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Abstract 

 

Epidemiological delays, such as incubation periods, serial intervals, and hospital lengths of stay, 

are among key quantities in infectious disease epidemiology that inform public health policy and 

clinical practice. This information is used to inform mathematical and statistical models, which in 

turn can inform control strategies. There are three main challenges that make delay distributions 

difficult to estimate. First, the data are commonly censored (e.g., symptom onset may only be 

reported by date instead of the exact time of day). Second, delays are often right truncated 

when being estimated in real time (not all events that have occurred have been observed yet). 

Third, during a rapidly growing or declining outbreak, overrepresentation or 

underrepresentation, respectively, of recently infected cases in the data can lead to bias in 

estimates. Studies that estimate delays rarely address all these factors and sometimes report 

several estimates using different combinations of adjustments, which can lead to conflicting 

answers and confusion about which estimates are most accurate. In this work, we formulate a 

checklist of best practices for estimating and reporting epidemiological delays with a focus on 

the incubation period and serial interval. We also propose strategies for handling common 

biases and identify areas where more work is needed. Our recommendations can help improve 

the robustness and utility of reported estimates and provide guidance for the evaluation of 

estimates for downstream use in transmission models or other analyses.  
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Introduction 

 

Epidemiological delay distributions are key quantities for public health policy [1], clinical 

practice [2], and infectious disease modeling [3–7]. An epidemiological delay is the time 

between two epidemiological events. Examples of delays in infectious disease epidemiology 

include the incubation period (the time between infection and symptom onset), the serial interval 

(the time between symptom onset in a given infected person and someone they infect), and the 

generation interval (the time between infection in a given person and someone they infect). 

Other commonly used epidemiological delays include hospital lengths of stay and delays from 

symptom onset to hospitalization, hospitalization to death, and symptom onset to specimen 

date. In the aftermath of the COVID-19 pandemic, there is considerable need for and interest in 

the estimation of epidemiological parameters, including delays, with at least two R packages 

[8,9], a World Health Organization working group [10], and meta-analyses of priority pathogens 

[11–13] working to collect and make these data accessible. In this perspective, we present best 

practices for the estimation and reporting of epidemiological delays, illustrated by examples for 

the incubation period and serial interval of directly transmitted (person-to-person) infectious 

diseases.  

The incubation period may vary according to age, vaccination status, underlying 

conditions [14], and transmission route or intensity of exposure [15,16], among other factors. 

The serial interval depends on the incubation period, contact patterns in the population, control 

measures, and the dynamics of infectiousness within a host. While the incubation period must 

be positive, the serial interval can be positive or negative [17]. The right tail of the incubation 

period distribution informs the length of quarantine, while the left tail indicates the earliest time 

symptoms might develop after infection [2]. By comparing the incubation period and serial 

interval, we can learn about a pathogen’s tendency for pre-symptomatic vs. symptomatic 

transmission [18], which can inform the controllability of an epidemic [19]. At the individual level, 

pre-symptomatic transmission occurs precisely when the serial interval is shorter than the 

incubation period of the infectee. In addition, both the incubation period and serial interval are 

key inputs in mathematical and statistical models, such as those used for 

nowcasting/forecasting [3,20] or for scenario-based modeling [21,22], which can inform control 

strategies. The serial interval is often used as a proxy for the generation interval in these 

applications.  

Methods for estimating epidemiological delays have been improving, especially during 

the COVID-19 pandemic, and recent research has highlighted the importance of appropriately 

adjusting for three statistical issues inherent in the data collection process: right truncation, 

censoring, and dynamical bias [23–27]. Indeed, use of delay parameters that are not adjusted 

for these biases may lead to the propagation of bias into downstream modeling [23] and 

therefore an incorrect understanding of an epidemic (e.g., over- or under-estimating the risk to 

the host population) [25].  

We provide details about the data needed to estimate delays and how they should be 

prepared for analysis. Then, we discuss biases that can affect the estimation of epidemiological 

delay distributions, followed by strategies that can be used to reduce the impact of these biases. 

Technical details about these biases and how to adjust for them can be found in Park et al. [23]. 
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Finally, we introduce a reporting checklist to aid researchers and reviewers based on our 

experience estimating epidemiological delay distributions during outbreak responses.  

 

Data 

   

Epidemiological delays have start and end times, marked by a primary and secondary 

event. These events can be observed (e.g., symptom onset time) or unobserved (e.g., usually 

infection time). Incubation period data include the times of probable exposure and perceived 

symptom onset for each case. Infection time can be inferred from exposure time because 

exposure is a necessary, but not sufficient, condition for infection. Data that can be used to 

estimate the serial interval are those in which symptom onset has been observed for primary 

and secondary cases. Examples of study designs or public health activities that generate such 

data include contact tracing [24,28], prospective cohort studies [29–31], household studies [32], 

or other types of intensive cohort monitoring [33]. Data from passive surveillance, which 

involves healthcare providers reporting cases to public health agencies, can also be used to 

estimate delay distributions; however, exposure information may be unreliable because key 

information may be missing, incomplete, or abstracted from other variables [34].   

 

Biases in delay data 

 

Three main biases can affect the estimation of epidemiological delay distributions, 1. 

censoring, 2. right truncation bias, and 3. dynamical (or epidemic-phase) bias (Table 1).  

Censoring is knowing that an event occurred but not precisely when. Data can be right 

censored (the event is known to have occurred after a certain time), left censored (the event is 

known to have occurred before a certain time), or interval censored (the event is known to have 

occurred within a certain time interval). In epidemiological delay data, censoring can affect 

either primary or secondary events (single interval censoring) or both (double interval censoring) 

[35]. Epidemiological data are almost always doubly interval-censored due to the time scales of 

reporting. For example, when reporting occurs daily with a cutoff at midnight, a patient could 

experience the event of interest (e.g., symptom onset) at any time between 12:00 am and 11:59 

pm on a particular day. Moreover, some events are prone to longer censoring intervals than 

others (e.g., exposure intervals may be longer than one day for cases with multiple possible 

exposures). Not or incorrectly accounting for censoring of event intervals can lead to biased 

estimates of a delay [23].  

Right truncation is defined as the inability to observe intervals (e.g. incubation periods) 

greater than some threshold (e.g. greater than the number of days elapsed since infection). It 

typically applies to real-time settings, when recently occurred events with longer intervals may 

not have been observed yet, leading to an overrepresentation of shorter intervals when 

estimating the incubation period or serial interval distribution. However, right truncation should 

not be confused with right censoring. The latter occurs when we observe the primary event of a 

case or future case but cannot observe it long enough to witness its secondary event [36], which 

could be due to, for instance, a study ending prematurely. As a result, we only know that the 

secondary event did not occur during the observation period and therefore have a right-

censored interval for a data point. In contrast, right truncation means that certain intervals are 
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completely missing from our data as observing primary events depends on identifying 

secondary events first. Right truncation is common in data where case ascertainment depends 

on the secondary event, e.g. we rarely observe an individual’s incubation period until after 

symptoms develop. Not accounting for right truncation can lead to underestimating the mean 

delay [23]. Although right truncation is mainly a problem for real-time analyses, retrospective 

data can be right-truncated if surveillance ended prematurely.  

Dynamical bias is another type of common sampling bias which is related to right 

truncation. During the increasing phase of an epidemic, patients who were infected recently are 

overrepresented in the recent data, leading to underestimation of delay intervals. Conversely, 

when the epidemic is decreasing, patients with short delays are underrepresented in the recent 

data, leading to the overestimation of delay intervals. Dynamical bias is especially problematic 

during periods of exponential growth and decay of cases when cases are exponentially more 

and less likely, respectively, to be infected recently rather than further back in time.  

 

Measuring epidemiological delays  

 

We aim to estimate the true underlying distribution for each epidemiological delay which 

characterizes the time between the primary and secondary event. In general, we assume that 

this distribution does not change over the course of an epidemic (although this may not always 

be the case [37]). Cases can enter a dataset due to observation of either their primary or 

secondary event. Regardless of how data were collected, we can organize our data into cohorts 

using either a forward or backward approach (Figure 1). For the forward approach, we start from 

primary events that occurred during the same period and prospectively determine when the 

secondary events occurred—the resulting distribution of the delays is the forward distribution. In 

contrast, for the backward approach, we start with secondary events that occurred during the 

same period and retrospectively determine when the primary events occurred—the resulting 

distribution of the delays is the backward distribution. 

Data observed in real-time can be subject to either right truncation or right censoring. 

Right truncation causes the observed forward distribution to be shorter than the true underlying 

distribution and has the largest effect when the epidemic is growing because recently infected 

individuals are overrepresented. In a declining epidemic, right truncation will have a smaller 

impact on the forward distribution because the proportion of recently infected individuals with 

unobserved secondary events is lower. Excluding right-censored data from the analysis is 

equivalent to right truncating the data and leads to underestimation of the delay. Backward 

distributions are not susceptible to right truncation but can have a delay distribution that is 

shorter or longer than the forward distribution and the true underlying distribution depending on 

the phase of the epidemic (i.e. dynamical bias). Both right truncation and dynamical biases are 

minimal if data from the entire epidemic are available and included in a delay estimate.  

Figure 2 shows the impact of different biases on the forward and backward distributions. 

We recommend always analyzing delay distributions as forward distributions and accounting for 

potential biases (i.e., censoring and right truncation) as this approach is generally more robust 

than working with backward distributions and correcting for dynamical bias.  

 

Adjusting for common biases  
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This section is a synthesis of Park et al. [23] in which further details can be found. In 

general, adjusting for double interval censoring involves estimating the conditional probabilities 

of the primary and secondary events occurring between their observed lower and upper bounds. 

Interval censoring should always be adjusted for, and the adjustment method is the same 

irrespective of the epidemic phase. Right censoring can be handled using methods for survival 

analysis, such as the Kaplan-Meier approach [36]. Adjusting for right truncation involves 

normalizing the probability of observing a given delay from the untruncated forward distribution 

by the probability of observing any delay before the final observation time, and adjusting for 

dynamical bias involves incorporating the epidemic trajectory (e.g., the growth or decay rate of 

the epidemic) into the analysis [23,26,38,39].  

 Although there are several available methods and tools for estimating epidemiological 

delay distributions, most either have not been validated or do not correct for all potential biases. 

One example is the coarseDataTools R package developed by Reich et al. [35]. This tool has 

been validated and can correct for double interval censoring, but it does not adjust for right 

truncation or dynamical bias. In contrast, epidist, an R package developed by some of the 

authors of this study, contains methods which can adjust for all three potential biases. In [23], 

epidist was used to evaluate multiple methods and found that the approximate latent variable 

censoring and truncation method emerged as the best performer for both real-time and 

retrospective analyses for most real-world use cases. This method corresponds to the double 

interval censoring and right truncation adjusted model developed by Ward et al. [24] which we 

recommend.  

Ward et al.’s approach estimates the probability of observing a secondary event 

conditional on observing the primary event by a given final observation date. Estimated event 

times for each case are included in the model as unobserved, or latent, variables, and uniform 

prior distributions are used for both the primary and secondary event times, which can 

accommodate censoring intervals of arbitrary length. However, when censoring intervals are 

long, the event time distribution within the censoring interval will deviate from the uniform 

approximation (as its shape depends on underlying epidemic dynamics) and should be taken 

into account.  

While we recommend Ward et al.’s double interval censoring and right truncation 

adjusted model for correcting common biases [24], this approach has important limitations; Park 

et al. found that this method was not able to estimate the mean or standard deviation well in 

epidemic simulations characterized by very rapid exponential growth and long delays. Details 

about other possible approaches can be found in Park et al. We suggest avoiding approaches 

that adjust for right truncation and dynamical biases simultaneously because they lead to 

overestimation of the mean delay by overcompensating for intervals that have not yet been 

observed.  

 

Additional modeling recommendations 

 

Beyond correctly adjusting for biases, there are several common issues with reported 

epidemiological delays that may lead to biased conclusions when used in practice or impact 

their ability to be used at all. Historically, the incubation period and serial interval were often 
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reported using only the mean (and sometimes the range) [40–43]. However, models can be 

fitted to delay data to adjust for some of the biases we have described and better characterize 

the tail of the distribution. Assuming a modeling approach is taken, we summarize our 

recommendations for estimating and reporting for epidemiological delay distributions in Table 2 

and give more details in the following two sections. 

 We recommend fitting a parametric distribution to summarize the empirical delay 

distribution. Multiple probability distributions should be fitted to delay data [44] and compared 

using appropriate model comparison criteria (e.g., widely applicable information criterion [WAIC] 

or leave-one-out information criterion [LOOIC] for Bayesian models). Common distributions for 

epidemiological delays in the literature include the gamma, lognormal, and Weibull distributions 

[45]. For delays that can have negative values, distributions that can accept negative values, 

such as the skew-normal or skew-logistic distributions [46], may be used, or less ideally, the 

delay data may be shifted to allow for fitting of distributions that only allow positive numbers 

[47]. Mixture distributions may be appropriate for some delays and should also be considered 

[48–51].  

It is also important to visualize the fitted distributions to check that they fit the data [28]. 

When doing so, we recommend visualizing the estimated distribution in conjunction with the 

modeled observation process (e.g., double interval censoring and right truncation). In other 

words, estimate the latent (continuous) distribution. Then simulate elements of the observation 

process, such as double interval censoring (e.g. for date-level censoring this will transform 

continuous delay times into an integer number of days elapsed) and right truncation (this will 

change the shape of the observed distribution, relative to the latent distribution), from the latent 

distribution [52]. Not accounting for the observation process after estimating the latent 

distribution makes visual assessment of the fit difficult, because the observation data and the 

latent distribution may differ in shape and data type.  

Care should be taken when converting the parameters of fitted probability distributions to 

the summary statistics of interest. For example, the gamma distribution may use either a scale 

or a rate parameter, in addition to its shape parameter [53], while the standard lognormal 

parameters, log mean and log sd do not correspond to the log of the mean and the log of the 

standard deviation of the lognormal [54]. Some R packages contain functions to perform 

parameter conversion, such as EpiNow2 (lognormal) [55], epitrix (gamma) [56], mixR (gamma, 

lognormal, and Weibull) [57], and epiparameter (gamma, lognormal, Weibull, negative binomial, 

and geometric) [8].  

 We recommend stratifying delay estimates whenever there are hypothesized differences 

across groups as delays such as the incubation period and the serial interval may vary by route 

of exposure [15], viral species [58] or clade, disease severity, or other factors. Ideally, this 

stratification should be done jointly in a statistically robust framework [52,59,60]. Wider 

application of joint modeling approaches could be achieved with more availability of easy-to-use 

tools [52].  

The serial interval and generation interval are two transmission intervals commonly used 

in infectious disease modeling. For diseases with non-specific initial symptoms, consider 

estimating delays according to more than one definition of symptom onset (e.g., onset of any 

symptoms vs rash onset in the case of mpox or measles) [28,61]. Comparing the serial interval 

and/or generation interval to other transmission intervals (e.g., diagnosis intervals, lab 
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confirmation intervals, or reporting intervals) can provide useful information about the time 

scales of transmission as long as the interval that is being studied is clearly defined [62].  

When Markov chain Monte Carlo methods are used to estimate delay distributions, it is 

important to visualize posterior predictions against data and check model diagnostics, such as 

R-hat values, divergent transitions, and effective sample sizes, and report them [63–65]. 

Convergence issues may indicate that the model is misspecified, making the results unreliable.  

 

Reporting items 

 

We recommend reporting an estimate of variability (e.g., standard deviation or 

dispersion) along with central tendency (e.g., mean or median) for all estimated delay 

distributions. These quantities are often used as inputs in infectious disease models and can 

inform both clinical practice and public health policy [2]. The parameter estimates and quantiles 

of fitted probability distributions should also be reported as they are often used in modeling.  

All summary statistics should always be accompanied by credible intervals or confidence 

intervals for Bayesian and frequentist analyses, respectively (usually 90% or 95% with the width 

of the reported interval also being reported). High uncertainty in parameter estimates can have 

substantial impacts on downstream modeling [66,67] and can indicate that more data need to 

be collected.  

Estimates of delays should be accompanied by contextual information to aid in 

interpretation. For example, we recommend reporting the study sample size; the epidemic 

curve; which, if any, control measures are in place; and summary statistics on age, sex, 

geographic location, vaccination status, and possible exposure route(s). The epidemic curve 

can indicate at which stage of the epidemic the analysis took place and whether the outbreak is 

now over. 

Code and data should be uploaded to repositories, such as GitHub (https://github.com/) 

or Zenodo (https://zenodo.org/), to ensure reproducibility of the analysis and facilitate re-use of 

the code. Apart from allowing others to reproduce, validate and potentially improve analyses, 

providing data along with estimates of delay distributions also ensures that the estimates can be 

integrated in future pooled estimation efforts as methods continue to be improved. These data 

should ideally be provided in linelist format, alongside information on censoring and stratifying 

variables. Importantly, the data should be anonymized to protect patient privacy according to 

local health data laws and regulations.  

If data cannot be shared, we recommend at minimum providing samples of the posterior 

distribution in a permanent online repository to facilitate future re-analyses (as in [24]). This step 

is particularly important for distributions with correlated parameters to avoid inflation of 

uncertainty in downstream use (using parameterizations that have less correlations between 

parameters, such as those with location and scale, can also help). 

 

Reporting items specific to the incubation period and serial interval 

 

In addition to the checklist for reporting epidemiological delay distributions, we 

recommend additional considerations specific to the incubation period and serial interval (Table 

3).  
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For the incubation period, a case may have had multiple possible exposures prior to 

symptom onset, especially when community transmission of a pathogen is high. If a case 

reports multiple exposures, we recommend defining an exposure window that includes all 

possible exposure dates [1], using disjointed exposure windows where appropriate. Other 

methods that take this uncertainty into account could be used (such as [68] who used a 

Bayesian framework to infer the incubation period of the infector). We caution against restricting 

the analysis to cases with a high degree of certainty about their exposure periods as this can 

introduce biases [69].  

For the serial interval, we only use case pairs where we are fairly confident transmission 

has occurred [47] (usually based on exposure information collected from patient interviews, see 

[28,70]). Although this approach could bias the serial interval towards specific lengths of 

intervals, it is usually preferable to using mis-specified case pairs. In terms of the direction of 

transmission, a number of approaches can be taken to order the case pairs. Where there is 

strong evidence that pre-symptomatic transmission does not occur for the disease of interest, 

reported negative intervals are presumed to be erroneous, and can be removed [28] or reversed 

[24]. Some studies assume the direction of transmission between epidemiologically linked cases 

based on the date order of symptom onset [24]; where negative serial intervals are possible, this 

should be avoided. It is also possible to use genomic data to order the pairs [71,72]. The ideal 

approach where negative intervals are possible is to use information about pair ordering and fit 

a distribution that allows for negative values. When no such information is available, a method 

that does not rely on knowing the order of case pairs would be ideal as this would enable the 

use of more available data and avoid biases from certain types or durations of exposure being 

easier or more difficult to link epidemiologically. Although such methods have been developed, 

they assume a fully sampled population [73,74]. It is important to be transparent about the 

approach taken. Uncertainty in the source of infection (such as the potential for multiple possible 

infectors) should also be considered.  

 

Other considerations 

 

How to best use new data. Delays should be (re-)estimated when possible, especially if current 

estimates are poor or lacking. New estimates can be compared to those from previous 

epidemics or from a different phase of the same epidemic. One could consider any new dataset 

on its own. Alternatively, using mixed effects models to partially pool information across different 

outbreaks is likely a better use of available data. When choosing an approach, it is important to 

consider whether the primary modes of transmission or pathogen properties are different than in 

the past [45,75].  

 

Choice of prior distributions. When using Bayesian methods to estimate epidemiological delay 

distributions, it is important to think about the choice of prior distributions. Some R packages 

that estimate epidemiological delays, including coarseDataTools [76] and epidist [52], have 

default prior distributions. Users of these tools should carefully consider the appropriateness of 

default prior distributions for their analyses and should explore the impact of different prior 

distributions on their results. We recommend against using uninformed prior distributions, 

especially uniform prior distributions [77], for the parameters of epidemiological delay 



10 

distributions. When the delay distribution is already well reported in the literature, it is sensible to 

use this knowledge to inform prior distributions; however, the methods should be clearly 

communicated and accompanied by estimates generated from weakly informed prior 

distributions as sensitivity analyses.  

 

Meta-analyses. To reduce uncertainty from small sample sizes, some researchers have 

combined estimates of epidemiological delays from different studies through meta-analysis 

[12,13] or pooled analysis (re-analyzing published individual-level data) [2,78]. The latter 

method is preferred but may not always be possible. If performing a meta-analysis, we 

recommend performing sensitivity analyses when some estimates from the literature have not 

been corrected for bias [79]. Published estimates can also be adjusted for bias post-hoc by 

using the relationship between the backward and forward distributions, as in Park et al. [79]. 

Some authors have designed custom quality assessment scales to assess bias in studies 

included in meta-analyses of epidemiological parameters [12,47]. 

 

Time-varying delays. While some delay distributions are expected to remain constant during an 

epidemic wave, others can change over time in response to interventions [37] and changes in 

reporting, among other factors. Specifically, we can study time-varying delays by analyzing 

changes in forward, rather than backward, delay distributions across cohorts. For example, Ali 

et al. found that using time-varying estimates of the serial interval of COVID-19 in early 2020 

resulted in more accurate estimates of the time-varying reproduction number in mainland China 

compared to using fixed serial interval distributions [37]. Figure 3 shows a decision tree which 

can help determine which biases need to be adjusted for depending on the approaches taken 

for data collection and processing, including whether one is interested in time-varying delays.  

 

Discussion 

 

Epidemiological delay distributions are key parameters for preparedness and response 

to epidemics and pandemics. Their importance has been highlighted during the COVID-19 

pandemic [37], the global mpox outbreak in 2022 [1], and other epidemics over the last two 

decades [7]. We have focused on the incubation period and serial interval, for which estimates 

are often made at the beginning of an epidemic when contact tracing data are available to 

support early characterization of the pathogen. While the estimates are most useful for real-time 

response during this time, they are also the most susceptible to bias. In addition to adjusting for 

bias, estimates need to be clearly and fully reported to maximize utility and make the most of 

data that are both costly and difficult to collect [80,81]. Our recommendations can assist with 

this. 

Adjusting for bias when estimating delay distributions is one of the most important 

recommendations we highlight. Not adjusting for bias can lead to incorrect estimates of delays, 

which can have direct implications for public health practice. For example, Overton et al. found 

that the mean incubation period for COVID-19 in early 2020 (corresponding to the ancestral 

strain of SARS-CoV-2) was 3.49 days without adjusting for right truncation compared to 4.69 

days when adjusted [25]. The unadjusted estimate would suggest a quarantine of 10 days 

would capture 99% of cases, compared to a 14-day quarantine for the adjusted estimate [25]. If 
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the unadjusted estimate from this study had been used to inform the length of quarantine, more 

still-infectious individuals would have gone on to infect others. Similarly, Park et al. found that 

ignoring right truncation for a fast-growing epidemic with relatively long delays could result in 

underestimation of the mean delay distribution by up to 50% [23]. 

Not adjusting for bias can also lead to incorrect estimates of other parameters of interest 

that rely on accurate estimates of delays, such as the reproduction number. The basic 

reproduction number, R0, is the average number of secondary cases caused by a single 

infected individual in a large, completely susceptible population. If R0 is underestimated, new 

epidemics may be erroneously perceived as less severe, leading to an insufficient initial public 

health response.  

A limitation of current methods for correcting common biases is that they do not fully 

account for time-varying changes in delay distributions [23]. Future work on delay distributions 

or nowcasting (which demonstrates how to model time-varying delays using time-to-event 

modeling) [82–84] could extend current methods or develop new methods to account for these 

changes.  

To our knowledge, the epidist R package [52], developed by some of this paper's 

authors, is the only software tool that correctly handles interval censoring, right truncation, and 

dynamical bias. However, it does not currently implement all the best practices we have 

recommended. A major, though soon to be addressed, limitation is that it can only model 

lognormal distributions. In addition, while it can handle joint modeling (i.e., across strata) and 

time-varying delays, these features are not documented and require validation. Its 

implementation of our recommended method, by Ward et al., does not support custom primary-

event prior distributions, so it cannot account for the growth rate in the primary-event window. 

The tool also scales poorly with increasing amounts of data. Further limitations are discussed in 

Park et al. [23]. Future development work is planned on the package to address these issues, 

and community contributions are also welcome.  

Many of the best practices outlined in this paper also apply to other epidemiological 

delays. However, there are issues which we did not cover. For example, we did not focus on 

methods for estimating delay distributions for vector-borne diseases, as these require additional 

considerations (e.g., accounting for vector biology) [7,85]. Also, we did not aim to provide a 

systematic review, and the examples presented in this work were selected to illustrate specific 

points.  

In conclusion, we have provided recommendations for generating and evaluating 

epidemiological delay distributions. We gave examples of good practice for the incubation 

period and serial interval from various infectious disease outbreaks over the last few decades; 

though few examples in the literature incorporate all the best practices outlined in this paper. 

We hope that our recommendations will provide clarity and structured guidance about what 

should be reported and how to adjust for biases in delay data. We also hope this checklist will 

be adopted by the infectious disease modeling community to understand the limitations of 

existing estimates and improve future estimates.  
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Tables  

 

Table 1. Adjusting for biases in epidemiological delay distributions. Examples of diseases for each bias were selected based on 

convenience (either papers written by this study’s authors or those encountered during the course of their work). Note that not all 

methods in this table are discussed in the text, and more details can be found in Park et al. [23]. 

Bias Interval censoring Right truncation Dynamical bias 

Details The exact timing of the 
primary event or secondary 
event (single interval 
censoring) or both events 
(double interval censoring) is 
unknown (e.g., except for 
experimental studies, 
exposure is usually reported 
as a date or range of dates, 
rather than a time of day).  

Right truncation is a type of 
sampling bias. It arises because 
only cases whose secondary 
event has occurred can be 
observed. In an ongoing 
epidemic, right truncation biases 
the incubation period and serial 
interval toward shorter intervals 
because individuals with longer 
incubation periods may not have 
developed symptoms or have 
been reported yet. 

Dynamical bias is another type of 
sampling bias that can be present 
when case ascertainment is based on 
the secondary event. It is related to 
epidemic dynamics: during a growth 
phase, cases that developed 
symptoms recently are 
overrepresented in the observed data, 
while during a declining phase, these 
cases are underrepresented. This 
means that the backward distribution is 
not representative of the forward 
distribution during these periods. 

Impact Not accounting for interval 
censoring can lead to biased 
estimates of a delay’s 
standard deviation. Incorrectly 
accounting for it can also bias 
the mean. 

Not accounting for right truncation 
can lead to underestimation of the 
mean delay [23]. 

Not adjusting for dynamical bias when 
estimating the forward distribution from 
the backward distribution can lead to 
under- or over-estimation of delay 
intervals depending on whether the 
epidemic is in a growth or declining 
phase, respectively. 

Diseases for which 
this bias has been 
considered in 
analyses 

Incubation period: mpox [28]; 
Zika [86]; COVID-19 [87]; 6 
vector-borne diseases [78]  
 
Serial interval: mpox [28] 

Incubation period: COVID-19 
[25,87] 
 
Serial interval: mpox [24] 

Serial interval: mpox [24]  



14 

Possible solutions Use methods, such as Reich 
et al. 2009 [35], that adjust for 
double interval censoring; 
however, this method does 
not adjust for right truncation. 
Alternatively, use Ward et al.’s 
double interval censoring and 
right truncation adjusted 
model, which adjusts for 
interval censoring and right 
truncation simultaneously 
[23,24]. 

Use an approximate latent 
variable method, such as Ward et 
al’s double interval censoring and 
right truncation adjusted model 
[24] or similar alternatives [23]. 

If both primary and secondary event 
dates are known and the incidence of 
primary events is changing 
exponentially at a constant rate, it is 
possible to use the approach of Verity 
et al., Britton et al., and Park et al. 
[26,38,39] to adjust for dynamical bias; 
however, uncertainty in both growth 
rate estimates and observed delays 
need to be taken into account carefully 
with this approach and the assumption 
of constant growth rates may not be 
met in practice. Park et al. present a 
version of this method that allows for a 
time-varying growth rate, but it requires 
untruncated incidence data or 
assumptions to be made about the 
recent growth rate [23]. For most 
settings, considering the forward 
distribution and accounting for right 
truncation is recommended. 

Practices to avoid Do not adjust for single 
censoring if the data are 
doubly interval-censored as 
this will result in a biased 
mean [23]. Note that even if 
both primary and secondary 
events are reported to have 
occurred on a single date, the 
data should be considered 
doubly interval-censored. 

Do not adjust for right truncation 
and dynamical bias at the same 
time early in an outbreak as doing 
this can lead to overadjustment of 
the downward bias and therefore 
to overestimation of the delay 
[23]. 

Avoid adjusting for right truncation and 
dynamical bias at the same time [23]. 
When analyzing the forward 
distribution, adjust for right truncation; 
when analyzing the forward distribution 
via the backward distribution, adjust for 
dynamical bias. We recommend the 
former when possible.  
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Table 2. Checklist for reporting/reported epidemiological delay distributions. Examples of diseases for each checklist item were 

selected based on convenience (either papers written by this study’s authors or those encountered during the course of their work). 

Checklist item Details Diseases for which 
this item has been 

implemented 

Possible solutions 

Estimation 

Adjust for biases See Table 1 See Table 1 Adjust for censoring (always), right truncation 
(when needed), and dynamical bias (when 
needed). Clearly state that all these adjustments 
have been made, and report both right-
truncation-adjusted and right-truncation-
unadjusted estimates. Consider using the 
approach of Reich et al. [35] or Ward et al’s 
double interval censoring corrected model 
[23,24] to obtain estimates that are not adjusted 
for right truncation.  

Compare multiple 
probability 
distributions 

Estimated delays may 
depend on the fitted 
probability distribution, so it is 
important to use the 
distribution that best 
represents the data. 

Incubation period: 
mpox [45]; COVID-19 
[87,88]; dengue [85]; 
HIV [89]; malaria [49] 
 
Serial interval: MERS 
[68]  

Fit more than one probability distribution to the 
data [44] and use appropriate model selection 
criteria to compare them. Visualize the fit of 
distributions to the data. 

Correctly convert 
parameters of 
probability 
distributions to 
summary statistics 

Incorrectly converting 
parameters leads to wrong 
estimates of delays. 

Incubation period: 
COVID-19 [87]  

If writing equations, double check them or use a 
software package with built-in functions for 
parameter conversion, such as EpiNow2 
(lognormal) [55], epitrix (gamma) [56], mixR 
(gamma, lognormal, and Weibull) [57], and 
epiparameter (gamma, lognormal, Weibull, 
negative binomial, and geometric) [8].  
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Add subgroups to 
your model or stratify 
the estimates 
whenever appropriate 

Estimated delays may vary 
based on a variety of factors. 

Incubation period: 
Ebola (virus species) 
[58]; West Nile virus 
disease 
(transplant/transfusion 
vs not) [78]; dengue 
(serotype) [85]; HIV 
(sex and age category) 
[89]  

If sample size allows and a difference across 
groups is hypothesized, add subgroups to your 
model or stratify the estimates by exposure type, 
genetic variant/clade, or other factors (e.g., sex, 
age, vaccination status, etc.). The former 
approach, also known as joint modeling, is 
preferred. 

Consider estimating 
other transmission 
intervals 

Comparing other indicators of 

infections can provide useful 

information about the time 

scales of transmission. 

Incubation period: 
mpox (symptom onset 
definition) [28]; COVID-
19 (symptom onset 
definition) [88] 
 
Serial interval: mpox 
(symptom onset 
definition) [28]; 
measles (symptom 
onset definition) [61]  

Depending on available data, other useful delays 
may be estimated, such as diagnosis-based, lab-
confirmation-based, and report-based 
transmission intervals. Consider joint modeling 
approaches for estimation and clearly report the 
time points used for primary and secondary 
events.  

Check model 
diagnostics 

If model requirements are not 
met, the estimated delay 
distributions may not be 
reliable.  

Incubation period: 
dengue [85] 

If using Markov chain Monte Carlo methods, 
make sure all models converge. Visually inspect 
Markov chain Monte Carlo traces. Check R-hat 
values, divergent transitions, effective sample 
sizes, and any other diagnostics and report when 
appropriate.  

Reporting 

Report measures of 
central tendency and 
variability 

These may be used as inputs 
for infectious disease models 
and can inform both clinical 
practice and public health 

Incubation period: 
mpox [45], COVID-19 
[87,88]; 6 vector-borne 
diseases [78]; Zika 

Report multiple summary statistics and clearly 
state which is which. Report at least the mean or 
median as well as standard deviation, variance, 
or dispersion.  
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policy [2].  [86]; 9 respiratory 
diseases [2]  
 
Serial interval: MERS 
[68]; mpox [28] 

Report quantiles of 
the probability 
distribution 

The left tail of the incubation 
period distribution indicates 
the earliest time symptoms 
could develop following 
infection, while the right tail is 
often of interest for control 
strategies, such as 
monitoring people who have 
been exposed [25,88]. The 
right tail of the serial interval 
can also inform the length of 
quarantine.  

Incubation period: 
mpox [45]; COVID-19 
[87,88]; 6 vector-borne 
diseases [78]; Zika 
[86]; 9 respiratory 
diseases [2] 
 
Serial interval: mpox 
[24] 

Report key quantiles (e.g., 2.5, 5, 25, 50, 75, 95, 
97.5, 99) of the distribution in a table. 

Report the 
parameters for the 
fitted probability 
distributions  

These inputs may be used for 
mathematical modeling and 
are key for correctly defining 
the distribution. 

Serial interval: mpox 
[28,90] 

E.g. for the gamma distribution, report shape and 
scale; for the lognormal distribution, report 
logmean and log standard deviation. If possible, 
the probability density function should be 
specified to avoid ambiguity about the 
parameters.  

Report uncertainty in 
the estimates 

Communicating uncertainty is 
a key aspect of outbreak 
analysis and modeling [67]. 
Also, high uncertainty in 
parameter estimates can 
affect downstream modeling 
[66]. 

Incubation period: 
mpox [1,45,90]; 
COVID-19 [87,88]; 6 
vector-borne diseases 
[78]; dengue [85]; Zika 
[2,7]; MERS [68,91]; 9 
respiratory diseases [2] 
 
Serial interval: mpox 
[24,28]; COVID-19 [17]  

Report 90% or 95% credible intervals or 
confidence intervals for all estimates (central 
tendency, variability, quantiles, and parameters 
for the fitted probability distributions). Ideally, 
provide joint posterior samples for Bayesian 
analyses as these are important for 
characterizing covariance in the posterior 
distribution. Make sure to report how you have 
defined your intervals (i.e. report that they are 
95% credible intervals). 
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Report characteristics 
about study sample 

Characteristics about the 
study sample can provide 
epidemiological context for 
the estimates which can help 
with interpretation. 

Incubation period: 
MERS [68]; 9 
respiratory diseases [2] 
 
Serial interval: MERS 
[68] 

Report the sample size of the study, 
demographic characteristics of patients (e.g., 
age, sex, geographic location, vaccination 
status), and route of exposure(s) (if known). 

Report the epidemic 
curve and which, if 
any, control 
measures are in 
place 

The epidemic curve can 
provide context about the 
epidemic phase (increasing, 
decreasing, or stable) and 
whether right truncation bias 
or dynamical bias needs to 
be considered. 

Incubation period: 
mpox [90] 
 
Serial interval: COVID-
19 [38]; MERS [91] 

Include a figure of the epidemic curve or provide 
a reference to the curve on a permanent website 
(doi). Ideally, the underlying data for the curve 
would be made available to download. 
Alternatively, provide an estimate of the growth 
rate for the study period. 

Provide anonymized 
data and documented 
code  

This step improves the 
reproducibility of the study, 
and the code can be reused 
by other teams during future 
epidemics. It can also 
facilitate meta-analyses and 
joint analyses of multiple 
datasets.  

Incubation period: 
COVID-19 [87,88] 
 
Serial interval: mpox 
[70] 

Deidentified linelist-level data should be provided 
with relevant stratifying variables. For small 
epidemics, some authors have reported data 
relative to an unspecified reference date to 
protect patient identities [45]. However, the data 
should still ideally be linked to the epidemic 
trajectory to address dynamical bias issues. An 
alternative approach could be to widen the 
censoring intervals.  
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Table 3. Additional checklist items for reporting the incubation period and serial interval. 

Delay Checklist item Details Diseases for 
which this 

item has been 
implemented 

Possible solutions 

Incubation 
period 

Investigate the 
potential for 
multiple 
possible 
exposures 

Sometimes, a case 
may have had multiple 
opportunities to be 
exposed before 
symptom onset. 

Mpox [92]; 
MERS [68] 

For these cases, use an exposure window that 
includes all possible exposure dates, such as travel to 
a high-risk area. Use a disjointed exposure window 
where appropriate (however, this approach may cause 
some issues for the sampler with Ward et al.’s double 
interval censoring and right truncation adjusted model 
[24]). The method developed by Cowling et al. 2015 
[68] for MERS could be used as well. 

Serial 
interval 

Check for 
negative serial 
intervals  

Negative serial 
intervals can occur 
when symptom onset in 
the infectee occurs 
before symptom onset 
in the infector [17]. 

Mpox [24,28] Assuming the data are correct, including negative 
serial intervals, keep the ordering of the pairs and fit a 
distribution that allows for negative values (such as 
normal). If there are negative serial intervals but there 
is strong evidence that pre-symptomatic transmission 
does not occur for the disease of interest, consider 
removing [28] or reversing the order [24] of those case 
pairs. There are also methods that do not depend on 
knowing the order of case pairs [73,74]. 

Investigate the 
potential for 
multiple 
possible 
infectors 

Sometimes, a case 
could have been 
exposed to more than 
one infected person 
prior to symptom onset. 

Mpox [28,70]; 
MERS [68] 

Restrict the analysis to only cases with a high degree 
of certainty that the secondary case was infected by 
the primary case. Then, do a sensitivity analysis with 
all cases and compare the results. 
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Figures 

 

Figure 1. Forward and backward approaches for cohorting and analyzing data to estimate 

epidemiological delay distributions. The y-axis represents unique observations of delays. The 

yellow circles represent the primary events, while the green squares represent the secondary 

events. The black horizontal lines represent the delay between primary and secondary events, 

and the vertical dotted lines show the cohorts. The arrows represent how cases enter the 

dataset: arrows pointing toward the right indicate that the case’s primary event was observed 

first, while arrows pointing toward the left indicate that the case’s secondary event was 

observed first. Note that the case ascertainment method does not impact the direction we can 

cohort the data. For forward cohorts (A and C), all primary events that occurred during the same 

period are selected and prospectively followed until the secondary event occurs. For backward 

cohorts (B), all secondary events that occurred during the same period are selected; the timing 

of the primary events is identified retrospectively.  
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Figure 2. Common biases involved in the estimation of epidemiological delay distributions. The 

y axis in each panel represents unique observations of delays. The circles represent primary 

events, while the squares represent secondary events. The horizontal lines represent the delay 

between events, while the vertical lines represent the time at which the data are observed. The 

arrows represent how cases enter the dataset: arrows pointing toward the right indicate that the 

case’s primary event was observed first, while arrows pointing toward the left indicate that the 

case’s secondary event was observed first. The brackets “[  ]” represent interval censoring of 

the primary and secondary events. Delays and events in gray are unobserved. (A) and (B) 

demonstrate the same scenario, but in (A), observation of the delay is based on the primary 

event, and there is right censoring, while in (B), observation is based on the secondary event, 

and there is right truncation. (C) demonstrates an example of a backward distribution in a 

growing epidemic, when the majority of delays that make up the distribution will be short; hence, 

the backward distribution will be shorter than the equivalent forward distribution. (D) 

demonstrates the reverse in a declining epidemic. Both (C) and (D) show the impact of 

dynamical bias.   
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Figure 3. Decision tree for bias adjustment when estimating delay distributions, assuming that 

double interval censoring is always adjusted for and that the forward distribution is being 

modeled directly (i.e not via the backwards distribution and dynamical correction) as we 

recommend regardless of data collection approach. If you have an estimate of the backwards 

distribution from the literature, see the section on other considerations for advice. 
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