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Abstract
Southwestern North America (SWNA) continuously experienced megadroughts
and large wildfires in 2020 and 2021. Here, we quantified their impact on the terrestrial
carbon budget using net biome production (NBP) estimates from an ensemble of atmospheric
inversions assimilating in-situ CO2 and Carbon Observatory–2 (OCO-2) satellite XCO2 retrievals
(OCO-2 v10 MIP Extension), two satellite-based gross primary production (GPP) datasets,
and two fire CO2 emission datasets. We found that the 2020–2021 drought and associated wildfires
in SWNA led to a large CO2 loss, an ensemble mean of 95.07 TgC estimated by the satellite
inversions using both nadir and glint XCO2 retrievals (LNLG) within the OCO-2 v10 MIP, greater
than 80% of SWNA’s annual total carbon sink. Moreover, the carbon loss in 2020 was mainly
contributed by fire emissions while in 2021 mainly contributed by drought impacts on terrestrial
carbon uptake. In addition, the satellite inversions indicated the huge carbon loss was mainly
contributed by fire emissions from forests and grasslands along with carbon uptake reductions due
to drought impacts on grasslands and shrublands. This study provides a process understanding of
how some droughts and following wildfires affect the terrestrial carbon budget on a regional scale.
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1. Introduction

Terrestrial ecosystems significantly reduce the rise of
CO2 in the atmosphere and the rate of global warm-
ing by offsetting around a quarter of the world’s
anthropogenic CO2 emissions (Friedlingstein et al
2022). There is growing evidence that human-caused
global warmingwill increase extremeweather and cli-
mate events (Houghton 2014). In extreme drought
events, warm and dry atmospheric conditions coin-
ciding with precipitation deficits greatly exacerbate
soil moisture (SM) loss (Green et al 2019, De Kauwe
et al 2019), lowering the ability of terrestrial ecosys-
tems to store carbon (Smith et al 2020) by affecting
photosynthesis, causing an increase in tree mortality,
and causing crop failure (Beillouin et al 2020).

Large-scale droughts have affected many areas
of the world in recent decades (Ciais et al 2005,
Gatti et al 2014), including North America (Zhao
and Running 2010, Wolf et al 2016, Luo et al 2017).
Southwestern North America (SWNA, 30–45◦ N,
105–125◦ W) has experienced one of the worst hot
droughts ever documented between the summers of
2020 and 2021 (Dannenberg et al 2022, Williams et al
2022). Droughts are main climate extremes for reg-
ulating interannual variations of terrestrial carbon
uptake at regional scales (Qiu et al 2020). With future
drought and heat events expected to increase (Meehl
and Tebaldi 2004, Zacharias et al 2014), understand-
ing the response of terrestrial ecosystems to drought
events is crucial for predicting the fate of terrestrial
carbon sinks and future climate. Recently, several
studies have paid attention on the impact of the
southwest U.S. droughts in 2020 and (or) 2021 on ter-
restrial photosynthesis or gross primary production
(Dannenberg et al 2022, Feldman et al 2023, Li et al
2023, Zhang et al 2023), yet none of them studied the
impact of the full 2020–2021 event on the terrestrial
net carbon uptake, which would potentially provide
a more completed picture about the response of its
ecosystem carbon sequestration to this event.

Atmospheric CO2 inversions offer large-scale
constrained estimates on the dynamic of terrestrial
net carbon uptake, which could offer more object-
ive impact assessment than using unconstrained ter-
restrial biosphere model simulations (He et al 2023a,
2023b). In-situ CO2 measurements or spaceborne
column-averaged CO2 dry air molar fraction (XCO2)
retrievals provide top-down constraints on the net
carbon exchange between the atmosphere and ter-
restrial ecosystems from regional to global scales,
thus providing an opportunity to study how large-
scale carbon fluxes respond to warm and dry climate
features under arid conditions (Liu et al 2017, Sun
et al 2017). With more spatial and temporal cov-
erage relative to in-situ CO2 measurements, satellite
XCO2 retrievals show great potential for quantify-
ing the dynamics of regional carbon fluxes (Detmers
et al 2015, Bowman et al 2017, Kwon et al 2021,

Philip et al 2022), despite uncertainties in absolute
net flux estimates (Feng et al 2016). In addition,
satellite-based observations of solar-induced chloro-
phyll fluorescence (SIF) could provide effective con-
straint on gross primary production (GPP), allowing
for a better understanding of the key carbon cycle pro-
cesses (Li and Xiao 2019).

In this study, we investigated the impact of the
2020–2021 hot droughts and associated wildfires on
the carbon cycle in SWNA using the net biome pro-
duction (NBP) estimates from atmospheric inver-
sions of in-situ CO2 and Carbon Observatory 2
(OCO-2) satellite XCO2 retrievals from the OCO-2
v10Model Intercomparison Project (MIP) Extension,
two GPP datasets derived from remote sensing-based
data driven models, and two fire CO2 emission
datasets. We aimed to answer the following ques-
tions: what are the impacts of the 2020 and 2021
drought and associated wildfires on the regional car-
bon budgets in SWNA, how do the main driving pro-
cesses (GPP, respiration, and fire emission) contrib-
ute to the carbon budget anomalies, and how about
the contributions from different ecosystems?

2. Data andmethods

2.1. OCO-2 v10 model intercomparison project
The OCO-2 MIP is a collaboration among atmo-
spheric CO2 modelers to study the impact of assim-
ilating OCO-2 retrieval data into atmospheric inver-
sion models. The OCO-2 v10MIP used NASA’s oper-
ational bias-corrected OCO-2 L2 Lite XCO2 product
v10r retrievals (Byrne et al 2023, Kiel et al 2019;
https://daac.gsfc.nasa.gov). All models were run fol-
lowing a unified protocol, inwhich theywere required
to use a same input of assimilated OCO-2 XCO2 data,
data uncertainties, and anthropogenic emissions (e.g.
for v10 the ODIAC 2020 was used), but could inde-
pendently adopt other prior estimates of surface car-
bon fluxes (NEE, ocean, and fire emissions) (Crowell
et al 2019, Peiro et al 2022). The outputs cover the
time period 2015–2020. Here we used an extended
version of OCO-2 v10, which followed the same pro-
tocol as v10 MIP but extended through the year
2021. In the OCO-2 v10MIP Extension, 8 models are
included. The detailed information about these mod-
els is shown in table 1.

The estimated fluxes from this intercompar-
ison project have been thoroughly verified and
analyzed for continental carbon budgets over the
globe (Byrne et al 2023). The MIP has different
inversion experiments assimilating various types of
observational constraints, and here we used results
from three experiments, including (a) IS: assimil-
ation of in situ CO2 measurements from interna-
tional observing networks; (b) LNLG: assimilation
of OCO-2 ACOS v10 terrestrial nadir and terrestrial
glint XCO2 retrievals; (c) LNLGIS: Assimilation of
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Table 1. Configuration of each simulation used in the OCO-2 v10 MIP Extension.

Model Institution
Transport
model Meteorology

Meteorology
resolution
(degree)

Prior
biosphere flux

Inverse
method References

AMES NASA Ames GEOS-Chem MERRA2 4◦ × 5◦ CASA-
GFED4.1 s

4D-Var Philip et al (2019,
2022)

Baker CSU PCTM MERRA2 1◦ × 1.25◦

prior,
4◦ × 5◦ opt

CASA- GFED3 4D-Var Baker et al (2006,
2010)

CAMS LSCE LMDz ERA5 1.9◦ × 3.75◦ ORCHIDEE Variational Chevallier et al
(2005, 2019)

CMS-Flux NASA JPL GEOS-Chem MERRA2 4◦ × 5◦ CARDAMOM 4D-Var Liu et al (2021)
COLA IAPCAS GEOS-Chem MERRA2 4◦ × 5◦ VEGAS EnKF Liu et al (2022)
GCASv2 Nanjing

Univ.
MOZART GEOS-5 2.5◦ × 1.875◦ BEPS EnKF Jiang et al (2021),

He et al (2023b)
JHU JHU GEOS-Chem MERRA2 4◦ × 5◦ CASA

GFED4.1s
GIM Chen et al (2021a,

2021b), Miller
et al (2020)

TM5-
4DVAR

Univ.
Maryland

TM5 ERA-Interim 2◦ × 3◦ SiBCASA 4D-Var Basu et al (2013,
2018)

in situCO2 measurements andOCO-2 ACOS v10 ter-
restrial nadir and terrestrial glint XCO2 retrievals.

2.2. Common atmospheric CO2 inversions using
in-situ data
For comparison, we included the flux estimates
from four common global atmospheric CO2 inver-
sions using in-situ data, including CAMS, Jena
CarboScope, NOAA CarbonTracker (CT), and
NISMON-CO2.

The operational CAMS in-situ inversion assim-
ilates measurements from ground-based CO2 air
samples (Chevallier et al 2019). The inversion uses a
suite of prior estimates of CO2 surface fluxes (includ-
ing a climatology of terrestrial biosphere fluxes simu-
lated by the ORCHIDEE model) and uses the LMDz
model to represent atmospheric transport driven by
the ERA5 horizontal wind fields. The variational for-
mulation of Bayes’ theorem is used in the inversion.
TheCAMSCO2 inversion release version v21r1 (here-
after referred to as CAMS-surface; 1979–2021) were
used. We used monthly averages of the NBP with
a geographical resolution of 1◦ × 1◦ for this ana-
lysis. TheCAMSofficial product v21r1 is not identical
to the CAMS product in the MIP ensemble, which
imposed a unique processing of the satellite retriev-
als, a unique database for air-sample measurements
and a unique prior fossil fuel emission database. The
CAMS official product also benefits from a dedicated
quality assurance and quality control process, while
the MIP had its own.

The Jena CarboScope inversion (www.bgcjena.
mpg.de/CarboScope/?ID=s10oc_v2022; (Rödenbeck
et al 2003)) provides gridded a posteriori NBP flux
estimates that constrained by in-situ CO2 measure-
ments. In comparison toCAMS, it differs significantly
inmany aspects, including the priori information and
its error structure, the atmospheric transport model,

and the assimilated observations. The CarboScope
inversion consistently assimilated a fixed number of
stations for each version throughout the entire study
period. We utilized the s10oc_v2022 version (abbre-
viated as Jena_s10oc), which assimilated data from 78
surface stations spanning the period of 2010–2021.
The spatial resolution of the TM3 transport model
used in the CarboScope inversion is 3.75◦ × 5◦, with
optimized daily fluxes.

We utilized the most recent NBP estimates
from the NOAA CT inversions, which comprise
the CT2022 release (Jacobson et al 2023a) exten-
ded by the CT Near-Real Time (CT-NRT) release
CT-NRT.v2023-4 (Jacobson et al 2023b). The fluxes
for the ocean and land biosphere were optimized
by estimating weekly scaling factors for 156 ecore-
gions spanning the globe. These scaling factors mul-
tiplied prior fluxes from upstream biosphere model
simulations, and optimization was conducted via a
600-member ensemble of TM5 transport simula-
tions (Krol et al 2005) using a 12-week windowed
ensemble Kalman filter. Wildfire and fossil-fuel CO2

emissions were predetermined. On the other hand,
the CT-NRT system uses prior fluxes obtained from
a statistical flux anomaly model, which is driven by
anomalies of temperature, sunlight, and precipita-
tion, along with the climatology of optimized fluxes
from CT2022. Moreover, the CT-NRT simulations
are designed to use fewer and provisional CO2 meas-
urement data from the near-real time CO2 ObsPack
product (Schuldt et al 2022). CT was initially intro-
duced by Peters et al (2005) and has since under-
gone continuous improvement. The standard CT
(CT2022) provides monthly 1◦× 1◦ global fluxes
over the period 2000–2020, and CT-NRT.v2023-4
provides similar fluxes over the years 2021 and 2022.
It is extensively documented and evaluated at https://
carbontracker.noaa.gov/.
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The NISMON-CO2 (v2022.1) inversion optim-
izes surface CO2 fluxes in accordance with atmo-
spheric observations using the 4D-Var algorithm
(Niwa et al 2022) and the NICAM-TM transport
model (Tomita and Satoh 2004). In NISMON-CO2

ver. 2021.1, the fossil fuel emission data were from the
GCP-GridFED ver. 2021.2 (Jones et al 2021), and the
land use and biosphere fluxes were from the VISIT
model (Ito and Inatomi 2012). The biomass burn-
ing emission data were obtained from the Global
Fire Emissions Database (GFED) ver. 4.1s (Van Der
Werf et al 2017), and the air–sea CO2 exchange data
were obtained from the JMA (Iida et al 2021). The
observational data were derived from the ObsPack-
NRT and the ObsPack-GLOBALVIEWplus (Masarie
et al 2014). Additionally, other independently
provided data, specifically versions 6.1_2021_03-01
(Schuldt et al 2021a) and 6.1.1_2021-05-17 (Schuldt
et al 2021b) of ObsPack-GLOBALVIEWplus and
ObsPack-NRT were utilized, respectively. NISMON-
CO2 (v2022.1) provides monthly 1◦ × 1◦ global
fluxes spanning the period 1990–2021.

2.3. Satellite-based GPP datasets
Two satellite data-driven GPP-based models GOSIF
GPP (Li and Xiao 2019) and FluxSat (Joiner et al
2018) were used in this study. The first model is
the Orbiting Carbon Observatory-2 (OCO-2) global
SIF dataset, or GOSIF, and its biome-specific lin-
ear relationships with observed GPP. The GOSIF-
GPP dataset (Version 2) was estimated using a data-
driven model in which variables reflecting vegeta-
tion conditions, meteorological conditions, and land
cover information are used as model inputs. A more
refined SIF product based on the OCO-2 (GOSIF)
derivation uses the strong linear relationship between
GPP and GOSIF to generate the GOSIF GPP data-
set. It has been widely applied to describe the spatial
and temporal variability of GPP and the response of
GPP to climate change on a regional or global scale
(Constenla-Villoslada et al 2022, Zhao et al 2022).
To make the analyses more robust, we employed
another GPP dataset, FluxSat (Version 2), which is
derived through a data-driven approach that relies
on FLUXNET measurements and reflectance in the
seven spectral bands of the Moderate Resolution
Imaging Spectroradiometer (MODIS), and is calib-
rated against FLUXNET measurements (Joiner and
Yoshida 2020). In the analyses, we used the average
of GOSIF GPP and FluxSat GPP due to their high
consistence.

2.4. Biomass burning emissions
The monthly biomass burning (BB) emissions data
from the GFEDv4 and Fire Energetics and Emissions
Research version 1.0 (FEERv1) (Ichoku and Ellison
2013) were used. GFEDv4 is an industry-standard

global emissions model that provides 3-hourly, daily,
and monthly estimates of global emissions for 42
species at 0.25◦ spatial resolution since 1997 (Giglio
et al 2013, Wees et al 2022). GFED is based on the
Carnegie–Ames–Stanford Approach (CASA) biogeo-
chemical model, which simulates carbon fluxes
through satellite-based observations of vegetation,
weather, burned area, and burn integrity. FEERv1 is
based on the fire radiative power (FRP) method and
is obtained at a 0.1◦ spatial grid resolution. It uses
the time integration of FRP remote sensing measure-
ments, allowing a more direct estimation of biomass
burning rates and bypassing some of the uncertain-
ties in biogeochemical simulations required by the
burning zone approach. Here, due to the possible
uncertainty in BB estimates, we combined GFEDv4
and FEERv1 data for the analyses, which will make
our analyses more reliable. We found the two data-
sets have a high agreement in SWNA, thus used the
average of them in the analyses.

2.5. Ancillary data
To characterize climate and vegetation growth condi-
tions during the 2020–2021 drought event, an array
of ancillary data was employed. These data include
precipitation and air temperaturemetrological reana-
lysis data, standardized precipitation evapotranspir-
ation index (SPEI), satellite soil moisture (SM) and
fraction of absorbed photosynthetically active radi-
ation (FAPAR).

The precipitation and air temperature data were
taken from the fifth generation European Reanalysis
(ERA5), which is produced by the European Centre
for Medium-Range Weather Forecasts (ECMWF)
(Hersbach et al 2020). This dataset is provided at a
spatial resolution of 0.25◦ and a monthly time-step.

The SPEI data were obtained from the global SPEI
database (SPEIbase v2.8), which provides long-term
information on global drought conditions with a spa-
tial resolution of 0.5◦ and a monthly temporal res-
olution. It has a multiscale character, providing SPEI
time scales between 1 and 48 months. The time scale
of SPEI used in this study was 12 months. The SPEI
is designed to take into account both precipitation
and potential evapotranspiration (PET) in determ-
ining drought (Vicente-Serrano et al 2010). Thus,
unlike the SPI, the SPEI captures the main impact
of increased temperatures on water demand. When
the SPEI value is less than or equal to −0.5, drought
is considered to have occurred, and a smaller value
indicates a higher drought severity.

The root-zone SM from the Global Surface
Evaporation Amsterdam Method (GLEAM v3.6a)
(Martens et al 2016) was used to characterize soil
moisture stress or drought. The GLEAM root-zone
SM (v3.6a) was generated by the satellite surface soil
moisture product ESA-CCI SM (v02.5) through a
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data assimilation scheme (Martens et al 2016). We
used the monthly averaged SM at a spatial resolution
of 0.25◦.

FAPAR is a key parameter for vegetation pho-
tosynthesis and primary production estimation
(Claverie et al 2016). In this study, Global land sur-
face satellite (GLASS) FAPAR products were used.
GLASS FAPAR is approximated as one minus PAR
transmittance across the canopy, which can be calcu-
lated from GLASS LAI and other variables (Xiao et al
2015). The GLASS FAPAR from MODIS data is an
instantaneous value at 10:30 a.m. local time, which
is very close to the daily average FAPAR. The spatial
resolution of the raw GLASS FAPAR data is 0.05◦ and
the temporal resolution is 8 day, and was resampled
to the monthly scale in this study.

2.6. Calculation of terrestrial carbon flux
components
NBP is a net signal generated by different biogeo-
chemical processes such as total primary productiv-
ity (GPP), heterotrophic respiration (Rh) and fire
disturbances. Their relative contributions to interan-
nual and long-term carbon cycle variability may dif-
fer (Zeng et al 2005, Ahlström et al 2015). Therefore,
more efforts are needed to quantify which compon-
ents contribute most to interannual variability in
NBP and to correct for average state changes. In this
study,NBP ismainly used to study the response of ter-
restrial ecosystems to extreme drought events. A neg-
ative sign of NBP indicates the release of carbon to the
atmosphere while a positive sign indicates the uptake
of carbon from the atmosphere. The carbon balance
of terrestrial ecosystems can be expressed by the fol-
lowing equation:

NBP= GPP−Reco−BB=NEP−BB (1)

where NEP represents net ecosystem productivity,
BB represents disturbances such as wildfire, harvest-
ing, grazing, and land cover change, and Reco is the
total ecosystem respiration. We decompose the NBP
anomalies during the 2020 and 2021 droughts into
their different constituent fluxes.

In this study, we used the average BB data based
on the burning region GFEDv4 and the FRP-based
FEERv1 for calculating the BB anomaly. Reco is the
difference between the average of the two GPP data-
sets (GOSIF GPP and Fluxsat GPP) and NEP, and the
derivation equations for NEP and Reco are as follows

NEP=NBP+BB (2)

Reco= GPP−NBP−BB. (3)

2.7. Calculation of anomaly
Anomalies of carbon fluxes and meteorological,
hydrological and vegetation indicators were calcu-
lated as follows:

X ′
i = Xi −XBL (4)

whereX ′
i denotes the anomaly of variableX in month

i of a year, Xi represents the value of variable X in
month i of a year, and XBL denotes the average of
the monthly data of variable X during a benchmark
period. We used the period 2015–2019 as the baseline
for drought detection, since for North America this
time period is similar to the long term mean and
does not have any large anomalous events (https://
droughtmonitor.unl.edu/NADM/TimeSeries.aspx).

3. Results and discussion

3.1. Climate anomalies in SWNA during the
2020–2021 hot drought
We firstly analyzed the hydroclimate anomalies in
SWNA from a historical perspective over the period
of 2010–2021, which indicate that the years of 2020
and 2021 are among the driest years (figure 1). The
SPEI value in 2020 was the unprecedentedly low in
12 years, and was also among the lowest ones in
2021 (figure 1(a)). Similarly, large negative anom-
alies for both precipitation and SM occurred in the
second half of 2020 (figure 1(b)). A clear summer-
autumn drought in 2020 was identified by both SPEI
and SM, while a clear spring-summer drought in
2021 was identified by SPEI, precipitation and SM
(figure 1(b)). The 2020–2021 drought was character-
ized by lower air temperatures in spring while higher
in summer and by severe deficits in precipitation and
SM throughout both years (figure S1). The precipit-
ation in 2020 declined sharply to about 43% below
the average, which persisted until late 2021 (figure
S1(b)). The significant decrease in precipitation led to
a further scarcity of SM in winter 2020 (figures S1(c)
and 1(c)), which condition continued in late sum-
mer 2021. An obvious SM drought extended from
early summer 2020 to late summer 2021, accompany-
ing abnormal high summer temperature (heatwaves),
which shaped the hot droughts during the 2020–2021
period.

We also analyzed the spatial evolution of the hot
drought during the period from summer 2020 to
summer 2021 (figures S2 and 1(c)). Spatially, more
than 60% of the region experienced positive air tem-
perature anomalies in summer 2020 (JJA), with the
largest degree of heatwaves in Arizona and New
Mexico. In autumn 2020, heatwaves further expanded
to California (figure S3(a)). In winter 2020, nearly
60% of the areas experienced a decrease of precipit-
ation at 1.5 mm per day on average (figure S3(b)),
which was consistent with a further exacerbation of
the lack of SM spatially. Starting from May 2020, the
severe meteorological drought resulted in large-scale
SM deficits, when about 94% of this region experi-
enced negative SM anomalies (figure 1(c)). This 2020
summer drought further developed in the autumn,
reached its peak in the winter of 2020, continued
into the spring of 2021, and started weakening dur-
ing the summer of 2021. The precipitation played an
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Figure 1. Drought conditions in 2020–2021. (a) Annual mean time series of 12-month scale SPEI, precipitation and root-zone
soil moisture (SMroot) from 2010 to 2020; shaded bands indicate one to two standard deviations from the average for the period
from 2015 to 2019. (b) Monthly variation of SPEI, precipitation, and SMroot in the SWNA area. The gray lines indicate the years
from 2010 to 2019 and the color lines indicate the years of 2020 and 2021. (c) The spatial distributions of the anomalies of SMroot
during June–August 2020 (JJA), September–November 2020 (SON), December–February 2020–2021 (DJF), March–May 2021
(MAM), June–August 2021 (JJA). The brown color indicates negative anomalies (decrease), while the blue color indicates positive
anomalies (increase).

important role (figure S3(b)), while air temperature
also contributed largely (figure S3(a)). In summary,
most of SWNA experienced an intense and prolonged
hydrological drought from early summer 2020 until
late summer 2021.

3.2. Seasonal anomalies in vegetation growth and
land carbon uptake
The 2020–2021 drought and wildfires strongly
impacted vegetation growth and carbon uptake,
causing dramatic reductions in FAPAR and GPP

and corresponding seasonal anomalies in NBP
(figure 2, tables S1–S4). Over the main drought
period (June 2020–August 2021), FAPAR and GPP
suffered from continuous declines with the lowest
in September 2020 and May–June 2021, respectively
(figures 2(a) and (b)). Accordingly, there were similar
NBP reductions indicated by the OCO-2 MIP inver-
sions (figures 2(d)–(f)), suggesting apparent carbon
releases. In the MIP inversions, all posterior estim-
ates revealed much stronger NBP anomalies than
that shown in the prior (figure 2(c)), as well as more
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Figure 2. Seasonal variations and anomalies in FAPAR, GPP, and NBP over SWNA during 2020–2021 relative to the period of
2015–2019. The NBP estimates were from the prior and posteriors (IS, LNLG and LNLGIS) of the inversions within the OCO-2
v10 MIP Extension project. The shadowed orange areas indicate the core time period for drought onset.

consistent timing with the reductions in FAPAR and
GPP. Such clear NBP reductions in both years were
also revealed by the CAMS, Jena CarboScope and
NISMON inversions; a clear NEP reduction in 2021
was revealed by CarbonTracker while not for 2020,
which could result from the unique feature of CT-
NRT by combining a statistical flux anomaly model
(figure S2). It is worth noting that, all inversion estim-
ates consistently showed a rebound in NBP after the
main drought period, which may be associated with
the enhancement of NEP (figure S3) induced by an
improved condition in SM availability (figure S1(c)).

Spatially, the SWNA region experienced a sub-
stantial decline in FAPAR during the drought, with
the most severe decrease in the west, and most of
the region experienced suppressed vegetation activ-
ity in summer (figure S4(a)). A similar decline was
observed for GPP, which decreased by 63% in the
spring, with the most severe decrease in northwest-
ern SWNA, followed by the northeastern part (figure
S4(b)). We analyzed the spatial distribution of sea-
sonal anomalies of NBP during the same period
(figure S5). The ensemble NBP anomalies for OCO-
2 v10 MIP prior were nearly neutral (figure S5)
while these in the IS, LNLG, and LNLGIS experi-
ments were apparent negative, suggesting that the
in-situ and satellite-observed atmospheric CO2 con-
centrations provided effective constraints on NBP

anomalies induced by the drought and wildfire event.
Specifically, the overall NBP anomalies constrained
by in-situ CO2 observations (IS experiment) show
limited carbon uptake reductions, slightly stronger
in the northern part of the SWNA, especially in
2020 SON and 2021 JJA (figure S5). The LNLG and
LNLGIS NBP anomalies have roughly similar spa-
tial patterns and show much stronger carbon uptake
reductions in the southwestern part of the SWNA
in 2020/2021 DJF. More specifically, the longitudinal
variation in NBP anomalies suggests that the overall
NBP anomalies for LNLG and LNLGIS are signific-
antly more robust in carbon uptake reductions des-
pite showing considerable inter-model discrepancies.

Overall, the changes in NBP estimated by the
OCO-2 MIP inversions generally agree with these
changes in GPP and FAPAR. They all capture the
drought impacts on the terrestrial carbon uptake
over SWNA. Their estimated NBP drops abruptly
in September 2020 (figures 2(d)–(f)), when a severe
wildfire event occurred (figures S7 and S8). During
summer 2021, there was also a large CO2 release due
to wildfires.

3.3. Event-induced changes of the regional annual
carbon budget
The total carbon budget anomalies in the SWNA
region during 2020–2021 were analyzed. Firstly, we
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Figure 3. Anomalies of NBP and relevant fluxes in SWNA during 2020–2021. (a)–(c) OCO-2 MIP results, including PRIOR, IS,
LNLG, and LNLGIS, where the error bar indicates a standard deviation; (d)–(f) CAMS surface, Jena CarboScope, NISMON, and
CarbonTracker inversions. BB indicates the biomass burning emission, which is an average of the GFEDv4 and FEERv1 estimates
(the two have almost identical BB values). GPP is an average of the GOSIF and FluxSat GPP estimates (the two have almost
identical GPP values).

investigated the main drought period from June 2020
to August 2021 (figure 3(a)). During this period,
the regional NBP experienced a reduction revealed
by the in-situ inversions (IS), the satellite inversions
(LNLG) and the inversions constrained with both
observations (LNLGIS) from the OCO-2 v10 MIP
Extension project. The prior also estimated a reduc-
tion of −25.1 ± 18.9 TgC, which is comparable
with the estimate of −24.5 ± 55.5 TgC in the IS
inversion. Although the prior estimated a compar-
able size of NBP decline, its multi-year average NBP
in this region indicated a carbon source, contrast-
ing with that all the inversions pointed to a carbon
sink. With the constraint of OCO-2 XCO2 retriev-
als, the inverse estimates exhibited much larger abso-
lute NBP anomalies (−95.0± 60.6 TgC by LNLG and
−69.2 ± 69.9 TgC by LNLGIS) than the IS estim-
ate. Despite large difference between absolute val-
ues of NBP anomalies, both the IS inversion and the
satellite inversion (LNLG) estimated an annual car-
bon uptake loss greater than 80% (table 2). A com-
parable magnitude of NBP reduction was also indic-
ated by the both surface inversions of CAMS and
Jena, albeit that their multi-year average NBPs in this
region indicated near carbon neutral (table 2). Also,
the NISMON and CarbonTracker inversions indic-
ated a decrease in NBP, while their multi-year aver-
age NBPs exhibited a contrasting direction in car-
bon sink or source. The continuous NBP decline was
also found in a number of flux tower observations

from the AmeriFlux network in the SWNA region
(figure S8, 18 sites covering the study period), for
example, at sites US-Ses (OSH), US-Seg (OSH), and
US-Mpj (WSA). TheNBP reduction during this event
was primarily resulting from BB emission, which was
as large as 96.8 TgC (figure 3(a)). Meanwhile, it was
partly offset by the increase in NEP, which was slight
in the satellite inversion but much larger on the sur-
face inversion within the MIP, and was also indic-
ated by the CAMS surface, Jena CarboScope, and
NIMSON inversions (figure 3(d)). Combining the
NBP estimates from different inversion models with
the component flux estimates from a same set of
data sources, the analyses consistently suggested that
the increase in NEP resulted from a more consid-
erable decrease in Reco (−230.41 to −160.52 TgC)
than in GPP (−158.8 TgC). The larger inhibition in
Reco than in GPP can also be observed at flux tower
observations (figure S8), for example, at sites US-Var
(GRA), US-Wjs (SAV), and US-Bi2 (CRO), where a
greater suppression in respiration during some of the
drought and wildfire period leading to an unexpec-
ted increase in NEP. Such unexpected phenomenon
is discussed later.

Then, we assessed the anomalies in the regional
carbon budgets for the full years of 2020 (figures 3(b)
and (e)) and 2021 (figures 3(c) and (f)). The primary
mechanisms underlying the regional carbon balance
change of the two years differed markedly. In 2020,
fire emissions (also known as biomass burning, BB)
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Table 2. Regional NBP anomalies during the 2020–2021 drought and wildfire event.

Datasets Baseline (TgC) Absolute anomaly (TgC) Relative change

OCO-2MIP Prior 102.84± 25.8 −25.18± 18.9 −24%
OCO-2 MIP IS −28.40± 57.6 −24.57± 55.5 −87%
OCO-2 MIP LNLG −114.11± 50.3 −95.07± 60.6 −83%
OCO-2 MIP LNLGIS −114.58± 55.29 −69.21± 69.9 −60%
CAMS surface v21r1 0.11 −81.63 /
Jena surface s10oc_v2022 −0.05 −63.88 /
NISMON-CO2_v2022.1 −43.89 −50.33 −115%
CarbonTracker 2022 71.6 −4.55 −6%

Figure 4. Anomalies of NBP and its constituent fluxes in SWNA during the June 2020–August 2021 drought. over different
ecosystems. The study area was divided into different ecoregions based on the 2020 MODIS land cover data product (MOD12C1)
and summarized into four types. The dominant ecosystem types include grasslands and shrublands (see figure S9).

released 68.73 TgC, but NEP increased by 34.25 TgC
due to the compensation of a decline in GPP and a
larger attenuation in Reco, leading to a NBP decrease
by 30.16 TgC on average. In this year, the underly-
ing processes of NEP (GPP and Reco) showed gen-
erally smaller reductions than the magnitude of fire
emissions, indicating that fires dominated the carbon
budget dynamics in this region. In 2021, the OCO-2
inversions consistently showed a smaller anomaly
in NBP and NEP compared to 2020 while much
larger reductions in both GPP and Reco. Relative
to 2020, the fire emissions were apparently smaller
(figure S6(c)). Thus, in 2021, the anomaly of the
ecosystem carbon uptake was likely more dominant
when compared to the contribution by fire emis-
sions. Surprisingly, NEP increased in both 2020 and
2021 as Reco decreased more than GPP. In particu-
lar, Reco was substantially attenuated in 2021, allow-
ing the increased NEP to largely compensate for the
carbon losses due to wildfires. In both 2020 and
2021, GPP and Reco were greatly damped, and this
attenuation was significantly larger in Reco than in
GPP. These flux anomalies were also indicated by

most surface inversions of CAMS, Jena,NIMSONand
CarbonTracker (figures 3(e) and (f)).

To better understand the changes in purposes
regional carbon budgets from the ecosystem level, we
investigated the contribution of different ecosystems
to the carbon balance anomalies (figure 4). The four
dominant ecosystems were forests (4.06%), shrubs
(17.14%), grasslands (49.61%), and crops (2.68%),
with the spatial distributions shown in figure S9. Here
we made statistics on the LNLG inversion result. As
an arid area, most of the SWNA are covered by grass
and shrubs, which are drought-vulnerable vegetation
and usually contribute sizeable flux emission during
droughts. Among them, drought and wildfires had
a huge impact on the NBP of grasslands and shrub-
lands, with grasslands contributing almost half of the
total while forests contributed amuch less proportion
(only 8%, see figure 4(e)). In terms of BB contribu-
tion, forests and grasslands contributed about 44%
and 52% of carbon loss, respectively. In comparison,
the BB emissions by the shrubland ecosystem and
the crop ecosystem were much smaller, for which the
decline in NBP was mainly driven by the ecosystem

9



Environ. Res. Lett. 19 (2024) 054047 H Chen et al

carbon uptake, i.e., NEP. The OCO-2 MIP inversions
broadly showed that the event caused significant sup-
pressions in both GPP and respiration, leading to a
decrease in NEP, i.e. drought caused a decrease of
NBP for the shrubland and crop ecosystems.

4. Discussion

4.1. Unexpected larger inhibition in Reco than in
GPP during the 2020–2021 event
In the analyses, we noticed an unexpected larger
inhibition in Reco than in GPP during the 2020–
2021 event, which results inNEP increase.We noticed
this phenomenon happened in both 2020 and 2021.
We are aware that there existed uncertainties when
deriving Reco fromNBP, BB (fire emission) and GPP.
To reduce such uncertainty, we employed two BB
and GPP products. For NBP, a large array of datasets
from both OCO-2 XCO2 inversions and in-situ inver-
sions were included. All results consistently poin-
ted to such phenomenon, albeit of discrepancy in
the anomaly magnitudes, making the finding reliable
to some extent. We checked it by analyzing in-situ
eddy flux measurements, and found this happened at
some of these flux sites but not at most sites. During
compound drought and fire events, there are evid-
ence to support the occurrence of such phenomenon.
The larger inhibition in Reco than in GPP could be
explained by suppressed microbial soil respiration,
which has also been found in previous studies in
the post-drought and post-fire periods (Selsted et al
2012, Kopittke et al 2014, Chen et al 2019, Huang
et al 2021). Further evidence, especially from intens-
ive in-situ measurements, is critically needed to con-
firm this finding.

4.2. Discrepancy among the flux estimates by
different inversionmodels
Although most inversion models have general agree-
ment on the large carbon loss during the event, the
magnitude and even the direction of flux anom-
alies remain differ notably (see table 2). Firstly, satel-
lite inversions estimate higher NBP anomalies than
in-situ based inversions do. It could be because that,
the satellite inversion used vertical column CO2 data
instead of surface CO2 data to infer carbon fluxes,
in theory the column CO2 data contain more sig-
nals than surface CO2 did, especially the column CO2

contain more CO2 sources in the atmosphere, thus
larger sink to balance it in an inversion framework
(mass balance between sink and source). Similarly,
higher estimates from satellite inversions than in-situ
inversions were reported in previous studies about
the regional carbon sinks in Europe (Feng et al
2016), US (Byrne et al 2023) and China (He et al
2023b). Secondly, the differences in the regional car-
bon budget estimates among the three OCO-2 MIP
experiments and four in-situ based global inversions

partly originate from this gap between satellite inver-
sions and in-situ inversions, as well as uncertainties
among different inversion frameworks (due to both
inversion system design and assimilated data). To
our knowledge, there are quite limited atmospheric
CO2 sites in and around SWNA, making the in-situ
inversion less reliable, especially in a global inversion
framework. In addition, the SWNA is an arid region,
where vegetation signal is relative weak in a large pro-
portion of the domain, making reliable regional flux
estimate challenging. In comparison,model ensemble
could providemore reliable estimates on regional flux
and its anomaly, especially these constrained by satel-
lite XCO2 observations (He et al 2023a, 2023b).

4.3. Implications and future perspectives
Our study provided a comprehensive assessment on
the impact of the 2020–2021 drought and associ-
ated wildfires in the SWNA on the terrestrial car-
bon budget using multiple datasets. Such events are
widespread over the globe in the context of climate
warming, calling for more research attention on this
topic. We highlight that the impact of drought and
post-drought (e.g. wildfires) should be considered
together, as well as ecosystem recovery and resilience
during the whole period, which may offer new per-
spectives on how terrestrial ecosystems respond to
climate extremes. In addition, to better monitor the
response of terrestrial ecosystems to drought and fol-
lowing disturbance, we need to combine measure-
ments from different scales, for example, satellite land
surface observations, eddy covariance flux observa-
tions, atmospheric CO2 concentration observations
from both in-situ and satellite platforms. Further
efforts should also made to reduce uncertainties in
fire CO2 emission estimates, especially encouraging
to conduct it within top-down inversion frameworks
(van der Velde et al 2021, Zheng et al 2023).

5. Conclusions

In this study, we quantified the impact of the
2020–2021 drought in the SWNA on the terrestrial
carbon budget using the NBP estimates from atmo-
spheric inversions of in-situ CO2 and OCO-2 XCO2

retrievals, two satellite-based GPP datasets, and two
fire CO2 emission datasets. We found that the
2020–2021 drought and associatedwildfires in SWNA
led to a large CO2 loss, an ensemble mean of
95.07 TgC estimated by the satellite inversions using
both nadir and glint XCO2 retrievals within theOCO-
2 v10 MIP, greater than 80% of the annual total car-
bon sink. Furthermore, the carbon loss in 2020 was
primarily driven by fire emissions, whereas in 2021, it
was predominantly contributed by drought impacts
on terrestrial carbon uptake. Additionally, satellite
inversions revealed that the substantial carbon loss
was largely attributed to fire emissions from forests
and grasslands, coupled with reductions in carbon
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uptake resulting from drought impacts on grass-
lands and shrublands. The atmospheric inversions
using satellite or surface CO2 observations reveal
an unexpected larger attenuation in Reco than in
GPP over SWNA during the 2020–2021 event, which
largely compensates for its carbon release. Our study
provides a new perspective on the response of SWNA
ecosystem carbon budget to the 2020–2021 drought
and associatedwildfires, and an in-depth understand-
ing of how it was impacted on a regional scale.

Data availability statement

The CAMS carbon flux data are publicly avail-
able at https://ads.atmosphere.copernicus.eu/
cdsapp#!/dataset/cams-global-greenhouse-gas-
inversion?tab=form. The Jena CarboScope
carbon flux data are publicly available
at www.bgc-jena.mpg.de/CarboScope/. The
CarbonTracker carbon flux data are publicly avail-
able at http://carbontracker.noaa.gov. TheNISMON-
CO2 carbon flux data are publicly available at www.
nies.go.jp/doi/10.17595/20201127.001-e.html. The
GOSIF GPP dataset is publicly available at https://
globalecology.unh.edu/data/GOSIF-GPP.html. The
GLEAM v3.6a root-zone soil moisture is pub-
licly available at www.gleam.eu/#downloads. The
GLASS FAPAR dataset is publicly available at www.
glass.umd.edu/Download.html. The GFED4.1s is
publicly available at https://daac.ornl.gov/cgi-bin/
dsviewer.pl?ds_id=1293. The FEERv1.0 dataset is
publicly available at https://feer.gsfc.nasa.gov/data/
emissions/.

No new data were created or analysed in this
study.
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