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Abstract 45 

 46 

Epidemiological delays are key quantities that inform public health policy and clinical practice. 47 

They are used as inputs for mathematical and statistical models, which in turn can guide control 48 

strategies. In recent work, we found that censoring, right truncation, and dynamical bias were 49 

rarely addressed correctly when estimating delays and that these biases were large enough to 50 

have knock-on impacts across a large number of use cases. Here, we formulate a checklist of 51 

best practices for estimating and reporting epidemiological delays. We also provide a flowchart 52 

to guide practitioners based on their data. Our examples are focused on the incubation period 53 

and serial interval due to their importance in outbreak response and modeling, but our 54 

recommendations are applicable to other delays. The recommendations, which are based on 55 

the literature and our experience estimating epidemiological delay distributions during outbreak 56 

responses, can help improve the robustness and utility of reported estimates and provide 57 

guidance for the evaluation of estimates for downstream use in transmission models or other 58 

analyses.  59 

 60 
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Introduction 67 

 68 

In recent years, an increasing number of real-time data streams have become available 69 

for a variety of computational biology applications. For example, NEON [1] is a large-scale 70 

observation platform for environmental data in the United States, and EarthRanger [2] is used  71 

for wildlife conservation in several countries. These new data streams may improve the ability to 72 

perform real-time analyses, such as monitoring biodiversity [3,4] and insect populations [5]. 73 

However, delays inherent in these systems (e.g., larval development times for mosquitoes, 74 

ecological lags [6]) may pose challenges. The estimation of epidemiological delay distributions, 75 

which we discuss in this paper, is a special case of using real-time data to understand the time 76 

course of biological processes. Methods for estimating these delays could be broadly applicable 77 

to other areas of computational biology. 78 

Epidemiological delay distributions are key quantities for public health policy [7], clinical 79 

practice [8], and infectious disease modeling [9–13]. An epidemiological delay is the time 80 

between two epidemiological events, a primary event and a secondary event.There are 81 

numerous examples of delays in infectious disease epidemiology. Three of the most important 82 

delays include the incubation period (the time between infection and symptom onset), the serial 83 

interval (the time between symptom onset in a given infected person and someone they infect), 84 

and the generation interval (the time between infection in a given person and someone they 85 

infect). Other commonly used epidemiological delays include hospital lengths of stay and delays 86 

from symptom onset to hospitalization, hospitalization to death, and symptom onset to specimen 87 

date, among others. Delays vary in length (e.g., between infected individuals) due to biological 88 

and epidemiological factors [14–16], such that samples of delays can be characterized by a 89 

distribution. These distributions are typically described by one or more parameters. Pair-90 

dependent delays are expected to be more heterogeneous than single-individual delays 91 

because they involve more than one person.  92 
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Here, we focus on the incubation period and serial interval because they are key inputs 93 

in mathematical and statistical models, such as those used for nowcasting/forecasting [9,17] or 94 

for scenario-based modeling [18,19], which can guide control strategies. While the incubation 95 

period must be positive, the serial interval can be positive or negative [20]. The right tail of the 96 

incubation period distribution informs the length of quarantine, while the left tail indicates the 97 

earliest time symptoms might develop after infection [8]. By comparing the incubation period 98 

and serial interval, we can learn about a pathogen’s tendency for pre-symptomatic versus 99 

symptomatic transmission [21], which can inform the controllability of an epidemic [22]. At the 100 

individual level, pre-symptomatic transmission occurs precisely when the generation interval is 101 

shorter than the incubation period of the infector (or, equivalently, when the serial interval is 102 

shorter than the incubation period of the infectee). The serial interval is often used as a proxy for 103 

the generation interval.  104 

Methods for estimating epidemiological delays have been improving, especially during 105 

the COVID-19 pandemic, and recent research has highlighted the importance of appropriately 106 

adjusting for three statistical issues inherent in the data collection process: censoring, right 107 

truncation, and dynamical bias [23–27] (Table 1, Figures 1-2).  108 

Not adjusting for bias can lead to incorrect estimates of delays, which can have direct 109 

implications for public health practice. For example, Overton et al. found that the mean 110 

incubation period for COVID-19 in early 2020 (corresponding to the ancestral strain of SARS-111 

CoV-2) was 3.49 days without adjusting for right truncation compared to 4.69 days when 112 

adjusted [25]. Overton et al. further showed that the unadjusted estimate would suggest a 113 

quarantine of 10 days would capture 99% of cases, compared to a 14-day quarantine for the 114 

adjusted estimate [25]. If the unadjusted estimate from this study had been used to inform the 115 

length of quarantine, more still-infectious individuals would have gone on to infect others. 116 

Similarly, Park et al. found that ignoring right truncation for a fast-growing epidemic with 117 
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relatively long delays could result in underestimation of the mean delay distribution by up to 118 

50% [23]. 119 

Not adjusting for bias can also lead to incorrect estimates of other parameters of interest 120 

that rely on accurate estimates of delays, such as the reproduction number. The time-varying 121 

reproduction number, Rt, is the average number of secondary cases caused by a single infected 122 

individual in a population. Gostic et al. showed how mis-specifying the mean, variance, or form 123 

of the generation interval led to biased estimates of Rt when using three empirical methods on 124 

synthetic data [28]. The bias was greatest early in the epidemic. Underestimation of Rt during 125 

this phase could lead to an insufficient public health response. Similarly, if changes in the 126 

generation interval (or serial interval) over the course of the epidemic are not accounted for, Rt 127 

may not be accurate [29].  128 

In the aftermath of the COVID-19 pandemic, there is considerable need for and interest 129 

in the estimation and reporting of epidemiological parameters, including delays, with at least two 130 

R packages [30,31], a World Health Organization working group [32], and meta-analyses of 131 

priority pathogens [33–35] working to collect and make these data accessible. In this 132 

perspective, we present best practices for the estimation and reporting of epidemiological 133 

delays, illustrated by examples for the incubation period and serial interval of directly transmitted 134 

(person-to-person) infectious diseases. Our recommendations are based on our experience 135 

estimating and using delays across multiple outbreaks and recent methodological work [23].  136 

To make these best practices easier to follow, we developed two checklists (Tables 2-3) 137 

and a flowchart (Figure 3), which can be used to understand which biases need to be adjusted 138 

for based on available data. To provide context for our recommendations, we additionally 139 

provide details about the data needed to estimate delays and how they should be prepared for 140 

analysis. Then, we discuss biases that can affect the estimation of epidemiological delay 141 

distributions, followed by strategies that can be used to reduce the impact of these biases. 142 

Technical details about these biases and how to adjust for them can be found in Park et al. [23] 143 
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along with extensive simulation and case studies. Our paper goes beyond the work of Park et 144 

al. by offering practical guidelines, a suggested workflow, and checklists, for a broader technical 145 

audience, such as modelers at public health agencies.  146 

Data to estimate delays   147 

Primary and secondary events can be observed (e.g., symptom onset time) or 148 

unobserved (e.g., usually infection time). Data to estimate the incubation period include the 149 

times of probable exposure (from which infection time can be inferred) and perceived symptom 150 

onset for each case. Data to estimate the serial interval are those in which symptom onset has 151 

been observed for primary and secondary cases. Examples of study designs or public health 152 

activities that generate such data include contact tracing [24,36], prospective cohort studies 153 

[37–39], household studies [40], or other types of intensive cohort monitoring [41]. Data from 154 

passive surveillance, which involves healthcare providers reporting cases to public health 155 

agencies, can also be used to estimate delay distributions; however, key information about 156 

exposures (e.g., dates, settings, and types of contact) may be missing, incomplete, or 157 

abstracted from other variables [42,43].   158 

Biases in delay data 159 

Three main biases can affect the estimation of epidemiological delay distributions, 1. 160 

censoring, 2. right truncation bias, and 3. dynamical (or epidemic-phase) bias (Table 1). All of 161 

them affect both single-individual delays, such as the incubation period, and pair-dependent 162 

delays, such as the serial interval.  163 

Censoring is knowing that an event occurred but not precisely when. Data can be right 164 

censored (the event is known to have occurred after a certain time), left censored (the event is 165 

known to have occurred before a certain time), or interval censored (the event is known to have 166 

occurred within a certain time interval). In epidemiological delay data, censoring can affect 167 

either primary or secondary events (single interval censoring) or both (double interval censoring) 168 

[44]. Epidemiological data are almost always doubly interval-censored due to discretization of 169 
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the end points of the intervals being measured. For example, when reporting occurs daily with a 170 

cutoff at midnight, a patient could experience the event of interest (e.g., symptom onset) at any 171 

time between 12:00 am and 11:59 pm on a particular day. Double interval censoring is shown in 172 

Figure 1 by the brackets around each event (circles and squares). Events occur anywhere on 173 

the x axis, which represents continuous time, but the reporting of events only occurs at discrete 174 

time points, or observation times. Some events are prone to longer censoring intervals than 175 

others (e.g., exposure intervals may be longer than one day for cases with multiple possible 176 

exposures). Not or incorrectly accounting for censoring of event intervals can lead to biased 177 

estimates of a delay [23].  178 

Right truncation is defined as the inability to observe intervals (e.g. incubation periods) 179 

greater than a threshold (e.g. greater than the number of days elapsed since infection). It 180 

typically applies to real-time settings, when events with longer intervals may not have occurred 181 

yet, leading to an overrepresentation of shorter intervals when estimating delays. Right 182 

truncation is common in data where case ascertainment depends on the secondary event, e.g. 183 

we rarely observe an individual’s incubation period until after symptoms develop. Not 184 

accounting for right truncation can lead to underestimating the mean delay [23]. Although right 185 

truncation is mainly a problem for real-time analyses, retrospective data can be right-truncated if 186 

surveillance ended prematurely.  187 

Right truncation should not be confused with right censoring. The latter occurs when we 188 

observe the primary event of a case or future case but cannot observe it long enough to witness 189 

its secondary event [45], which could be due to, for instance, a study ending prematurely. As a 190 

result, we only know that the secondary event did not occur during the observation period and 191 

therefore have a right-censored interval for a data point. Right censoring is shown in Figure 1A. 192 

The intervals on the top and bottom of the panel are included in the analysis, but we do not 193 

know when the secondary events will occur because they happen after the observation time. In 194 

contrast, right truncation means that certain delays are completely missing from our data as 195 
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observing primary events depends on identifying secondary events first. Right truncation is 196 

shown in Figure 1B. Here, the intervals at the top and bottom of the panel are not included in 197 

the analysis; we are unaware of these data points because their secondary events occur after 198 

the observation time.   199 

Dynamical bias is another type of common sampling bias which is analogous to right 200 

truncation. During the increasing phase of an epidemic, patients with short delays are 201 

overrepresented in the recent data, leading to underestimation of delay intervals. Conversely, 202 

when the epidemic is decreasing, patients with long delays are overrepresented in the recent 203 

data, leading to the overestimation of delay intervals. Dynamical bias is especially problematic 204 

during periods of exponential growth and decay of cases when cases are exponentially more 205 

and less likely, respectively, to be infected recently rather than further back in time.  206 

Measuring epidemiological delays  207 

We aim to estimate the true underlying distribution for each epidemiological delay which 208 

characterizes the time between the primary and secondary event. In general, we assume that 209 

this distribution does not change over the course of an epidemic (although this may not always 210 

be the case [29]). Cases can enter a dataset due to observation of either their primary or 211 

secondary event (shown by the arrows in Figure 2). Regardless of how data were collected, we 212 

can organize our data into cohorts using either a forward or backward approach. For the forward 213 

approach, we start from primary events that occurred during the same period and prospectively 214 

determine when the secondary events occurred—the resulting distribution of the delays is the 215 

forward distribution (Figure 2A and 2C). In contrast, for the backward approach, we start with 216 

secondary events that occurred during the same period and retrospectively determine when the 217 

primary events occurred—the resulting distribution of the delays is the backward distribution 218 

(Figure 2B) [23]. 219 

Data observed in real-time can be subject to either right truncation or right censoring. 220 

Right truncation causes the observed forward distribution to be shorter than the true underlying 221 
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distribution and has the largest effect when the epidemic is growing because relatively many 222 

recently infected individuals with long delays are not observed. In a declining epidemic, right 223 

truncation will have a smaller impact on the forward distribution because the proportion of 224 

recently infected individuals with unobserved secondary events is lower [23]. Excluding right-225 

censored data from the analysis is equivalent to right truncating the data and leads to 226 

underestimation of the delay. Backward distributions are not susceptible to right truncation but 227 

can have a delay distribution that is shorter or longer than the forward distribution and the true 228 

underlying distribution depending on the phase of the epidemic (i.e. dynamical bias). Both right 229 

truncation and dynamical biases are minimal if data from the entire epidemic are available and 230 

included in a delay estimate [23].  231 

Figure 1 shows the impact of different biases on the forward and backward distributions. 232 

We recommend always analyzing delay distributions as forward distributions and accounting for 233 

potential biases (i.e., censoring and right truncation) as this approach does not require 234 

additional information on incidence trajectories, which are used to adjust for dynamical bias in 235 

the backward distribution [23].  236 

Adjusting for common biases  237 

Figure 3 shows a decision tree for assessing which biases need to be addressed 238 

depending on the approaches taken for data collection and processing. For each of three 239 

possible scenarios, it includes an explanation about the potential impact of the biases as well as 240 

the methods needed to adjust for them.    241 

In general, adjusting for double interval censoring involves estimating the conditional 242 

probabilities of the primary and secondary events occurring between their observed lower and 243 

upper bounds. Interval censoring should always be adjusted for, and the adjustment method is 244 

the same irrespective of the epidemic phase [23]. Right censoring can be handled using 245 

methods for survival analysis, such as the Kaplan-Meier approach [45]. Adjusting for right 246 

truncation involves normalizing the probability of observing a given delay from the untruncated 247 
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forward distribution by the probability of observing any delay before the final observation time, 248 

and adjusting for dynamical bias involves incorporating the epidemic trajectory (e.g., the growth 249 

or decay rate of the epidemic) into the analysis [23,26,46,47].  250 

 There are several available methods and tools for estimating epidemiological delay 251 

distributions; however, most of these approaches have not been validated or do not correct for 252 

all potential biases [23]. One example is the coarseDataTools R package developed by Reich et 253 

al. [48]. This tool has been validated and can correct for double interval censoring, but it does 254 

not adjust for right truncation or dynamical bias. In contrast, epidist [49], an R package 255 

developed by some of the authors of this study, contains methods which can adjust for all three 256 

potential biases. In Park et al. [23], a simulation study was used to evaluate multiple methods 257 

and found that the approximate latent variable censoring and truncation method emerged as the 258 

best performer for both real-time and retrospective analyses for most real-world use cases. This 259 

method corresponds to the double interval censoring and right truncation adjusted model 260 

developed by Ward et al. [24] which we recommend.  261 

Ward et al.’s approach estimates the probability of observing a secondary event 262 

conditional on observing the primary event by a given final observation time [24]. Estimated 263 

event times for each case are included in the model as unobserved, or latent, variables, and 264 

uniform prior distributions are used for both the primary and secondary event times, which can 265 

accommodate censoring intervals of arbitrary length. However, when censoring intervals are 266 

long, the event time distribution within the censoring interval will deviate from the uniform 267 

approximation (as its shape depends on underlying epidemic dynamics) and should be taken 268 

into account [24]. This model has important limitations. For example, Park et al. [23] found that 269 

this method was not able to estimate the mean or standard deviation as well in epidemic 270 

simulations characterized by very rapid exponential growth and long delays because primary 271 

event times are poorly approximated by a uniform distribution.  272 
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Certain practices should be avoided if using an alternative approach to adjust for biases 273 

in delays. For example, we suggest avoiding approaches that adjust for right truncation and 274 

dynamical biases simultaneously because they lead to overestimation of the mean delay by 275 

overcompensating for intervals that have not yet been observed [23]. We also do not 276 

recommend using a midpoint imputation rule (i.e., use the midpoint of the interval as the 277 

“observed” value and construct downstream inferences based on that imputation) on interval-278 

censored data as such imputation approaches may introduce bias [23,50]. 279 

Additional modeling recommendations 280 

Beyond correctly adjusting for biases, there are several common issues with reported 281 

epidemiological delays that may lead to biased conclusions when used in practice or impact 282 

their ability to be used at all. Historically, the incubation period and serial interval were often 283 

reported using only the mean (and sometimes the range) [51–54]. However, models can be 284 

fitted to delay data to adjust for some of the biases we have described and better characterize 285 

the tail of the distribution. Assuming a modeling approach is taken, we summarize our 286 

recommendations for estimating and reporting for epidemiological delay distributions in Table 2 287 

and give more details in the sections “Reporting epidemiological delay distributions” and 288 

“Reporting the incubation period and serial interval.” Table 2 contains details about each 289 

recommendation, examples of diseases for which it has been implemented, and possible 290 

solutions. It is divided into two sections, estimation and reporting. Whenever estimating delays, 291 

we recommend going through the table to make sure all the steps are taken.  292 

Fit multiple probability distributions. We recommend fitting multiple probability distributions to 293 

summarize the empirical delay distribution [55]. This approach has greater utility for users of the 294 

estimates compared to non-parametric approaches. Use appropriate model comparison criteria 295 

(e.g., widely applicable information criterion [WAIC] or leave-one-out information criterion 296 

[LOOIC] for Bayesian models) to suggest the best-fitting model alongside visual checks. 297 

Common distributions for epidemiological delays in the literature include the gamma, lognormal, 298 
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and Weibull distributions [56]. For delays that can have negative values, distributions that 299 

accept negative values, such as the skew-normal or skew-logistic distributions [57], may be 300 

used, or less ideally, the delay data may be shifted to allow for fitting of distributions that only 301 

allow positive numbers [58]. Mixture distributions may be appropriate for some delays, such as 302 

those with bimodal distributions [59–62]. Fitting parametric distributions may not be appropriate 303 

for all delay distributions. Semi- or non-parametric approaches, such as hazard models, may be 304 

considered [63]. Non-parametric estimates can also be used to assess the relative fit of 305 

parametric models [27]. 306 

Visualize the distributions. It is also important to visualize the fitted distributions to check that 307 

they fit the data [36]. When doing so, we recommend visualizing the estimated distribution in 308 

conjunction with the modeled observation process (e.g., double interval censoring and right 309 

truncation). In other words, estimate the latent (continuous) distribution. Then, from the latent 310 

distribution, simulate elements of the observation process, such as double interval censoring 311 

(e.g. for date-level censoring this will transform continuous delay times into an integer number of 312 

days elapsed) and right truncation (this will change the shape of the observed distribution, 313 

relative to the latent distribution) [49]. Not accounting for the observation process after 314 

estimating the latent distribution makes visual assessment of the fit difficult, because the 315 

observation data and the latent distribution may differ in shape and data type. For example, 316 

Sender et al. illustrate how good visualizations can help make intuitive comparisons across 317 

different distributions [64]. 318 

Correctly convert parameters. Care should be taken when converting the parameters of fitted 319 

probability distributions to the summary statistics of interest. For example, the gamma 320 

distribution may use either a scale or a rate parameter, in addition to its shape parameter [65], 321 

while the standard lognormal parameters, log mean and log sd do not correspond to the log of 322 

the mean and the log of the standard deviation of the lognormal [66]. Some R packages contain 323 

functions to perform parameter conversion, such as EpiNow2 (lognormal) [67], epitrix (gamma) 324 
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[68], mixR (gamma, lognormal, and Weibull) [69], and epiparameter (gamma, lognormal, 325 

Weibull, negative binomial, and geometric) [30].  326 

Add subgroups or stratify estimates. If sample size allows, we recommend stratifying delay 327 

estimates whenever there are hypothesized differences across groups as delays, such as the 328 

incubation period and the serial interval, may vary by route of exposure [15], viral species [70] or 329 

clade, disease severity, sex [71], age [71], vaccination status, or other factors. Ideally, this 330 

stratification should be done jointly in a statistically robust framework [49,63,72]. Wider 331 

application of joint modeling approaches could be achieved with more availability of easy-to-use 332 

tools [49].  333 

Check model diagnostics. When Bayesian methods are used, visualize the posterior distribution 334 

against data and check model diagnostics, such as trace plots, the potential scale reduction 335 

statistic (R-hat), divergent transitions, and effective sample sizes, and report them [73–75]. 336 

Convergence issues may indicate that the model is mis-specified, making the results unreliable. 337 

For more advice about using Bayesian methods, see [73,74,76].  338 

Reporting epidemiological delay distributions 339 

We recommend reporting an estimate of variability (e.g., standard deviation or 340 

dispersion) along with central tendency (e.g., mean or median) for all estimated delay 341 

distributions (sometimes more than one distribution fits the data similarly well as in [36]) 342 

alongside the quantiles and underlying parameters of the fitted distributions. These quantities 343 

are often used as inputs in infectious disease models and can inform both clinical practice and 344 

public health policy [8]. If possible, the probability density function should be specified to avoid 345 

ambiguity about the parameters. For Bayesian analyses, samples of the posterior distribution 346 

should be made available as summarizing estimates may obfuscate valuable information about 347 

the correlations between parameters and the shape of the posterior distributions. 348 

All summary statistics should always be accompanied by credible intervals or confidence 349 

intervals for Bayesian and frequentist analyses, respectively (usually 90% or 95% with the width 350 
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of the reported interval also being reported). High uncertainty in parameter estimates can have 351 

substantial impacts on downstream modeling [77,78] and can indicate that more data need to 352 

be collected.  353 

Estimates of delays should be accompanied by contextual information to aid in 354 

interpretation. For example, we recommend reporting the study sample size; the epidemic 355 

curve; which, if any, control measures are in place; and summary statistics on age, sex, 356 

geographic location, vaccination status, and possible exposure route(s). Control measures and 357 

summary statistics can be used to assess generalizability of the estimates (see earlier advice on 358 

stratification of estimates). The epidemic curve can indicate at which stage of the epidemic the 359 

analysis took place and whether the outbreak is now over (i.e., whether certain biases need to 360 

be adjusted for).  361 

Code and data should be uploaded to repositories, such as GitHub (https://github.com/) 362 

or Zenodo (https://zenodo.org/), to ensure reproducibility of the analysis and facilitate re-use of 363 

the code. Apart from allowing others to reproduce, validate and potentially improve analyses, 364 

providing data along with estimates of delay distributions also ensures that the estimates can be 365 

integrated in future pooled estimation efforts as methods continue to be improved. These data 366 

should ideally be provided in linelist format with all necessary information required for estimation 367 

(e.g., the left and right boundaries of the possible infection and symptom onset times for the 368 

incubation period [44]). Importantly, the data should be anonymized/de-identified to protect 369 

patient privacy according to local health data laws and regulations. If data cannot be shared, we 370 

recommend at minimum providing samples of the posterior distribution in a permanent online 371 

repository to facilitate future re-analyses (as in [24]).  372 

Reporting the incubation period and serial interval 373 

In addition to the checklist for reporting epidemiological delay distributions, we 374 

recommend additional considerations specific to the incubation period and serial interval in 375 

Table 3. Like Table 2, this checklist contains details about each recommendation, examples 376 
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from real outbreaks, and possible solutions. It should be used each time an incubation period or 377 

serial interval is estimated.    378 

For the incubation period, a case may have had multiple possible exposures prior to 379 

symptom onset, especially when community transmission of a pathogen is high. If a case 380 

reports multiple exposures, we recommend defining an exposure window that includes all 381 

possible exposure dates [7], using disjointed exposure windows where appropriate. Other 382 

methods that take this uncertainty into account could be used (such as [79] who used a 383 

Bayesian framework to infer the incubation period of the infector). We caution against restricting 384 

the analysis to cases with a high degree of certainty about their exposure periods as this can 385 

introduce biases [80].  386 

For the serial interval, we only use case pairs where we are fairly confident transmission 387 

has occurred [58] (usually based on exposure information collected from patient interviews, see 388 

[36,81]). Although this approach could bias the serial interval towards specific lengths of 389 

intervals, it is usually preferable than to using mis-specified case pairs. Bias from including mis-390 

specified case pairs in the analysis is likely larger than that from removing pairs between which 391 

transmission likely did not occur; however, future research should formally assess this 392 

convention with simulations. In terms of the direction of transmission, a number of approaches 393 

can be taken to order the case pairs. Where there is strong evidence that pre-symptomatic 394 

transmission does not occur for the disease of interest, reported negative intervals are 395 

presumed to be erroneous, and can be removed [36] or reversed [24]. Some studies assume 396 

the direction of transmission between epidemiologically linked cases based on the date order of 397 

symptom onset [24]; where negative serial intervals are possible, this should be avoided. It is 398 

also possible to use genomic data to order the pairs [82,83]. The ideal approach where negative 399 

intervals are possible is to use information about pair ordering and fit a distribution that allows 400 

for negative values (see “Additional modeling recommendations”). When no such information is 401 

available, a method that does not rely on knowing the order of case pairs would be ideal as this 402 
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would enable the use of more available data and avoid biases from certain types or durations of 403 

exposure being easier or more difficult to link epidemiologically. Although such methods have 404 

been developed, they assume a fully sampled population [84,85]. It is important to be 405 

transparent about the approach taken. Uncertainty in the source of infection (such as the 406 

potential for multiple possible infectors) should also be considered.  407 

Other considerations 408 

How to best use new data. Delays should be (re-)estimated when possible, especially if current 409 

estimates are poor or lacking. New estimates can be compared to those from previous 410 

epidemics or from a different phase of the same epidemic. One could consider any new dataset 411 

on its own. Alternatively, using mixed effects models to partially pool information across different 412 

outbreaks is likely a better use of available data. When choosing an approach, it is important to 413 

consider whether the primary modes of transmission or pathogen properties are different than in 414 

the past [56,86].  415 

Choice of prior distributions. When using Bayesian methods to estimate epidemiological delay 416 

distributions, it is important to think about the choice of prior distributions. Some R packages 417 

that estimate epidemiological delays have default prior distributions [48,49]. Users of these tools 418 

should carefully consider the appropriateness of default prior distributions for their analyses and 419 

should explore the impact of different prior distributions on their results. We recommend against 420 

using uninformative prior distributions, especially uniform prior distributions [87], for the 421 

parameters of epidemiological delay distributions. When the delay distribution is already well 422 

reported in the literature, this knowledge can be used to inform prior distributions; however, the 423 

methods should be clearly communicated and accompanied by estimates generated from 424 

weakly informative prior distributions as sensitivity analyses.  425 

Meta-analyses. To reduce uncertainty from small sample sizes, some researchers have 426 

combined estimates of epidemiological delays from different studies through meta-analysis 427 

[34,35] or pooled analysis (re-analyzing published individual-level data) [8,88]. The latter 428 
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method is preferred but may not always be possible. If performing a meta-analysis, we 429 

recommend performing sensitivity analyses when some estimates from the literature have not 430 

been corrected for bias [89]. Published estimates can also be adjusted for bias post-hoc by 431 

using the relationship between the backward and forward distributions, as in Park et al. [89]. 432 

Some authors have designed custom quality assessment scales to assess bias in studies 433 

included in meta-analyses of epidemiological parameters [33,34]. 434 

Time-varying delays. While some delay distributions are expected to remain stationary during 435 

an epidemic wave, others can change over time in response to interventions [29] and changes 436 

in reporting, among other factors. For example, Ali et al. found that the serial interval of COVID-437 

19 in mainland China shortened after non-pharmaceutical interventions were implemented in 438 

early 2020 [29]. We can study time-varying delays by analyzing changes in forward delay 439 

distributions across cohorts. When doing so, we still need to account for both censoring and 440 

right truncation. We do not recommend inferring time-varying delays from backward delay 441 

distributions because dynamical bias also causes changes in this distribution even when the 442 

forward distribution remains stationary. 443 

Discussion 444 

Epidemiological delay distributions are key parameters for preparedness and response 445 

to epidemics and pandemics. Their importance has been highlighted during the COVID-19 446 

pandemic [29], the global mpox (formerly known as monkeypox) outbreak in 2022 [7], and other 447 

epidemics over the last two decades [13]. We have focused on the incubation period and serial 448 

interval, for which estimates are often made at the beginning of an epidemic when contact 449 

tracing data are available to support early characterization of the pathogen. While the estimates 450 

are most useful for real-time response during this time, they are also the most susceptible to 451 

bias. Indeed, adjusting for bias when estimating delay distributions is one of the most important 452 

recommendations we highlight. as not doing so may lead to the propagation of bias into 453 

downstream modeling [23] and therefore an incorrect understanding of an epidemic (e.g., over- 454 
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or under-estimating the risk to the host population) [25]. In addition to adjusting for bias, 455 

estimates need to be clearly and fully reported to maximize utility and make the most of data 456 

that are both costly and difficult to collect [90,91]. Our recommendations can assist with this. 457 

A limitation of current methods for correcting common biases is that they do not fully 458 

account for time-varying changes in delay distributions [23]. Future work on delay distributions 459 

or nowcasting (which demonstrates how to model time-varying delays using time-to-event 460 

modeling) [92–94] should extend current methods or develop new methods to account for these 461 

changes.  462 

Many of the best practices outlined in this paper also apply to other epidemiological 463 

delays. However, there are issues which we did not cover. For example, we did not focus on 464 

methods for estimating delay distributions for vector-borne diseases, such as dengue and 465 

Yellow fever, as these require additional considerations (e.g., accounting for vector biology) 466 

[13,95]. Also, we did not aim to provide a systematic review; rather, we provided insights based 467 

on our experiences. The examples presented in this work were selected to illustrate specific 468 

points.  469 

In conclusion, we have provided recommendations in the form of two checklists for 470 

generating and evaluating epidemiological delay distributions. We gave examples of good 471 

practice for the incubation period and serial interval from various infectious disease outbreaks 472 

over the last few decades; though few examples in the literature incorporate all the best 473 

practices outlined in this paper. We hope that our recommendations will provide clarity and 474 

structured guidance about what should be reported and how to adjust for biases in delay data. 475 

We also hope our flowchart and checklists will be adopted by the infectious disease modeling 476 

community to understand the limitations of existing estimates and improve future estimates.  477 

 478 
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Tables  

 

Table 1. Adjusting for biases in epidemiological delay distributions. Examples of diseases for each bias were selected based on 

convenience (either papers written by this study’s authors or those encountered during the course of their work). Note that not all 

methods in this table are discussed in the text, and more details can be found in Park et al. [23]. 

Bias Interval censoring Right truncation Dynamical bias 

Details The exact timing of the 
primary event or secondary 
event (single interval 
censoring) or both events 
(double interval censoring) is 
unknown (e.g., except for 
experimental studies, 
exposure is usually reported 
as a date or range of dates, 
rather than a time of day).  

Right truncation is a type of 
sampling bias. It arises because 
only cases whose secondary 
event has occurred can be 
observed. In an ongoing 
epidemic, right truncation biases 
the incubation period and serial 
interval toward shorter intervals 
because individuals with longer 
incubation periods may not have 
developed symptoms or have 
been reported yet. 

Dynamical bias is another type of 
sampling bias that can be present 
when case ascertainment is based on 
the secondary event. It is related to 
epidemic dynamics: during a growth 
phase, cases that developed 
symptoms recently are 
overrepresented in the observed data, 
while during a declining phase, these 
cases are underrepresented. This 
means that the backward distribution is 
not representative of the forward 
distribution during these periods. 

Impact Not accounting for interval 
censoring can lead to biased 
estimates of a delay’s 
standard deviation. Incorrectly 
accounting for it can also bias 
the mean. 

Not accounting for right truncation 
can lead to underestimation of the 
mean delay [23]. 

Not adjusting for dynamical bias when 
estimating the forward distribution from 
the backward distribution can lead to 
under- or over-estimation of delay 
intervals depending on whether the 
epidemic is in a growth or declining 
phase, respectively. 

Diseases for which 
this bias has been 
considered in 
analyses 

Incubation period: mpox [36]; 
Zika [96]; COVID-19 [97]; 6 
vector-borne diseases [88]  
 
Serial interval: mpox [36] 

Incubation period: COVID-19 
[25,97] 
 
Serial interval: mpox [24] 

Incubation period: COVID-19 [89] 
 
Serial interval: mpox [24]  
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Possible solutions Use methods, such as Reich 
et al. 2009 [44], that adjust for 
double interval censoring; 
however, this method does 
not adjust for right truncation. 
Alternatively, use Ward et al.’s 
double interval censoring and 
right truncation adjusted 
model, which adjusts for 
interval censoring and right 
truncation simultaneously 
[23,24]. 

Use an approximate latent 
variable method, such as Ward et 
al’s double interval censoring and 
right truncation adjusted model 
[24] or similar alternatives [23]. 

If both primary and secondary event 
dates are known and the incidence of 
primary events is changing 
exponentially at a constant rate, it is 
possible to use the approach of Verity 
et al., Britton et al., and Park et al. 
[26,46,47] to adjust for dynamical bias; 
however, uncertainty in both growth 
rate estimates and observed delays 
need to be taken into account carefully 
with this approach and the assumption 
of constant growth rates may not be 
met in practice. Park et al. present a 
version of this method that allows for a 
time-varying growth rate, but it requires 
untruncated incidence data or 
assumptions to be made about the 
recent growth rate [23]. For most 
settings, considering the forward 
distribution and accounting for right 
truncation is recommended. 

Practices to avoid Do not adjust for single 
censoring if the data are 
doubly interval-censored as 
this will result in a biased 
mean [23]. Note that even if 
both primary and secondary 
events are reported to have 
occurred on a single date, the 
data should be considered 
doubly interval-censored. Do 
not use a midpoint imputation 
rule on interval-censored data 
as this may introduce bias 
[50].  

Do not adjust for right truncation 
and dynamical bias at the same 
time early in an outbreak as doing 
this can lead to overadjustment of 
the downward bias and therefore 
to overestimation of the delay 
[23]. 

Avoid adjusting for right truncation and 
dynamical bias at the same time [23]. 
When analyzing the forward 
distribution, adjust for right truncation; 
when analyzing the forward distribution 
via the backward distribution, adjust for 
dynamical bias. We recommend the 
former when possible.  
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Table 2. Checklist for reporting/reported epidemiological delay distributions. Examples of diseases for each checklist item were 

selected based on convenience (either papers written by this study’s authors or those encountered during the course of their work). 

Checklist item Details Diseases for which 
this item has been 

implemented 

Possible solutions 

Estimation 

Adjust for biases See Table 1 See Table 1 Adjust for censoring (always), right truncation 
(when needed), and dynamical bias (when 
needed). Clearly state that all these adjustments 
have been made, and report both right-
truncation-adjusted and right-truncation-
unadjusted estimates. Consider using the 
approach of Reich et al. [44] or Ward et al’s 
double interval censoring corrected model 
[23,24] to obtain estimates that are not adjusted 
for right truncation.  

Compare multiple 
probability 
distributions 

Estimated delays may 
depend on the fitted 
probability distribution, so it is 
important to use the 
distribution that best 
represents the data. 

Incubation period: 
mpox [56]; COVID-19 
[97,98]; dengue [95]; 
HIV [71]; malaria [60] 
 
Serial interval: MERS 
[79]  

Fit more than one probability distribution to the 
data [55] and use appropriate model selection 
criteria to compare them. Visualize the fit of 
distributions to the data. 

Correctly convert 
parameters of 
probability 
distributions to 
summary statistics 

Incorrectly converting 
parameters leads to wrong 
estimates of delays. 

Incubation period: 
COVID-19 [97]  

If writing equations, double check them or use a 
software package with built-in functions for 
parameter conversion, such as EpiNow2 
(lognormal) [67], epitrix (gamma) [68], mixR 
(gamma, lognormal, and Weibull) [69], and 
epiparameter (gamma, lognormal, Weibull, 
negative binomial, and geometric) [30].  
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Add subgroups to 
your model or stratify 
the estimates 
whenever appropriate 

Estimated delays may vary 
based on a variety of factors. 

Incubation period: 
Ebola (virus species) 
[70]; West Nile virus 
disease 
(transplant/transfusion 
versus not) [88]; 
dengue (serotype) [95]; 
HIV (sex and age 
category) [71]  

If sample size allows and a difference across 
groups is hypothesized, add subgroups to your 
model or stratify the estimates by exposure type, 
genetic variant/clade, or other factors (e.g., sex, 
age, vaccination status, etc.). The former 
approach, also known as joint modeling, is 
preferred. 

Check model 
diagnostics 

If model requirements are not 
met, the estimated delay 
distributions may not be 
reliable.  

Incubation period: 
dengue [95] 

If using Bayesian methods, make sure all models 
converge. Visually inspect trace plots. Check 
potential scale reduction statistic (R-hat), 
divergent transitions, effective sample sizes, and 
any other diagnostics and report when 
appropriate. Examples of R packages to perform 
these checks include coda [99], rstan [75], and 
bayesplot [100].  

Reporting 

Report measures of 
central tendency and 
variability 

These may be used as inputs 
for infectious disease models 
and can inform both clinical 
practice and public health 
policy [8].  

Incubation period: 
mpox [56], COVID-19 
[97,98]; 6 vector-borne 
diseases [88]; Zika 
[96]; 9 respiratory 
diseases [8]  
 
Serial interval: MERS 
[79]; mpox [36] 

Report multiple summary statistics and clearly 
state which is which. Report at least the mean or 
median as well as standard deviation, variance, 
or dispersion.  

Report quantiles of 
the probability 
distribution 

The left tail of the incubation 
period distribution indicates 
the earliest time symptoms 
could develop following 

Incubation period: 
mpox [56]; COVID-19 
[97,98]; 6 vector-borne 
diseases [88]; Zika 

Report key quantiles (e.g., 2.5, 5, 25, 50, 75, 95, 
97.5, 99) of the distribution in a table. 
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infection, while the right tail is 
often of interest for control 
strategies, such as 
monitoring people who have 
been exposed [25,98]. The 
right tail of the serial interval 
can also inform the length of 
quarantine.  

[96]; 9 respiratory 
diseases [8] 
 
Serial interval: mpox 
[24] 

Report the 
parameters for all 
fitted probability 
distributions  

These inputs may be used for 
mathematical modeling and 
are key for correctly defining 
the distribution. 

Serial interval: mpox 
[36,101] 

E.g. for the gamma distribution, report shape and 
scale; for the lognormal distribution, report 
logmean and log standard deviation. If possible, 
the probability density function should be 
specified to avoid ambiguity about the 
parameters.  

Report uncertainty in 
the estimates 

Communicating uncertainty is 
a key aspect of outbreak 
analysis and modeling [78]. 
Also, high uncertainty in 
parameter estimates can 
affect downstream modeling 
[77]. 

Incubation period: 
mpox [7,56,101]; 
COVID-19 [97,98]; 6 
vector-borne diseases 
[88]; dengue [95]; Zika 
[8,13]; MERS [79,102]; 
9 respiratory diseases 
[8] 
 
Serial interval: mpox 
[24,36]; COVID-19 [20]  

Report 90% or 95% credible intervals or 
confidence intervals for all estimates (central 
tendency, variability, quantiles, and parameters 
for the fitted probability distributions). Ideally, 
provide joint posterior samples for Bayesian 
analyses as these are important for 
characterizing covariance in the posterior 
distribution. Make sure to report how intervals 
were defined (i.e. report that they are 95% 
credible intervals). 

Report characteristics 
about study sample 

Characteristics about the 
study sample can provide 
epidemiological context for 
the estimates which can help 
with interpretation. 

Incubation period: 
MERS [79]; 9 
respiratory diseases 
[8]; mpox [56] 
 
Serial interval: MERS 
[79] 

Report the sample size of the study, 
demographic characteristics of patients (e.g., 
age, sex, geographic location, vaccination 
status), and route of exposure(s) (if known). 
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Report the epidemic 
curve and which, if 
any, control 
measures are in 
place 

The epidemic curve can 
provide context about the 
epidemic phase (increasing, 
decreasing, or stable) and 
whether right truncation bias 
or dynamical bias needs to 
be considered. 

Incubation period: 
mpox [101] 
 
Serial interval: COVID-
19 [46]; MERS [102] 

Include a figure of the epidemic curve or provide 
a reference to the curve on a permanent website 
(doi). Ideally, the underlying data for the curve 
would be made available to download. 
Alternatively, provide an estimate of the growth 
rate for the study period. 

Provide 
anonymized/de-
identified data and 
documented code  

This step improves the 
reproducibility of the study, 
and the code can be reused 
by other teams during future 
epidemics. It can also 
facilitate meta-analyses and 
joint analyses of multiple 
datasets.  

Incubation period: 
COVID-19 [97,98] 
 
Serial interval: mpox 
[81] 

Anonymized/de-identified linelist-level data 
should be provided with relevant stratifying 
variables. For small epidemics, some authors 
have reported data relative to an unspecified 
reference date to protect patient identities [56]. 
However, the data should still ideally be linked to 
the epidemic trajectory to address dynamical 
bias issues. An alternative approach could be to 
widen the censoring intervals.  
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Table 3. Additional checklist items for reporting the incubation period and serial interval. 

Delay Checklist item Details Diseases for 
which this 

item has been 
implemented 

Possible solutions 

Incubation 
period 

Investigate the 
potential for 
multiple 
possible 
exposures 

Sometimes, a case 
may have had multiple 
opportunities to be 
exposed before 
symptom onset. 

Mpox [103]; 
MERS [79] 

For these cases, use an exposure window that 
includes all possible exposure dates, such as travel to 
a high-risk area. Use a disjointed exposure window 
where appropriate (however, this approach may cause 
some issues for the sampler with Ward et al.’s double 
interval censoring and right truncation adjusted model 
[24]). The method developed by Cowling et al. 2015 
[79] for MERS could be used as well. 

Serial 
interval 

Check for 
negative serial 
intervals  

Negative serial 
intervals can occur 
when symptom onset in 
the infectee occurs 
before symptom onset 
in the infector [20]. 

Mpox [24,36] Assuming the data are correct, including negative 
serial intervals, keep the ordering of the pairs and fit a 
distribution that allows for negative values (such as 
normal). If there are negative serial intervals but there 
is strong evidence that pre-symptomatic transmission 
does not occur for the disease of interest, consider 
removing [36] or reversing the order [24] of those case 
pairs. There are also methods that do not depend on 
knowing the order of case pairs [84,85]. 

Investigate the 
potential for 
multiple 
possible 
infectors 

Sometimes, a case 
could have been 
exposed to more than 
one infected person 
prior to symptom onset. 

Mpox [36,81]; 
MERS [79] 

Restrict the analysis to only cases with a high degree 
of certainty that the secondary case was infected by 
the primary case. Then, do a sensitivity analysis with 
all cases and compare the results. 
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Figures 

 

Figure 1. Common biases involved in the estimation of epidemiological delay distributions. The 

y axis in each panel represents distinct observations of delays. The circles represent primary 

events, while the squares represent secondary events. The horizontal lines represent the delay 

between events, while the vertical lines represent the time at which the data are observed. The 

arrows represent how cases enter the dataset: arrows pointing toward the right indicate that the 

primary event was observed first, while arrows pointing toward the left indicate that the 

secondary event was observed first. The brackets “[  ]” represent interval censoring of the 

primary and secondary events. Note how primary and secondary events occur in continuous 

time, while the reporting of events (brackets) always occur at discrete intervals. Delays and 

events in gray are unobserved. (A) and (B) demonstrate the same scenario, but the direction of 

the arrows is different. In (A), observation of the delay is based on the primary event, and there 

is right censoring, while in (B), observation is based on the secondary event, and there is right 

truncation. (C) demonstrates an example of a backward distribution in a growing epidemic, 

when the majority of delays that make up the distribution will be short; hence, the backward 

distribution will be shorter than the equivalent forward distribution. (D) demonstrates the reverse 

in a declining epidemic. Both (C) and (D) show the impact of dynamical bias.   

 



29 

 
 

 

Figure 2. Forward and backward approaches for organizing events into cohorts and analyzing 

data to estimate epidemiological delay distributions. The y-axis represents distinct observations 

of delays. The yellow circles represent the primary events, while the green squares represent 

the secondary events. The black horizontal lines represent the delay between primary and 

secondary events, and the vertical dotted lines show the cohorts. The arrows represent how 

cases enter the dataset: arrows pointing toward the right indicate that the primary event was 

observed first, while arrows pointing toward the left indicate that the secondary event was 

observed first. Note that the case ascertainment method does not impact the direction we can 

cohort the data. For forward cohorts (A and C), all primary events that occurred during the same 

period are selected and prospectively followed until the secondary event occurs. For backward 

cohorts (B), all secondary events that occurred during the same period are selected; the timing 

of the primary events is identified retrospectively. For simplicity, interval censoring has been 

omitted from this figure; events appear to occur at discrete intervals when in reality, they occur 

in continuous time. 
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Figure 3. Flowchart for bias adjustment when estimating delay distributions, assuming that 

double interval censoring is always adjusted for and that the forward distribution is being 

modeled directly (i.e., not via the backwards distribution and dynamical bias correction) as we 

recommend regardless of data collection approach. If you have an estimate of the backwards 

distribution from the literature, see the section on “Other considerations” for advice. 
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