three‐dimensional carbon‐climate model HadCM3 with a prognostic
component able to predict sub‐grid fractions of different vegetation types.

The Coupled Model Intercomparison Project, Phase 5 (CMIP5 Taylor et al., 2012) had contributions from six
coupled carbon‐climate Earth System Models (ESMs) with prognostic vegetation distribution capabilities (as
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opposed to a prescribed current vegetation distribution used in pre‐industrial, historical, idealized, and future
scenarios experiments), including two ESMs from Geophysical Fluid Dynamics Laboratory (GFDL), ESM2M
and ESM2G (Dunne et al., 2012, 2013). Both GFDL ESMs used the land model LM3.0 (Shevliakova et al., 2009,
2013). Since CMIP5, climate centers pursued different strategies for improving the representation of land‐
atmosphere interactions such as coupled carbon‐nitrogen‐phosphorus cycling (e.g., E3SM (Q. Zhu
et al., 2019)); plant hydraulics, soil water, and snow processes (e.g., CESM/CLM5 (Lawrence et al., 2019)),
energy and moisture coupling at the soil/atmosphere interface (e.g., IPSL‐CM6A‐LR (Cheruy et al., 2020)), and
water resources and crop management with land use decision‐making model based on economic activities (e.g.,
MIROC‐INTEG‐LAND (Yokohata et al., 2020)). In the above examples, as in most other ESMs, vegetation
distributions are prescribed on unmanaged lands and their fractions are modified via land‐use scenarios while
ignoring the effects of climate change on biogeography (i.e., vegetation type).

There are only five CMIP6 ESMs with prognostic dynamic vegetation distribution capabilities: UKESM1 (Sellar
et al., 2019), MPI‐ESM1.2 (Mauritsen et al., 2019), AWI‐ESM (Shi et al., 2020), EC‐Earth3 (Döscher
et al., 2022), and GFDL‐ESM4.1 (Dunne et al., 2020a). The first three models include a first‐generation dynamic
global vegetation model (DGVM)—updated TRIFFID (Harper et al., 2018) and JSBACH (Reick et al., 2021) and
an earlier version of JSBACH (Stevens et al., 2013)—characterized by a simplified treatment of plants' structure
and competition. Only two ESMs, EC‐Earth3 and GFDL ESM4.1, attempted to include second‐generation
vegetation models with an explicit treatment of ecosystem demography, particularly age‐height structured
vegetation competition for light. However, while EC‐Earth3 includes an ecosystem demography model LPJ‐
GUESS (Smith et al., 2001, 2014), its land surface HTESSEL (Balsamo et al., 2009) and vegetation dynamics
(and thus terrestrial carbon cycle) components do not have a consistent treatment of soil water and energy ex-
changes; that is, plants and the hydrological cycle “experience” different states of water. To our knowledge,
LM4.1 is the first land component with a fully consistent treatment of ecosystem demography, multi‐layer (n > 2)
vegetation canopy, and land surface processes, used in the Diagnostic, Evaluation, and Characterization of Klima
(DECK) CMIP6 (Eyring et al., 2016) simulations as well as in projection scenarios (ScenarioMIP; B. C. O’Neill
et al., 2016), the coupled climate‐carbon cycle (C4MIP; C. D. Jones et al., 2016), atmospheric chemistry and
aerosols (AerChemMIP; Collins et al., 2017), land use (LUMIP; Lawrence et al., 2016), carbon dioxide removal
(CDRMIP; Keller et al., 2018), and detection and attribution (DAMIP Gillett et al., 2016) among others.

While future scenarios for mitigation and adaptation anticipate major contributions from land, including bio-
energy and afforestation (IPCC, 2019), ESMs' capabilities to simulate simultaneous changes in climate and
vegetation, including terrestrial carbon stocks and fluxes, remain very limited. At the same time, changes in
vegetation also feed back to the regional surface climate, hydrological cycle, exchanges of energy, biogeo-
chemical tracers, and short‐lived climate forcers, for example, dust (Jia et al., 2019). Here we demonstrate that
comprehensive ESMs, such as ESM4.1, are able to maintain quality simulations of surface climate and capture
vegetation structure and distribution on centennial scales over the historical period.

The three main goals of this paper are to (a) provide an overview of the terrestrial component LM4.1 of the GFDL‐
ESM4.1 model, including major advances in representing ecosystem processes as compared to the previous
GFDL terrestrial component LM3.0 used in the GFDL CMIP5‐class models (Dunne et al., 2012, 2013); (b)
evaluate characteristics of land biosphere and surface climate in the historical greenhouse gas (GHG)
concentration‐driven experiments with ESM4.1 for 1850–2014, including historical trends and the current state of
hydrological and carbon cycle metrics, and (c) and compare the ESM4.1/LM4.1 simulation with the CMIP5‐class
simulations of the ESM2G/LM3.0 model (Dunne et al., 2012, 2013) to document areas of improvement or
degradation in the new model. Since LM4.1 includes a new treatment of vegetation dynamics, canopy structure,
and plant hydraulics, we include detailed equations for the multi‐layer energy balance, plant allometry and hy-
draulics, carbon allocation, stomatal conductance, and water limitation on photosynthesis (Appendices). Rep-
resentations of other processes are briefly summarized; detailed equations are provided in previous publications
describing their development. It is important to point out that LM4.1 was not tuned or calibrated in the historical
ESM4.1 simulations during the ESM4.1 development following the philosophy that historical climate change and
thus changes in land physical, biogeochemical, and ecological characteristics should emerge from the model's
underlying parameterizations in response to historical anthropogenic forcing, including changes in land use and
atmospheric CO2 concentration, rather than be calibrated. The paper concludes with a brief discussion of model
biases and limitations and ongoing developments to address them.
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2. New Features in the LM4.1 Model
The LM4.1 model (Figure 1) is the fourth‐generation successor to the GFDL ESM terrestrial component LM3.0
used in the CMIP5 GFDL ESM2M and ESM2G (Dunne et al., 2012, 2013) and CM3 (Donner et al., 2011)
models, and is the land component of ESM4.1 (Adcroft et al., 2019; Dunne et al., 2020a; Horowitz et al., 2020).
The main improvements in LM4.1 focus on the representation of ecological processes such as plant community
dynamics, biophysical processes such as plant hydraulics and stomatal controls on evaporation, natural and
anthropogenic disturbances such as wildfire and deforestation and agricultural biomass appropriation, and land‐
atmospheric interactions such as dust emission. Previously, LM3.0 predicted the distribution of vegetation as a
function of climate, atmospheric CO2 concentration, and anthropogenic land use. Vegetation was represented by a
single‐layer canopy of homogeneous vegetation (i.e., no tree or grass mixtures) which accounted for the atten-
uation of the incident light through the canopy in computing plant photosynthesis and average stomatal
conductance (Leuning, 1995). Fire disturbance was applied annually, with carbon smoke emissions released into
the atmosphere throughout the subsequent year. Soil carbon was represented by one box with an average over
multiple soil layer temperatures and soil moisture. Major updates in LM4.1 are summarized in Table 1.

LM4.1 is a fully consistent, energy‐ and matter‐conserving modeling system simulating the evolving land ra-
diation, heat, hydrological, and carbon cycles as well as emissions of dust on time scales from minutes to multiple
centuries. In CMIP6 ESM4.1 simulations, all land components (e.g., plants, soil, and snow) “participate” in
moisture and energy exchanges with the atmosphere and ocean (via runoff). Each plant cohort in a multi‐layer
canopy has its own energy balance (e.g., sensible and latent heat fluxes and net absorbed radiation) and as a
result, its own leaf temperature, intercepted water or snow storage, and stomatal conductance which are all
updated on the atmospheric physics time step (i.e., 30 min). In turn, the biomass pools of cohorts' leaves, roots,
sapwood, and wood (thus, cohorts' heights) are updated daily due to growth and/or mortality and affect land
surface characteristics such as albedo, surface roughness, and leaf area index (LAI). In addition, land surface
characteristics are affected by phenology, fire disturbance (daily), and land use land cover change (LULCC)
processes (e.g., harvesting for pastures daily and croplands annually; logging and agricultural abandonment occur
annually).

LM4.1 changes in vertical vegetation structure and plant competition are governed by the novel theoretical
framework Perfect Plasticity Approximation (PPA) (Martínez Cano et al., 2020; Strigul et al., 2008; Weng
et al., 2015). In addition, LM4.1 includes a new treatment of plant hydraulics and leaf stomatal conductance (Wolf
et al., 2016), a new daily fire model FINAL v2 (Rabin et al., 2015, 2018; Ward et al., 2018) with distinct pa-
rameterizations for croplands, pastures, and unmanaged lands (i.e., secondary and primary) and a new prognostic
dust emission model (Evans et al., 2016, 2019). The belowground carbon model is based on the CORPSE soil
carbon model with an explicit treatment of microbes, which was previously coupled to the LM3.0 model (Sulman
et al., 2014, 2019). CORPSE represents the vertical distribution of soil carbon following the discretization of the

Figure 1. Schematic of land surface processes (e.g., dynamic vegetation competition, land use) and land‐atmosphere interactions including radiative, hydrological, CO2,
and dust fluxes in Geophysical Fluid Dynamics Laboratory LM4.1 land model.
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soil column for soil hydrology and thermodynamics (Milly et al., 2014). Among the unique features of LM4.1 is a
heat tracer in land hydrology to track water temperature from the top of the soil/snow through the soil column and
river routing system (Milly et al., 2014).

While many advancements in representing coupled carbon and nitrogen cycles for plant‐soil‐riverine systems
(e.g., plant‐microbial C‐N interactions (Sulman et al., 2014, 2019), riverine C‐N dynamics (Lee et al., 2019)) were
implemented in the previous version of the GFDL terrestrial component LM3.0 with simplified vegetation dy-
namics (Shevliakova et al., 2009), the coupled C‐N dynamics was not included into ESM4.1 because of GFDL's
limited experience with representing C‐N plant processes within the PPA framework in an ESM in the CMIP6
multi‐century simulations and a desire to treat the suite of advances sequentially.

2.1. Second‐Generation Vegetation Demography

The LM4.1 integrates PPA (Strigul et al., 2008; Martínez Cano et al., 2020; Weng et al., 2015, Figure 2) with
multi‐layer canopy energy, moisture and CO2 exchanges, and soil physics, hydrology, and carbon cycling. LM4.1
enables the representation of ecosystem demography and currently is referred to as a second‐generation DGVM
(Fisher et al., 2017). Ecosystem demography models (e.g., the ED‐derived models such as ED (Moorcroft
et al., 2001), ED2 (Medvigy et al., 2009), ED2.v2 (Longo et al., 2019), CLM‐ED (Fisher et al., 2017), FATES
(Koven et al., 2019)) capture age‐height structure in forest canopies, competition for light, changes in plants
density, gap formation due to natural mortality and fire—the critical processes for predicting future carbon
storage in forests and their distribution. These processes determine the rates of carbon accumulation in changing
environments, tree mortality, and competition among different types of vegetation. In turn, these processes affect

Table 1
Major Changes in Land Model Structure and Parametrization

Feature LM3.0 LM4.1

Canopy layers and radiation exchange One with a two‐stream radiation exchange Multiple prognostic layers with a separate radiation exchange
for each layer

Source of land cover heterogeneity (i.e.,
new sub‐grid tiles)

Land use, glacier, lake Land use, glacier, lake/river, fire, background mortality in the
canopy layer

Number of vegetation cohorts per tile One Multiple cohorts per layer, of different ages and vegetation
types with cohort‐specific energy balance and intercepted
water/snow

Plant allometry and carbon allocation Carbon gain is allocated daily to leaves, fine roots, and
sapwood following an empirical allocation scheme
(Shevliakova et al., 2009)

Carbon gain is allocated daily to leaves, fine roots, sapwood,
seeds, and non‐structural carbon pools following the tree
and grass allometric relationship (Martínez Cano
et al., 2020; Weng et al., 2015)

Plant hydraulics Fine roots resistance Fine roots, xylem, and leaf resistances (Wolf et al., 2016)

Stomatal conductance Leuning (1995) parameterization; Saturated specific humidity
inside the leaf

Wolf et al. (2016) parameterization; Prognostic specific
humidity inside the leaf does not require saturation

Soil carbon vertical structure One box, separate for each sub‐grid tile (Shevliakova
et al., 2009)

Layers consistent with hydrological layers, a column per sub‐
grid tile (Sulman et al., 2014)

Soil BGC Simplified Century first order decay (Shevliakova
et al., 2009)

Explicit microbes‐soil organic matter interactions, based on
CORPSE (Sulman et al., 2014)

Fine and coarse litter Fine and coarse litter and root exudates

Fire Annual, empirical, prescribed return rate by vegetation type FINAL v2 model, prognostic daily, with multi‐day fires in the
boreal zone; prescribed regional cropland/pastureland
fires; prognostic wildfires (Rabin et al., 2018; Ward
et al., 2018)

Dust emissions None Prognostic (Evans et al., 2016, 2019)

Land use Gross transitions between primary, secondary, cropland, and
pastureland from Hurtt et al. (2020) CMIP5 scenarios;
pasture and cropland harvesting annually at the end of the
year

Gross transitions between primary, secondary, cropland,
pastureland, and rangelands from Hurtt et al. (2020)
CMIP6 scenarios; pasture grazing daily, crop harvesting
annually according to a prescribed schedule
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many land surface characteristics such as albedo and surface roughness which affect the atmosphere (i.e., bio-
physical feedback) or land CO2 fluxes (i.e., biogeochemical feedback).

The cohorts interact and compete for light and water, simulating the processes responsible for the formation of
ecosystems. According to the PPA, the canopies of each cohort fill the available space in a tile based on their
height and crown areas (Strigul et al., 2008), so the tallest cohorts form the upper canopy layer, then the next
tallest cohorts fill up the space in the second layer, and so on. As the vegetation evolves in time, the cohorts are
rearranged so their crowns collectively fill the entire tile area in each of the canopy layers (Figure 2a). The PPA
approximation predicts the height at which a new layer is formed (Martínez Cano et al., 2020; Strigul et al., 2008;
Weng et al., 2015), so the number of vegetation layers in each LM4.1 tile is an emergent dynamic property. In
addition, similarly to ED‐based models, natural (e.g., large fires, upper canopy tree mortality) and anthropogenic
(e.g., logging) disturbances generate new tiles (Figure 2b).

2.2. Sub‐Grid Land Heterogeneity

LM4.1 represents sub‐grid scale heterogeneity of the land surface using a mosaic approach that splits each land
grid cell into multiple tiles. Each tile represents a fraction of the grid cell with unique physical and biological
properties. For example, different tiles within the same grid cell may represent natural (i.e., primary) vegetation,
cropland, pasture, rangeland, and secondary vegetation at different stages of regrowth (up to 16 secondary tiles
capturing the age of the vegetation after logging or abandonment). Open water surfaces (lakes and rivers) and
glaciers are also represented as separate tiles, similar to LM3.0 (Milly et al., 2014), and have separate energy
exchanges with the atmosphere. The number of tiles in every model grid cell is dynamic, driven by human
disturbances (changes in land use), fire (assumed to be wildfire on primary and secondary tiles), or gap dynamics
resulting from forest canopy layer tree mortality. For computational efficiency, LM4.1 merges tiles with similar
physical and biological properties. Atmospheric exchange of energy, water, and tracers, including stability, are
calculated separately for each tile, enabling the model to consider differences among tiles in land‐atmosphere
interactions.

Within each tile, vegetation is represented by a dynamic set of cohorts arranged in different canopy layers ac-
cording to PPA (Martínez Cano et al., 2020; Weng et al., 2015). Each cohort represents a collection of plants with
identical properties including vegetation type, size, rooting depth, age, etc. The set of cohorts represents the
vegetation size/age structure and distribution of its properties within a tile. In ESM4.1 simulations, the model
solves the equations of land surface energy, water, and CO2 exchanges with atmospheres using an implicit time‐
stepping scheme with a time step of 30 min. The equations of land surface energy and water mass balance are
described in Appendix A.

Figure 2. (a) Cohort structure within a single natural or secondary tile. Each tile can have an arbitrary number of layers determined by Perfect Plasticity Approximation
dynamics and a mixture of vegetation types. Each cohort has a prognostic physical and biogeochemical state (a) and it is affected by tile dynamics due to natural
disturbance due to background mortality or fire (b).
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2.3. Soil Carbon Dynamics

The soil carbon cycling in LM4.1 follows the approach of the Carbon, Organisms, Rhizosphere, and Protection in
the Soil Environment (CORPSE) model, described by Sulman et al. (2014). This model explicitly simulates a
dynamic microbial biomass pool to control soil organic carbon transformation and decomposition. The original
CORPSE implementation and parameter set did not allow for a multi‐century stabilization of carbon pools in the
preindustrial climate control simulations, and as a result violated the CMIP6 recommendation that the long‐term
average land carbon fluxes in ESM control experiments should be stable in time and not exceed 0.1 PgC yr− 1

(Eyring et al., 2016). To meet this requirement, the accumulation of carbon in protected pools was prohibited, and
an upper limit of 500 years was imposed on the time scale of carbon decomposition. These assumptions imply that
the accumulation of very slowly decomposing carbon in high latitudes may not reach as high carbon content
values as estimated from available observations. On the other hand, given the current state of knowledge, such
very slow processes would be very hard to constrain observationally, and small changes in model parameters
could potentially result in very different equilibrium states of carbon accumulation even if they could be reached
in multi‐millennial (or longer) simulations.

2.4. Fire

In ESM2G/LM3.0 a simple fire parameterization was applied annually to capture the effects of fire disturbance on
vegetation carbon, with a prescribed fire return interval specified for each vegetation type. The mortality rate due
to fire was further modulated by an annually accumulated empirical factor reflecting above‐ground biomass
(AGB) as a proxy for fuel availability (Shevliakova et al., 2009). The annual loss of vegetation carbon due to fire
mortality was emitted to the atmosphere throughout the subsequent year.

The fire component of ESM4.1/LM4.1 advances previous fire treatment and largely follows the FINAL v2 global
fire model in LM3.0 (Rabin et al., 2015, 2018; Ward et al., 2018), with additional generalization to account for
multiple cohorts in each of the vegetation tiles in LM4.1. For example, the averaging depth used to estimate soil
moisture input to the fire factor was calculated as a weighted average of all cohort e‐folding root depths scales,
with each cohort's fine root biomass used as the weight. Likewise, the rate of fire spread is calculated as a
weighted average of vegetation in individual cohorts, with a total crown area of each type used as an averaging
weight. This weighting is required to ensure that the factor is scaled properly in the locations with mixed grass/tree
coverage. In the ESM4.1 historical experiment, changes in population density (B. Jones & O’Neill, 2016) affect
fire ignition and fire suppression rates.

Fire in LM4.1 is applied daily at each of the sub‐grid tiles; when a fire occurs and if an area burned exceeds a
specified threshold, it creates a new sub‐grid tile (if several of the original vegetation tiles are affected, the model
will create several fire tiles) where the vegetation is affected by fire, while the vegetation in the rest of the land
surface area is not disturbed. This allows proper accounting for fire scars and their recovery after disturbance. As
an example, the probability of fire re‐occurring on tiles recently disturbed by fire is reduced under the same
climate conditions because of the reduction in fuel consumed by the previous fire. In the burning fraction of the
landscape, fire affects different cohorts depending on their specific fire‐related parameters, including combustion
completeness of various types of tissues, and fire mortality. Agricultural fires in LM4.1 are treated differently
from fires in the regions on unmanaged vegetation, as described by Rabin et al. (2018). Note that LM4.1 treats
fires on rangelands the same as on natural and secondary vegetation, while fires on pastures are considered
human‐controlled.

2.5. Dust Emissions

A novel feature in the dust emission parameterization in ESM4.1/LM4.1 is its dependency on a combination of
meteorological, geomorphological, vegetation, and land use conditions: soil moisture, temperature, bareness,
snow cover, land use type, and surface wind speed are calculated dynamically within each tile of LM4.1. The
emission flux is then passed to the atmospheric model AM4.1 where dust particles are transported and removed by
dry and wet deposition. This approach allows simulation of the observed low‐frequency (inter‐annual and
beyond) variability of dust concentrations by modulating dust emission with climate change through soil moisture
and vegetation responses (Evans et al., 2016). In addition, this scheme allows to estimate the contribution of
anthropogenic activities to dust emission associated with land use changes (Evans et al., 2019). The model uses
the global erodibility map of Ginoux et al. (2001), but the source areas (bare surfaces) are calculated as a

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003922

SHEVLIAKOVA ET AL. 6 of 47

 19422466, 2024, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003922 by C
ochrane France, W

iley O
nline L

ibrary on [13/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



decreasing exponential function of the sum of LAI and 10 times the Stem Area Index (SAI), with emissions set to
zero if LAI or SAI is greater than 0.1 and 0.01, respectively.

On land use tiles, bare surface is assumed to occupy 3.25% of the tile area for cropland and pasture. Dust emission
occurs when the surface wind reaches the threshold speed to initiate sandblasting, a necessary process to eject dust
particles from the soil. Although the threshold of surface wind speed varies considerably between sources and
even within a source (Pu et al., 2020), we use fixed values of 1 m s− 1 for primary, secondary, and rangeland;
6 m s− 1 for pasture; and 8 m s− 1 for cropland. Dust emissions are deactivated if ice content in the top 15 cm of the
soil is greater than 5% or if the snow water equivalent on the surface is greater than 10 g m− 2. In the simulations
analyzed here, the dependency on soil moisture was not activated. The global dimensional constant of dust
emission, C in Equation 2 of Ginoux et al. (2001) is equal to 1.5 µgs2 m− 5. This constant is derived from fitting
surface dust concentration measured over 20 island sites worldwide (Ginoux et al., 2001; Prospero, 1996).

2.6. Land Use

Similarly to LM3.0, LM4.1 represents land use via wood harvesting and deforestation during agricultural con-
version (Shevliakova et al., 2009), following the scenarios of gross transitions (Hurtt et al., 2020) among un-
disturbed lands (i.e., “primary” or “potential”), croplands, pastures, and lands either previously harvested or used
in agriculture (i.e., “secondary,” up to 10 age classes). The model represents the harvesting of primary and
secondary forests for wood via removal of carbon on areas of land use transitions from primary to secondary, or
from secondary to secondary, respectively. The annual rates of transitions are imposed in terms of gross areas of
transitions, but the amount of harvested carbon per unit area involved in the transitions is calculated based on the
existing state of the vegetation on disturbed tiles. Regardless of the plant size, vegetation is removed, and the plant
carbon in the harvested pools is gradually released into the atmosphere with time scales of one year to one hundred
years.

Pastures in LM4.1 are grazed daily, with 5% of leaves being consumed every day toward an imposed LAI lower
limit of 1 m2m− 2. LM4.1 introduces a new type of land use tile, rangeland. Note that a transition to rangeland does
not involve any disturbance to or removal of the vegetation in the converted fraction of a grid cell; only grazing
after the transition distinguishes the carbon dynamics on such tiles from their previous land use states. Grazing of
rangelands is treated the same as pasture grazing, except that the vegetation taller than 3 m is not grazed, rep-
resenting the limited ability of grazers to reach canopies of taller trees. In both cases, grazed biomass is accu-
mulated in the harvesting pool, which is gradually released into the atmosphere over a time scale of 1 year. The
model also includes crops' growing seasonal cycles (i.e., prescribed planting and harvesting dates). Cropland
planting and harvesting occur at prescribed times during the year, using an observation‐based data set of planting
and harvesting dates (Paulot et al., 2018; Portmann et al., 2010). Note that this data set does not support double
cropping, which may result in some biases in patterns of LAI and crop biomass evolution, especially in sub‐
tropical and tropical regions where this practice may be widespread (Arvor et al., 2013; Morillas et al., 2019).
At the crop planting date, the croplands are seeded with small initial biomass (0.1 kgC m− 2) and start growing
until they are harvested. Similar to grazing, harvested biomass is accumulated in the intermediate carbon pool,
which is gradually released into the atmosphere over 1 year. The model represents crops as C3 or C4 grasses; the
type of the crop is determined by simple biogeographical rules (Shevliakova et al., 2009) based on annual mean
temperature and precipitation.

2.7. Soil/Snow Hydrology

The LM4.1 soil water dynamics and soil energy balance formulations follow Milly et al. (2014) with changes
implemented in the development of AM4.0 (Zhao et al., 2018) and CM4.0 (Held et al., 2019). The current
configuration uses the distribution of soil properties from Shangguan et al. (2014).

Similar to the CMIP5‐class GFDL land models LM3.0 and LM3.1 as well as the CMIP6‐class LM4.0 model used
in CM4 (Held et al., 2019) and SPEAR (Delworth et al., 2020) models, LM4.1 assumes a steady‐state ground-
water (i.e., below the water table) flow. The horizontal groundwater flow at any point is a balance between a
recharge uphill from that point and the horizontal hydraulic gradient (Milly et al., 2014, Section 2d). The rate of
subsurface water discharge to surface water is the vertical integral of the lateral flow divergence at each subgrid
tile, conceptualized as having a characteristic hillslope structure described in detail in Milly et al. (2014).
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A grid‐scale river and lake network model simulates the transport of water runoff to the oceans. For each river
reach, LM4.1 simulates depth‐averaged liquid mass, ice mass, and sensible heat content. The hydraulic geometry
of Leopold and Maddock (1953) governs river flow. LM4.1 computes prognostic liquid water content, ice
content, and temperature for multi‐layer soil (10 m depth), lake, and snowpack. The soil is treated as a dual‐
domain (Beven & Germann, 1982), saturated‐unsaturated, soil‐bedrock continuum with water vertical flow
represented by the Richards equation (Hillel, 1980). LM4.1, similarly to LM3.0, represents parameterized effects
of idealized macropores and sub‐grid infiltration and discharge to rivers (Milly et al., 2014). Depending on the
lake size, lakes are represented by one or more vertical columns, with density‐driven stratification and over-
turning. To ameliorate the occurrence of super polynyas in the Southern subpolar ocean in ESM4.1, the near‐
infrared albedo of snow on Greenland and Antarctica glaciers was increased from ∼0.73 in LM3.0 (Milly
et al., 2014) to ∼0.82 in LM4.1 following the experience with the two other GFDL coupled physical models
SPEAR (Delworth et al., 2020) and CM4.0 (Held et al., 2019).

3. Experimental Setup
This paper presents an evaluation of ESM4.1/LM4.1 (Dunne et al., 2020a) land hydrological, biogeochemical,
and ecological characteristics from the historical simulations contributed to CMIP6 DECK (Eyring et al., 2016)
and comparisons with ESM2G/LM3.0 (Dunne et al., 2012) land characteristics from the historical simulations
contributed to CMIP5 (Taylor et al., 2012). The historical experiments are designed to cover the Earth's response
to anthropogenically driven changes in concentrations of greenhouse gases and short‐lived climate forcers as well
as land use land cover change (for details see https://pcmdi.llnl.gov/mips/cmip5/forcing.html and https://pcmdi.
llnl.gov/CMIP6/Guide/modelers.html#2‐experiment‐design).

ESM2G includes AM2.0 atmospheric component and Generalized Ocean Layer Dynamics ocean component.
ESM2G has a resolution of ∼2° for the atmosphere and land, ∼1° for the ocean and sea ice, 24 vertical layers in
the atmosphere, 50 vertical layers in the ocean, and 20 layers in the soil.

ESM4.1 consists of GFDL's AM4.1 atmospheric model with full chemistry and 49 hybrid sigma‐pressure layers
at 1° resolution (Horowitz et al., 2020; Zhao et al., 2018), Modular Ocean Model version 6 at 0.5° resolution
(MOM6; Adcroft et al., 2019), Sea Ice Simulator version 2 (SIS2; Adcroft et al., 2019), ocean biogeochemical
model COBALT (Stock et al., 2020), and the terrestrial model LM4.1 described here. Land for the 1850 pre‐
industrial DECK experiment (piControl) was initialized with potential vegetation (i.e., no land use), followed
by a 1‐year bridge run applying land use transitions to the 1850 state (area fractions) of crops and pastures (no
logging or shifting cultivation or abandonment and thus no secondary forest) for an estimate of mid‐nineteenth
century land use, with fractions of crops and pasture kept constant throughout the pre‐industrial simulation (i.e.,
no land use change). To initialize the 1850 land state in the historical ESM4.1 simulation, we first conducted a
separate bridge run before 1850 to represent the transient effects of the land use history on the age and biomass
of forests recovering from previous logging activities, agricultural land abandonment, and associated evolving
size of soil carbon pools. This bridge experiment was run for 100 years with all pre‐industrial control forcings
but 1750–1849 land use change transitions to allow the secondary forests to spin up to a realistic state of
regrowth (see Dunne et al. (2020a, 2020b) for details). The historical 1850–2014 simulation included the time‐
evolving greenhouse gas (GHG) and ozone‐depleting substance concentrations, aerosol and ozone precursor
emissions and solar irradiance consistent with CMIP6 specifications (Dunne et al., 2020a), and the land use
gross transitions reconstruction scenario (Hurtt et al., 2020, https://luh.umd.edu/data.shtml). A three‐member
ensemble of historical simulations was performed using ESM4.1, branching from different points in the pre‐
industrial control run. The analysis presented here is based on one ensemble member except where noted.

4. Surface Climate and Water Budgets
On the global scale, the surface climate is the main determinant of the spatial distribution of vegetation and related
land characteristics, including those that control land carbon, energy, and water cycles. Human influences are
more apparent at regional and local scales and in long‐term trends. In this section, we evaluate elements of land‐
surface climate (temperature, precipitation, and radiation) and water budgets (evapotranspiration, runoff, soil
moisture, and permafrost). Analysis of the spatial distribution and temporal trends of climate over the twentieth
century is critical for interpreting the distribution and evolution of land hydrological and biogeochemical states.
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Identification of model transient climate biases is therefore an important aspect of interpreting land ecological and
biogeochemical responses in the ESM framework.

The land is but one component of the climate system. The realism of modeled land states in any earth‐system
model reflects the realism of all that earth‐system model's interacting component models. Conversely, biases
of land states arise from deficiencies in all component models. Similar statements can be made about the
improvement or deterioration of a simulation from one model generation to the next. As much as possible within
the framework of a coupled model, here we distinguish between biases that are attributable to shortcomings of the
land model versus those that are attributable to the climate (i.e., coupled atmosphere and ocean) that drives the
land model. While we recognize that climate biases themselves may be influenced to some extent by the land
model, quantification of such feedback is outside the scope of the present analysis.

4.1. Köppen Climate Zones

The comparison of Köppen climate zones in Figure 3 indicates that ESM4.1 generally simulates a realistic major
world climate distribution while having difficulty capturing the extent and location of tropical rainforest climate
(Af), particularly in Amazonia, sub‐arctic (Dfc), and severe‐winter subarctic (Dfd) zones in Eurasia, and several
climate zones in the Western US and Southern Africa. Compared to ESM2G, there are some improvements in
Arctic boreal zones and some arid regions. However, there are still biases in moist tropical climates, in particular
in Amazon region, that may contribute to the biases in vegetation geographical distribution and carbon
accumulation.

Figure 3. Köppen climate zone distribution based on observed, ESM2G, and ESM4.1 climates. The legend description is provided in Appendix F. Köppen climate zones
are calculated based on 1951–1980 climatologies for both model data and empirical data. Empirical climatologies are generated using 1° × 1° monthly Berkeley Earth
land surface temperature data, and 1° × 1° monthly GPCC precipitation data. We generate climatologies of temperature and precipitation for each grid point. We follow
the Köppen‐Geiger scheme, using − 3°C as our coldest‐month threshold, rather than 0°C (as in Kottek et al. (2006)). The Köppen climate maps provided borrow the
color scheme used in Peel et al. (2007) and Beck et al. (2018).
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4.2. Mean State

4.2.1. Near‐Surface Air Temperature

Here we provide a comparison between the monthly mean diurnal cycle of 2 m air temperature (T2M) over land
with the observation‐based land surface air temperature (LSAT) product (1985–2009 for comparison with
ESM4.1 and 1981–2005 for comparison with ESM2G) of A. Wang and Zeng (2013, hereafter WZ13). The
patterns of differences between the models' maximum daily temperatures (Tmax) and the WZ13 data are similar
with slightly smaller biases and root mean square errors in ESM4.1. Tmax is, on average, cooler than the
observational estimates in both models, by 2.7°C in ESM2G versus 2.1°C in ESM4.1 (Figures 4a and 4b). The
root mean square error is also smaller in ESM4.1 (2.9°C compared to 3.9°C). Minimum daily temperatures (Tmin)
simulated by both models are closer to the WZ13 data than Tmax. Tmin in ESM2G is, on average, 1.0°C warmer
than the observations, while ESM4.1 is 0.4°C warmer (Figures 4c and 4d). ESM4.1 also has a smaller root mean
square difference of 2.0°C compared to 2.9°C in ESM2G. In both models, most regions have a larger cold bias in
Tmax than warm bias in Tmin, leading to a cold bias in the mean surface air temperature.

To investigate the seasonal dependence of any biases in the diurnal cycle of temperature, monthly mean diurnal
cycles are calculated for various latitudinal bands (Figure 5). Though both models have smaller diurnal tem-
perature ranges than the WZ13 data, in each latitudinal band the monthly mean diurnal cycles of ESM4.1 are
closer to the observations than those of ESM2G, with global root mean square errors over land reduced from 1.51°
C for ESM2G to 1.19°C for ESM4.1. The mean diurnal cycle differences show that nighttime values from both
models are, in general, in much closer agreement with the reanalysis data than mid‐day values.

4.2.2. Precipitation

The global distribution of precipitation over land in ESM4.1 (r2 = 0.87) is an overall improvement upon that of
ESM2G (r2= 0.76) (Figures 6a and 6b, Table 2). In both models, global precipitation over land has a positive bias
of about 100 mm yr− 1, compared to a global mean of about 800 mm yr− 1. The global patterns of biases in the two

Figure 4. Annual mean difference in near‐surface air temperature between the last 25 years of the historical simulations and the observation‐based data product of A.
Wang and Zeng (2013) (1985–2009 for comparison with ESM4.1 and 1981–2005 for comparison with ESM2G). WZ13 adjusts reanalysis data sets to better match the
diurnal cycle of surface air temperature observations in the Climate Research Unit Time Series version 3.10 (CRU TS3.10) for the years 1948–2009. The resultant
downscaled and bias‐corrected final products are hourly, 0.5° grid‐cell products with the same monthly minimum (Tmin) and maximum (Tmax) as the CRU data. Here we
use the ECMWF Interim Reanalysis (ERA‐Interim) version of the data product. TheWZ13 data are first converted from hourly to monthly mean diurnal cycles to match
the temporal frequency of the model output and are then converted to the ESM4.1 grid or the ESM2G grid.
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models are similar, but the bias magnitudes are generally smaller in ESM4.1. This improvement is especially
marked in some arid to semi‐arid regions of the world (northern and southern Africa, Australia, and southwestern
North America), where biases in ESM2G exceed 100%. ESM2G's large negative biases in much of South
America are also improved in ESM4.1. The most notable area of degradation of modeled precipitation amounts
from ESM2G to ESM4.1 is the northwestern region of the South Asian monsoon.

4.2.3. Surface Radiation and Albedo

Surface net radiation is the main determinant of energy available for evapotranspiration. Therefore, together with
precipitation, it determines the partitioning of precipitation into evapotranspiration and runoff. In both ESM2G

Figure 5. Left column: Monthly mean diurnal cycles averaged over land areas in zonal bands of 30° latitude each from
ESM2G (red), ESM4.1 (blue), and the WZ13 observation‐based data product of A.Wang and Zeng (2013) (WZ13a for years
matching ESM2G, WZ13b for years matching ESM4.1; see Figure 4 caption for details). Right column: Corresponding
annual mean differences in diurnal cycles, model—observations (ESM2G—WZ13a in red; ESM4.1—WZ13b in blue). The
horizontal axis is the local time of day.
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Figure 6. ESM2G and ESM4.1 annual mean water‐budget flux biases, expressed as percent differences relative to observational estimates. (a and b) Precipitation, (c and
d) evapotranspiration, and (e, f) runoff. Model fluxes are averaged over the period 1985–2014. Precipitation observations from the Global Precipitation Climatology
Centre (Schneider et al., 2018) are for 1985–2014. The observation‐based estimate of evapotranspiration (Zhang et al., 2016) is for the period 1981–2012. The
observation‐based estimate of runoff (Fekete et al., 2011) is for 1986–1995.

Table 2
Statistics of Model Surface Fluxes

P, mm yr− 1 Rn/L, mm yr− 1 E, mm yr− 1 R, mm yr− 1

ESM2G ESM4.1 ESM2G ESM4.1 ESM2G ESM4.1 ESM2G ESM4.1

Observations 800 790 1,131 1,117 504 501 298 294

Model‐Obs 106 108 − 134 − 113 88 116 18 − 15

r2 0.76 0.87 0.97 0.97 0.87 0.90 0.37 0.61

Note. P, Rn, E, and R are precipitation, net radiation, evapotranspiration, and runoff, respectively. L is latent heat of
vaporization of water. Statistics are computed after regridding of observations to model grids, so the global observation
values differ slightly between models.
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and ESM4.1, the spatial correlation of land net radiation with observations is high (0.97) (Table 2), but the global
average land net radiation has a substantial positive bias in both ESM2G (18%) and ESM4.1 (16%). Accordingly,
a uniformly positive bias is seen over the most land area (Figures 7a and 7b). Notable exceptions are in the high
northern latitudes and the region of the Tibetan Plateau.

The pattern of biases in surface net radiation common to both models is associated with biases in effective annual
surface albedo (i.e., the ratio of annual upwelling to annual downwelling shortwave radiation). In the models,
albedo (Figures 7c and 7d) is close to observations in arid regions, where it is determined by soil albedo (which
has been specified in both ESM2G/LM3.0 and ESM4.1/LM4.1 based on satellite observations, Milly
et al. (2014)). In densely vegetated regions of the low and middle latitudes, modeled albedo is excessively high. In
the high latitudes of North America and Asia, on the other hand, albedo has a strong negative bias. The albedo
biases create biases in the absorption of shortwave radiation (Figures 7e and 7f), which contribute considerably to
the overall bias in net radiation over most land areas. The albedo bias in high latitudes is related to the excessive

Figure 7. Surface net radiation and albedo. (a and b) Bias in radiation in ESM2G and ESM4.1, percent; (c and d) bias in effective surface albedo in ESM2G and ESM4.1;
(e and f) bias in radiation directly attributable to bias in surface albedo in ESM2G and ESM4.1, percent. Model fluxes are averaged over the period 1985–2014.
Radiation observations are from Clouds and the Earth's Radiant Energy System surface irradiance product (Kato et al., 2018) and are limited to the available period of
record (March 2000 through March 2018). Effective surface albedo is calculated as annual upward shortwave radiation divided by annual downward shortwave
radiation.
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northward extension of the models' boreal forests relative to the real world, which will be discussed in the next
section. Surface albedo is much reduced by a forest canopy, compared to what it would be in sparsely vegetated
tundra.

To estimate the strength of the snow albedo feedback in the model, we follow the seasonal cycle method of Qu and
Hall (2006) and Hall and Qu (2006). They define the strength of feedback as the difference in climatological land
surface albedo between April and May, averaged over the 30°–90°N region using insolation as averaging weight,
and divided by the April‐May difference in surface air temperature averaged over the same region. The ESM4.1
value for the 1982–1999 period (same as in Qu & Hall, 2006) is − 0.81% K− 1, lower in magnitude than the
observational estimate of − 1.01 to − 1.13% K− 1 of Qu and Hall (2006). The lower value of the albedo feedback in
ESM4.1 compared to the observational estimate is largely due to the northward extension of the boreal forest
noted above, which reduces the sensitivity of land surface reflectance to snow cover and snow amount. The
magnitude of ESM2G value of albedo feedback is − 0.87% K− 1 is also lower in magnitude than observational
estimates, but higher than ESM4.1. Tree cover extent in ESM2G is also biased northward as illustrated in
Figure 7, but its effect is compensated by a different formulation of vegetation snow overlap.

4.2.4. Evapotranspiration and Runoff

From a global perspective, ESM4.1 evapotranspiration (Figure 6d) and runoff (Figure 6f) are better correlated
(r2= 0.90 and 0.61, respectively) with observations than are the fluxes in ESM2G (r2= 0.87 and 0.31) (Figures 6c
and 6e). In both ESM2G and ESM4.1, global patterns of bias of both variables are similar to those for precipi-
tation. In general, runoff biases are larger in percentage terms than the precipitation biases that drive them. This is
a consequence of the fact that the fraction of precipitation resulting in runoff increases as land gets wetter because
the atmospheric demand for evapotranspiration becomes increasingly satisfied.

Although the biases in evapotranspiration and runoff generally are positively correlated with those of precipi-
tation, some departures from strict proportionality result from regional limitations on evapotranspiration. In
humid areas, where evapotranspiration is limited more by energy than by water availability (e.g., the Amazon
basin and the region of Africa bordering the Gulf of Guinea), precipitation biases are reflected more in the runoff
than in evapotranspiration. In arid to semi‐arid regions (e.g., much of Australia), the opposite is true.

In both models, negative runoff biases that cannot be explained by the precipitation biases are present in the Arctic
and Tropics. In the Arctic, this discrepancy is explained by the excessive net radiation and resultant excessive
evapotranspiration. In the Tropics, however, extensive model deficits in runoff cannot be explained by either
water or energy supply. We next examine what role the land model itself plays in biasing evapotranspiration and
runoff.

Consideration of the relation between long‐term mean radiation and water balances yields further insight into the
behavior of land in both models and effectively accounts for biases in modeled precipitation and radiation. We fit
the Turc‐Mezentsev‐Priestley‐Taylor (TMPT) model (see Appendix D) to the observations and model data. The
TMPT model is E/P = [1 + (Ep/P)− ν]

− 1/ν with Ep given by Ep =
αΔ(Rn − G)
Δ + γ . The parameter α essentially mea-

sures the magnitude of potential evapotranspiration relative to the available energy supply. The canonical value
for α of 1.26 is based on field studies, but lower values commonly have been reported, and a value of 1 is
theoretically predicted for the condition of “equilibrium evaporation.” For the observations, after interpolation to
either model grid, we obtained TMPT parameters (ν = 2.04/2.12, α = 1.06/1.05) that are consistent with those
commonly found in the literature (Figures 8a and 8b). When the evapotranspiration fractions (ratio of mean
evapotranspiration to mean precipitation) are compared to the observations‐fitted TMPT model predictions, a
strong bias toward excessive evapotranspiration (hence insufficient runoff) is apparent in both models (Figures 8c
and 8d). To make ESM2G/ESM4.1 fit the TMPTmodel, we found it was necessary to raise the values of α to 1.75/
1.80. Such large values of α imply that, except in arid regions where water supply is a strong limiting factor, both
ESM2G and ESM4.1 evaporate water much more readily than observed for a given level of net radiation and
temperature.

Seeking further insight into the bias in water‐balance partitioning simulated by both ESM2G and ESM4.1, we
computed the models' global transpiration ratios (ratios of global transpiration to global total evapotranspiration)
and compared them with an estimate based on global upscaling of observations (Wei et al., 2017). The obser-
vational estimate of the transpiration ratio is 57% (SD = 57%). The global transpiration ratios of ESM2G and
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ESM4.1 are 45% and 39%, respectively, both significantly lower than the observational value. In a recent analysis
(Berg & Sheffield, 2019), the global transpiration ratios for 32 CMIP6 climate models were found to range from
15% to 60%, with a median value of 42%, consistent with the values from ESM2G and ESM4.1. We speculate that
the resistance to evaporation at the soil‐atmosphere interface in ESM2G and ESM4.1 is unrealistically low (Milly
et al., 2014), and that this deficiency of the models explains both the low bias in the global transpiration ratio and
the high bias in evapotranspiration relative to what would be expected for a given supply of energy and water.
While ESM4.1/LM4.1 has distinct transpiration and intercepted evaporation fluxes with associated resistances, it
does not account for the effects of the laminar surface layer on evaporation from the soil. The future version of
LM4.1 will explore the implications of the additional laminar resistance on land‐atmosphere exchanges and the
partitioning of transpiration to soil evaporation.

4.2.5. Soil Moisture

At climate timescales, the balance among the aforementioned hydrologic fluxes (precipitation, evapotranspira-
tion, and runoff) also determines the average water storage within the soil column, such that biases in modeled
(ESM2G and ESM4.1) soil moisture in a given region can be largely explained by the corresponding biases in
these fluxes. Figure 9 shows the bias in annual mean soil moisture (averaged over the top 0–5 cm layer) for
ESM2G and ESM4.1 relative to satellite observational estimates from the SMAP (Soil Moisture Active Passive)
mission (Das et al., 2019; P. E. O’Neill et al., 2019). The geographical pattern of biases is fairly similar in both
models, but with generally larger magnitudes in ESM2G, indicating improved soil moisture estimates in ESM4.1.

Figure 8. Application of observation‐fitted TMPT equation to model outputs. (a and b) Evapotranspiration ratio versus index
of dryness, observations and fitted curve (c and d) scatter plots of model evapotranspiration ratio against predictions of
evapotranspiration ratio by observation‐fitted TMPT equation (Appendix D). For the observations and the models, data were
used only from grid cells at which the observational estimates of precipitation differed by no more than 10% from the sum of
the observational estimates of runoff and evapotranspiration.
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Consistent with precipitation biases discussed earlier (Figures 6a and 6b), both ESM2G and ESM4.1 simulate
wetter soils in arid and semi‐arid regions (southwestern North America, Australia, and North and South Africa),
and drier soils in the tropics and South Asian monsoon regions (Figures 9a and 9b). The evident negative soil
moisture bias in the northeast of North America, where models exhibited a positive precipitation bias (Figures 6a
and 6b) is attributed to excessive evapotranspiration in this region (Figures 6c and 6d) that exceeds its precipi-
tation counterpart. Averaged over all land area, soil moisture bias is 0.03 m3 m− 3 in ESM2G (average soil
moisture is 0.24 m3m− 3), and 0.02 m3 m− 3 in ESM4.1 (average soil moisture is 0.27 m3m− 3). Both models have a
root mean square error (rmse) of 0.1 m3 m− 3.

4.2.6. Permafrost

The spatial distribution of permafrost estimated from observations is controlled largely by atmospheric tem-
perature, with permafrost regions mostly being bounded by a contour of mean annual air temperature of − 2°C or
lower (R. J. E. Brown, 1960) (Figure 10a).

The model explicitly represents phase changes of water in the soil (Milly et al., 2014). The soil freezing curve is
approximated as a step function: all phase change occurs at a soil‐water‐freezing point, which is a soil constant.
The area of permafrost in ESM2G (2.4 × 107 km2) greatly exceeds that estimated from observations
(1.54 × 107 km2), partly due to an atmospheric cold bias in the model. However, the ESM2G permafrost area
extends southward beyond the model's own − 2°C isotherm, suggesting that part of the permafrost area bias is
attributable to a deficiency in the land component of ESM2G. Unlike ESM2G, ESM4.1 has a reduced permafrost
area (1.34 × 107 km2). The observed relation between the − 2°C isotherm and the boundary of permafrost in
ESM4.1 is similar to observations, but the ESM4.1 permafrost area is positioned further North of the model's own
− 2°C isotherm, making its permafrost area less than observations. The improvement of the overall permafrost
area in ESM4.1 compared to ESM2G appears to be a result of changes in the prescribed properties of snow, with a
more realistic (lower) thermal conductivity in LM4.1 (Milly et al., 2014). The lower thermal conductivity en-
hances the insulating effect of snow, which tends to keep the soil warmer during winter.

Figure 11 shows time series of permafrost area anomalies (departures from the 1971–2000 mean area) as well as
corresponding temperature change. Both ESM2G and ESM4.1 show apparent decreasing trends of permafrost
area after 1990, following the increasing trends of temperature. Most of the time, the simulated temperature in
ESM4.1 is warmer than that in ESM2G, leading to a smaller area of permafrost in ESM4.1. Overall, the change in
permafrost area follows the change in temperature; a smaller permafrost area is generally aligned with a warmer
climate.

4.3. Trends

4.3.1. Near‐Surface Air Temperature

The time evolution of the global continental LSATs from historical ESM4.1 and the Berkeley Earth Surface
Temperature (BEST) data set (Rohde et al., 2013) are displayed in Figure 12. The BEST data set has the longest
temporal coverage among available global LSAT data sets and is based on almost 46,000 time series. We find

Figure 9. Bias (%) in ESM2G and ESM4.1 annual‐mean soil moisture relative to observational estimates from the SMAP mission (L3 v6 product). SMAP data spans the
period 2015–2019 and is representative of the top 0–5 cm soil layer (Das et al., 2019; P. E. O’Neill et al., 2019), and model outputs were averaged over the same period
and depth. Both ESM2G output and SMAP data were regridded to the ESM4.1 grid.
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ESM4.1 performs well in regional temperature trends against historical observations in many regions, particularly
in the second part of the twentieth century. While the overall warming from the late nineteenth century through
2014 agrees well with the warming trends in BEST data sets, there is an underestimation of warming trends in
North America and Eurasia (see Figure 12b). The temperature anomalies with respect to the 1951–1980 period of
LSAT in the Northern Hemisphere (NH) are similar to the behavior and biases seen in the GFDL CM4.0 model

Figure 10. Observed and modeled spatial distributions of permafrost. The variable Ap is the total area of permafrost in the Northern Hemisphere. The blue line is the − 2°
C isotherm for mean annual near‐surface air temperature (MAAT) from NCEP reanalysis, ESM2G and ESM4.1 respectively. Light blue indicates the presence of
permafrost at MAAT below − 2°C, dark blue indicates presence at MAAT above − 2°C, and salmon color indicates absence at MAAT below − 2°C. Observed
permafrost presence determined by classification as continuous plus discontinuous, implying greater than 50% area underlain by permafrost (J. Brown et al., 2002).
Modeled permafrost presence indicated where cells had at least 15 years in the period of 1971–2000 that were identified as permafrost. Permafrost was determined for a
year if soil liquid content remains at zero from the beginning of the previous year to the end of this year at a depth of 5 m.

Figure 11. Time series of permafrost area anomalies (departures from the 1971–2000 mean area) and near surface
temperature on land averaged over 20° to 90°N.
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(Guo et al., 2018; Held et al., 2019), which has a similar atmospheric physics (33 layers, simplified chemistry) and
dynamics and ocean model (1/4° resolution) as well as the same atmospheric forcing (except for the use of
prescribed ozone distributions from CMIP6) and land‐use scenarios but a different land model LM4.0 (closer to
LM3.0 configuration). Similarly to CM4.0 (Held et al., 2019), a strong NH aerosol forcing counteracts global
warming from increases in GHG until almost the last quarter of the twentieth century. With the reduction of the
aerosol forcing and continued increases in GHG, the NH land warms faster in ESM4.1 but still at a lower rate in
Eurasia than indicated by the BEST data set. In the Southern Hemisphere (SH) the ESM4.1 reproduces tem-
perature trends well but exhibits higher variability than observed in the BEST data set. The model's large SH
multi‐decadal variability is consistent with quasi‐periodic polynya activity in the polar SH oceans as well as long‐
term climate variability in both CM4 and ESM4.1 simulations (Dunne et al., 2020a; Held et al., 2019).

4.3.2. Precipitation

A comparison of precipitation trends for 1901–2014 (Figures 13 and 14) over relatively well‐observed global land
regions indicates that while ESM4.1 captures precipitation trends over some regions (e.g., Africa, Western
Europe, Central Asia), it does not capture the observed wetting trends in many regions of the world and instead
simulates drying trends over large areas of South America and East and South Asia. Spatial patterns of wetting/
drying trends over Australia, Northern Asia, and North America, particularly in the arctic‐boreal zone differ
among three historical runs of ESM4.1. These differences are likely modulated by the aforementioned multi‐
decadal ocean variability. The tendency toward excessive drying (decreasing precipitation) since 1901 is a
common bias among CMIP5 climate models (Knutson & Zeng, 2018) and GFDL CMIP6 climate models (e.g.,
CM4, Zhang et al., 2023). In each case, these drying trends are much more pronounced and excessive in the
ESM4.1 simulations than in the observations, although observed data quality is an important limitation, partic-
ularly for the century‐scale trends over sparsely populated, less‐developed regions. A comparison of precipitation
trends for the recent, better globally observed 1980–2014 period (Figure 14) indicates that one ensemble member
(i.e., D201) captures precipitation trends over broader regions than other ensemble members (e.g., Africa, Europe,
North America, Asia), presumably by chance. Coupled climate models and ESMs generate their own ocean and
atmospheric climate variability on multiple time scales. Observed data sets only provide records of one mani-
festation of climate variability. All ensemble members tend to overestimate a drying trend over South America
and most of Australia.

Figure 12. Historical surface air temperature anomalies over land relative to 1951–1980 period. The ESM4.1 (red line) and ESM2G (blue line) land surface air
temperature anomalies were filtered using the available data mask from Berkeley Earth Surface Temperature (BEST) data set (black line) to account for missing data in
the BEST data set. The plots show 60‐month moving averages computed from the monthly model output and BEST data set.
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5. Vegetation Characteristics and Terrestrial Carbon
5.1. Vegetation Type Distribution

The distribution of major vegetation types as a function of climate provides an opportunity to test the emergence
and consistency of large‐scale biogeographical patterns in the LM4.1 model. LM3.0 prescribes biogeographic
climate limits. We evaluated the predicted distribution of dominant vegetation types in LM4.1 with respect to
gradients of temperature and precipitation simulated by the model by constructing a model‐based Whit-
taker (1970) diagram (Figure 15). While examining the diagram, it is important to bear in mind that several
vegetation types can coexist on each grid cell and that the diagram shows the dominant vegetation type according

Figure 13. Observed (GPCC data over land) and simulated precipitation trends for long‐term historical climate since 1900, mm/year/decade. Panels (b, d, and f) show
three ensemble members of ESM2G simulation, and panels (c, e, and g)—show three ensemble members of ESM4.1. Grid cells with sparse observations in the GPCC
time series are not masked out.
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to their biomass. This simplification leads to the predominance of high‐biomass vegetation types (e.g., trees over
grasses). One way to interpret the relationship between biomes, climate, and plant types mapped by Whit-
taker (1970) is as the illustration of relative importance of different vegetation types in distinct biological
communities. For instance, the savanna is a mixed woodland‐grassland ecosystem, whereas the relative domi-
nance of coniferous trees versus grasses defines the transition from boreal forest to tundra biomes.

In general, LM4.1 captures major vegetation transitions in climate space, from bare soils occurring below − 20°C
to the dominance of tropical tree and grass vegetation types over temperate and conifer tree types at temperatures
above − 20°C. LM4.1 also captures the relationship between precipitation and the transition from grassland to
forest‐dominated landscapes at 1,000 mm of annual precipitation. The evergreen conifer tree is the dominant
vegetation type over a wide range of conditions corresponding to tundra, boreal forests, and woodland biomes.

Figure 14. As in Figure 13, except for short‐term historical climate since 1980.
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However, conifers also dominate vegetation biomass under climate conditions typically corresponding to
temperate forests and temperate grasslands, suggesting the need to refine competitive dynamics in the model.

The temperate tree type occupies mild annual temperatures (5–18°C) and humid conditions (1,200–2,000 mm)
and resembles the actual distribution of temperate seasonal forests, except for the displacement by the conifer tree
type at the cooler end of its range. The tropical tree type dominates vegetation paralleling the distribution of
tropical forests and wet tropical savannas (temperature between 20 and 30°C and precipitation above 1,000 mm).
Grasses dominate the warm and dry areas, and the model correctly predicts the dominance of C4 over C3 grasses
in subtropical deserts experiencing more extreme conditions (temperatures above 30°C). In the case of cold
deserts, evergreen coniferous trees extend beyond the tree line into the tundra, where we expect a major prev-
alence of grasses.

In the very cold (e.g., high altitudes or high latitudes) climate, ESM4.1/LM4.1 simulates abundant coniferous
trees and does not capture competitive dynamics well. This limitation could be partially attributed to the model's
inability to capture processes limiting growth and establishment of trees. The next version of the model will
explore parametrizations required to capture the implications of a short growing season and limited nutrients'
availability on the tree/grass boundaries and simulations of tundra.

5.2. Gross Primary Production (GPP)

GPP is an ecosystem‐level photosynthetic gain of CO2 (Woodwell & Whittaker, 1968) and the major driver of
land carbon uptake (Chapin et al., 2006). GPP is one of the key metrics in evaluating terrestrial components of
ESMs (Anav et al., 2015). However, there are no direct observational measurements available to quantify GPP
flux at the global ecosystem scale. The estimates of global GPP are derived via models from small‐scale mea-
surements such as eddy covariance flux towers (Beer et al., 2010; Jung et al., 2011) or remote sensing of global
optical parameters related to vegetation activity such as the fraction of absorbed photosynthetically active ra-
diation (FPAR) (e.g., MODIS data set, Running & Zhao, 2015), and, recently, observations of solar‐induced
chlorophyll fluorescence (Frankenberg et al., 2011), as well as from reconstructions of total global GPP based
on changes in atmospheric composition (Campbell et al., 2017; Welp et al., 2011) (Figure 17). The global GPP
estimates range from 90 to 210 GtC per year and vary substantially between studies employing different methods
(Cheng et al., 2017). Based on eddy flux towers, Beer et al. (2010) estimated 123.6 ± 8.0 PgC yr− 1 in the period

Figure 15. Distribution of dominant vegetation types in a climate space is defined by the mean annual temperature and mean
annual precipitation. Each dot maps the dominant vegetation type, in terms of biomass, in tiles covered by natural and
secondary vegetation. As a reference, the dashed lines show the inner boundaries of the idealized distribution of terrestrial
biomes in Whittaker's diagram. Note that simulated temperature and precipitation levels extend beyond the idealized
conditions, in better agreement with observed climate variability over land.
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1998–2005. Based on atmospheric CO2 observations in a Carbon Cycle Data Assimilation System, Koffi
et al. (2012) estimated global GPP at 146 ± 19 PgC yr− 1 (1980–1999 period), similar to the Welp et al. (2011)
estimate of 150–175 PgC yr− 1 (1977–2009), based on the analysis of stable isotope ratios of atmospheric CO2.

Here we compare spatial patterns of ESM4.1/LM4.1 and ESM2G/LM3.0 GPP (2000–2015) to the remote‐
sensing‐based pattern from the improved Moderate Resolution Imaging Spectroradiometer (MODIS) (Running
& Zhao, 2015; Zhao et al., 2005). Unlike eddy‐flux‐tower derived estimates, remote sensing‐based estimates
capture effects of natural and human disturbances (e.g., deforestation, fires, forest regrowth) and are suitable for
the evaluation of GPP on decadal time scales in ESMs, which include representation of both environmental
influences and land use change. Because of climate variability, one cannot expect specific disturbances and
annual weather patterns to match month by month in each location. The ESM4.1/LM4.1 global mean GPP es-
timate is 109 PgC yr− 1, consistent with the MODIS‐based estimate of 111 PgC yr− 1 and is strongly correlated
with a spatial pattern (Pearson correlation coefficient r= 0.83). The ESM2G/LM3.0 global mean GPP estimate is
180 PgC yr− 1, substantially higher than most estimates. The ESM2G GPP bias is related to a high bias in LAI,
particularly in the NH, and to the dominance of trees on pastures instead of grasses due to annual grazing
application.

Figure 16 shows that the spatial patterns in MODIS and ESM4.1/LM4.1 agree reasonably well in some areas
while differing significantly in others. The ESM2G/LM3.0 positive bias in the Eastern hemisphere was sub-
stantially reduced in ESM4.1/LM4.1, likely due to revisions in the plant allocation scheme as well as the new

Figure 16. Distribution of annual gross primary production (GPP, kgC m− 2 yr− 1) from (a) MODIS data set (Running & Zhao, 2015; Zhao et al., 2005), (b) ESM2G and
(c) ESM4.1 simulations, and their difference with respect to MODIS data (d and e for ESM2G and ESM4.1, respectively).
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stomatal conductance formulation. Specifically, LM4.1 captures patterns in Asian and Eastern Europe boreal
regions, Central North America, and extratropical Africa but simulates a higher level of GPP than MODIS in
North America boreal zone, central Amazonia, and part of the African tropics and underestimates GPP in
Northern and Eastern Amazonia and Western Europe. While MODIS and other observational data sets have the
largest uncertainties in the tropics (Anav et al., 2015; Zhao et al., 2005), the discrepancy in South America is most
likely due to climate biases in precipitation and moisture in both ESM2G and ESM4.1. In Western Europe, this
low bias is likely induced by extensive wood harvesting prescribed through the scenarios of LULCC (Hurtt
et al., 2020, https://luh.umd.edu/data.shtml) and by grazing intensity on pastures. In ESM2G/LM3.0 pastures in
South America and Europe often had tree vegetation types instead of grasses as grazing was applied annually,
which promoted high GPP throughout a year, accumulation of biomass, and as a result, assigned trees instead of
grasses. These changes to GPP have huge benefits for the presentation of the seasonal cycle in atmospheric CO2—
decreasing biases by a factor of two, see Figure 34 in Dunne et al. (2020a).

ESM4.1/LM4.1 and ESM2G/LM3.0 simulate evergreen coniferous trees further into the tundra area, particularly
in North America than observed. This overestimate of tree abundance in the North American boreal zone is likely
related to the models' warm and wet biases in high latitudes as well as the lack of nutrient constraints. Weng
et al. (2016) suggested that temperature affects the outcome of competition between high Leaf‐Mass‐per‐Area
(LMA) vegetation (i.e., long‐lived evergreen leaves) and low‐LMA vegetation (i.e., short‐lived deciduous leaves)
primarily due to its effect on the N mineralization rate. As a new version of LM4 with coupled C and N cycle is
currently under development, we choose not to introduce into LM4.1 temperature‐based biogeographic limits for
boreal evergreen and temperate deciduous vegetation types and await that advance in future versions.

Recent GPP estimates derived from sun‐induced chlorophyll fluorescence (SIF) suggest that GPP over croplands
is much higher (50%–75%) than many terrestrial process‐based models simulate because they represent agri-
cultural areas as grasslands. The second reason for a low annual GPP bias in LM4.1 in areas dominated by
croplands, particularly in the tropics, is a lack of double cropping—all crops everywhere are planted and har-
vested once in LM4.1. LM3.0 has no prescribed crop calendar and cropland's phenological cycle followed that of
natural grasses. Another possible reason for lower GPP in arid areas is the absence of irrigation. On pasturelands,

Figure 17. Evolution of gross primary production (GPP) and land use land cover change. (a) Historical total GPP (PgC yr− 1);
(b) changes in land use area (red—croplands, blue—pastures, green—primary and secondary); (c) changes in GPP by land
use type, (d) changes in GPP per unit area of land in different land use categories. Continuous and dashed lines represent
ESM4.1 and ESM2G trends, respectively. Vertical brackets in (a) correspond to independent estimates of GPP by Beer
et al. (2010), Koffi et al. (2012), and Welp et al. (2011) (see main text). Note that in ESM2G the historical simulations lasted
until 2005, and predictions for the period 2006–2015 corresponded to scenario RCP8.5.
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underestimation of GPP (Figures 17c and 17d) is related to low LAI caused by excessive grazing prescribed in
LM4.1 (i.e., 5% daily and with an LAI limit of 1). It's well established that a linear relationship generally exists
between annual GPP and leaf area duration, a product of LAI and growing season length (W. Wang et al., 2011),
such that a lower value of daily grazing may have been more realistic.

Temporal variations in global annual GPP (Figure 17a) can be decomposed using multiple linear regression into
components caused by temporal variations in land use (Figure 17b), climate (precipitation, temperature, and
downward shortwave radiation), and atmospheric CO2 concentration; an additional small term represents the
interactions between land use and the other four factors (Appendix E; Figure 18). Net conversion of high‐GPP
natural and secondary vegetation to low‐GPP (in the LM4.1 model) pasture, rangeland, and cropland results in
a steady downward trend in GPP (Figure 18b). In LM3.0 land use conversion to cropland and pastures has little
influence on the GPP trend (Figure 18a) because pastures were allowed to regrow, similarly to secondary
vegetation, and the cropland conversion did not restrict the growing cycle in the absence of a crop calendar,
particularly in tropics. Changing temperature induces a high degree of interannual variability and a steady
downward trend in GPP in both models. Rising CO2 is reflected directly in the induced rise in GPP in both
models, so called CO2 fertilization effect. The effects of changes in land use, climate, and atmospheric CO2
concentration are additive, so the sum of all the effects closely follows the total model GPP, supporting the
validity of the decomposition by multiple linear regression. Before about 1970, the decreases in LM4.1 GPP
(Figure 18b) due to land use and temperature change outweigh the enhancement of GPP by CO2 fertilization.
Around 1970, the changes due to land use in LM4.1 decelerate somewhat, and the CO2 effect accelerates so that
the LM4.1 steady pre‐1970 decline in global GPP is reversed, and global GPP partially recovers from the pre-
ceding decline.

5.3. Leaf Area Index

The area of leaves, measured as LAI, is a major characteristic of land vegetation, which plays a crucial role in
intercepting solar radiation and precipitation as well as determining the amount of evapotranspiration and
photosynthetic uptake, and therefore is an essential characteristic in predicting terrestrial carbon and energy
exchanges. LAI is computed in ESM4.1/LM4.1 and ESM2G/LM3.0 from prognostic leaf biomass and vegetation
type specific leaf areas (SLAs, leaf area per biomass). Both LM3.0 and LM4.1 only represent living leaves and
assume that dead leaves are immediately senesced. We compared the spatial distribution of mean annual LAI
(2010–2015) in ESM4.1/LM4.1 and ESM2G/LM3.0 to the remotely sensed estimates retrieved by the Terra
Moderate Resolution Spectroradiometer (MODIS) (Z. Zhu et al., 2013). LAI observations from a satellite are
known to have some biases and errors as compared to ground observations themselves (Fang et al., 2019), but are
found to be useful in the evaluation of spatial patterns (Mahowald et al., 2016). Overall, LM4.1 captures the
spatial gradients in the magnitude of LAI associated with major biome transitions (Figure 19) but tends to predict
higher LAI values compared with MODIS estimates in boreal regions and parts of tropical South America and
Africa. In high latitudes, model deviations arise from an excess in absorbed net radiation and precipitation that

Figure 18. Approximate decomposition of temporal variation of global annual simulated gross primary production into
components associated with changing land use, CO2 fertilization, and climate. The curves showing the climate component
and the total change have been processed through a 30‐year LOESS smoother to highlight the long‐term changes.
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results in a warmer climate. In Western Amazonia, the model underpredicts LAI due to substantial biases in
precipitation and its inability to simulate tropical trees under a dry climate. Despite these prevailing issues,
ESM4.1/LM4.1 represents a substantial advance with respect to ESM2G/LM3.0, with a decrease in the overall
bias by about 50% which results mainly from a net improvement in the simulation of the boreal and tropical
regions.

5.4. Aboveground Biomass and Tree Size Distribution

The ability of the model to reproduce global patterns of woody AGB is assessed in Figure 20. AGB is a major
indicator of carbon stored in vegetation and has the advantage that there are reliable estimates based on direct tree
field measurements and allometric models, and on remote sensing products including LiDAR. In addition, AGB
plays a critical role in determining the key properties of the land surface, such as roughness, which in turn play
important role in the land‐atmosphere interaction. Furthermore, AGB serves as an important input for predicting
fuel availability in the fire dynamics module. To assess the model's ability to capture large‐scale gradients in
AGB, we compared ESM4.1/LM4.1 and ESM2G/LM3.0 simulations for the period 2010–2015 with global AGB
reconstructions derived from field plot estimates (Avitabile et al., 2016; Santoro et al., 2015). LM4.1 shows
considerable skill and is able to capture major spatial gradients in AGB (Figure 20), with absolute deviations
below 2.0 kgC m− 2 over most of the land. The average bias suggests a slight decrease in skill with respect to its
predecessor, LM3.0, where vegetation types were prescribed, but LM4.1 outperforms LM3.0 in most of the globe,
except in the Neotropics. Because of biases in simulated climates and climate zones (Section 4), model skill is

Figure 19. Comparison of annual mean leaf area index (LAI, m2 leaf/m2 ground) from (a) MODIS data set (Myneni et al., 2015), (b) ESM2G and (c) ESM4.1
predictions, and their difference with respect to MODIS data (d and e for ESM2G and ESM4.1, respectively).
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somewhat degraded and does not match the location of large‐scale ecotones between tropical, temperate, and
boreal regions. Similarly, biases in the simulation of precipitation over the tropics lead to the underestimation of
AGB in the northeastern end of the Amazon basin and central Africa. Although these biases were already present
in ESM2G (Figure 20), LM4.1 exaggerates the underestimation of AGB in the Amazon basin. On the other hand,
ESM4.1 substantially improves the overestimation of AGB along the boreal zone, subtropical regions of America,
and vast areas in the Afrotropics in ESM2G.

The simulation of individual cohort dynamics represents a major innovation of LM4.1 that enables the charac-
terization of forest structure in terms of size distribution patterns (i.e., the abundance of trees at different size
classes and ages). Size distribution is an important emergent pattern to assess the evolution of vegetation carbon
stocks, and the response and recovery potential of forest ecosystems to climate and atmospheric CO2 perturba-
tions and management interventions. Simulated forests in LM4.1 show a remarkable resemblance with observed
patterns in size structure and captured differences across main biomes (Figure 21). Comparisons with individual‐
level reconstructions of size structure observed in tropical, temperate, and boreal forest plots revealed the ability
of LM4.1 to reproduce the shape of the size distribution from seedlings to large trees. LM4.1 correctly captures
the truncation of size distributions at comparatively small diameters in boreal forests, the smooth decline in
abundance towards very large sizes in temperate latitudes, and the more equalized distribution of tree abundances
in the tropics.

Figure 20. Maps of woody above ground biomass (AGB, kgC m− 2). Panel (a) shows AGB patterns generated by Avitabile et al. (2016) and Santoro et al. (2015), who
interpolated AGB estimates at the plot level based on field observations and remote sensing estimates using machine learning methods. The other maps show woody
AGB patterns based on (b) ESM2G and (c) ESM4.1 predictions for the period 2010–2015 and their difference with respect to observed patterns (d and e for ESM2G and
ESM4.1, respectively).
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5.5. Fire and Dust Emission Precursors

ESM2G/LM3.0 relies on a very simple fire parameterization with constant rates of fire return interval and lacks a
dust emissions parameterization (dust aerosol concentrations are prescribed in the atmospheric component of
ESM2G). This section focuses on the evaluation of fire characteristics in the ESM4.1/LM4.1 and driving vari-
ables of dust emissions. Burned fraction and fire‐related carbon emission from ESM4.1 show generally similar
spatial distributions as observations from GFED4.1s (van der Werf et al., 2017), Figure 22. Wildfire burned area
was not archived in ESM2G experiments. Compared to observations, ESM4.1 simulates higher burned fraction
and fire carbon emission across tropical and subtropical North America and Eurasia, as well as all of South
America, while underestimating biomass burning activity across northeastern Australia, compared with
GFED4.1s. Moreover, the global fire‐related carbon emission amount from ESM4.1 is comparable with Fire
Energetics and Emissions Research version 1.0 (FEER1.0; Ichoku & Ellison, 2014) and about 1.5 times that of
GFED and Global Fire Assimilation System version 1.2 (GFAS; Kaiser et al., 2012). While fire carbon emissions
from FEER are estimated from satellite observations of fire radiative power and aerosol optical depth (AOD) from
the Moderate Resolution Imaging Spectroradiometer (MODIS), carbon emissions from GFED and GFAS are
based only on satellite retrievals of burned area and no AOD constraints (Pan et al., 2019). Therefore, the amount
of fire‐related carbon emissions simulated by ESM4.1 is largely consistent with observation‐constrained esti-
mates. A recent extreme fire attribution study with ESM4.1/LM4.1 (Yu et al., 2021) evaluated the contributions of
natural and anthropogenic ignition activities, anthropogenic climate variability and change, and human influence
on the occurrence of the extreme fire season in Alaska and found that burned area and fire carbon emissions have
increased since the 1950s in Alaska, especially in July, resulting in more frequent extreme events.

One of the key drivers of dust emissions is land surface bareness, which is defined in LM4.1 as areas with LAI or
SAI less than 0.1 and 0.01, respectively. In LM4.1 fires can affect dust emission by creating bare surfaces that can
act as dust sources. Satellite observation shows enhanced dust emission following large wildfires due to vege-
tation disturbance (Yu & Ginoux, 2022). Figure 23 shows the comparison of surface bareness for 2000 derived
from AVHRR (Defries & Townshend, 1994) and simulated by ESM4.1. We see an overall agreement in Africa,
Asia, and North America. ESM4.1 exhibits large areas across Australia and the northeast edge of South America,
which could be associated with wildfires simulated during the historical run and not observed in 2000.

5.6. Land Carbon Stocks and Fluxes

For the present day, LM4.1 simulates total vegetation carbon of 345 PgC, which is within the overall range of
the 42 observation‐based reconstructions obtained by Erb et al. (2017) but below the mean estimate of

Figure 21. Comparison of tree size distribution observed at selected field locations for the main biomes (green dots) with
respect to predictions derived from LM4.1 simulations (orange). Observed tree size distributions were calculated from forest
plot census data retrieved at tropical (Barro Colorado Island, BCI, http://ctfs.si.edu); temperate (FIA, Forest Inventory and
Analysis Program of the U.S. Forest Service for Northern lake states, followingWeng et al. (2015)); and boreal (FIA, Alaska
plots) biomes. Tree size distributions predicted by LM4.1 pool together individuals from all tree vegetation types. Simulated
size distributions were calculated for tiles covered by natural and secondary vegetation within the closest model grid cell to
each reference location. Each graph shows in a double logarithmic scale the normalized abundance of trees grouped into
logarithmic bins.
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447 PgC (inner 50% percentiles 375 to 525 PgC). The main shortcoming of the LM4.1 simulation is an
underestimation of tropical total biomass by approximately 100 Gt, particularly in Amazonia due to climate
biases (e.g., very limited tropical rainforest climate zone, see Figure 6), excessive overgrazing on pastures,
and, potentially, excessive biomass loss due to wildfires (Martínez‐Cano et al., 2022). One potential strategy
for improving the distribution of vegetation carbon in the tropics is revising the representation of competition
between grass and trees during establishment. Another strategy would be to lower grazing intensity estimates
and allow some trees to regrow on pastures, which currently have very low biomass in most of tropical South
America and Africa.

As a result of low biases in vegetation biomass, that lead to a reduction in soil litter inputs, the soil carbon and
surface litter stock of 514 PgC is lower than in previous generations of GFDL ESM2G (1,422 PgC). In addition,
the LM4.1 soil carbon estimate does not include any carbon in the permafrost as its soil carbon model does not
account for peat formation and cryoturbation. The LM4.1 soil carbon model simulates carbon in a vertically
resolved manner and was allowed to accumulate soil carbon only in layers that were not frozen. One strategy for
future efforts would be to develop a method for initializing soil carbon in frozen soil layers in preindustrial
experiments as, to our knowledge, there is no observational data set available to perform such initialization in

Figure 22. Comparison of biomass burning from ESM4.1 and observational data sets. (a and b) Simulated, (c and d) observed, and (e and f) their difference of annual
mean (a, c, and e) burned fraction and (b, d, and f) fire carbon emission (kgm− 2yr− 1) during 2000–2014. (g) Time series of global fire carbon emission (1,012 gyr− 1)
from ESM4.1 and three observational data sets during 1997–2014. The three observational data sets include GFED4.1s (van der Werf et al., 2017), Global Fire
Assimilation System version 1.2 (GFAS) (Kaiser et al., 2012), and Fire Energetics and Emissions Research version 1.0 (FEER1.0) (Ichoku & Ellison, 2014).
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perpetual 1850 conditions. As a result of the underproduction of plant biomass in tropical regions due to climate
biases and overgrazing on pastures, the model predicts for 2000–2009 a small land carbon sink of 0.53 PgC yr− 1

in one of the ESM4.1 ensembles and even smaller sink in the other two ensembles, but still within the range of the
Global Carbon Budget estimate (0.4–2.2 PgC yr− 1) (Friedlingstein et al., 2019).

6. Conclusions
The Grassl (2000) outlook for the early 21st century included anticipation of wider use of CGCM‐based ESMs to
better represent the implications of human activities for the climate system. A new land physics and ecosystem
model LM4.1 has been developed at the GFDL as part of the new ESM4.1 model development effort (Dunne
et al., 2020a). This effort builds on a laboratory‐wide 4th generation model development effort over 2014–2018
that resulted in the AM4 atmosphere (Zhao et al., 2018), OM4 ocean (Adcroft et al., 2019), and CM4 coupled
(Held et al., 2019) models, and unifies advances across several past development efforts. LM4.1 highlights land‐
atmosphere interactions, including hydrological, carbon, and mineral dust exchanges, ecosystem comprehen-
siveness including vegetation competition for light and water, land‐use, gaily crown and multi‐day fire, and
prognostic dust. These features vastly improve climate mean patterns and variability from previous models.
Additionally, LM4.1 includes representation of the rangelands, daily—instead of annual as in LM3.0—grazing
and prescribed crop calendar.

Several critical simulation challenges also remain, however. LM4.1 likely overestimates the influence of land use
and land cover change on many vegetation characteristics, particularly on pasturelands, and as a result simulates
lower present‐day biomass and carbon uptake compared to both observations and the previous generation of
GFDL ESMs, which overestimated vegetation carbon pools and GPP (Dunne et al., 2013). In coupled mode,
LM4.1 provides improvements relative to previous model versions in the fidelity of many simulated land surface
characteristics including representation areas of permafrost, diurnal cycle, and historical climate warming
(Section 4) as well as of general bioclimate and associated vegetation characteristics such as the spatial patterns of
aboveground biomass and GPP (Section 5). However, some representational challenges remain. The Amazon dry
bias and associated seasonally low productivity, while vastly improved over the previous generation of GFDL
ESMs, continue to pose a challenge. Soil moisture suffers from a high bias in northern subpolar regions where
coniferous vegetation extends too far poleward. Excessive overgrazing leads to the underprediction of GPP and
subsequently to a lower biomass accumulation and LAI over pasturelands. Similarly, the absence of double
cropping in tropical regions also contributes to lower values of both LAI and GPP. Despite the differences in
simulated and observed bareness (Figure 23) in the Northeast edge of South America and Australia, the dust
emissions would not necessarily be biased. As recent studies suggest substantial sources in those regions could be
associated with seasonal, not muti‐year bareness, and vegetation loss due to fires (Yu & Ginoux, 2022). Future
GFDL land model development will integrate existing GFDL land capabilities, including the urban canopy model
(Li et al., 2016a, 2016b), water quality (Lee et al., 2023), and N cycling in plants and soils (Sulman et al., 2014,
2019) and seek to improve the competitive plant dynamics (Detto et al., 2022), subgrid hydrological heterogeneity

Figure 23. (a) Surface bareness (soil surface free of any vegetation) for 2000 as derived from AVHRR satellite data and (b) calculated by ESM4 historical simulation.
Light and dark red shading correspond to bareness fraction greater than 0.1 and 0.5, respectively.
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(Chaney et al., 2018), and urban water management (Xie et al., 2021). Once biases in tropical vegetation are
addressed, we expect the magnitude of the land carbon sink to increase and become more in line with obser-
vational estimates. As such, LM4.1 provides both an exciting basis for analysis in the context of the ESM4.1
contributions to CMIP6 and a promising mechanistic platform for near‐term development as individual fidelity
challenges are considered and addressed.

Appendix A: Equations of Energy and Mass Balance
To introduce the notation for this description, we consider a land surface tile where there are N vegetation cohorts
that formM layers. Cohorts are numbered from the tallest to the shortest; layers are numbered from top to bottom.
Each cohort entirely belongs to a single layer such that the cohorts do not straddle the boundaries between layers.
Each cohort k is composed of identical individuals with a spatial density of nk (1/m2) with each individual plant
having a crown area ak (m

2). Therefore, crowns of all plants that make up cohort k occupy fraction fk of their
layer's area:

fk = nkak (1 − ηk) (A1)

where ηk is the fraction of internal gaps within plant canopies.

A1. Land Surface Multi‐Layer Mass and Energy Balance

Each of the plants exchanges turbulent fluxes of heat and substances with the air in the canopy air space, which
also exchanges fluxes with the ground surface and the atmosphere. The canopy air space is well mixed. The time
evolution of the canopy air specific humidity qc is given by (Figure A1)

mc
dqc
dt
=∑

N

k=1
fkEv,k + Eg − Ea (A2)

where mc is the mass of canopy air,

Ev,k ≡ Et,k + El,k + Es,k (A3)

is the water vapor flux from canopy k, with Et,k being transpiration, Et,k and Et,
k—water vapor fluxes from intercepted water and snow, respectively. Eg is
water vapor flux from the ground surface, and Ea is water vapor flux from
canopy air to the atmosphere. Note that the fluxes between canopy and
canopy air described in this section (e.g., Et,k, El,k, and Es,k in expression A3)
are calculated per unit area of the plant crown.

Similarly, the equation of the well‐mixed canopy air energy balance is:

mc
d
dt
( (1 − qc) cpTc + qccvTc) =∑

N

k=1
fkHv,k + Hg − Ha

+ cv(∑
N

k=1
fkTv,kEv,k + TgEg − TcEc)

(A4)

where cp and cv are the heat capacities of dry air and water vapor, Tc is the
temperature of canopy air, Tv,k is the temperature of cohort k canopy, Hv,k is
the sensible heat flux from canopy k to the canopy air, Hg and Ha are the
sensible heat fluxes from the ground to canopy air and from the canopy air to
the atmosphere, respectively.

Figure A1. Schematic of multilayer and multicohort radiation propagation
through the vegetation canopy in LM4.1. Cohorts are denoted in green and
the ground in brown. The canopy can have an arbitrary number of layers, as
generated by the Perfect Plasticity Approximation model.
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The mass balance of intercepted liquid water and snow on the canopy of cohort k is affected by the interception of
a fraction γI,k of liquid and solid precipitation, water and snow drip Dl,k, Ds,k and evaporation/sublimation El,k,
Es,k:

dwl,k
dt

= γI,kPl,i − Dl,k − El,k (A5)

dws,k
dt

= γI,kPs,i − Ds,k − Es,k (A6)

Pl,i and Ps,i are the rates of liquid and solid precipitation falling on top of layer i. At the top of the canopy, Pl,1 and
Ps,1 are simply the rainfall and snowfall rates from the atmosphere; for the layers below the top,

Pl,i = Pl,i− 1(1 − ∑
k∈i− 1

fkγI,k) (A7)

Ps,i = Ps,i− 1(1 − ∑
k∈i− 1

fkγI,k) (A8)

where the summation is over all cohorts in layer i − 1, and γI,k is the fraction of incident precipitation that is
intercepted by the canopy of cohort k:

γI,k = 1 − exp(− max(LAIk,SAIk)) (A9)

The model uses a simplifying assumption that the drip from the canopies is not intercepted by the layers below but
contributes directly to the water and energy balance of the underlying surface.

Water and snow drip rates from the canopy are proportional to the amount of substances on the canopy, except the
cases of extremely intense precipitation, when the amount intercepted by the canopy exceeds the maximum
allowed values Wl, max = LAI × 0.02 kg m

− 2 and Ws, max = LAI × 0.3 kg m
− 2. The expression for drip rates of

liquid water and snow:

Dl,k =
wl,k
τl

(A10)

Ds,k =
ws,k
τs

(A11)

The characteristic drip time scales for liquid and snow are τl = 6 hr and τs = 3 days respectively.

The energy balance of the cohort k canopy, in layer i is described with the following equations:

d
dt
(Cv,kTv,k + wl,kclTv,k + ws,kcsTv) = RSv,k + RLv,k − Hv,k

− Et,k (Le0 + cvTv,k − clTu,k)

− El,k (Le0 + cvTv,k)

− Es,k (Ls0 + cvTv,k)

+Hpl,iγI,k − clTv,kDl,k + Hps,iγI,k − csTv,kDs,k (A12)

where Tv,k is the temperature of the vegetation canopy, Tu,k is the average temperature of water taken up by the
plant from the soil, Cv,k is the heat capacity of the dry vegetation canopy, cl and cs are the specific heat capacities
of liquid water and snow, RSv,k and RLv,k are the net short‐wave and long‐wave radiative balances of the canopy,
Hv,k is the sensible heat flux from the canopy to canopy air, Le0 and Ls0 are the latent heats of evaporation and
sublimation, Hpl,i and Hps,i are the fluxes of sensible heat carried by precipitation entering canopy layer i.
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Finally, the energy balance of ground surface is given by:

RSg + RLg − Hg − LgEg − G − LfMg = 0 (A13)

where RSg and RLg are the net short‐ and long‐wave radiative balances of the surface,Hg and LgEg are the sensible
and latent heat fluxes,G is the ground heat flux (positive down from the surface), and LfMg is the latent heat due to
surface water melt.

The system of equations (Equations A2–A12), together with the equations of soil energy and water balance (Milly
et al., 2014), is linearized with respect to temperature and mass increments around the state variables at the
beginning of each time step and solved numerically every physical time step of the model. The numerical solution
is implicit, which allows relatively large time steps (e.g., 30 min).

A2. Turbulent Fluxes Between Canopies and Canopy Air

The model uses the following expressions to calculate the fluxes between canopies and canopy air:

Hv,k =
ρcp
rv,k
(Tv,k − Tc) (A14)

Et,k = ρ
ft,k

rs,k + rv,k
(qi,k − qc) (A15)

El,k = ρ
fl,k
rv,k

(q∗ (Tv,k) − qc) (A16)

Es,k = ρ
fs,k
rv,k

(q∗ (Tv,k) − qc) (A17)

where qi,k is the specific humidity of air within the leaf (see Appendix A5), and q∗(Tv,k) is the saturated specific
humidity at canopy temperature Tv,k. fl,k and fs,k are the fractions of the canopy covered by the intercepted liquid
and snow, ft,k—fraction of the canopy that is not covered by either snow or liquid (and therefore can transpire),

fs,k = (
ws,k
Ws,max

)

ps
(A18)

fl,k = (
wl,k
Wl,max

)

pl
(1 − fs,k) (A19)

ft,k = 1 − fl,k − fs,k (A20)

The turbulent fluxes between the ground surface and canopy air are expressed in a similar fashion

Hg =
ρcp
rg
(Tg − Tc) (A21)

Eg = ρ
1
rg
(qg − qc) (A22)

Near‐surface specific humidity qg is calculated based on the presence of snow and the amount of water available
in the upper layer of the soil:

qg = q∗ (Tg) ×
⎧⎨

⎩

exp (gψs/(RvTref )), for snow‐free soil

1 for snow‐covered soil
(A23)

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003922

SHEVLIAKOVA ET AL. 32 of 47

 19422466, 2024, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003922 by C
ochrane France, W

iley O
nline L

ibrary on [13/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where q*(Tg) is the saturated water vapor specific humidity at the temperature of the surface interacting with the
canopy air (soil surface for snow‐free conditions and upper surface of snowpack for the snow‐covered soil),
g= 9.81 m s− 2 is the acceleration due to gravity, ψs (m) is the soil water matric potential at the soil surface, and Rv
(J kg− 1 K− 1) is the gas constant for water vapor. Tref = 293 K is a reference temperature.

To calculate the quasi‐laminar aerodynamic resistances between canopy and canopy air rv,k, and between ground
and canopy air rg the model follows (Bonan, 1996) in assuming that the wind speed profile u(z) within the canopy
is exponential:

u(z) = u(H)exp(− a
H − z
H

) (A24)

and the vertical profile of eddy diffusivity Kh(z) (m
2 s− 1) is also exponential:

Kh(z) = Kh(H)exp(− a
H − z
H

) (A25)

where H is the height of the top of the canopy, z is the height from the ground surface, and a is a dimensionless
empirical parameter, equal to 3.0 in current model formulation. The model calculatesH as the height of the tallest
cohort in the tile, imposing a lower limit of 0.1 m.

The formulation of aerodynamic conductance through a leaf boundary layer can be traced through (Bonan, 1996)
to (Choudhury & Monteith, 1988), to (H. G. Jones, 1983):

gb(z) = α
̅̅̅̅̅̅̅̅
u(z)
d

√

(A26)

where α = 0.01 m s− 1/2, and d is the characteristic plant surface dimension in the direction of the wind flow,
assumed to be equal 4 cm in the model.

The expression (Equation A26) gives the value of quasi‐laminar aerodynamic conductance per unit leaf area. To
calculate the bulk aerodynamic conductance between the canopy of cohort k and canopy air, the model assumes
that the plant surface elements are uniformly distributed between the top and the bottom of the canopy. Integrating
in height,

gv,k ≡
1
rv,k

=

2αH
a

̅̅̅̅̅̅̅̅̅̅
u(H)
d

√
SAIk + LAIk
Ht,k − Hb,k

[exp(− a
H − Hb,k
2H

) − exp(− a
H − Ht,k
2H

)]

(A27)

Ht,k is the height of the top of cohort k canopy, and Hb,k is height of its bottom. To estimate the latter, the model
uses the height of the tallest cohort in the next lower layer, or zero if there is no next vegetation layer.

To calculate the resistance between canopy air and ground surface, the model integrates expression (Equa-
tion A25) between ground surface roughness length for scalars z0s and z1 = d0 + z0m where d0 is displacement
height and z0m is the land surface roughness length for momentum:

rg =∫

z1

z0s

1
Kh(z)

dz =
H

Kh(H)a
[exp(a

H − z0s
H

) − exp(a
H − z1
H

)] (A28)

To calculate the value of turbulent diffusion coefficient at the top of the canopy Kh(H), the model uses expression

Kh(H) = κu∗ (H − d0) (A29)
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where κ is von Karman constant, and u* is the friction velocity calculated by the Monin‐Obukhov parameteri-
zation of the flux exchange between atmosphere and land surface.

A3. Radiative Balance of Canopies and Land Surface

To calculate the radiative balances of each cohort, the model first obtains the bulk radiative properties of cohorts'
canopies by solving the equation of radiation propagation using the two‐stream approximation for each cohort,
under the assumption of plain‐parallel structure of cohort canopies (Meador & Weaver, 1980; Pinty et al., 2006).
The model also assumes a spherical angular distribution of leaves, with the optical properties of leaves specified
separately for each species (see Table B1).

As a result, the model obtains the optical properties of each cohort k: reflectance for diffuse light αk, transmittance
for diffuse and direct light τk and τ⊙

k , and coefficients of upward and downward scattering of direct beam s↑k and s
↓
k .

To calculate light propagation through the entire multi‐layer mult‐cohort vegetation, the properties of the cohorts
are combined using their fractional areas within canopy layers, so that the equations of radiation transport
become:

I↑i− 1 =∑
k
fks

↑
k F

⊙
i− 1 +∑

k
fkαkI

↓
i− 1 +∑

k
fkτkI

↑
i (A30)

I↓i =∑
k
fks↓k F

⊙
i− 1 +∑

k
fkαkI↑i +∑

k
fkτkI↓i− 1 (A31)

F⊙
i =∑

k
fkτ⊙

k F
⊙
i− 1 (A32)

where the summation is performed over all cohorts that belong to layer i. In this notation, I↓i , I
↑
i , and F

⊙
i are the

upward and downward fluxes of diffuse radiation and downward direct flux below vegetation layer i. F⊙
0 and I↓0

are the inputs of downward direct and diffuse fluxes, respectively, at the top of the entire canopy. To close the
system of Equations A30–A32, the flux reflected at the ground surface (below lowest canopy layer M) is

I↑M = α⊙
g F

⊙
M + αgI

↓
M (A33)

where α⊙
g and αg are ground surface reflectances for direct and diffuse light. The short‐wave radiative balance of

the cohort k canopy is then:

RS,k = (I↓i− 1 + I↑i ) (1 − αk − τk) + F⊙
i− 1(1 − τ⊙

k − s↑k − s↓k) (A34)

per unit area of that canopy.

Equations of short‐wave radiation balance are solved for two spectral bands (visible and near infrared), and the
total radiative balance is calculated as the sum of the two. The long‐wave radiation budget of the canopies is
calculated similarly, except that there is no contribution from direct solar light, and each of the cohort canopies
emits long‐wave radiation according to the Stefan‐Boltzmann law. Consequently, the individual canopies within
the layer interact with the canopies in the layers above and below and with the ground surface (but not with other
canopies within the same layer) through long‐wave radiation emission and absorption.

A4. Plant Photosynthesis and Respiration

The computation of energy, moisture, and CO2 exchanges requires knowledge of stomatal and aerodynamic
canopy conductances. We assume that the whole cohort has leaf temperature Tl and stomata are saturated and
have specific humidity q(Tl). First, we compute stomatal conductance without taking into account any limitation
by water availability, gs, max. Additionally, stomatal conductance has a vertical distribution gs(LAI′)
(molH2Om

− 2s− 1), where LAI′ (m2 m− 2) is the cumulative leaf area, measured from the top of the canopy
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downward. A system of three equations with three unknowns ‐ the stomatal conductance, gs, max, the intercellular
concentration of CO2,Ci (mol mol

− 1), and the net photosynthesis, An (molCO2 m
− 2 s− 1) ‐ defines the plant uptake

of CO2 and the rate of non‐water‐stressed transpiration for a thin canopy layer dLAI′ at a temperature Tl(K)
receiving an incident photosynthetically active radiation flux Q(LAI′) (Einstein m− 2 s− 1) and surrounded by
canopy air with vertically uniform specific humidity qca (kg kg

− 1) and CO2 concentration Cca (mol mol
− 1):

gs,max =
m ⋅An

(Ci − Γ∗) ⋅ (1 + (qsat (Tl) − qca)/d0)
(A35)

An =
gs,max
1.6

⋅ (Cca − Ci) (A36)

for C3:

An = min

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

JE = aα3Q
Ci − Γ∗

Ci + 2Γ∗

JC = Vm (Tl)
Ci − Γ∗

Ci + Kc (Tl)
pref
p
⋅ (1 + [O2]/Ko (Tl))

pref
p

Jj =
Vm (Tl)
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− γVm (Tl) (A37)

for C4:

An = min

⎛

⎜
⎜
⎜
⎜
⎝

JE = aα4Q

JC = Vm (Tl)

JCO2 = 18000Vm (Tl)Cl

⎞

⎟
⎟
⎟
⎟
⎠
− γVm (Tl) (A38)

where a is the leaf absorptance of photosynthetically active radiation, α3 and α4 are the intrinsic quantum effi-
ciencies, Vm is the maximum velocity of carboxylase (molCO2 m

− 2 s− 1), Γ* = αCO2[O2]KC/(2KO) is the
compensation point, KC and KO are the Michaelis‐Menten constants for CO2 and O2, [O2] is the atmospheric
oxygen concentration, pref = 1 × 105 Pa is the reference pressure and p is an atmospheric pressure. The tem-
perature dependence of the Michaelis‐Menten constants, the maximum velocity of carboxylase, and the
compensation point are described by the Arrhenius function:

f (T) = exp(E0(−
1

258.16
−
1
T
)) (A39)

where T is the temperature (Kelvin) and E0 is a temperature sensitivity factor (Foley et al., 1996) (see Table B1 for
parameter values).

Equation A35 gives the leaf stomatal conductance for vegetation if the soil water is not limiting. It links the rate of
stomatal conductance for water gs to the net photosynthesis (An), intercellular concentration of CO2 (Ci), and
humidity deficit between intercellular space and the external environment. This equation is a simplification of
Leuning (1995) empirical relationship assuming that the contribution of cuticular conductance is negligible.
Equation A36 is a one‐dimensional gas diffusion law. The factor of 1.6 is the ratio of diffusivities for water vapor
and CO2. We assume that the diffusion of CO2 is mostly limited by stomatal conductance and not by leaf
boundary layer conductance. Equations A37 and A38 are based on the mechanistic model of photosynthesis by
Farquhar et al. (1980) and its extensions by Collatz et al. (1991, 1992).

The net photosynthesis is the difference between the gross photosynthesis and leaf respiration. The gross
photosynthesis for C3 plants is the minimum of three limited rates: the light limited rate JE, the Rubisco limited
rate JC, and the export limited rate of carboxylation Jj. Similarly, in Collatz et al. (1992) the gross photosynthesis
rate for C4 plants is the minimum of the light limited rate JE, the Rubisco limited rate JC, and the CO2 limited rate
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JCO2. Leaf respiration is computed as Rleaf= γVmm(Tl). Although the formulation of Collatz et al. (1991) is widely
used in dynamic vegetation and land surface models, it requires computationally expensive iterative solutions.
The simplifying assumption made in Equation A35 that cuticular conductance is negligible, allows an analytical
solution for the three unknowns.

Assuming that a PAR flux Q(LAI′) monotonically decreases through the C3 canopy, the PAR flux Q(LAIeq) can
be defined at the level Leq, at which the light limited rate JE is equal to the minimum of the Rubisco limited rate JC
and the export‐limited rate of carboxylation Jj. Above the canopy level Leq the gross photosynthesis will be a
function of the Rubisco or export limited rate and below this level the gross photosynthesis will be a function of
the light limited rate, so that average canopy net photosynthesis and average canopy stomatal conductance are:

An =
min(Jc,Jj) ⋅ LAIeq + ∫ LAILAIeq

JE (LAI′) dLAI′
LAI

(A40)

gs,max =
m ⋅An

(Ci − Γ∗) ⋅ (1 + (qsat (Tl) − qca)/d0)
(A41)

Average net photosynthesis for C4 plants is computed in a similar fashion. Gross primary production is computed
as a sum of an average canopy photosynthesis An and leaf respiration Rleaf.

A5. Plant Hydraulics and Water Limitations on Stomatal Conductance

Calculation of the water availability effect on transpiration and stomatal conductance follows the approach based
on Wolf et al. (2016). To calculate plant transpiration, the model assumes that there is no water storage in the
trunk, but the water conductance through the plant depends on plant size, cross‐section of conducting tissues, and
water stress within the tissues. We define Ψl as the water potential of the leaf (at the point of vaporization), Ψx as
the water potential at the interface between the leaf and plant xylem (i.e., at the leaf attachment pint to the stem),
and Ψr as the water potential at the interface between the root system and the stem. We assume no resistance
inside the root system other than resistance of soil in the rhizosphere and resistance of the root skin. This
simplification means that all effects of xylem resistance are conceptually assigned to the plant stem.

Since the model assumes no water storage in the plant, the mass conservation equation is:

ur = ux = ul = Et (A42)

where ur is flux of water out of the root system, ux is the flux through the xylem, ul is the flux through the leaves of
the individual, and Et is individual's transpiration. Flux of water through the stem xylem at any given height z is
described by the Darcy (1856) law:

ux = − Kx(ψ)
dψ
dz

(A43)

where stem conductance of individual follows Sperry et al. (1998) formulation:

Kx(ψ) = axkx exp[− (
ψ
dx
)

cx
] (A44)

kx is a species‐dependent xylem conductance per unit area of xylem cross‐section (kg m
− 1 Pa− 1 s− 1), ax is the area

of the xylem cross‐section (m2), cx and dx (which is negative) are species‐dependent parameters describing the
xylem conductance dependence on water stress. For simplicity, Equation A43 neglects the gravitational potential
of the water.

To find the flow through the xylem given the boundary conditions Ψr and Ψl, we integrate both sides of Equa-
tion A43 by z, taking into account that since we assume no water storage in the xylem, ux does not depend on z:
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ux =
axkx
H

dx
cx
[Γ(

1
cx
,(
Ψx

dx
)

cx
) − Γ(

1
cx
,(
Ψr

dx
)

cx
)] (A45)

where Γ(s, x) is upper incomplete gamma function, and H is the height of the leaf attachment point (height of the
canopy).

Similarly, water flux within a leaf is given as:

ul = − Kl(ψ)
dψ
dx

(A46)

where x is the distance within the leaf from the point where it attaches to the branch. The expression for leaf
conductance is similar to the xylem conductance:

Kl(ψ) = alkl exp[− (
ψ
dl
)

cl
] (A47)

Similar to Equation A45, flow through the leaves can be also expressed in terms of boundary water potentials Ψx

and Ψl, without explicitly representing in‐leaf distribution of water potentials:

ul = Alkl
dl
cl
[Γ(

1
cl
,(
Ψl

dl
)

cl
) − Γ(

1
cl
,(
Ψx

dl
)

cl
)] (A48)

where Al is the plant leaf area.

Following (Wolf et al., 2016), the scaling factor for non‐water‐limited stomatal conductance is

ϕs (Ψl) = exp[− (
Ψl

dl
)

cl
] (A49)

so that the water‐limited stomatal conductance is:

gs (Ψl) = gs,maxAl exp[− (
Ψl

dl
)

cl
] (A50)

The factor Al scales the average stomatal conductance per unit leaf area gs,max to the plant level.

At the point of vaporization, the water potential Ψl is equal to water potential of air within a leaf:

Ψl = Ψair,i =
RTl
Vm

ln(RHi) (A51)

or, equivalently

qi = q∗ (Tl) exp(
Ψlμw
RTl

) (A52)

where R = 8.31 J/mol/K is the universal gas constant, μw = 18 × 10
− 6 m3 mol− 1 is partial molar volume of liquid

water, RHi is relative humidity inside the leaf, and q*(Tl) is the saturated specific humidity at temperature Tl and
ambient pressure.

Solving the above system of equations, together with Equation A15 scaled to the plant level allows us to jointly
determine plant stomatal conductance and its transpiration.
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Formulation of water uptake by roots is based on the Darcy (1856) law of soil water conductance. Let u be the rate
of water uptake per unit length of fine root, rr—the fine root radius, and r—the “microscopic” distance from the
root axis. For steady flow toward the root,

u = 2πrK(ψ)
dψ
dr

(A53)

where K(ψ) is the unsaturated hydraulic conductivity of the soil, and ψ is the soil matric water potential. Inte-
grating from root‐soil interface to “bulk” soil (with matric head ψs at the distance Rs from the root axis):

∫

Rs

rr

u
2πr

dr =∫

ψs

ψr
K(ψ)dψ (A54)

or, equivalently:

u =
2π

ln(Rs/rr)
∫

ψs

ψr
K(ψ)dψ (A55)

This relationship is assumed to hold at a macroscopic point, that is a model layer in this case. To find the
characteristic distance Rs to the “bulk soil” with matric potential ψs, we assume it to be equal to the half‐distance
between roots. At each soil horizon, it can be expressed in terms of a cohort's specific root length λk (SRL, length
of fine roots per unit mass of carbon) and the volumetric density of root biomass of each cohort, br,k(z). The total
length of roots per unit volume is:

Lr(z) =∑
k
nkλkbr,k(z) (A56)

Therefore, the area of cross‐section surrounding the root Ar = 1/Lr giving:

Rs =
1
̅̅̅̅̅̅̅
πLr

√ (A57)

On the other hand, the water flux through the root skin per unit length of the root is:

u = 2πrrKr (ψr − ψx) (A58)

The vertical distribution of plant fine root biomass is assumed to be exponential (Jackson et al., 1996), with
e− folding depth ζ:

br,k(z) =
Br,k
ζk
exp(

z
ζ
) (A59)

where Br,k is the total fine root biomass of a plant.

Solving Equations A55 and A58 gives the resulting water uptake per unit length of root for each cohort, and, after
appropriate scaling, the total water uptake of the plant. This plant uptake is in turn used to solve the plant hy-
draulics equation and obtain the total evapotranspiration, water potentials, and stomatal conductance of the plant.
The solution is performed numerically, using linearization around the state at the previous time step.

A6. Plant Allometry and Carbon Allocation

Plant allometry and carbon allocation are based on the parameterizations described in LM3PPA‐TV (Martínez
Cano et al., 2020), which is an updated version of the first implementation of the PPA dynamics in GFDL LM3.0
version, LM3‐PPA model (Weng et al., 2015). LM4.1 represents tree and grass biomass as six dynamic carbon
pools: leaves (L), fine roots (FR), reproductive pools (F), labile nonstructural carbohydrates (NSC), sapwood
(SW) and heartwood (HW). The crown area of each plant or grass tussock is AC is described as:

AC = aCDbC (A60)
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where aC and bC are parameters determining the shape of the crown and D is the plant or tussock diameter. The
plant height H(D) is defined as a saturating function of trunk diameter using a generalized Michaelis‐Menten
function following Martínez Cano et al. (2020):

H(D) =
aHDbH

kH + DbH
(A61)

where aH is the asymptotic tree height, and bH and kH determine the rate of tree height increase with diameter. This
form of height function avoids accelerating the rate of tree height growth with trunk diameter. Changes in the
plant biomass Bw(D) is then represented as:

BW(D) = αBMρD2H (A62)

where ρ is the wood density.

The plants' pools are defined by the following relationships. The allocation of new carbon to each pool depends on
the instantaneous deviation between the biomass of each pool and its target. Similarly to Weng et al. (2015), we
define the following targets for the biomass of leaves L*, fine roots FR*, nonstructural carbohydrates NSC*,
branches BR*, and sapwood BSW*:

Similarly to LM3, the leaf and fine root biomass target equations follow the pipe model (Shinozaki et al., 1964).
Target leaf biomass L* is the product of the leaf mass per area, LMA, and the target total leaf area, A∗

L, which is
defined as a product of crown leaf area index LAI*, crown area AC, corrected for the fraction of internal canopy
gaps 1 − η. The canopy and understory canopy layers have different target values LAI*. The fine root target
biomass FR* is the product of the specific root area SRA and the total root area target A∗

R, which is computed as
the root surface area per leaf area ϕRL times the target total leaf area, A∗

L. The target nonstructural carbohydrates
NSC* is proportional to leaf biomass L*, with proportionality constant qNSC. The target branch biomass BR* is a
constant fraction pBR of wood biomass Bw(D). The target sapwood biomass is computed as a difference with
heartwood biomass, defined in terms of an equivalent diameter of heartwood. Conversion of biomass from
sapwood to heartwood follows Weng et al. (2015) and Martínez Cano et al. (2020).

Leaf biomass:

L∗ = LMA × A∗
L = LMA × LAI∗(1 − η)AC (A63)

fine root biomass:

FR∗ =
A∗
R

SRA
=
ϕRLA∗

L
SRA

(A64)

biomass of nonstructural carbohydrates

NSC∗ = qNSCL∗ (A65)

branch biomass

BR∗ = pBRBW = pBRαBMρD2H (A66)

sapwood biomass

B∗
SW = αBMρ(D2 − D∗

HW
2
)H (A67)

Appendix B: Model Parameters for Different Vegetation Types in the Equations
Presented in Appendix A
Table B1 shows the model parameters for different vegetation types.
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Appendix C: Soil Carbon Dynamics Model
The soil carbon dynamics model used in this study follows Sulman et al. (2014) paper, except few changes that
were motivated by the need for the soil carbon state to reach a steady state—which is essential for the formulation
to be useable in the framework of ESM.

First, in this configuration of the model the carbon isotope tracking was not enabled, so for simplicity in the
equations below we omit the isotope index j that was present in original Sulman et al. (2014) manuscript.

Second, the accumulation of soil carbon in protected pools was disabled. Therefore, equation 1 of Sulman
et al. (2014) Supplementary Information (SI) was in effect replaced with a simplified form, that excluded the
protected carbon from consideration:

Table B1
Model Parameters for Different Vegetation Types in the Equations Presented in Appendix A

Tropical tree Evergreen coniferous Temperate tree C4 grass C3 grass

η, internal gap fraction 0.1 0.1 0.1 0.1 0.1

λl, length of fine roots per unit mass of carbon, m (kg C)− 1 43.9 × 103 43.9 × 103 43.9 × 103 112.0 × 103 150.0 × 103

m, stomatal conductance factor 7.0 7.0 7.0 4.0 7.0

Vm, maximum Rubisco‐limited carboxylation rate mol CO2 m
2 s− 1 3.0 × 10− 5 2.1 × 10− 5 2.0 × 10− 5 1.0 × 10− 5 2.0 × 10− 5

γ, leaf respiration factor 1.0 × 10− 2 3.0 × 10− 2 3.5 × 10− 2 3 × 10− 2 1.5 × 10− 2

d0, reference value of canopy air water vapor deficit, kg H2O (kg air)− 1 0.09 0.09 0.09 0.09 0.09

α, photosynthetic quantum yield, mol CO2 Einstein
− 1 0.04 0.04 0.04 0.03 0.06

[O2] intercellular concentration of oxygen, mol O2 (mol air)
− 1 0.209 0.209 0.209 0.209 0.209

aH, asymptotic height, m 60.98 29.83 49.12 1.41 1.41

bH, exponent of tree height allometry 0.863 1.452 0.759 2.611 2.611

kH, inflection parameter of tree height allometry 0.684 0.110 0.531 1.410 × 10− 3 1.410 × 10− 3

aC, intercept of crown area allometry 243.78 111.06 150.0 95.0 95.0

bC, scaling parameter of crown area allometry 1.182 1.580 1.5 1.5 1.5

aBM, biomass allometry parameter 0.559 0.414 0.368 1.0 1.0

LMA, leaf mass per unit area, kg C m− 2 3.5 × 10− 2 0.1 3.8 × 10− 2 2.655 × 10− 2 2.655 × 10− 2

ρ, wood density, kg C m− 3 215.95 185.0 245.0 69.4 69.4

LAI*, target crown leaf area index 6.0 5.0 3.5 2.5 2.5

Understory LAI factor 0.25 0.25 0.25 0.25 0.25

ϕRL, ratio of root surface area to leaf area 1.4 1.4 0.8 0.8 0.8

SRA, specific fine root area, m2 (kg C)− 1 33.1 33.1 33.1 84.45 113.1

qNSC, proportionality constant of NSC target to leaf biomass 4 4 4 4 4

kl, leaf conductance per unit area kg m
− 2 s− 1 MPa− 1 3 × 10− 7 3 × 10− 7 3 × 10− 7 3 × 10− 7 3 × 10− 7

dl, leaf conductance dependence on water stress − 3 × 106 − 3 × 106 − 3 × 106 − 3 × 106 − 3 × 106

cl, leaf conductance dependence on water stress 1.5 1.5 1.5 1.5 1.5

kx, xylem conductance kg m− 2 s− 1 MPa− 1 3 × 10− 6 3 × 10− 6 3 × 10− 6 3 × 10− 6 3 × 10− 6

dx, xylem conductance dependence on water stress − 3 × 106 − 3 × 106 − 3 × 106 − 3 × 106 − 3 × 106

cx, xylem conductance dependence on water stress 1.5 1.5 1.5 1.5 1.5

αleaf,VIS, leaf reflectance in VIS band 0.1 0.1 0.1 0.11 0.11

αleaf,NIR, leaf reflectance in NIR band 0.45 0.39 0.45 0.45 0.45

τleaf,VIS leaf transmittance in VIS band 5 × 10− 2 5 × 10− 2 5 × 10− 2 5 × 10− 2 5 × 10− 2

τleaf,NIR, leaf transmittance in NIR band 0.25 0.25 0.25 0.25 0.25

pBR, proportionality constant for branchwood target 0.1525 0.2065217 0.2065217 0.0 0.0

ζk, e‐folding depth parameter 0.25813 0.25813 0.25813 0.35212 0.17039

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003922

SHEVLIAKOVA ET AL. 40 of 47

 19422466, 2024, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003922 by C
ochrane France, W

iley O
nline L

ibrary on [13/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



dCi
dt

= Ti − Di (C1)

where i indicates chemical class, C is unprotected carbon, T represents carbon transfers between pools such as
inputs or litter deposition, and D is decomposition rate for this chemical class. This change effectively excludes
Equations 6 and 7 of Sulman et al. (2014) SI that describe protected pool accumulation and decomposition from
the model formulation.

Third, we imposed the minimum decomposition rates on all carbon chemical classes:

Di = max

⎡

⎢
⎢
⎢
⎢
⎣

1
τmax

,Vmax,i(T)(
θ
θsat

)

3

(1 −
θ
θsat

)

2.5

Ci
M

∑iCi
M

∑iCi
+ kM

⎤

⎥
⎥
⎥
⎥
⎦

(C2)

In the equation above, the second term in the square brackets is identical to Sulman et al. (2014) original
formulation, while the first term imposes the upper limit on the time scale of carbon decomposition. In the
simulations discussed in this manuscript, the value of τmax was set to 500 years.

Appendix D: The Turc‐Mezentsev‐Priestley‐Taylor (TMPT) Model
The Turc‐Mezentsev equation (Lebecherel et al., 2013) relates the evapotranspiration ratio (evapotranspiration
divided by precipitation) to the dryness index (ratio of potential evapotranspiration to precipitation),

E
P
= [1 + (Ep/P)− ν]

− 1/ν (D1)

in which ν is commonly taken as 2, yielding a relation very close to that of Budyko (1974). To quantify Ep, we use
the Priestley‐Taylor equation for evapotranspiration from a non‐water‐stressed surface under conditions of
minimal advection (Priestley & Taylor, 1972),

Ep =
αΔ(Rn − G)

Δ + γ
(D2)

in which α is commonly in the range 1–1.3. Here, Δ is the slope of the saturation vapor pressure curve of water (a
function of temperature), γ is the psychrometric constant (a function of pressure), Rn is surface net radiation, andG
is the heat flux into the ground. To estimate annual Ep, we apply the Priestley‐Taylor equation at a monthly time
scale, ignoring G, and then sum monthly values up to the annual scale.

In the application of the TMPTmodel, we used only data for locations in which the observation‐based estimates of
precipitation, runoff, and evapotranspiration balanced to within 10% of precipitation. The balance discrepancy is
shown in the figure below, where locations exceeding the 10% criterion have been masked out.

Appendix E: Decomposition of GPP Trend Into Components
For each grid cell and each water year, the time‐varying GPP,G(t), is represented as the sum over land uses of the
product of the land‐use area, aLU, and the GPP per unit area of land use within the cell, GLU(t). The area of each
land use is represented as the sum of the time mean area, aLU , and the deviations therefrom, δaLU(t). Thus,

G(t) =∑
LU

[aLU + δaLU(t)]GLU(t) (E1)

The three land‐use categories used are natural and secondary vegetation, pasture and rangeland, and cropland. The
dependence of GLU(t) on climate and atmospheric CO2 is approximated by the use of multiple linear regression,

GLU(t) = GLU0 + αLUδP(t) + βLUδTLU(t) + γLUδC(t) + ϵδS(t) (E2)

The sum over land uses of the product of aLU and GLU0 is the constant part of G(t). The contribution of changing
land use to the temporal variation ofGLU(t) can be estimated as the product of δaLU(t) andGLU0. The contribution
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from precipitation can be estimated by ∑LUaLUαLUδP(t) and the contributions from temperature, downward
shortwave radiation, and CO2 can be estimated in a similar fashion. Interactions between changing land use and
changing climate and CO2 are represented by the sums of products of the deviation terms.

Appendix F: Köppen Climate Zones
Table F1 lists the abbreviated names of Köppen Climate Zones used in Figure 3 legend.

Data Availability Statement
ESM4.1 data and model code are provided online at Krasting et al. (2018, https://doi.org/10.22033/ESGF/CMIP6.
1407 and http://doi.org/10.5281/zenodo.3836405, respectively). ESM2G (Dunne et al., 2012, 2013) data can be
found on ESGF Data Portal CMIP5 section (https://esgf‐node.llnl.gov/search/cmip5/).

Table F1
Köppen Climate Zone Legend

Code Köppen climate zone

Af Tropical rainforest

Am Tropical monsoon

Aw Tropical wet and dry

BWh Hot desert

BWk Cold desert

BSh Hot semi‐arid

BSk Cold semi‐arid

Csa Hot‐summer Mediterranean

Csb Warm‐summer Mediterranean

Csc Cold‐summer Mediterranean

Cwa Hot‐summer temperate monsoon

Cwb Warm‐summer temperate monsoon

Cwc Cold‐summer temperate monsoon

Cfa Humid Subtropical

Cfb Oceanic

Cfc Subpolar oceanic

Dsa Hot‐summer Mediterranean continental

Dsb Warm‐summer Mediterranean continental

Dsc Mediterranean subarctic

Dsd Severe‐winter Mediterranean subarctic

Dwa Hot‐summer continental monsoon

Dwb Warm‐summer continental monsoon

Dwc Subarctic monsoon

Dwd Severe‐winter subarctic monsoon

Dfa Hot‐summer humid continental

Dfb Warm‐summer humid continental

Dfc Subarctic

Dfd Severe‐winter subarctic

ET Tundra

EF Polar
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