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Abstract

Tensor models and methods have attracted significant interest also in ar-

ray signal processing (ASP) given the inherently multi-dimensional nature

of the problems involved therein. The ability of tensor decomposition (TD)-

based methods to recover latent information, including channel parameters

and transmitted symbols in the ASP context, in a deterministic manner and

with little or no training overhead, fits well with the data efficiency needs

of future-generation multi-user massive multiple-input multiple-output sys-

tems. Such methods have mostly relied, however, on a few classical TD

models, notably the canonical polyadic decomposition (CPD). In this paper,

a generalized CPD model, known as block-term decomposition (BTD), which

has been increasingly adopted in a wide range of applications, is re-visited

in the context of ASP, and shown to be the natural choice in sensor arrays

of increased dimensionality that also involve channel multipath. Semi-blind

joint channel estimation/data detection (JCD) is addressed in this context

via efficient algorithms that wed existing JCD schemes with BTD approxi-

mation. Recursive and robust to sensor failures versions are also developed.
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The special yet important case of the uniform rectangular array (URA) con-

figuration is adopted to illustrate the ideas and results. The signal detection

performance of the BTD-inspired semi-blind JCD schemes, at various noise

levels, array sizes, and numbers of users and paths, is evaluated with the aid

of simulations and seen to be favorably compared with that of the training-

only-based solution.

Keywords: array signal processing (ASP), BTD, CPD, joint channel

estimation/data detection (JCD), MIMO, tensor, uniform rectangular array

(URA)

1. Introduction

Though an area with an already long history [1], array signal processing

(ASP) has kept growing and extending beyond the classical one-dimensional

(1-D) sensor arrays, while targeting additional modern problems, includ-

ing those involved in future-generation multi-user massive multiple-input

multiple-output (MU-mMIMO) systems [2]. One of the principal require-

ments in the design and operation of the latter is that of resource-efficient

channel estimation, which includes the restriction of training information to

a limited amount [3]. Limiting the training overhead would facilitate the

operation of large-scale MIMO networks, mitigating the pilot contamination

problem [4] and relaxing the associated base station (BS)/mobile station

(MS) coordination requirements. Moreover, it would save bandwidth for in-

formation transmission and more easily accommodate high-mobility scenar-

ios that would otherwise require frequent re-training. It is for these reasons

that (semi-)blind methods [5] are re-surging in this context and the problem
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of joint channel estimation/data detection (JCD) [6] regains interest in the

ASP community.

Tensor models and methods [7] provide a suitable means towards this

goal [8] given the inherently multi-dimensional (m-D) nature of these systems

and the ability of tensor decomposition (TD)-based methods to recover latent

information, in a deterministic (and hence data-efficient and free of statisti-

cal assumptions) manner and with little or no training overhead. Originated

in [9], tensor methods for ASP have developed into a large volume of tools

(see [10] for a recent overview), which rely on various TD models for esti-

mating channel parameters (path gains, delays, and angles) and transmitted

(Tx) symbols. These include primarily (forms of) the canonical polyadic

decomposition (CPD) model, among others, such as the Tucker (TKD) and

the tensor train (TT) decomposition [10]. ASP with possibly impaired sen-

sors has also been recently treated as a problem of completing a tensor with

missing fibers [11], a problem previously studied for the CPD model in [12]

and potentially also useful for sampling large-scale arrays to bring the data

complexity down.

The generalized CPD model, known as block-term decomposition (BTD)

[13], has seen comparatively fewer applications in ASP, and this is despite

its otherwise wide and increasing application range (see [14] for a relatively

recent account). BTD decomposes a tensor into a sum of low multilinear

rank terms (referred to as blocks) and can be seen as an intermediate between

CPD (sum of rank-1 terms) and TKD (only one term of low multilinear rank).

This is what gives BTD its flexibility and justifies its wide applicability. Its

most commonly appearing variant comprises rank-(L,L, 1) block terms and
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is hence referred to as the LL1 model [13]. LL1 can also be viewed as a

hierarchical CPD [15].

In [16] and earlier related works including [17, 18, 19], BTD is shown to

be the natural modeling choice for the output of an array with signals im-

pinging through multiple paths and being subject to oversampling and/or in-

tersymbol interference (ISI)1. Rank-(M,N, ·) decomposition [13], also known

as type-2 BTD (i.e., with Tucker-2 blocks), and coupled LL1 decomposi-

tion were used in [20] and [21] to perform target localization in multi-pulse,

multi-array MIMO radar, with and without training waveforms, respectively.

[21] was recently extended to near-field targets in [22]. The direction-finding

(DF) problem in L-shaped electromagnetic vector sensor arrays with time-

varying polarization state (i.e., partial or incomplete polarization) was also

solved with the aid of type-2 BTD modeling in [23, 24].

The array geometry was not taken into account in [16] and related works

and that is why oversampling and/or ISI were necessary to result in an identi-

fiable BTD representation. Instead, [25] develops an LL1-based DF solution

by exploiting multipath and the invariances found in a uniform linear array

(ULA). With a three-fold tensorization of the spatial mode, DF reduces to a

deterministic 3rd-order CPD problem per source, whose essential uniqueness

allows it to outperform subspace-based direction of arrival (DoA) estimation

methods [26] for small array and/or data sizes.

Compared with the ULA, a 2-D array configuration, such as the uni-

1That is, to local reflections corresponding to multiple directions of arrival per path

and hence to ISI. Oversampling may be there because of a direct sequence-code-division

multiple-access (DS-CDMA) transmission.

4



form rectangular array (URA) [27], reduces the deployment area required in

a mMIMO system and offers increased versatility, higher spatial resolution,

and better channel estimation performance in both pilot-based and semi-

blind transmission scenarios [28]. In this paper, JCD with the (BS) receiver

equipped with a URA is studied, to illustrate that an LL1 representation

naturally results in such a setting, for user signals arriving through multiple

paths, not necessarily undergoing ISI or oversampling. Iterative algorithms

that wed existing JCD schemes with BTD approximation are then devel-

oped. It is demonstrated that considering the channel’s low-rankness (which

amounts to respecting the underlying LL1 model) pays off in signal copying

performance. Recursive and robust to sensor failures versions of the best-

performing algorithm are also developed. Short training is employed to ini-

tialize the iterations, which justifies the semi-blind characterization. This is

in contrast to the multiple random [17] or algebraic [29] initialization schemes

often employed in the BTD literature, which increase the computational load

and/or are restricted to high signal-to-noise ratio (SNR) environments only.

The proposed procedures are simple, and computationally- and data-efficient.

Their signal detection performance, at various noise levels, array sizes, and

numbers of users and paths, is evaluated with the aid of simulations and is

seen to be favorably compared with that of the training-only-based solution.

The rest of the paper is organized as follows. The notation employed

is defined in the next subsection. Section 2 describes the system model

and casts the JCD problem in the considered setting, motivating the LL1

approach. Various possibilities for LL1-based JCD in a URA are developed

and discussed in Section 3. The best-performing of these schemes is further
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developed in that section to yield recursive and robust to sensor failures

versions. Section 4 reports and discusses the simulation results. Conclusions

are drawn in Section 5, where pointers to future related research are also

given.

1.1. Notation

Vectors and matrices are denoted by bold lower- and upper-case letters,

respectively. Bold calligraphic letters are used to designate higher-order ten-

sors. For a tensor A, A(n) denotes its mode-n unfolding. The superscripts T,

∗, and H stand for transposition, complex conjugation, and Hermitian trans-

position, respectively. The symbols ◦, ⋄c, and ⋄ respectively denote the outer,

the column-wise, and the partition-wise Khatri-Rao products. Diag(x) is the

diagonal matrix with the vector x on its main diagonal. The block diagonal

matrix with diagonal blocks A1,A2, . . . is denoted by blockdiag(A1,A2, . . .).

vec(A) stacks the columns of the matrix A on top of each other in a column

vector. The Frobenius norm is denoted by ∥ · ∥F. IN is the identity matrix of

order N and 1N stands for the all-ones N × 1 vector. The field of complex

numbers is denoted by C and ȷ ≜
√
−1 stands for the imaginary unit.

2. Problem Statement and Solution Approach

Let R far-field sources emit narrowband signals, sr(n), r = 1, 2, . . . , R,

which impinge on a x-y planar URA, of dimensions Nx×Ny. The rth signal

arrives through Lr paths that are assumed to be sufficiently closely spaced

compared to the symbol duration that they are all of the same delay. The
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corresponding Nx ×Ny channel coefficient can then be expressed as [27]

Hr =
Lr−1∑
l=0

βr,lax(ϕr,l, θr,l)ay(ϕr,l, θr,l)
T, (1)

where βr,l is the complex gain of the lth path, incorporating the attenuation

coefficient and the initial phase, and, with ϕr,l, θr,l denoting the corresponding

azimuth and zenith angles of arrival (AoA), respectively,

ax(ϕr,l, θr,l) =
[
1 eȷξx,r,l · · · eȷ(Nx−1)ξx,r,l

]T
(2)

is the steering vector in the x-direction, and the y-direction steering vector

ay is similarly defined. With k = 2π
λ

denoting the wave number, with all

transmitters being assumed to employ the same carrier frequency (co-channel

signals), of wavelength λ, the ξ’s are given by

ξx,r,l = kdx cosϕr,l sin θr,l, (3)

ξy,r,l = kdy sinϕr,l sin θr,l, (4)

where dx, dy are the inter-antenna spacings in the x- and y-directions, respec-

tively. Figure 1 illustrates such a scenario, for a single path of a single source

signal.

If the impinging signals, sr ∈ CNs×1, r = 1, 2, . . . , R, are of length Ns,

then the array output can be represented by anNx×Ny×Ns tensor, expressed

as2

Y =
R∑

r=1

Hr ◦ sr +W , (5)

2This LL1 model is (only) alluded to in [30, Eq. (47)], where a spectral analytic DoA

estimation approach is taken, based on the use of orthogonal training sequences to split

the problem into single-user ones and Fourier transforming each of the corresponding 2-D

received signals.
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Figure 1: Uniform rectangular array (of size 4 × 4 in this example). A source signal is

depicted, with its corresponding azimuth and zenith angles.

8



where W stands for the zero-mean Gaussian noise, assumed spatially and

temporally white, and

Hr = Ax,rDrA
T
y,r (6)

with Ax,r =
[
ax(ϕr,1, θr,1) · · · ax(ϕr,Lr , θr,Lr)

]
and the similarly defined

Ay,r being the Nx×Lr and Ny×Lr steering matrices, respectively, for the rth

signal. The corresponding path gains, βr =
[
βr,1 βr,2 · · · βr,Lr

]T
, are

on the main diagonal of the diagonal matrix Dr = Diag(βr). It is clear that,

especially for large-scale arrays, (6) is, generically, of full column rank, Lr,

which implies that (5) is a noisy decomposition into rank-(Lr, Lr, 1) terms.

This in turn implies that one may resort to any of the existing LL1 approxi-

mation methods to blindly estimate from Y the channel parameters and user

signals. It should be stressed at this point that the LL1 representation above

resulted solely from the 2-D array structure and the multipath assumption

for the impinging signals.

Collect all the Ax,r’s in Ax =
[
Ax,1 · · · Ax,R

]
∈ CNx×

∑R
r=1 Lr and

similarly for the Ay,r’s. Let S =
[
s1 · · · sR

]
∈ CNs×R be the Tx symbol

matrix. The mode-1 unfolding of Y , resulting from stacking its frontal slices

next to each other, can then be approximately factorized in its transposed

form as

YT
(1) = (S ⋄Ay)Diag(β)A

T
x +WT

(1), (7)

where β =
[
βT
1 βT

2 · · · βT
R

]T
∈ C

∑R
r=1 Lr×1. Stacking the horizontal

slices next to each other yields the corresponding relation for the transposed

mode-2 unfolding:

YT
(2) = (Ax ⋄ S)Diag(β)AT

y +WT
(2) (8)
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The factorization relation for the transposed mode-3 unfolding, resulting

from stacking lateral slices, is

YT
(3) = (Ay ⋄c Ax)blockdiag(β1, . . . ,βR)︸ ︷︷ ︸

H

ST +WT
(3), (9)

where H ∈ CNxNy×R represents the combined channel matrix, with columns

vec(Hr), r = 1, 2, . . . , R. One may employ, for this JCD problem, an al-

ternating least squares (ALS) procedure [31], which alternates between (7),

(8), and (9) to update the estimates of Ax, Ay, and S, respectively. Such

an algorithm is tabulated as Algorithm 1, where the discrete input symbol

constellation, say A, is also taken into account to facilitate (and speed up)

convergence and most importantly improve the quality of the resulting de-

composition by projecting (entry-wise, for the sake of simplicity) each symbol

matrix estimate onto the set F of Ns×R matrices with entries in A. η > 0 is

a small regularization parameter that helps to stabilize the pseudo-inversion.

The path gains can be found from either of the unfoldings above. For exam-

ple, from (8):

vec(YT
(2)) = [Ay ⋄c (Ax ⋄ S)]β + vec(WT

(2)) (10)

Given the fact that the KR products involved in the above conditional LS

subproblems are (generically) of full column rank [9], Algorithm 1 can be

shown to monotonically reduce the cost 1
2
∥Y −

∑R
r=1(ArB

T
r ) ◦ cr∥2F in each

iteration, at least when the intermediate symbol projections are omitted.

The convergence of such iterations when projections onto A are intervened

will be discussed in more detail in the sequel.

With all Lr = 1, i.e., only line-of-sight transmission, the above reduces to

a rank-R CPD approximation problem, namely Y = [[β;Ax,Ay,S]], which
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Algorithm 1: ALS

Data: Y , R, Lr, r = 1, 2, . . . , R, η

Result: Estimates of H and S

1 Initialize Ay,S;

2 repeat

3 P← Ŝ ⋄ Ây;

4 Âx ← Y(1)P
∗(PTP∗ + ηI∑

r Lr)
−1;

5 Q← Âx ⋄ Ŝ;

6 Ây ← Y(2)Q
∗(QTQ∗ + ηI∑

r Lr)
−1;

7 Ĥ← (Ây ⋄c Âx)blockdiag(1L1 ,1L2 , . . . ,1LR
);

8 Ŝ← Y(3)Ĥ
∗(ĤTĤ∗ + ηIR)

−1;

9 Scale the columns of Ŝ;

10 Counter-scale the columns of Âx, Ây;

11 Project Ŝ (entry-wise) onto F ;

12 until convergence;

13 Ĥ← (Ây ⋄c Âx)blockdiag(1L1 ,1L2 , . . . ,1LR
);
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can be treated as in, e.g., [32]. The AoAs can then be extracted from the

identifiedAx,Ay, given their Vandermonde structure (cf. (2)) and (3), (4). In

contrast to CPD, however, the essential uniqueness of BTD involves matrix-

valued scaling ambiguity per each product (1). [13, Theorem 4.1] says that it

is sufficient for this kind of uniqueness to have full column rankAx,Ay (hence

sufficiently large array) and no collinear columns in S (incoherent source

signals), conditions that are easily satisfied in practice. Note that this is not

a necessary condition, as demonstrated in the simulations section. The non-

trivial (matrix-valued) invertible ambiguity per source signal will, in general,

prevent the algorithm from identifying the steering matrices and performing

DoA estimation. Since the Vandermonde property of a matrix is, in general,

lost when undergoing an invertible transformation, the identification of the

AoAs could be based on enforcing this property on the estimated steering

matrices. Such identifiability issues are beyond the scope of this paper and

will not be further considered here. In the algorithms to be presented next,

it will be only the discrete-valued nature of S and the (BTD-induced) low

rankness of the columns of H that will be made use of in solving for the Tx

symbols and the channel, respectively. Thus, the focus here will be on the

signal copy problem, deferring DF to future work.

3. BTD-based JCD

The matrix factorization problem Y ≜ YT
(3) ≈ HST in (9) also suffers,

however, as is, from an intrinsic matrix-valued ambiguity itself. Unless the

knowledge available for the factors (in the form of their properties [33]) is

appropriately exploited, the problem has infinitely many solutions. Impos-
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ing the constraint that S belongs to F can remove this ambiguity, as proved

in [34] for a sufficiently large number of snapshots, Ns, and sufficiently rich

source signals.3 The factors can be identified via the simple iterative pro-

cedure of alternatingly solving for S and H while projecting S onto F in

each iteration [34]. The latter step is non-trivial in general and can be per-

formed in an exhaustive search manner [34] or, more realistically, using sphere

decoding [6]. Instead, relying simply on entry-wise projection was demon-

strated in [34] to give a computationally efficient and well-performing albeit

sub-optimal algorithm, referred to as iterative least squares with projection

(ILSP). Its per-iteration complexity in the JCD problem under consideration

is dominated by the cost of inverting R×R matrices, with R being in practice

much smaller than the rest of the factor dimensions. Algorithm 1 involves

inversions of order
∑R

r=1 Lr, at no gain in detection performance compared

to ILSP and the rest of the algorithms developed in the following.

3.1. The ILSP(-SVP) Algorithm

Given an estimate of H, the matrix S can be computed from

Ŝ = YTĤ∗(ĤTĤ∗ + ηIR)
−1 (11)

After projecting each entry of Ŝ onto A, H is updated analogously to keep

validating (9):

Ĥ = YŜ∗(ŜTŜ∗ + ηIR)
−1 (12)

This ILSP iteration can be enhanced with the additional knowledge that the

rth column of H, when unfolded into an Nx×Ny matrix, is of rank (at most)

3For more about this identifiability issue, see [34] and the relevant mention in [35].
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Lr, r = 1, 2, . . . , R (cf. (1)). This can be incorporated by replacing the rth

column of Ĥ by the vectorization of the rank-Lr singular value decomposition

(SVD) of its Nx×Ny matricization. If L denotes the set of NxNy×R matrices

that enjoy this property, the so-called ILSP-SVP algorithm summarized in

Algorithm 2 is a projected ALS solution to the following constrained ridge-

regression problem:

min
H∈L,S∈F

h(H,S) ≜
1

2
∥Y −HST∥2F +

η

2
(∥H∥2F + ∥S∥2F) (13)

The projection onto L step will be henceforth referred to as singular value

Algorithm 2: ILSP(-SVP)

Data: Y , R, Lr, r = 1, 2, . . . , R, η

Result: Estimates of H and S

1 Initialize H;

2 repeat

3 Compute S from (11);

4 Project S entry-wise onto F ;

5 Compute H from (12);

6 (Project H onto L via SVP per column;)

7 until convergence;

projection (SVP), somewhat abusing the use of the acronym SVP that is

strictly speaking used in the literature to refer to gradient descent followed

by the projection onto L [36].
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3.2. The SIC-ILS(-SVP) Algorithm

Although the entry-wise manner of projecting onto F renders ILSP a com-

putationally simple procedure, it also removes the guarantee for its mono-

tonic convergence [37].4 As shown in [37], this is fixed if a successive interfer-

ence cancellation (SIC)-type scheme is applied in each iteration, with the R

signals being recovered and entry-wise projected one by one while consider-

ing the remaining parameters as being known. The corresponding iterative

LS (SIC-ILS ) algorithm is provenly monotonically convergent and performs

close to optimally while sharing the same order of computational complex-

ity with ILSP. Interestingly, if endowed with an SVP step per iteration, as

in Algorithm 3, it turns, in its constellation-constraint-free form, into the

Deflationary BTD (DBTD) scheme of [38]. The latter generalizes to LL1

the deflationary CPD (DCPD) algorithm from [39], which first extracts all

rank-1 terms in a deflationary manner and then refines these estimates by

a rank-1 approximation of the current noise tensor estimate plus the pre-

vious corresponding rank-1 term estimate. It is shown in [39] that DCPD

converges almost surely for best rank-1 approximation steps.5 DBTD follows

the same idea while utilizing a rank-(L,L, 1) approximation step instead.6

Analogously with what holds for DCPD, it is shown in [38] that with a

4No such issues were encountered in the simulations, however.
5In practice, these can be sequential rank-one approximation and projection (SeROAP)

steps [40]. SeROAP is at least as good as sequential truncated higher-order SVD (ST-

HOSVD), which is in turn at least as good as truncated higher-order SVD (T-HOSVD).
6This can be done via the LL1 extension of SeROAP, termed sequential low-rank ap-

proximation and projection (SeLRAP) [41, 38], which shows some little improvement in

accuracy compared to ST-HOSVD and T-HOSVD.
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Algorithm 3: SIC-ILS(-SVP)

Data: Y , R, Lr, r = 1, 2, . . . , R, η

Result: Estimates of H and S

1 Initialize H;

2 Compute S from (11);

3 Project S entry-wise onto F ;

4 repeat

5 Ŷ ← ĤŜT;

6 E← Y − Ŷ;

7 for r = 1, 2, . . . , R do

8 E← E+ Ĥ(:, r)Ŝ(:, r)T;

9 Ŝ(:, r)← ET Ĥ(:,r)∗

∥Ĥ(:,r)∥2+η
;

10 Project all entries of Ŝ(:, r) onto A;

11 E← E− Ĥ(:, r)Ŝ(:, r)T;

12 end

13 Compute H from (12);

14 (Project H onto L via SVP per column;)

15 until convergence;
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best rank-(L,L, 1) approximation in each step, the DBTD algorithm enjoys

monotonic convergence.

3.3. The AO-BTD Algorithm

The idea of viewing the LL1 modeling problem as a matrix factorization

one with the low-rankness constraint imposed on the columns of one of the

factors appeared also in [23] and later on in [42], where an alternating op-

timization algorithm with (what is called here) SVP projection steps was

proposed, in which Ĥ is inexactly solved for in each iteration via a gradi-

ent descent step instead of the more computationally expensive (12). This

so-called alternating optimization (AO)-BTD procedure is herein adapted

in the present context by incorporating in its iterations projections onto the

symbol constellation, in analogy with the previous algorithms. This gives rise

to Algorithm 4. In each iteration, the step size for the gradient descent step

assumes in [42] and in the simulations its largest allowed value, namely the

reciprocal of the Lipschitz constant of the gradient with respect to (w.r.t.)

H, which is in turn given by the maximum of the singular values of S. It

should be recalled at this point that the close connection with LL1 of a blind

source separation problem like that of (9) with low-rank mixing vectors was

revealed in various ways in [25], [43] (and references therein).

3.4. The ILSP(-SVP)-C Algorithm

As demonstrated in the simulations section, it is the ILSP algorithm, with

its SVP addition, that prevails in both detection performance and compu-

tational simplicity and will therefore be the focus of the rest of this section,

which will be devoted to two challenging practical scenarios: that of missing
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Algorithm 4: AO-BTD

Data: Y , R, Lr, r = 1, 2, . . . , R, η

Result: Estimates of H and S

1 Initialize H;

2 repeat

3 Compute S from (11);

4 Project S entry-wise onto F ;

5 Compute gradient w.r.t. H: G← −(Y −HS)SH + ηH;

6 Set step size α (e.g., as 1/λmax(SS
H));

7 H← H− αG;

8 (Project H onto L via SVP per column;)

9 until convergence;

observations, for example, due to failed sensors, and the case of time-varying

channel response that needs to be tracked in time.

Having missing/failed sensors in the array (as shown in the example of

Fig. 1) implies an Rx signal tensor with missing mode-3 fibers (known as

tubes), a scenario that is more challenging for the estimation of the latent

parameters than the more common case of (uniformly) random missing en-

tries. In such a scenario, the factorization of Y takes the form (cf. [12,

Eq. (3.4)])

YΩ = HΩS
T, (14)

where Ω is the set of working sensor indices, and YΩ ∈ C|Ω|×Ns ,HΩ ∈ C|Ω|×R

stand for the row-subsampled versions of the corresponding matrices. YΩ can

be written as ΩY, with Ω being the |Ω|×NxNy binary selection matrix that
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keeps only the observed rows of Y, and similarly for HΩ. The corresponding

LS factorization problem, termed singular problem in [44], can be viewed as

a weighted LS one with weights on the data matrix entries [45] that are equal

here to the squares of the Ω entries. The corresponding variant of ILSP-SVP,

termed here ILSP-SVP with completion or ILSP-SVP-C and summarized

in Algorithm 5, iterates between solving for each of the two factors, using

only the observed outputs, as in the following variants of (11) and (12),

respectively:

Ŝ = YT
ΩĤ

∗
Ω(Ĥ

T
ΩĤ

∗
Ω + ηIR)

−1 (15)

ĤΩ = YΩŜ
∗(ŜTŜ∗ + ηIR)

−1 (16)

Note that only for the low-rank approximation (SVP step) of the channel

Algorithm 5: ILSP(-SVP)-C

Data: YΩ, R, Lr, r = 1, 2, . . . , R,Ω, η

Result: Estimates of H and S

1 Initialize HΩ;

2 repeat

3 Compute S from (15);

4 Project S entry-wise onto F ;

5 Compute HΩ from (16);

6 (H← ΩTHΩ;

7 Project H onto L via SVP per column;

8 HΩ ← ΩH;)

9 until convergence;

matrix missing rows are filled with zeros, as in the direct method of [44,
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Section 5.1]. Nevertheless, in [44] it is the data matrix rows that are filled

with zeros, whereas here only the observed sensor outputs are considered

with the rest being simply omitted.

3.5. The O-ILSP(-SVP) Algorithm

The array dimensions may be too large to allow the processing of the data

tensor in one batch. Additionally, in practice, the path gains may change

with time, albeit more slowly than the DoAs [46]. To cope with such prob-

lems, an incremental/online version of the ILSP-SVP method should be made

available. The exponentially weighted recursive LS (RLS)-type Algorithm 6

describes the so-called online ILSP-SVP (O-ILSP-SVP) procedure, which is

inspired by our earlier work on online LL1 modeling [47], though here it is

the matrix factorization formulation that is adopted instead. Once prelimi-

nary estimates of the Tx symbols in the current snapshot are obtained using

the current channel matrix estimate, they are used to update the auto- and

cross-correlation matrices V and G, respectively, with the factor 0 < λ ≤ 1

serving as a means of down-weighing past snapshots and hence realizing ex-

ponential forgetting. To update the channel estimate, the algorithm resorts

to the matrix inversion lemma [48] for the inversion of V. It can be noted in

passing that the matrix inversion lemma can be fully used, also to invert the

channel, in the case that SVP is omitted. The updated channel response is

used to refine the symbol estimate and append it to the evolving symbol ma-

trix. Note that the factor S can be built in this way because of the implicit
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Algorithm 6: O-ILSP(-SVP)

Data: Y in a streaming manner, R,Lr, r = 1, 2, . . . , R, λ, η

Result: Per-snapshot estimates of H and S

1 Initialize H0,S0 ← [ ],V0,G0;

2 for n = 1, 2, . . . do

3 yn ← vec(Y(:, :, n));

4 Fn−1 ← (HH
n−1Hn−1 + ηIR)

−1HH
n−1;

5 sn ← Fn−1yn;

6 Entry-wise project sn onto A;

7 Vn ← λVn−1 + sns
H
n ;

8 Gn ← λGn−1 + yns
H
n ;

9 W← V−1
n (using matrix inversion lemma);

10 Hn ← GnW;

11 (Project Hn onto L via SVP per column;)

Fn ← (HH
nHn + ηIR)

−1HH
n ;

12 sn ← Fnyn;

13 Entry-wise project sn onto A;

14 ST
n ←

[
ST
n−1 sTn

]T
;

15 end
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assumption of a slowly-varying channel.7 Algorithm 6 mainly differs from

the recursive algorithm (recursive least squares with enumeration (RLSE))

reported in [34] in that the symbol estimate is therein found via exhaustive

enumeration and, of course, in the SVP step per snapshot included here. At

this point, one should also refer to the method proposed in [50] (as a follow-

up to [30]), which relies on the tracking of the signal subspace (expressed

with the aid of principal component analysis (PCA)) to estimate the AoAs.

Using orthogonal training, the user signals are then separated to allow easy

estimation of the path gains per each of them. Finally, the channel is re-

constructed from its angle and path gain parameters. It should be stressed,

however, that the algorithm of [50] relies on the rather limiting assumption

that all signals come from the same set of DoAs.

Before proceeding to evaluate the previous algorithms, some comments

are in order.

1. The projection onto the non-convex constellation A can be relaxed to

a projection onto its convex hull as in [51], which is termed PrOX and

first scales the signal by a factor strictly larger than unity to “push” the

projected values towards the convex hull extremes (i.e., the constella-

tion symbols). An analysis of the convergence of ILSP-SVP, especially

with PrOX, can stem from the observation that its steps are projections

in the form of closed property mappings, and rely on the results of [33].

This is also in the vein of the lift-and-project approach (see [52] for an

7This assumption, of slowly-varying factors in the non-evolving modes of a streamed

tensor, underlies all the recursive tensor decomposition methods and has implications in

channel tracking that have only recently started to be investigated [49].
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application in multi-dimensional harmonic retrieval) and can be placed

within the structured low-rank approximation (SLRA) framework [44].

2. In this paper, it is assumed that both R and L are a-priori known,

an assumption that needs to be relaxed in practice. ILSP-SVP has

been seen in our simulations to be robust to overestimation of L (as is

the case for LL1 more generally; see, e.g., [53] and references therein).

Hence it is primarily the number of sources, R, that needs to be ac-

curately estimated. Besides, this will also dictate the duration of

the training sequence (see Section 4). In the most realistic case of

R ≤ NxNy, R can be estimated as the rank of (a chunk of) Y, for

example with the aid of SVD [44, Section 5.4], possibly facilitated (via

compression) or even replaced by a Gram-Schmidt orthogonalization of

YT, as in, e.g., [44, Section 5.1] or [54]. Alternatively, a rank-revealing

version of the previous algorithms is possible, in the spirit of [55] (and

of [56] for the case of missing data). Notice that the regularizer in (13) is

a tight upper bound of the nuclear norm ofY and promotes smoothness

(hence implicitly low-rankness) of theH,S factors. It could be replaced

by a (re-)weighted version as in [55] that amounts to the ℓ1,2 norm of[
HT ST

]T
and hence more pronouncedly promote joint group spar-

sity and in turn allow rank recovery by eliminating columns in the two

factors that have negligible (very low) magnitude.

4. Simulation Results

In the experimental setup tested, the sources emit QPSK-modulated sig-

nals, at the carrier frequency of 1 GHz. All of them arrive through an
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Figure 2: (a) Detection performance and (b) run-time of the algorithms, for a 10 × 10

array receiving R = 3 signals of length Ns = 30 through L = 3 paths.

equal number of paths, say L, with the azimuth and zenith angles being

chosen uniformly at random from (0, π) and (0, π/2), respectively (i.e., at

the “front” of the URA) and the complex path gains drawn from the com-

plex zero-mean, unit-variance Gaussian distribution. In all arrays tested, the

inter-sensor spacings take their maximum allowed value for aliasing avoid-

ance, namely dx = dy =
λ
2
. To initialize the iterative algorithms and account

for the permutation ambiguity, information symbols are preceded by orthog-

onal training preambles of (the smallest) length R, which are used to provide

a first estimate of H.

A typical example of the comparative signal copying performance of the

algorithms considered, expressed in terms of the bit error rate (BER) for a

10 × 10 URA with R = 3 signals of length Ns = 30 arriving through L = 3

paths, is given in Fig. 2(a). The BER results of the minimum mean squared

error (MMSE) detector as well as those obtained with perfect channel in-

formation (PCI) are also included. Though quite apart from the PCI-based
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results, the performance of the semi-blind receivers is observed to be superior

to that of the training-only-based (MMSE) one. This is because semi-blind

JCD extracts channel and hence Tx signal information also from the informa-

tion part of the Rx signals. The performance of the AO-BTD algorithm lies

between those of the simplified (without the low-rank constraint) versions

of SIC-ILS and ILSP. ALS performs similarly with ILSP-SVP, especially

at lower SNR levels, albeit at a significantly higher computational cost, as

shown in Fig. 2(b), where the run-times on a computer employing i7-8550U

CPU@1.80 GHz and 8 GB RAM, and using the R2024a release of MAT-

LAB©, are plotted versus the SNR level. Though gradient-descent-based,

AO-BTD shows here a relatively high computational cost due to the use of

truncated SVD for setting the step size at each iteration. What should be

emphasized is that taking the low-rankness of channels into account, i.e., ex-

ploiting the underlying LL1 model via the SVP addition, offers improvement,

which can be verified to be more significant for larger arrays. ILSP-SVP turns

out to be the best-performing choice, and its computational requirements are

only out-classed by those of its simplified (ILSP) version. It will therefore be

the focus of the rest of the simulations-based study.

Fig. 3 compares the ILSP-SVP and MMSE detectors over a realistic SNR

range, and for various values of (a) Nx = Ny, (b) R, (c) Ns, and (d) L.

The superiority of the semi-blind over the training-only-based approach can

again be observed, in all cases. This gain can be seen to improve with the

number of snapshots and is already non-negligible with only Ns = 5 and

R = 2 users. As expected, the detection performance also improves with

the additional diversity offered by increasing array size and/or number of
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Figure 3: Detection performance of ILSP-SVP for various (a) array sizes, (b) numbers of

users, (c) numbers of snapshots, and (d) numbers of paths.
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Figure 4: (a) Detection performance with various missing data ratios, and (b) evolution

of BER in time and at Eb/N0 = 9 dB, for a 10×10 array receiving R = 2 signals of length

Ns = 30 through L = 3 paths.

paths. On the other hand, the problem becomes more difficult as more

signals are to be separated and detected. It should be noted that the semi-

blind receiver manages to perform sufficiently well even in scenarios that do

not satisfy the sufficient uniqueness condition for the LL1 model. The cases

of R = 2, L = 3, Nx = Ny = 4 and R = 6, L = 3, Nx = Ny = 10 are two such

examples.

Three cases of missing or failed sensors are tested in Fig. 4(a), where the

ILSP-SVP-C algorithm is observed to be able to preserve a good enough de-

tection performance and again significantly outperform the MMSE detector.

Both rely on the channel estimate computed with the training-based Rx sig-

nal sub-sampled accordingly. When the percentage of missing sensor outputs

reaches a quite high level, namely 70% on Fig. 4(a), the ILSP-SVP-C BER

curve starts to floor at the high SNR regime.

Consider now the time-varying case, where time variation is realized
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through the following Gauss-Markov model for the path gains at snapshot n,

β(n) = ρβ(n−1) +
√

1− ρ2x(n),

with 0 ≤ ρ ≤ 1 quantifying the rate of variation and x(n) being a ran-

dom standard Gaussian vector. In Fig. 4(b), a very slowly-varying system is

tested, namely with ρ = 0.998, and at a realistically moderate Eb/N0 level

of 9 dB, to allow the application of O-ILSP-SVP, which relies on such an as-

sumption (as all decision-directed-mode recursive schemes derived out of on-

line tensor decomposition). Comparison is made with the batch MMSE and

ILSP-SVP methods. Both the iterative and the online ILSP-SVP schemes

are initialized with training and a forgetting factor of λ = 0.985 is employed

in the latter. O-ILSP-SVP manages to track this time-varying system in con-

trast to the MMSE detector and its batch counterpart whose BER diverges

with time even in this slowly-varying setting.

5. Conclusions and Future Work

This paper serves to put forward the role of BTD in ASP and showcase

its potential in JCD, through a URA-based example. The LL1 BTD model

is shown to be the natural choice in sensor arrays of increased dimensionality

that also involve channel multipath. Several semi-blind algorithms are con-

sidered in this context, that can be viewed as wedding existing JCD schemes

with BTD approximation. ILSP-SVP is singled out as the best-performing

and computationally efficient of these schemes. Robust to sensor failures and

recursive versions of it are then developed. The signal copying performance

of the semi-blind JCD algorithms is evaluated via simulation results at var-
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ious noise levels, array sizes, and numbers of users and paths and favorably

compares with that of the training-only-based solution.

Further work is required to fill in several gaps left open here. These

include the question of selecting the model from the data, which has been

discarded in the present study and has only been discussed above w.r.t.

estimating the number of sources, R, and via a classical SVD-based approach.

To recover both R and the numbers of paths, Lr, r = 1, 2, . . . , R, and jointly

with the estimation of the LL1 factors, algebraic methods [29, 57] can be

adopted. However, these tend to be computationally expensive8 and only

work safely at high enough SNR levels [57]. Rank-revealing methods based

on optimization, such as, for example, the ℓ1,2-regularization-based scheme

that was shortly described above for the bilinear factorization problem or

its regularized BTD-ALS extension in [14], sound more promising. Bayesian

versions, allowing automatic rank determination (e.g., [59]), and with the S

prior properly chosen to meet the discrete-valued nature of the symbols (see,

e.g., [60]), also deserve to be studied.9 One should also extend this work to

cover wideband large-scale ASP, by also taking frequency- [16] and spatial-

selective [61] effects into account. Near-field effects [26], colored noise [62],

8They start, in the present context, with the computation of the null space of an

NxNyNs× (N2
x +N2

y ) matrix or equivalently with a monomial factorization formulation of

the bilinear factorization problem (13), where the monomial constraints serve to express

the requirement of low rank [58].
9It is of interest to point out here that the step of entry-wise projecting onto the constel-

lation, that constitutes a basic ingredient of the algorithms considered here, also appears

in [60] with the name of heuristic demapping and shown therein to be an approximation

to a more principled projection step in an expectation-maximization (EM) framework.
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dealing with coherent sources [43], and nonuniform arrays [63] (that might

also cover missing sensors scenarios) are some more realistic additions. Going

from planar to higher-dimensional (e.g., 3-D) arrays [10] seems both feasible

and rewarding. These can be 3-D antenna arrays (e.g., [64, 28]) and/or planar

arrays configured/viewed as multiple-scale configurations of URAs as in, e.g.,

[10, Fig. 11]. In those cases, the BTD model can result via segmentation as

in [25, Eq. (16)]. Finally, in a fast-varying environment, not only the path

gains but also the DoAs and even the number of paths per user and/or the

number of user signals may have to be considered as time-varying. To cope

with such environments, extensions of the O-ILSP-SVP method presented

here should be developed (e.g., in the vein of [47]) that can recursively track

both the number and the values of the system parameters.
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