
HAL Id: hal-04572917
https://hal.science/hal-04572917v3

Preprint submitted on 30 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blow-up analysis for the solutions of an equation with
boundary condition

Samy Skander Bahoura

To cite this version:
Samy Skander Bahoura. Blow-up analysis for the solutions of an equation with boundary condition.
2024. �hal-04572917v3�

https://hal.science/hal-04572917v3
https://hal.archives-ouvertes.fr


BLOW-UP ANALYSIS FOR THE SOLUTIONS OF AN EQUATION WITH

BOUNDARY CONDITION.

SAMY SKANDER BAHOURA

ABSTRACT. Under some conditions we give a blow-up analysis for solutions of an equation with

Dirichlet boundary condition.

1. INTRODUCTION AND MAIN RESULT

We set ∆ = −∇i∇i the Laplace-Beltrami operator on a connected compact Riemannian

manifold with boundary (M, g) of dimension n ≥ 3 with metric g.

We consider the following equation:

(P )

{

∆u+ hu = V uN−1, u > 0 in M,

u = 0 on ∂M.

Here, we assume the solutions in the sense of distributions and here also in C2,α(M̄), α > 0
and the operator ∆+ h is coercive in H1

0 (M) with h a smooth function and 0 < a ≤ V ≤ b <
+∞, V is a smooth function and ||V ||Cα ≤ A and N = 2n

n−2 the critical Sobolev exponent.

In [1-28] we have various estimates and inequalities of type sup+ inf and sup× inf. Here we

look to blow-up analysis for regular solutions of the previous equation.

Here we assume:

sup
M

u ·

∫

M

uN−1dVg ≤ C (∗)

We have:

||u||N ≤ ||u||
1

N
∞||u||

1− 1

N

N−1 ≤ |M |
1

N ||u||∞

Thus, the condition (∗) is equivalent to the condition:

||u||
1

N
∞||u||

1− 1

N

N−1 ≤ C.

This condition is an L∞ − LN−1-condition which is intermediate between a sup× inf condi-

tion and LN condition, see [1] and [7, 8].

Note that in [7, 8] the condition (∗) is satisfied. Thus, this condition is a necessary condition.

In [7, 8] it is an exemple where this condition (∗) holds.

Our main results are:

We have the following blow-up analysis on all M̄ :

Theorem 1.1. Assume (∗) and supM ui → +∞, then there is a subsequence denoted (uj) of

(P ) and there are k points inside M , x1, . . . , xk ∈ M , and m points on ∂M , y1, . . . , ym ∈ ∂M ,

which are concentration points of uj , and uj → 0 in C2
loc(M̄ − {x1, . . . xk, y1 . . . , ym}).

To prove this theorem, we use condition (∗) for which there is a concentration of measures

inside M and on ∂M . As mentionned before, the condition (∗) holds in [7, 8] and thus it is a

necessary condition. There is an exemple of blow-up phenomenon which imply the condition

(∗). Thus, we must suppose this condition (∗) to know if we have blow-up phenomenon for

solutions of the problem (P ).

And we have the following compactness result on all M̄ :
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Theorem 1.2. We assume (∗). Then there is ǫn > 0 such that if b ·C < ǫn, then there is c > 0
such that:

sup
M

ui ≤ c, ∀i ∈ N.

2. PROOFS OF THE THEOREMS

Proofs of Theorems 1.1:

We use two measures, on the locally compact space M , µ1, and on the boundary ∂M , µ2, we

use De Giorgi-Nash-Moser iterate scheme, see [1] and the elliptic estimates see [19].

we assume:

sup
M

ui ·

∫

M

uN−1
i dVg ≤ C (∗)

which imply:

∫

M

Viu
N
i dVg ≤ bC

Which it is sufficient for the blow-up analysis inside M .

Step 1:

We look to the concentration of measure inside M :

∫

M

(Viu
N
i · ϕ)dVg → µ1(ϕ) ≥ 0, ∀ϕ ∈ C0

c (M), ϕ ≥ 0.

Here we use the De Giorgi-Nash-Moser iterate scheme, see [1] and the paper [7,8] :

also, we have with the fact that supM ui → +∞ ⇒
∫

M
uN−1
i dVg → 0 and up to a subse-

quence ui → 0 almost everywhere.

a)

x0 ∈ M,µ1({x0}) < ǫn ≤
ωn

2n
⇒ ∃δ > 0,

∫

B(x0,δ)

Viu
N
i dVg < ǫn ≤

ωn

2n
,

x0 ∈ M,

∫

B(x0,δ)

Viu
N
i dVg < ǫn ≤

ωn

2n
⇒ ||ui||L∞(B(x0,δ/2)) ≤ C′

b) there is a finite number of points xj ∈ M such that:

µ1({xj}) ≥ ǫn,

∫

B(xj ,δ)

Viu
N
i dVg ≥ ǫn,

For δ → 0 small enough, we have:

xj ∈ M, ∃ (xi
j)i, xi

j → xj , ui(x
i
j) → +∞.

and because ui → 0 almost everywhere on M , we have on each compact set K ⊂ M −
{xj , j = 1, . . . , k}:

sup
K

ui → 0.

Also we have the convergence to a measure: sum of Dirac measures.

Step 2:

We assume the duality theorem for vi = supM ui · ui, which assert that:

||∇vi||Lq(M) ≤ Cq < +∞, ∀q, 1 ≤ q <
n

n− 1
,

because ui → 0 on each compact set of M and the Holder inequality applied for, r, n
n−1 >

r > q ≥ 1, we obtain near ∂M (we prove it in charts of points of the boundary):

||∇vi||r = o(1), ∀r, 1 ≤ r <
n

n− 1
.

For the duality theorem:
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In fact, we solve ∆z + hz = divf, f ∈ Lq′ with Dirichlet boundary condition (L = ∆ + h
is coercive, we can solve in Hilbert space), we have: z ∈ L∞ with ||z||L∞ ≤ cq||f ||q′ , see

Gilbarg-Trudinger, [19]. We write:

(we smooth the solutions f :→ fj ∈ C∞

c (M), z :→ zj ∈ C∞, fj →Lq′ f and thus zj is a

Cauchy sequence in L∞):

∫

M

f · ∇vi =

∫

M

∇z · ∇vi + hzvi =

∫

M

zviu
N−2
i ,

thus,

|

∫

M

f · ∇vi| ≤ C||z||L∞ ≤ C · cq||f ||q′ ,

Thus,

||∇vi||q ≤ c′q < +∞.

( The functions z ∈ L2(M) uniformly, because we multiply the equation of z by z and use

Cauchy-Schwarz inequality and the Coercivity of the operator).

Also, we use another type of duality theorem:

We solve (in Hilbert space):

∆z̃ + hz̃ = g ∈ Lq′/2

We can take g ∈ Lq′ ⊂ Lq′/2, because q′ > n > 2 to take the norm L2.

we have (see Gilbarg-Trudinger, [19]): z̃ ∈ L∞ with ||z̃||L∞ ≤ c̃q||g||q′/2. We write:

We smooth the solutions:

∫

M

g · vi =

∫

M

∇z̃ · ∇vi + hz̃vi =

∫

M

z̃viu
N−2
i ,

thus,

|

∫

M

g · vi| ≤ C||z̃||L∞ ≤ C · c̃q||g||q′/2,

Thus,

||vi||s ≤ c̃′s < +∞, 1 ≤ s <
n

n− 2
.

And,

||vi||q ≤ c̄′q < +∞, 1 ≤ q <
n

n− 1
.

Also, we can use locally, the Poincaré inequality to have a uniform bound of
∫

M
vqi , 1 ≤ q <

n
n−1 .(Another fact that this quantity is uniformly bounded).

Let’s consider η a cuttof function ( in an open set of a chart), then, we apply the th. of duality

to ∇(viη) in M , but with η, we are in the open set of the chart:

∆(viη) + h(viη) = Viviu
N−2
i η +∇vi · ∇η + vi∆η,

||∇(viη)||q ≤ c′q + C

∫

M

vi,

but in the chart, we have a Lipschitz domain, we can use the Poincaré inequality:

||viη||q ≤ c′′q ||∇(viη)||q ≤ c̃q + C

∫

M

vi,

Thus, in charts with cuttof funtions and partition of unity we obtain:

||vi||q ≤ c̄q + C

∫

M

vi, ∀q, 1 ≤ q <
n

n− 1
.

By contradiction, if
∫

M vi → +∞, then we consider wi = vi∫
M

vi
is bounded in Ḣ1

q (M)

and by the Sobolev embedding, thus converge to a constant w ≡ k, in Ḣ1
r (M), 1 ≤ r < q, but
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tr(wi) = 0 → tr(w) = k, this is in contradiction with
∫

M
vi ≤ C||vi||r = o(1)

∫

M
vi, 1 = o(1).

Thus,
∫

M
vi ≤ C < +∞, ∀i. Thus:

||vi||q ≤ c̄q, ∀q, 1 ≤ q <
n

n− 1
.

Also, near the boundary, we have (we prove it around points of the boundary in charts):

||vi||r = o(1), ∀r, 1 ≤ r <
n

n− 1
.

Another fact about the boundedness of
∫

M
vi:

Let η solution of:

∆η + hη = 1, inM, and h = 0 on ∂M.

Multiplying the equation of vi by h and integrate by parts, we obtain:

|

∫

M

hviη| ≤ C,

Multplying the equation of h by vi and integrate by parts, we obtain:

0 <

∫

M

vi ≤ C.

Step 3:

We consider a concentration of the measure for:

∫

M

Viviu
N−2
i ϕdx → µ3(ϕ) ≥ 0, ϕ ≥ 0, ϕ ∈ C0

c (M).

We have, if we consider: ∆vi+(h−Viu
N−2
i )vi = 0 and vi ∈ Lq, q > 1 uniformly, and around

x0 with µ1(x0) < ǫn ⇒ ui ∈ L∞(B(x0, r)), r > 0 uniformly. thus we apply the Harnack

inquality to vi, we have vi ∈ L∞(B(x0, r
′)), r > r′ > 0 uniformly. Thus, µ3(x0) < ǫn.

Thus,

µ1(x0) < ǫn ⇔ µ3(x0) < ǫn.

and,

µ1(xj) ≥ ǫn > 0 ⇔ µ3(xj) ≥ ǫn > 0.

Thus,

suppµ1 = suppµ3 = {x1, . . . xk}.

Thus, vi → v in W 1,q
0 (M) and locally uniformly on M with v solution in the sense of distri-

butions of:

∆v + hv =

k
∑

j=1

µ3,jδxj
, µ3,j = µ3(xj) ≥ ǫn > 0.

But, the operator ∆+h is coercive and thus, we have the existence of the Green function with

Dirichlet boundary condition, G of this operator. Comparing v and G0(·) =
∑k

j=1 µ3,jG(xj , ·),
we have: v = G0 almost everywhere.

Thus,

vi → G0, in W 1,q
0 (M) ∩ C2(M − {x1, . . . , xk}), with G0 ∈ C2(M̄ − {x1, . . . xk}).

Thus, as in dimension 2, (G0 is smooth up to the boundary), we have:

||∇(vi −G0)||q = o(1), ||vi −G0||q = o(1), 1 ≤ q < n/(n− 1).

Thus, we have the same situation as in dimension 2, except that we have singularities inside

M .
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Also, we have near the boundary (because for the tests functions near the boundary we have

estimates of type, ηǫ′ with ||∇ηǫ′ ||∞ ≤ C/(ǫ′)2):

|Ωǫ′ | ≤ (ǫ′)n ⇒ ||∇vi||q + ||vi||q = O((ǫ′)n), i ≥ i0(ǫ
′), n ≥ 3.

Step 4:

Now, we look to the case of the boundary:

By the maximum principle and the fact that ∆ + h is coercive and the Dirichlet boundary

condition, we have: ∂νui ≥ 0.

By the Stokes formula and the duality theorem, see the papers of dimension 2, we have con-

centration phenomenon on the boundary ∂M of vi = supM ui · ui:

∫

∂M

∂ν(sup
M

ui · ui)dσ ≤ C′′,

∫

∂M

∂ν(sup
M

ui · ui) · ϕdσ → µ2(ϕ) ≥ 0, ∀ϕ ∈ C0(∂M), ϕ ≥ 0.

We use the equation with vi and we consider a test function ηǫ by a chart near y0 ∈ ∂M , and

a Dirichlet problem:

∆η̃ǫ + hη̃ǫ = 0 in M, η̃ǫ = ηǫ on ∂M.

For this as in dimension 2, we solve:

∆η̄ǫ + hη̄ǫ = ∆ηǫ + hηǫ in M, η̄ǫ = 0 on ∂M,

and we take η̃ǫ = −η̄ǫ + ηǫ.

∆(viη̃ǫ) = Viviu
N−2
i η̃ǫ +∇vi · ∇η̃ǫ,

and we integrate.

∫

M

∆(viη̃ǫ) =

∫

∂M

∂ν(viη̃ǫ) =

∫

∂M

∂ν(vi)η̃ǫ → µ2(η̃ǫ) ≤ µ2(Jǫ) < ǫn,

and near the boundary, we have:

||∇vi||r = o(1), ||vi||r = o(1), ∀r, 1 ≤ r <
n

n− 1
.

Thus,

sup
M

ui

∫

B(y0,δ)

Viu
N−1
i dVg ≤

∫

M

Viviu
N−2
i η̃ǫ < ǫn,

In fact we have by the duality theorem in a small neighborhood of y0 ∈ ∂M (and the holder

inequality) and the convergence inside M :

y0 ∈ ∂M, µ2({y0}) < ǫn ⇒ sup
M

ui

∫

B(y0,δ)

Viu
N−1
i dVg < ǫn ⇒

∫

B(y0,δ)

Viu
N
i dVg < ǫn

First we consider the equation satisfied by vi to use the measure µ2, after we consider the

equation satisfied by ui.

and by the De Giorgi-Nash-Moser iterate scheme applied to ui with respect to initial equation,

we have:

y0 ∈ ∂M,

∫

B(y0,δ)

Viu
N
i dVg < ǫn ≤

ωn

2n
⇒ ||ui||L∞(B(y0,δ/2)) ≤ C′

and,

There is a finite number of points yj ∈ ∂M , such that:

µ2({yj}) ≥ ǫn > 0.
5



µ2({yj}) ≥ ǫn > 0 ⇒ ∀δ > 0, sup
M

ui ·

∫

B(yj,δ/2)

Viu
N−1
i dVg =

∫

B(yj ,δ)

Viviu
N−2
i ≥

ǫn
2
,

For δ → 0 small enough and because ||vi||1 = o(1) near the boundary, we have:

yj ∈ ∂M, ∃ (yij)i, yij → yj, ui(y
i
j) → +∞.

and, for all compact K̃ ⊂ M̄ − {xj , j = 1, . . . k, yj , j = 1, . . .m}

sup
K̃

ui → 0.

Also, we have the convergence to a measure on the boundary: sum of Dirac measures on the

boundary.

By the Harnack inequality on the boundary see, Gilbarg-Trudinger [19], we have vi → G0 in

C2(M̄ − {x1, . . . , xk, y1, . . . , ym}), up to the boundary.

We can see that locally, we have the following asymptotic estimate outside the blow-up points:

uj(x) ≈
1

supM uj
.

And near the boundary and outside the blow-up points:

uj(x) ≈
o(1)

supM uj
.

And,

sup
M

uj · uj(·) → G0 =

k
∑

j=1

µ3,jG(xj , ·)

in C2(M̄ − {x1, . . . , xk, y1, . . . , ym}) with µ3,j = µ3(xj) ≥ ǫn > 0.

Proofs of Theorems 1.2:

In the proof of the theorem 1.1. we have determined ǫn > 0 the mass’s reference. By contra-

diction, if supM ui → +∞, there are concentration of measures on M and on ∂M with the total

mass b · C ≥ ǫn > 0, which is not possible. Thus, the compactness result.
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