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POSITIVE FORMULA FOR THE PRODUCT OF CONJUGACY CLASSES ON

THE UNITARY GROUP

QUENTIN FRANÇOIS AND PIERRE TARRAGO

Abstract. The convolution product of two conjugacy classes of the unitary group Un is described by
a probability distribution on the space of central measures. Relating this convolution to the quantum
cohomology of Grassmannians and using recent results describing the structure constants of the latter,
we give a manifestly positive formula for the density of the probability distribution for the product
of generic conjugacy classes. In the same flavor as the hive model of Knutson and Tao, this formula
is given in terms of a subtraction-free sum of volumes of explicit polytopes. As a consequence, this
expression also provides a positive and explicit formula for the volume of SUn-valued flat connections
on the three-holed two dimensional sphere, which was first given by Witten in terms of an infinite sum
of characters.

1. Introduction

Irreducible characters and conjugacy classes of a compact group are two dual facets of its space of
central measures. Thanks to the underlying group multiplication, this space is given a convolution
product which allows to expand the product of two characters along the basis of irreducible characters.
The same holds in the case of convolution of conjugacy classes, for which the expansion is described by
a central measure on the group. It is then a classical fact that both problems involve only non-negative
quantities, and it is in general very hard to provide manifestly positive formulas for those expansions
(see [29] and [14] for the two corresponding open problems in the case of the symmetric group Sn).

In the framework of compact Lie groups, the problem of finding positive combinatorial formulas
for the expansion of characters has been solved in the case of the unitary group Un by Littlewood
and Richardson [24] and in full generality by Luzstig [25], Kashiwara [16] and Littelmann [23]. The
case of conjugacy classes is still open in full generality, and the goal of the present paper is to address
this problem in the case of Un. Conjugacy classes of Un are indexed by the symmetrized torus
H = [0, 1[n/Sn, and the decomposition of the product of two conjugacy classes α and β is described
by a probability distribution P[·|α, β] on H. As for any compact Lie group, P[·|α, β] can be expressed
in a weak sense as a complex weighted sum of characters, each of which being seen as a function on
H. When the conjugacy classes α and β have maximal dimension, in which case α and β are called
regular, P[·|α, β] has a density dP[·|α, β] with respect to the Lebesgue measure on H. The present
paper gives then a positive formula for this density as a subtraction-free sum of volumes of some
explicit polytopes.

The convolution of conjugacy classes of a compact Lie group G is also intimately related to the
moduli spaces of G-valued flat connections on punctured Riemannian surfaces. Moduli spaces of flat
connections on Riemann surfaces are a central object in algebraic geometry [30] and mathematical
physic [2], which appear in particular as the semiclassical limit of two dimensional Yang-Mills measures,
[13, 22]. In [36, 38], Witten first proposed a general expression of the volume of such moduli spaces
as an infinite sum of characters on the corresponding Lie group G. This formula has then been
then proved by Jeffrey and Kirwan [15] using localisation techniques from symplectic geometry. The
involved infinite series have been later simplified [27] to an alternating sum of volumes of coadjoint
orbits, see also [10] for a similar result using the wrapping map. As it has been observed in [38], the
study of moduli spaces of flat connections on punctured Riemann surfaces with prescribed holonomies
can be reduced to the case of the three punctured sphere, see also [27]. The formula obtained in this
paper for the convolution of conjugacy classes directly translates into a simple and manifestly positive
expression for the volume of the moduli space of flat connections on the three-punctured sphere for
G = SUn. This is up to our knowledge the first expression of those volumes as the volume of explicit
polytopes.

Let us briefly explain the conceptual path leading to the previous formulas. Conjugacy classes
on Un are naturally related through the exponential map to co-adjoint orbits on the underlying Lie
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algebra un of Hermitian matrices, which are indexed by the quotient space Rn/Sn. In the same way
as the multiplicative structure yields a convolution product on conjugacy classes of the Lie group
Un, the additive structure yields a convolution product on co-adjoint orbits of un. For co-adjoint
orbits of maximal dimension, a positive formula for the density of the convolution product has already
been obtained following the work of Knutson and Tao, see [19, 8]. Besides their apparent beauty,
having positive formulas for such convolution products offered new tools to tackle difficult probabilistic
problems concerning invariant measures on the Lie algebras. For example, the positive formulas for the
convolution of coadjoint orbits of Un lie at the heart of the recent results of Narayanan and Sheffield
[31] on large deviations for the spectrum of sums of conjugation invariant Hermitian random matrices.

The convolution structure on co-adjoint orbits can be seen as a semi-classical limit of the ring of
characters of the Lie group [17]. Thanks to this relation, the formula for the positive density in the un
case is up to an explicit factor a limit of Littlewood-Richardson coefficients with growing partitions.
Such a coefficient had been expressed by Berenstein and Zelevinsky [4] as the number of integers
points in a convex polytope whose boundaries depend on the involved partitions. A reformulation of
this expression by Knutson and Tao turned this convex polytope into a simple convex body, called
discrete hive. Using the discrete hive model, the semiclassical limit yields then a positive formula for
the density of convolutions of regular co-adjoint orbits, which the consists of the volume of certain
polytopes called continuous hives.

When replacing co-adjoint orbits on un by conjugacy classes of Un, the convolution product has to
be seen instead as a semi-classical limit of the fusion ring of the Lie algebra with growing level [36] (see
also [9] for a more probabilistic approach). For each given level, the fusion ring is a specialization of
the ring of characters at roots of unity and the structure coefficients of the multiplication of characters
in this quotient ring are non-negative integers called fusion coefficients. There exist no general effective
combinatorial expression for those coefficients, but in the case of Un this fusion ring is isomorphic to
the quantum cohomology ring of Grassmannians on P1 (see [37] for a geometric explanation of this
fact). Through this isomorphism, characters of the fusion ring are Schubert classes of the quantum
cohomology.

Using a reinterpretation of the quantum cohomology of Grassmannians in terms of complex bundles
on P1 [34], Buch, Kresch and Tamvakis [7] related the coefficients appearing in the multiplication of
Schubert classes, called quantum Littelwood-Richardson coefficients, to the structure coefficients of
the cohomology ring of the two-step flag variety. Starting from this relation and proving a conjectural
formula of Knutson on the two-step flag variety, those authors and Purbhoo [6] gave a positive formula
for the quantum Littlewood-Richardson coefficients in terms of certain puzzles (see also [5] for an
equivariant version). Such puzzles are generalizations of puzzles that already appeared in the work
of Knutson, Tao and Woodward [20] in a reformulation of the hive model. The puzzle approach has
since then been systematically used to obtain combinatorial expressions of structure coefficients either
in the cohomology or in the K-theory of some partial flag manifolds, see [21].

In this paper, we translate the program achieved in the co-adjoint case to the conjugacy one.
One of the main difficulties in the present framework is the absence of convex formulations for the
quantum Littlewood-Richardson coefficients. Based on the puzzle formulation of [6], we first express
the structure constants of the two-step flag manifold as the counting of integer points in a finite union
of convex polytopes indexed by a smaller tiling model, see Theorem 5.3. In order to operate an
asymptotic counting, we then turn those convex polytopes into convex bodies, whose boundaries are
not fully explicit. Fortunately, the asymptotic integer counting then simplifies the boundaries leading
to a formula for the convolution of two regular conjugacy classes as a finite sum of volumes of explicit
convex bodies, see Theorem 2.5.

Before this manuscript, several results have been achieved in the description on the convolution
of conjugacy classes of Un. One of the most important results, independently obtained by Belkale
[3] and Agnihotri and Woodward [1], is the description of the support of the convolution of two non
necessarily regular conjugacy classes (see also [35]). This support happens to be a convex set with
boundaries described by certain quantum Littlewood-Richardson coefficients, in the same vein as the
solution to the Horn problem given by Klyachko [18] and Knutson and Tao [19]. The regularity of
the convolution of two conjugacy classes has also been investigated, with for example results of [39]
showing that the convolution of two conjugagy classes has an L2 density when the image is an open
set in H.
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2. Notations and statement of the result

Fix n ≥ 3 throughout this manuscript (the case n = 2 can be handled by direct computation)
and denote by Un the unitary group of size n. Then, recall that the set of conjugacy classes of Un is
homeomorphic to the quotient space H = [0, 1[n/Sn, where the symmetric group Sn acts on [0, 1[n by
permutation of the coordinates. This quotient space is described by the set of non-increasing sequences
of [0, 1[n. For θ = (θ1 ≥ θ2 ≥ · · · ≥ θn) ∈ H, denote by O(θ) the corresponding conjugacy class defined
by

O(θ) :=
{
Ue2iπθU∗, U ∈ Un

}
, where e2iπθ =




e2iπθ1 0 . . .
0 e2iπθ2

...
. . .

e2iπθn


 .

The product structure on Un translates into a convolution product ∗ : M1(H) ×M1(H) → M1(H)
on the space of probability distributions on H such that for θ, θ′ ∈ H, δθ ∗ δθ′ is the distribution of
p(UθUθ′), where Uθ (resp. Uθ′) is sampled uniformly on O(θ) (resp. O(θ′)) and p : Un → H maps an
element of Un to its conjugacy class in H.

Let us denote by Hreg = {θ ∈ H, θ1 > θ2 > . . . > θn} the set of regular conjugacy classes of Un,
namely the ones of maximal dimension in Un. For α, β ∈ Hreg, δα ∗ δβ admits a density dP[·|α, β] with
respect to the Lebesgue measure on {γ ∈ H,

∑n
i=1 αi +

∑n
i=1 βi −

∑n
i=1 γi ∈ N} (see Section 3 for a

concrete proof of this classical result).

The toric hive cones Cg. The main result of the present manuscript is a positive formula for
dP[·|α, β] in terms of the volume of polytopes similar to the hive model of Knutson and Tao [19]. For
0 ≤ d ≤ n, define the toric hive Rd,n as the set

Rd,n =
{
(v1, v2) ∈ J0, nK2, d ≤ v1 + v2 ≤ n+ d

}
,

which can be represented as a discrete hexagon through the map (v1, v2) 7→ v1 + v2e
iπ/3, see Figure 1

for a particular case and its hexagonal representation.

• • •

• • • •

• • •

• •

Figure 1. The set R1,3 represented through the map (v1, v2) 7→ v1 + v2e
iπ/3.

Boundary of the toric hive. For any set S and any function f : Rd,n → S, we denote by fA (resp

fB, fC) the vector (f((d − i) ∨ 0, (n + d − i) ∧ n)0≤i≤n (resp. (f(n + d − i ∧ n, i))0≤i≤n, resp.
(f(n− i, i+ d− n ∨ 0))0≤i≤n). The vectors fA, fB and fC correspond respectively to the north-west,
east and south-west boundaries of Rd,n through the hexagonal representation, see Figure 2.
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Figure 2. The set boundary vectors fA, fB and fC .

Toric rhombus concavity. Let us call a lozenge of Rd,n any sequence (v1, v2, v3, v4) ∈ (Rd,n)
4 corre-

sponding to one of the three configurations of Figure 3 in the hexagonal representation (in which
|vi − vi+1| = 1 for 1 ≤ i ≤ 3).

•

• •

•

v3

v2 v4

v1

• •

• •

v1 v2

v4 v3

• •

• •

v4 v1

v3 v2

Figure 3. The three possible lozenges (v1, v2, v3, v4) (beware of the position of the
vertices which can not be permuted).

Definition 2.1 (Regular labeling). A labeling g : Rd,n → Z3 is called regular whenever

• gAi = n+ i[3], gBi = i[3] and gCi = i[3],
• on any lozenge ℓ = (v1, v2, v3, v4),

(g(v2) = g(v4)) ⇒ {g(v1), g(v3)} = {g(v2) + 1, g(v2) + 2}.
A lozenge (v1, v2, v3, v4) for which (g(v1), g(v2), g(v3), g(v4)) = (a, a + 1, a + 2, a + 1) for some a ∈
{0, 1, 2} is called rigid.
The support of a regular labeling g : Rd,n → Z3 is the subset Supp(g) ⊂ Rd,n of vertices of Rd,n which
are not a vertex v4 of a rigid lozenge (v1, v2, v3, v4).

By the boundary condition of a regular labeling, any vertex v4 of a rigid lozenge of g can not be on
the boundary of Rd,n, so that the latter is always contained in Supp(g).

Remark 2.2. Although given above in a compact form, there may be better ways of considering a
regular labeling for growing n. By seeing Rd,n through its hexagonal representation, a regular embedding
is equivalent to a tiling of Rd,n with either blue or red equilateral triangles of size 1 or lozenges of size
1 with alternating colors on its boundaries, such that the six boundary edges of Rd,n are alternatively
colored red and blue, starting with the color red on the south edge {(v1, v2) ∈ Rd,n, v2 = 0}. The
bijection from the former representation to the latter is given by assigning the red (resp. blue) color to
any edge of the form (v, v + e2iπℓ), 0 ≤ ℓ ≤ 2 along which the labels of g increase by 1 (resp. decrease
by 1), see Figure 4 for an example with n = 4, d = 1 and Proposition 7.9 for a proof of this fact.

Definition 2.3 (Toric hive cone). A function f : Rd,n is called rhombus concave with respect to a
regular labeling g : Rd,n → Z3 when f(v2) + f(v4) ≥ f(v1) + f(v3) on any lozenge ℓ = (v1, v2, v3, v4),
with equality if ℓ is rigid with respect to g.

For any regular labeling g, the toric hive cone Cg with respect to g is the cone

Cg =
{
f|Supp(g), f : Rd,n → R toric rhombus concave with respect to g

}
.
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• • •

• • • •

• • •

• •

1 2 0

0 0 0 1

2 1 2

1 0

1 2 0

0 0 0 1

2 1 2

1 0

Figure 4. A regular labeling on Rd,n and its colored representation

As we will see later, for any regular labeling g, Supp(g) has cardinal (n− 1)(n− 2)/2+3n and so is
the dimension of Cg. As such, we recover the usual dimension of the classical hive cone from [19]. The
latter is then a particular case of toric hive cone for d = 0. An example of a toric rhombus concave
function in the case n = 3, d = 1 is given in Figure 5.

52
23

43
23 1

54
23

50
23

38
23

18
23

52
23

44
23

28
23

46
23

33
23

Figure 5. A toric rhombus convave function for n = 3, d = 1: the regular labeling is
depicted through colored edges and the shaded lozenge are the rigid ones yielding the
equality cases in the toric rhombus concavity.

Definition 2.4 (Polytope P g
α,β,γ). Let n ≥ 3 and let α, β, γ ∈ Hreg be such that

∑n
i=1 αi +

∑n
i=1 βi =∑n

i=1 γi+d with d ∈ N. Let g be a regular labeling on Rd,n. Then, P
g
α,β,γ is the polytope of RSupp(g)\∂Rd,n

consisting of functions in Cg such that

fA =

(
n∑

s=1

βs +

i∑

s=1

αs

)

0≤i≤n

, fB =

(
(d− i)+ +

i∑

s=1

βs

)

0≤i≤n

, fC =

(
d+

i∑

s=1

γs

)

0≤i≤n

.

An example of an element of P g
α,β,γ for n = 3 and d = 1 is depicted in Figure 5, for α =

(
13
23 ≥ 6

23 ≥ 2
23

)
,

β =
(
18
23 ≥ 10

23 ≥ 5
23

)
and γ =

(
20
23 ≥ 9

23 ≥ 2
23

)
.

Statement of the results: Our main result gives then a formula for the density of the convolution of
regular conjugacy classes as a sum of volumes of polytopes coming from Cg for regular labeling g.

Theorem 2.5 (Probability density for product of conjugacy classes). Let n ≥ 3 and let α, β, γ ∈ Hreg

be such that
∑n

i=1 αi +
∑n

i=1 βi =
∑n

i=1 γi + d with d ∈ N. Then,

(2.1) dP[γ|α, β] = (2π)(n−1)(n−2)/2
∏n−1

k=1 k!∆(e2iπγ)

n!∆(e2iπα)∆(e2iπβ)

∑

g:Rd,n→Z3 regular

V olg(P
g
α,β,γ),

where ∆(e2iπθ) = 2n(n−1)/2
∏

i<j sin (π(θi − θj)) for θ ∈ H and V olg denotes the volume with respect

to the Lebesgue measure on RSupp(g)\∂Rd,n.

Note that the case n = 2 admits explicit formulas which do not need such a machinery. Numerical
experiments for n = 3 suggest that there are α, β ∈ Hreg for which any regular labeling g yields
a non-empty polytope P g

α,β,γ for some γ ∈ Hreg. However, for a fixed triple (α, β, γ) ∈ Hreg there

seems to be generically only a strict subset of {P g
α,β,γ}g regular which are not empty and do contribute.

Finally, remark that we only considered the case of regular conjugacy classes to ensure the existence
of a density for the convolution product. Such a hypothesis is regularly assumed (see for example [36,



6 QUENTIN FRANÇOIS AND PIERRE TARRAGO

27]). However, we expect similar results to hold in cases where less than n/2 coordinates of H are
equal, in which case the convolution product is still expected to have a density.

Volume of moduli spaces of flat SUn-connections on the sphere: The main application of the previ-
ous result is the computation of the volume of moduli spaces of flat SUn-connections on the three-
punctured sphere. Computing such volume is an important task in the study of the Yang-Mills measure
on Riemann surfaces in the small surface limit [13], and it has been shown in [38, 27] that this compu-
tation for arbitrary compact Riemann surfaces can be reduced to case of the three-punctured sphere
by a sewing phenomenon. A similar inductive procedure is used in [28] to reduce the volume problem
for the moduli space of curves to the genus zero case.

Denote by Σ3
0 the sphere with three generic marked points a, b, c removed. We then denote by

M(Σ3
0, α, β, γ) the moduli space of flat SUn-valued connections on Σ3

0 for which the holonomies around
a, b, c respectively belongs to Oα,Oβ and Oγ . In the specific case of the punctured sphere, this moduli
space can be alternatively described as

M(Σ3
0, α, β, γ) = {(U1, U2, U3) ∈ Oα ×Oβ ×Oγ , U1U2U3 = IdSUn}/SUn,

where SUn acts diagonally by conjugation, see [1], see also [27, Section 3] for a general introduction
to SUn-valued flat connections and a proof of the latter equality. As a corollary of Theorem 2.5, we
thus get an expression of the volume of M(Σ3

0, α, β, γ) as a sum of volumes of explicit polytopes.

Corollary 2.6 (Volume of flat SUn-connections on the sphere). Let n ≥ 3 and consider the canonical
volume form on SUn. For α, β, γ ∈ Hreg such that |α|1, |β|1, |γ|1 ∈ N, then V ol

[
(M(Σ3

0, α, β, γ)
]
̸= 0

only if
∑n

i=1 αi +
∑n

i=1 βi +
∑n

i=1 γi = n+ d for some d ∈ N, in which case

V ol
[
(M(Σ3

0, α, β, γ)
]
=

2(n+1)[2](2π)(n−1)(n−2)

n!∆(e2iπγ)∆(e2iπα)∆(e2iπβ)

∑

g:Rd,n→Z3 regular

V olg(P
g
α,β,γ̃),

where γ̃ = (1− γn, . . . , 1− γ1) and the polytopes P g
α,β,γ̃ are defined in Theorem 2.5.

Note that the choice of normalization for the volume of SUn slightly differs from the one used in [36]
for numerical applications. As a consequence of this corollary, the volume is a piecewise polynomial
in α, β, γ, up to the normalization factor coming from the volume of the conjugacy classes. Such a
phenomenon, which is a reflect of the underlying symplectic structure, had already been observed in
[27]. A same phenomenon occurs in the co-adjoint case, see [8, 11] and in the study of moduli spaces
of curves, [28].

Sketch of the proof of Theorem 2.5 and Corollary 2.6. Let us give the structure of the paper while
sketching the proof of our main statement. The first step of the prooF is the semi-classical ap-
proximation of the density of the convolution product by a limit of quantum Littlewood-Richardson
coefficients. Such approximation scheme is done in Section 3. All the work of the remaining part of
the manuscript consists in turning known expressions for the quantum Littlewood-Richardson coeffi-
cients into integers points counting in convex bodies, for which the convergence towards volumes of
polytopeS is straightforward, see [19]. Section 4 introduces the puzzle expression for those coefficients
obtained in [6] and gives a first simplification of the puzzle formulation by only keeping the position
of certain pieces of the puzzles. It is then deduced in Section 5 an expression of the coefficients as the
counting of integers points in a family of convex polytopes indexed by certain two-colored tilings which
are reminiscent of Figure 4, see Theorem 4.5 and Corollary 5.4. Up to this point, those polytopes are
degenerated and non-rational polytopes in a higher dimensionAL space, which prevents any proper
asymptotic counting in the semi-classical limit (a similar problematic situation already occurred with
Berenstein-Zelevinsky polytopes in the co-adjoint case, leading to the hive formulation of Knutson
and Tao, see [19]). By a combinatorial work on the underlying two-colored tiling, we give in Section 6
a parametrization of the integer points of those polytopes in terms of integer points of genuine convex
bodies. Remark that the results of Section 5 hold more generally for any coefficient of the two-step
flag variety, a fact which is not true anymore from Section 6. The asymptotic counting of integers
points in convex bodies is then much more tractable, and the conclusion of the proof of Theorem 2.5
and Corollary 2.6 is done in Section 7.
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3. Density formula via the quantum cohomology of the Grassmannians

Let n ≥ 1 and consider α, β ∈ H2
reg : α = (α1, . . . , αn), β = (β1, . . . , βn) where

1 ≥ α1 > α2 > · · · > αn ≥ 0 and 1 ≥ β1 > β2 > · · · > βn ≥ 0.

Up to multiplication by the center of U(n), suppose furthermore without loss of generality that

(3.1)

n∑

i=1

αi = k and

n∑

i=1

βi = k′

for some k, k′ ∈ Z. Let A = Ue2iπαU∗, B = V e2iπβV ∗, where U, V are independent Haar distributed
matrices on U(n). Remark that A and B are respectively uniformly distributed on the conjugacy
classes O(α) and O(β), which lie in SU(n) ⊂ U(n). The goal of this section, see Theorem 3.8, is to
give a simple proof of the density formula (3.26) linking the probability dP[γ|α, β] that AB ∈ O(γ) for
γ ∈ H to the structure constants of the quantum cohomology of Grassmannians defined in Section 3.2.
Such a semi-classical convergence had been already suggested and proven several times in different
forms (see [36] for a similar approach with fusion coefficient and [9] for a convergence in distribution).
In Section 3.1, we recall in Proposition 3.1 a classical expression of the density in terms of characters
of irreducible representations of SU(n). In Section 3.2, we link the density of Proposition 3.1 to the
structure constants and derive Theorem 3.8.

3.1. A first density formula. This part aims at recalling a proof of the formula (3.3) which gives
the value of dP[γ|α, β] as an infinite sum of characters. A similar treatment of the convolution of orbit
measures in the general context of Lie algebras can be found in [9, Sec. 7].

Let us denote by dg the normalized Haar measure on U(n) and for θ ∈ H, φθ the map

φθ : U(n) → O(θ) ⊂ SU(n)

U 7→ Ue2iπθU∗.

Let us write

(3.2) mθ = φθ#dg

for the push-forward of dg by φθ. The measure mθ is a measure on O(θ) called the orbital measure.
For any function f : O(θ) → R,

∫

O(θ)
fdmθ =

∫

U(n)
f(ge2iπθg−1)dg.

Recall that the irreducible representations of the compact group SU(n) are parameterized by λ ∈ Zn−1
≥0

and we denote by (ρλ, Vλ) the corresponding representation where ρλ : SU(n) → Vλ and χλ : EndVλ
→

C, x 7→ Tr[x] is the associated character.

Proposition 3.1 (Induced density of eigenvalues). Let (α, β) ∈ H2
reg and let A,B ∈ O(α)×O(β) be

two independent random variables sampled from mα and mβ respectively. Let C = AB ∈ O(γ) for
some random γ ∈ [0, 1[n/Sn. The density of γ = γ1 > · · · > γn ≥ 0 is given by the absolute convergent
series

(3.3) dP[γ|α, β] = |∆(e2iπγ)|2
(2π)n−1n!

∑

λ∈Zn−1
≥0

1

dimVλ
χλ(e

2iπα)χλ(e
2iπβ)χλ(e

−2iπγ).

Another expression of the density (3.3) is given in (3.24). The rest of this section is devoted to the
proof of Proposition 3.1.

Definition 3.2 (Fourier Transform on SU(n)). Let m be a measure on SU(n). The Fourier transform
m̂ of m is defined as

(3.4) m̂ : λ ∈ Zn−1
≥0 7→ m̂(λ) =

∫

SU(n)
ρλ(g)dm(g) ∈ EndVλ

.

In the case where m = mθ, the expression m̂θ(λ) is also known as the spherical transform introduced
in [40, eq. (56)].
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Lemma 3.3 (Fourier Transform of mθ). One has, for λ ∈ Zn−1
≥0 ,

(3.5) m̂θ(λ) =
χλ(e

2iπθ)

dimVλ
idVλ

,

where idVλ
is the identity element of Vλ.

Proof. For any λ ∈ Zn−1
≥0 and g ∈ SU(n), since the Haar measure is invariant by translation,

m̂θ(λ)ρλ(g) =

(∫

U(n)
ρλ(he

2iπθh−1)dh

)
ρλ(g) =

∫

U(n)
ρλ(he

2iπθh−1g)dh

=ρλ(g)

∫

U(n)
ρλ(g

−1he2iπθh−1g)dh

=ρλ(g)

∫

U(n)
ρλ(he

2iπθh−1)dh = ρλ(g)m̂θ(λ).

Hence, m̂θ(λ) is a morphism of the irreducible representation ρλ and thus m̂θ(λ) = c · idVλ
for some

c ∈ C. One computes the value of c by taking the trace which gives

(3.6) c =
χλ(e

2iπθ)

dimVλ
.

□

Definition 3.4 (Convolution of measures). Let m,m′ be two measures on SU(n). Let m⊠m′ be the
product measure on SU(n)× SU(n). Define mult : SU(n)× SU(n) → SU(n) to be the multiplication
on SU(n) : mult(g1, g2) = g1g2. The convolution of m and m′, denoted by m ∗m′, is defined as

m ∗m′ = mult#(m⊠m′),(3.7)

which means that for any function f on SU(n),
∫

SU(n)
f(g)d(m ∗m′)(g) =

∫

SU(n)

∫

SU(n)
f(g1g2)dm(g1)dm(g2).

For (α, β) ∈ H2, we write mα,β := mα ∗mβ the convolution of mα and mβ.

By Definition 3.4, the measure mα,β is the law on SU(n) of C = A · B where A and B are sampled
from measures µα and µβ on O(α) and O(β) respectively. Recall that for two measures m,m′ on
SU(n),

(3.8) m̂ ∗m′(λ) = m̂(λ)m̂′(λ).

In particular

(3.9) m̂α,β(λ) = m̂α(λ)m̂β(λ).

Recall that we are interested in the measure µα,β. By (3.9), one knows how to compute its Fourier
transform. Let us define the inverse Fourier transform.

Definition 3.5 (Inverse Fourier Transform). Let f : λ ∈ Zn−1
≥0 7→ f(λ) ∈ EndVλ

be a function such
that

(3.10) ∥f∥2 =
∑

λ∈Zn−1
≥0

dimVλ · Tr[f(λ)f∗(λ)] < ∞.

The inverse Fourier transform of f is

f∨ : SU(n) → C(3.11)

g 7→
∑

λ∈Zn−1
≥0

dimVλ · Tr[ρλ(g−1)f(λ)].(3.12)

In order to apply inverse Fourier transform to m̂α,β, one needs to check condition (3.10). This is the
purpose of the next lemma.
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Lemma 3.6 (Product Fourier transform is L2). For (α, β) ∈ H2
reg,

(3.13)
∑

λ∈Zn−1
≥0

dim(Vλ)Tr[m̂α,β(λ)m̂α,β(λ)
∗] < ∞.

Proof. Using (3.9) together with (3.5), one has

(3.14)
∑

λ∈Zn−1
≥0

dim(Vλ)Tr[m̂α,β(λ)m̂α,β(λ)
∗] =

∑

λ∈Zn−1
≥0

1

dim(Vλ)2
∣∣χλ(e

2iπα)
∣∣2
∣∣∣χλ(e

2iπβ)
∣∣∣
2
.

Using Weyl’s character formula [8, eq. (21)],

(3.15) χλ(e
iθ) =

det[eiθrλ
′
s ]1≤r,s≤n

∆(eiθ)

where λ′ = (λ1, . . . , λn−1, 0)+ ρ with ρ = (n− 1, . . . , 0) and where ∆(x1, . . . , xn) =
∏

1≤i<j≤n(xi−xj)
is the Vandermonde determinant. Recall that by assumption, αi ̸= αj for i ̸= j and the same holds

for β, so that the expressions ∆(e2iπα) and ∆(e2iπβ) are well-defined. The previous sum becomes

1

|∆(e2iπα)∆(e2iπβ)|2
∑

λ1≥···≥λn−1≥λn=0

∣∣∣det[e2iπαrλ′
s ]
∣∣∣
2 ∣∣∣det[e2iπβrλ′

s ]
∣∣∣
2

dim(Vλ)2
(3.16)

≤ n2n

|∆(e2iπα)∆(e2iπβ)|2
∑

λ1≥···≥λn−1≥λn=0

1

dim(Vλ)2
(3.17)

where we used Hadamard’s inequality for the upper bound on determinants. From the identity

(3.18) dim(Vλ) =
∆(λ′)

sf(n− 1)
,

which can be found in [12, Cor. 11.2.5] and where sf(n) =
∏

1≤j≤n j!, it suffices to show that

(3.19) Vn =
∑

λ1>···>λn=0

1

∆(λ)2

converges for n ≥ 2. One has that V2 =
∑

k≥1 k
−2 < ∞. Let us write

∑

λ1>···>λn=0

1

∆(λ)2
=

∑

λ1>···>λn=0

∏

1≤i<j≤n

(λi − λj)
−2

=
∑

λ2>···>λn=0


 ∑

λ1>λ2

∏

2≤j≤n

(λ1 − λj)
−2


 ∏

2≤i<j≤n

(λi − λj)
−2

≤
∑

λ2>···>λn=0


 ∑

λ1>λ2

(λ1 − λ2)
−2(n−1)


 ∏

2≤i<j≤n

(λi − λj)
−2

the innermost sum is bounded by
∑

k≥1 k
−2(n−1) ≤∑k≥1 k

−2 = V2 for n ≥ 2. Thus,

Vn ≤ V2Vn−1

so that for n ≥ 2, Vn ≤ (V2)
n−1 which proves the convergence.

□

Lemma 3.6 shows that the Fourier transform of µα∗µβ is in L2, so that one can take its inverse Fourier
Transform. This leads to the following result.

Lemma 3.7 (Inverse Fourier of Convolution). Let (α, β) ∈ H2
reg and g ∈ SU(n). Then,

(3.20) (m̂α,β)
∨(g) =

∑

λ∈Zn−1
≥0

1

dimVλ
χλ(e

2iπα)χλ(e
2iπβ)χλ(g

−1),

where the sum converges in L2(SUn).
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Proof. Using (3.12) together with (3.9) yields

(m̂α,β)
∨(g) =

∑

λ∈Zn−1
≥0

dimVλ · Tr[ρλ(g−1)m̂α(λ)m̂β(λ)](3.21)

=
∑

λ∈Zn−1
≥0

dimVλ · Tr
[
χλ(e

2iπα)χλ(e
2iπβ)

dimV 2
λ

ρλ(g
−1)

]
(3.22)

=
∑

λ∈Zn−1
≥0

1

dimVλ
χλ(e

2iπα)χλ(e
2iπβ)χλ(g

−1).(3.23)

□

Proof of Proposition 3.1. The induced density on γ is given by the density (3.20) multiplied by the
Jacobian of the diagonalization map g 7→ V e2iπγV ∗ with γ = (γ1, . . . , γn) such that

∑
γi ∈ Z. Since

this Jacobian is |∆(e2iπγ)|2
(2π)n−1n!

, see [12, Thm 11.2.1], we obtain the desired expression. □

Writing the density (3.3) using (3.15) and the fact that dimVλ = ∆(λ′)
sf(n−1) yields

dP[γ|α, β] = ∆(e2iπγ)sf(n− 1)

(2π)n−1n!∆(e2iπα)∆(e2iπβ)

∑

λ∈Zn−1
≥0

1

∆(λ′)
det[e2iπαrλ′

s ] det[e2iπβrλ′
s ] det[e−2iπγrλ′

s ]

=
sf(n− 1)(2π)(n−1)(n−2)/2∆(e2iπγ)

∆(e2iπα)∆(e2iπβ)n!
J [γ|α, β],(3.24)

where

(3.25) J [γ|α, β] = 1

(2π)n(n−1)/2

∑

λ∈Zn−1
≥0

1

∆(λ′)
det[e2iπαrλ′

s ] det[e2iπβrλ′
s ] det[e−2iπγrλ′

s ].

is called the volume function for the unitary Horn problem.

3.2. Link with quantum cohomology of the Grassmannians. The goal of this section is to
link the volume function (3.25) with structure constants of the quantum cohomology ring of Grass-
mannians QH•(Gr) in the same way as the volume function in the coadjoint case is related to the
classical cohomology ring of Grassmannians, see [8]. The structure constants in the unitary case are
the Gromov-Witten invariants, which are related to characters via [32, Cor. 6.2]. We refer the reader
to [26] and [34] for an introduction to the subject.

For N ≥ n, denoted by Zn
N−n the set of partition λ ∈ Zn such that N −n ≥ λ1 ≥ · · · ≥ λn ≥ 0. Then,

the ring QH•(Gr(n,N)) has an additive basis (qd ⊗ σλ, d ≥ 0, λ ∈ Zn
N−n). We will denote by cν,dλ,µ the

structure constants of this ring so that

σλ · σµ =
∑

ν,d≥0

cν,dλ,µq
d ⊗ σν .

where the sum is over pairs (ν, d) ∈ Zn
N−n×N such that |λ|+ |µ| = |ν|+Nd. The structure coefficients

cν,dλ,µ are the degree d Gromov-Witten invariants associated to the Schubert cycles σλ, σµ, σν∨ , see [32,

Cor. 6.2]. The main result of this section is Theorem 3.8 below.

Theorem 3.8 (Density as limit of quantum coefficients). Let (α, β, γ) ∈ H3
reg. For each N ≥ 1, let

(λN , µN , νN ) be three partitions in Zn
N−n such that |λN | + |µN | = |νN | + dN for some d ∈ Z≥0 and

such that 1
N λN = α+ o(1), 1

N µN = β + o(1) and 1
N νN = γ + o(1) as N → +∞. Then,

(3.26) lim
N→∞

N−(n−1)(n−2)/2cνN ,d
λN ,µN

= J [γ|α, β] = ∆(e2iπα)∆(e2iπβ)n!

sf(n− 1)(2π)(n−1)(n−2)/2∆(e2iπγ)
dP[γ|α, β].

The rest of this section is devoted to the proof of Theorem 3.8. In subsection 3.2.1 we prove a

determinantal formula for the coefficients cν,dλ,µ along with some results on the quantities involved in

the expression. In subsection 3.2.2 we prove Theorem 3.8 using Lemmas 3.16 and 3.15.
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3.2.1. Determinantal expression for cν,dλ,µ. For 1 ≤ n ≤ N , set

In,N =

{
(I1, . . . , In) ∈

(
Z+

(
1

2

)(n−1)[2]
)n

: −n− 1

2
≤ In < · · · < I1 ≤ N − n+ 1

2

}
.

Lemma 3.9 (Determinantal expression for cν,dλ,µ). Let λ, µ, ν such that |λ|+ |µ| = |ν|+Nd. Then,

(3.27) cν,dλ,µ =
1

Nn

∑

I∈In,N

det[e
2iπIr(λs+(s−1))

N ] det[e
2iπIr(µs+(s−1))

N ] det[e−
2iπIr(νs+(s−1))

N ]

∆(ξI)

Proof. Let ξ = exp (2iπ/N) and for I ∈ In,N , set ξI = (ξI1 , . . . , ξIn). Let Sλ(x1, . . . , xn) =
det[x

(λs+(s−1))
r ,1≤r,s≤n]

∆(x)

be the Schur function corresponding to the partition λ. Using [32, Corollary 6.2]:

(3.28) cν,dλ,µ =
1

Nn

∑

I∈In,N

Sλ(ξ
I)Sµ(ξ

I)Sν∨(ξ
I)

|∆(ξI)|2
S(N−n)(ξI)

.

Moreover, by [32, eq. (4.3)], one has

Sν∨(ξ
I)

S(N−n)(ξI)
= Sν(ξI)

so that

cν,dλ,µ =
1

Nn

∑

I∈In,m

Sλ(ξ
I)Sµ(ξ

I)Sν(ξI)|∆(ξI)|2

=
1

Nn

∑

I∈In,m

det[e
2iπIr(λs+(s−1))

N ] det[e
2iπIr(µs+(s−1))

N ] det[e−
2iπIr(νs+(s−1))

N ]

∆(ξI)
(3.29)

□

We are interested in the asymptotic behaviour of the previous expression as N → ∞. Define

(3.30) F (I, λ, µ, ν,N) =
det[e

2iπIr(λs+(s−1))
N ] det[e

2iπIr(µs+(s−1))
N ] det[e−

2iπIr(νs+(s−1))
N ]

∆(ξI)
.

Lemma 3.10 (Translation invariance). Let I ∈
(
1
2Z
)n

and a ∈ 1
2Z. We still assume that |λ|+ |µ| =

|ν|+Nd for some d ∈ Z≥0. Then,

(3.31) F (I + a, λ, µ, ν,N) = F (I, λ, µ, ν,N).

Proof. Since

det

[
exp

(
2iπ(Ir + a)(λs + s− 1)

N

)]
= det

[
exp

(
2iπIr(λs + s− 1)

N

)]
exp

(
a
2iπ(|λ|+∑n−1

l=0 l)

N

)
,

the numerator of F (I + a, λ, µ, ν,N) is the one of F (I, λ, µ, ν,N)) times the factor

exp

(
a
2iπ

N
(|λ|+ |µ| − |ν|+ n(n− 1)/2)

)
= exp

(
a
iπn(n− 1)

N

)

since |λ|+ |µ| − |ν| = 0 [N ]. The Vandermonde in the denominator of F (I + a, λ, µ, ν,N) is

∆(ξI+a) =
∏

1≤r<s≤n

(
exp

(
2iπ(Ir + a)

N

)
− exp

(
2iπ(Is + a)

N

))

=
∏

1≤r<s≤n

(
exp

(
2iπIr)

N

)
− exp

(
2iπIs
N

))
exp

(
a
iπn(n− 1)

N

)

= ∆(ξI) exp

(
a
iπn(n− 1)

N

)
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so that the quotient cancels the common additional factor appearing in the numerator and denominator
of F (I + a, λ, µ, ν,N). □

From Lemma 3.10, we can shift I by n−1
2 . In the following, we will assume that 0 ≤ In < · · · < I1 ≤

N − 1 and that the I ∈ Zn. Denote by Jn,N the set

Jn,N = {I ∈ {0, . . . , N − 1}n, i1 > i2 > . . . > in}.
Definition 3.11 (Action ΦN and orbits). The translation action of Z on Jn,N is given by

ΦN : Z× Jn,N → Jn,N

(l, I = (i1 > · · · > in)) 7→ I + (l, . . . , l) [N ]

where the tuple I + (l, . . . , l)[N ] consists of the sequence of elements i1 + l[N ], . . . , in + l[N ] sorted in
the decreasing order.

Lemma 3.10 shows that F is invariant under the action of ΦN .

In order to give some properties of orbits of ΦN , let us recall the lexicographic order on Zn
≥0. For

I, J ∈ Zn−1
≥0 , let r∗ = inf1≤r≤n Ir ̸= Jr, with the convention that r∗ = 0 if I = J . We say that I > J if

Ir∗ > Jr∗ and I < J if Ir∗ < Jr∗ . This defines a total order on Zn
≥0 and by restriction on Jn,N .

Let Orbits(N) denote the orbits of the action of ΦN on Jn,N . For ΩN ∈ Orbits(N), denote by min(ΩN )
its minimal element with respect to the lexicographic order. Then, necessarily, (min(ΩN ))n = 0, other-
wise Φ(−1,min(ΩN )) would be an element of ΩN strictly inferior to min(ΩN ). For an ordered n-tuple
I of {0, . . . , N − 1}n, let Ω(I,N) denote its orbit under the action of ΦN .

Lemma 3.12 (Orbit structure for large N). Let I = (I1 > · · · > In−1 > In = 0). Then, for N large
enough, the orbit of I under the action of ΦN has cardinal N and I is its minimal element:

(3.32) ∃M = M(I),∀N ≥ M : I = min(Ω(I,N)) and |Ω(I,N)| = N.

Proof. Let GI,N denote the stabilizer of I under ΦN . Then, NZ ⊂ GI,N so that GI,N = pNZ for
some pN ≥ 1 such that pN |N . Set d(N) = N − I1 ≥ 1. Then, for pNZ to be the stabilizer of I, one
must have d(N) ≤ pN (recall that In = 0), for otherwise I1 + pN ̸∈ {I2, . . . , In}. However, as I1 is
fixed, for N > 2I1,

N
2 < d(N) ≤ pN which implies with pN |N that pN = N . Hence, for such N , the

corresponding orbit has cardinal N .

Let us show that I is minimal in its orbit Ω(I,N) when N is large enough. Take N such that
I1 <

N
2 . The only points J in the orbit of I such that Jn = 0 and J ̸= I are

{ΦN (−In−1, I),ΦN (−In−2, I), . . . ,ΦN (−I1, I)}
These tuples are all strictly greater than I since N−(Ik−Ik+1)−I1 ≥ N−2I1 > 0. Since the minimal
element of an orbit must have In = 0, the only possibility is I. □

Lemma 3.13 (Orbit decomposition). Let n,N be fixed. Then,

(3.33)
∑

I∈In,N

F (I, λ, µ, ν,N) =
∑

I:In=0

1I=min(Ω(I,N))|Ω(I,N)|F (I, λ, µ, ν,N).

Proof of Lemma 3.13. By the translation invariance of Lemma 3.10,

∑

I∈In,N

F (I, λ, µ, ν,N) =
∑

0≤In<···<I1≤N−1

F (I, λ, µ, ν,N)

We decompose the elements 0 ≤ In < · · · < I1 ≤ N − 1 along orbits of the action defined in Section
3.2.1. ∑

0≤In<···<I1≤N−1

F (I, λ, µ, ν,N) =
∑

Ω∈Orbits(N)

∑

I∈Ω
F (I, λ, µ, ν,N)

=
∑

Ω∈Orbits(N)

|Ω|F (min(Ω), λ, µ, ν,N)

=
∑

0≤In<···<I1≤N−1

1I=min(Ω(I,N))|Ω(I,m)|F (I, λ, µ, ν,N)
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□

We will need the following result which asserts that I1/N cannot be arbitrary close to one.

Lemma 3.14 (Uniform spacing of I1). Let n be fixed. Then,

∀N ≥ n,∀ Ω ∈ Orbits(N) :
(min(Ω))1

N
≤ 1− 1

n
.

Proof of Lemma 3.14. Let N ≥ n and consider Ω ∈ Orbits(N). Denote I = min(Ω) its minimal
element. Assume for the sake of contradiction that I1 > N − N

n . Divide the interval ]0, N ] in n

disjoint sub-intervals P1, . . . Pn of length N
n with

Pj =

]
j − 1

N

n
, j

N

n

]
, 1 ≤ j ≤ n.

Since I1 > N − N
n and In = 0, I1 and In both belong to the last interval Pn. There are n − 2

remaining elements I2 > · · · > In−1 to be placed inside the n − 1 unused intervals P1, . . . , Pn−1 and
Pn. Thus, there exists 1 ≤ j ≤ n − 1 such that I ∩ Pj = ∅. Take the maximal such j and consider

r = max{l ∈ [1, n] : Il ≥ jNn } the index of the smallest element of I greater than Pj . We claim that

J = ΦN (−Ir, I) < I

Indeed, since Pj is empty, J1 ≤ N − N
n < I1. This contradicts the fact that I is minimal in the orbit

ΩN .

I8

I7

I6

I5

I4
I3

I2

I1

P3P3

Figure 6. Illustration of the argument for N = 20 and n = 8. Red ticks are the jNn for
0 ≤ j ≤ n−1 delimiting the Pj ’s. Here j = 3 is the maximal index for which Pj is empty,
see the red arc for P3 and r = 6 with Ir = 9. The rotation ΦN (−Ir, I) = ΦN (−9, I) = J
is represented by the dotted arrow. J has J1 = I7− 9[20] = 15 which is strictly inferior
to I1 = 18 leading to a contradiction as I should be minimal in its orbit.

□

3.2.2. Convergence of scaled coefficients.

Lemma 3.15 (Control of F (I, λ, µ, ν,N)). Let n,N be fixed with n ≥ 3. Then,

(3.34)
N−n+1

N (n−1)(n−2)/2
|F (I, λ, µ, ν,N)| ≤ CI .

for some CI such that
∑

I:In=0CI < ∞.

Proof of Lemma 3.15. One has

|F (I, λ, µ, ν,N)| =

∣∣∣∣∣∣
det[e

2iπIrλ
′
s

N ] det[e
2iπIrµ

′
s

N ] det[e−
2iπIr(ν)

′
s

N ]

∆(ξI)

∣∣∣∣∣∣
≤ n3n

|∆(ξI)| .
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First,

1

|∆(ξI)| =
∏

1≤r<s≤n

∣∣∣∣exp
(
2iπIr
N

)
− exp

(
2iπIs
N

)∣∣∣∣
−1

=
∏

1≤r<s≤n

∣∣∣∣2 sin
(
π(Ir − Is)

N

)∣∣∣∣
−1

.

Recall that on [0, c] for 0 < c < π, one has by concavity sin(x) ≥ sin(c)
c x. Using Lemma 3.14 for I

minimal in its orbit,

∀1 ≤ r < s ≤ n : π
Ir − Is

N
≤ π

I1
N

≤ π

(
1− 1

n

)
,

so that

sin

(
π(Ir − Is)

N

)
≥ cn

Ir − Is
N

with cn = sinπ(1−1/n)
(1−1/n) . Thus,

1

|∆(ξI)| ≤
(

N

2cn

)n(n−1)/2 ∏

1≤r<s≤n

1

Ir − Is
.

It remains to prove that
∑

I:In=0
1

∆(I) < ∞. We will proceed by induction on n. For n = 3, the sum is

∑

I1>I2>I3=0

1

(I1 − I2)I1I2
=
∑

I2≥1

1

I2

∑

I1≥I2+1

1

(I1 − I2)I1
.

Moreover, for I2 ≥ 1,

∑

I1≥I2+1

1

(I1 − I2)I1
≤ 1

I2 + 1
+

∫ ∞

I2+1

1

t(t− I2)
dt =

1

I2 + 1
+

ln(I2 + 1)

I2

which proves the convergence for n = 3 since
∑

I2≥1
1
I2

(
1

I2+1 + ln(I2+1)
I2

)
= C < ∞ . For n ≥ 4,

∑

I1>···>In−1>In=0

∏

1≤r<s≤n

(Ir − Is)
−1 =

∑

I2>···>In−1>In=0

∏

2≤r<s≤n

(Ir − Is)
−1
∑

I1>I2

∏

2≤s≤n

(I1 − Is)
−1

and, since

∑

I1>I2

∏

2≤s≤n

(I1 − Is)
−1 ≤

∑

I1>I2

(I1 − I2)
−(n−1) ≤ c3 =

π2

6
,

we have

∑

I1>···>In−1>In=0

∏

1≤r<s≤n

(Ir − Is)
−1 ≤ c3

∑

I2>···>In−1>In=0

∏

2≤r<s≤n

(Ir − Is)
−1 ≤ cn−3

3 C < ∞.

Therefore,

N−n+1

N (n−1)(n−2)/2
|F (I, λ, µ, ν,N)| ≤ n3n

|∆(ξI)| = CI .

with
∑

I:In=0CI < ∞ as wanted.
□

Lemma 3.16 (Pointwise convergence). Let (α, β, γ) ∈ H3 such that
∑n

i=1 αi+
∑n

i=1 βi =
∑n

i=1 γi+ d
for d ∈ N. For N ≥ 1, let (λN , µN , νN ) be three partition in Zn

N−n such that |λN |+ |µN | = |νN |+ dN
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for some d ∈ Z≥0 and such that 1
N λN = α+ o(1), 1

N µN = β+ o(1) and 1
N νN = γ+ o(1) as N → +∞.

Let I = I1 > · · · > In−1 > In = 0 be fixed. Then,

lim
N→∞

N−nδI=min(Ω(I,N))|Ω(I,N)|
N (n−1)(n−2)/2

F (I, λN , µN , νN , N) = lim
N→∞

N−n+1

N (n−1)(n−2)/2
F (I, λN , µN , νN , N)

(3.35)

= (2π)−n(n−1)/2 1

∆(I)
det[e2iπαrIs ] det[e2iπβrIs ] det[e−2iπγrIs ].(3.36)

Proof of Lemma 3.16. The first equality is derived from Lemma 3.12 which implies that for any I and
N large enough

δI=min(Ω(I,N))|Ω(I,N)| = N.

For a fixed n ≥ 3, by continuity,

lim
N→∞

det

[
exp

(
2iπIr(λN,s + s− 1)

N

)]
= det[exp (2iπIrαs)]

lim
N→∞

det

[
exp

(
2iπIr(µN,s + s− 1)

N

)]
= det[exp (2iπIrβs)]

lim
N→∞

det

[
exp

(
−2iπIr(νN,s + s− 1)

N

)]
= det[exp (−2iπIrγs)]

lim
N→∞

N−n+1

N (n−1)(n−2)/2∆(ξI)
=

(
1

2π

)n(n−1)/2 1

∆(I)

where for the last convergences, we used that sin
(
π(Ir−Is)

N

)
∼ π(Ir−Is)

N for a fixed subset I. The four

convergences above imply the result.
□

Proof of Theorem 3.8. From (3.29), together with Lemma 3.13, one has

cνN ,d
λN ,µN

= N−n
∑

I:In=0

δI=min(Ω(I,N))|Ω(I,N)|F (I, λN , µN , νN , N).

By Lemma 3.16 and Lemma 3.15 using the dominated convergence theorem we have that

lim
N→∞

N−(n−1)(n−2)/2cνN ,d
λN ,µN

=
∑

I:In=0

(2π)−n(n−1)/2

∆(I)
det[e2iπαrIs ] det[e2iπβrIs ] det[e−2iπγrIs ] = J [γ|α, β],

where J [γ|α, β] was defined in (3.25) and is such that

dP[γ|α, β] = sf(n− 1)(2π)(n−1)(n−2)/2∆(e2iπγ)

∆(e2iπα)∆(e2iπβ)n!
J [γ|α, β].

□

4. Puzzles of the quantum cohomology of Grassmannians and their skeleton

The main goal of this section is a rewriting of the puzzle formula of [6] for the expression of quantum
LR-coefficient in terms of a a more compact form approaching the hive model yielding the classical
LR-coefficients, see [19].

4.1. Triangular grid.

Definition 4.1 (Triangular grid). The triangular grid of size N , denoted by TN , is the planar graph

whose vertices are the set VN = {r + seiπ/3, r, s ∈ N, r + s ≤ N} and edges are the set EN =
{(x, y), x, y ∈ TN , |y − x| = 1}.

The set FN of faces of TN are triangles which are called direct (resp. reversed) if the corresponding

vertices (x1, x2, x3) ∈ V 3
N can be labelled in such a way that x2 − x1 = 1 and x3 − x1 = eiπ/3 (resp.

x3 − x1 = e−iπ/3).
Any union of two triangles sharing an edge e is called a lozenge, and e is then called the middle

edge of the lozenge.
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We denote by F+
N (resp. F−

N ) the set of directed (resp. reversed) triangles, so that FN = F+
N ∪ F−

N .
For e ∈ EN , f ∈ FN , we write e ∈ f when e is an edge on the boundary of f .
Remark that the set of edges can be partitioned into three subset depending on their orientation. If
x = r + seiπ/3 ∈ TN we define three coordinates

x0 = N − (r + s), x1 = r, x2 = s,

and we usually denote an element of TN by those three coordinates to emphasize the threefold sym-
metry of the triangle. We say that an edge e = (x, x+v) is of type ℓ, ℓ ∈ {0, 1, 2} when v = eiπ+2ℓiπ/3.

Type 0

Type 1

Type 2

Origin of the edge

Figure 7. Type of an edge in TN

Definition 4.2 (Edge coordinates). For x ∈ TN and ℓ ∈ {0, 1, 2} such that x + eiπ+2ℓiπ/3 ∈ TN , the

coordinates of the edge e = (x, x + eiπ+2ℓiπ/3) of type ℓ is the triple (e0, e1, e2) given by ei = xi. We
define the height h(e) of an edge of type ℓ by

h(e) = eℓ.

If e = (x, y) is of type ℓ, we have

(4.1) yℓ = xℓ + 1, yℓ−1 = xℓ−1, yℓ+1 = xℓ+1 − 1.

We denote by E
(ℓ)
k the set of edges of type ℓ. Remark that the height of an edge does not characterize

its position, since for example the translations of an edge of type 1 by eiπ/3 will have the same height.

Definition 4.3 (Discrete boundary). The boundary ∂TN of the triangular grid TN is the set of edges

(x, y) lying on the boundary of the triangle [0, N ] ∪ [N,Neiπ/3] ∪ [0, Neiπ/3].

The boundary ∂TN can be decomposed into three subsets ∂T
(i)
N , 0 ≤ i ≤ 2, where each set ∂T

(i)
N

consists of edges of type i. The coordinates of the corresponding edges are then the following.

∂T
(0)
N = ((r,N − r, 0), 0 ≤ r ≤ N − 1) ,

∂T
(1)
N = ((0, r,N − r), 0 ≤ r ≤ N − 1) ,

∂T
(2)
N = ((N − r, 0, r), 0 ≤ r ≤ N − 1) .

4.2. Puzzles and the quantum-LR coefficients. We will mainly work on puzzles describing the
two-step flag cohomology from [6], in the special case where they describe the quantum Littlewood-
Richardson coefficients previously introduced in Section 3.

Let us consider the set of puzzle pieces given in Figure 8, which are considered as the assignment of
a label in {0, . . . , 7} to edges of TN around a triangular face. Each piece can be rotated by a multiple
of π

3 but not reflected.
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0

0

00 1 1

1

1

3

40

7

3

2

22 2 1

4

2

5

20

6

Figure 8. Possible pieces of the puzzle

Definition 4.4. A triangular puzzle of size N ≥ 1 is a map P : EN → {0, . . . , 7} such that the value
around each triangular face belongs to the set of possible puzzle piece displayed in Figure 8.

The boundary coloring ∂P of a puzzle P is the sequence (ω0, ω1, ω2) such that ωℓ is the sequence

(P (e))e∈∂(ℓ)TN
, where ∂(ℓ)TN is the sequence of boundary edges of TN of type ℓ ordered by their height.

For any triple (ω0, ω1, ω2) of words in {0, 1, 2}N , we denote by P (ω0, ω1, ω2) the set of puzzles whose
boundary coloring is (ω0, ω1, ω2). For 0 ≤ k0 ≤ k0 + k1 ≤ N , denote by Fl(k0, k1, N) the two-step flag
manifold

Fl(k0, k1, N) = {V0 ⊂ V1 ⊂ CN , dimV0 = k0,dimV1 = k0 + k1}.
The cohomology ring HFl(k0, k1, N) admits a basis {σω} of Schubert cycles indexed by words in
{0, 1, 2}N with k0 occurrences of 0 and k1 occurrences of 1. Proving a conjecture of Knutson, it
has been shown in [6] that the previously constructed puzzles describe the structure constants of
HFl(k0, k1, N).

Theorem 4.5 ([6]). For any triple (ω0, ω1, ω2) of words in {0, 1, 2}N with same number of occurrences
k0 of 0 and k1 of 1,

⟨σω0σω1σω2 , σ0⟩HFl(k0,k1,N) = #P (ω0, ω1, ω2),

where σ0 is the fundamental class of HFl(k0, k1, N).

Thanks to a previous work [7] relating the quantum cohomology of Grassmannians to the classical
cohomology of the two-step flag manifold, Theorem 4.5 yields a similar expression in terms of puzzles
for the quantum Littlewood-Richardson coefficients.

Corollary 4.6 ([6]). Let 1 ≤ n ≤ N and λ0, λ1, λ2 be partitions of length n with first part smaller

than N − n such that |λ1| + |λ2| = |λ0| + Nd. Then, cλ
0,d

λ1,λ2 = #P (ω0, ω1, ω2), where ωℓ, ℓ ∈ {0, 1, 2}
are constructed as follows :

(1) for ℓ ∈ {1, 2}, set ωℓ(λ
ℓ
i + (n− i)) = 0 for 1 ≤ i ≤ n and ωℓ(i) = 2 otherwise,

(2) set ω0(N − 1− (λ0
i + (n− i))) = 0 for 1 ≤ i ≤ n and ω0(i) = 2 otherwise,

(3) for ℓ ∈ {0, 1, 2}, replace the d last occurrences of 0 and the d first occurrences of 2 in ωℓ by 1.

The goal of this section and the next one is then to give a convex formulation of the latter results,
yielding Theorem 5.3 for the expression of the structure constants of HFl(k0, k1, N) and Corollary 5.4
for the corresponding result concerning the quantum Littlewood-Richardson coefficients.

4.3. Edge, vertex and face partitions. The set of pieces can be further simplified in two steps.
First, gluing two pieces with edges having label 2 along an edge labeled 4, 5 or 6 yields lozenges with
edge labelled 2 and either 0, 1 or 3; then concatenating consecutively such lozenges having same label
0, 1 or 3 and considering also the triangle with all edges labeled 2 yield the pieces of Figure 10, which
are called pieces of type II. Let us then call pieces of type I any piece displayed in Figure 9 which
consists of the first three triangles of Figure 8 and pieces obtained by concatenating two pieces with
label (2, 4, 1) and an arbitrary even number of pieces with label (4, 7, 0). We will first show that a
puzzle P is completely characterized by the position of pieces of type I.

Let us first mention a first general result on height of edges on the border of a same triangle.
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11

0

00 1 1

1

1

3

0 0 0

02

2

0

00

Figure 9. Puzzle pieces of type I.

0 0

2 2 2 2

2 2 2 2

3 3

1 1

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

22

Figure 10. Puzzle pieces of type II.

Lemma 4.7 (Triangle sum). Suppose that f is a face of TN with edges e0, e1, e2. Then,

h(e0) + h(e1) + h(e2) = N − 1 if f is direct

h(e0) + h(e1) + h(e2) = N − 2 if f is reversed.
(4.2)

Moreover, eii−1 = ei−1
i−1 (resp. eii−1 = ei+1

i−1), for i ∈ {0, 1, 2} if f is direct (resp. reversed).

Proof. A direct triangle has edges e0 = (N − (i+ j + 1), i+ 1, j), e1 = (N − (i+ j + 1), i, j + 1) and
e2 = (N − (i+ j), i, j) for some 0 ≤ i, j ≤ N − 1 with i+ j ≤ N − 1, so that

h(e0) + h(e1) + h(e2) = N − 1 + 0 + 0 = N − (i+ j + 1) + i+ j = N − 1.

A reversed triangle has edges e0 = (N − (i + j + 1), i, j + 1), e1 = (N − (i + j), i − 1, j + 1) and
e2 = (N − (i+ j), i, j) for some 1 ≤ i, j ≤ N − 1 with i+ j ≤ N − 1, so that

h(e0) + h(e1) + h(e2) = N − 1 + 0 + 0 = N − (i+ j + 1) + i− 1 + j = N − 2.

It is also clear from the coordinates of the edges that eii−1 = ei−1
i−1 (resp. eii−1 = ei+1

i−1) for i ∈ {0, 1, 2}
if the triangle is direct (resp. reversed). □

Definition 4.8 (Edge set, vertex, edge and face partitions). The edge set of a puzzle P is the set E
of edges labeled 0, 1, 3 of either a type I piece or on the boundary.

The vertex partition of E is the covering Pv of E whose sets of size greater than one consist of all
the edges colored {0, 1, 3} of a same type I piece and singletons consists of edges of E on the boundary
of TN not belonging to a type I piece.

The edge partition of E is the set partition Pe of E whose blocks of size greater than one consist of
edges of a common type II piece.

The face partition Pf is the set partition of VN whose blocks are the connected components of the
subgraph of TN obtained by only keeping the edges colored 2.

Remark that Pe can also have singletons. An element e ∈ E is a singleton of Pe if and only if it is
a common edge of two type I pieces. However, no element of E can be a singleton of both Pv and Pe,
since a border edge colored 0 or 1 not belonging to a type I piece has to belong to a type II piece.
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Lemma 4.9 (Blocks of Pv). A block of order 3 in Pv consists of three edges e0, e1, e2 of type 0, 1, 2
such that

• either eii−1 = ei−1
i−1, i ∈ {0, 1, 2} and

∑2
i=0 h(e

i) = N − 1, or eii−1 = ei+1
i−1, i ∈ {0, 1, 2} and∑2

i=0 h(e
i) = N − 2,

• (c(e0), c(e1), c(e2)) is either (0, 0, 0), (1, 1, 1) or any cyclic permutation of (0, 1, 3).

A block of order 2(r + 1), r ≥ 2 in Pv consists of 2(r + 1) edges {e0, f1, . . . , f r, e0
′
, f1′ , . . . , f r′} such

that

• e0, e0
′
are of type i and f1, . . . , f r, f1′ , . . . , f r′ are of type i+ 1 mod 3 for some i ∈ {0, 1, 2},

• h(e0) = h(e0
′
) and f1

i = · · · = f r
i = f1′

i + 1 = · · · = f r′
i + 1 = h(e0) + 1,

• h(fs) = h(fs′) = h(f1) + (s− 1) = e0
′

i+1 for 1 ≤ s ≤ r,

• the edges f0 and f r+1′ of type i + 1 with f r+1
i = f r+1′

i + 1 = h(e0) + 1 and h(f0) = e0
′

i+1 − 1

and h(f r+1′) = e0i+1 − 1 are not in E.
Any edge e ∈ E belongs to at most two blocks of Pv.

Proof. In the case of a block of order 3, {e0, e1, e2} is a triangle of TN and the results on the height
of the edges is given by Lemma 4.7. The results on the color of the edges is given by the possible
coloring of edges of Type I pieces from Figure 9.

In the case of a block B of order 2(r + 1), the edges correspond to the boundary edges not colored
2 of a puzzle piece of the last shape of Figure 9. We can thus first label cyclically the boundary
edges colored 0 and 1 as {e0, f1, . . . , f r, e0

′
, f1′ , . . . , f r′} so that e0 and e0

′
are colored 1 and of type

i ∈ {0, 1, 2} and f i, f i′ , 1 ≤ i ≤ r are colored 0 and are of type i+1. Then, remark that such a piece is
the concatenation of r + 1 direct triangles T1, . . . , Tr+1 and r + 1 reversed triangles T ′

1, . . . , T
′
r+1 such

that Ti and T ′
i (resp. T

′
i and Ti+1) share an edge of type i+1 (resp. i− 1), e0 (resp. e0

′
is the edge of

type i of T1 (resp. T ′
r+1) end f i (resp. f i′) is the edge of type i+ 1 of T ′

i (resp. Ti+1). The relations
giving the height and the labels of the edges are then direct consequences of Lemma 4.7. □

Definition 4.10 (Admissible pair and strip). A pair B = {e1, e2} ⊂ EN of edges is called admissible
if e1 and e2 have same type j ∈ {0, 1, 2} and same height.

The strip SB of an admissible pair B = {e1, e2} of type j is the set of all edges e = (x, y) ∈ EN

such that x, y belong to the parallelogram delimited by e1 and e2. Namely, if e1j = e2j and e2j−1 ≤ e1j−1,

SB is the set of edges (x, y) such that e1j ≤ xj , yj ≤ e1j + 1, e2j−1 ≤ xj−1, yj−1 ≤ e1j−1.
The boundary ∂2SB of a strip SB consists of all edges of SB type j + 1.

Remark that such a definition is still valid if e1 = e2, in which case B = {e1} is always admissible
and SB = {e1}. In particular, for any B ∈ Pe for a puzzle P , SB consists of all edges appearing on
the type II piece bordered by elements of B: B coincide exactly the boundary edges of SB which are
not labeled 2 and ∂2SB consists of the boundary edges of the type II piece which are labeled 2 (that
is, all boundary edges except for B).

Moreover, given a pair B = {e1, e2} of edges of same type j and same height, one can rephrase the
condition of belonging to the strip SB depending on the type of the edge we consider:

• if e has type j, e ∈ SB if and only if ej = e1j and ej−1 ∈ [e2j−1, e
1
j−1],

• if e has type j + 1, e ∈ SB if and only if ej ∈ {e1j , e1j + 1} and ej−1 ∈]e2j−1, e
1
j−1],

• if e has type j − 1, e ∈ SB if and only if ej = e1j + 1 and ej−1 ∈ [e2j−1, e
1
j−1[.

Lemma 4.11 (Edge partition pairs are admissible). Let P be a puzzle and Pe the corresponding edge
partition. Any pair {e1, e2} ∈ Pe (with possibly e1 = e2) is admissible and is such that c(e1) = c(e2) ∈
{0, 1, 3}. For any different blocks B,B′ ∈ Pe, SB ∩ SB′ ⊂ ∂2SB ∩ ∂2SB′.

Proof. Recall that blocks of Pe of size greater that one corresponds to edges colored 0, 1 or 3 on the
border of a same Type II piece from 10. In particular the blocks of size greater than ones are only
pairs, and the first part of the lemma is a direct consequence of the possible type II pieces of Figure
10.

For the second part of the lemma, remark first that for any block {e1, e2} in Pe, SB ∩ E = B: first,
boundary edges of SB are either colored 0, 1 or 3 and in B or colored 2 and not in E . Then, interior
edges of SB which are colored 0, 1 or 3 are boundary edges of two pieces with the same labelling of
the second row of Figure 8 and thus are not in E (remark that the second piece of the second row of
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Figure 8 is used in the last type I piece of Figure 8 but is surrounded by pieces with different boundary
labels).

Consider two different blocks B,B′ ∈ Pe. Let e ∈ SB ∩ SB′ . Remark that any edge of SB or SB′ is
not on the border of the strip if and only if it is neither in B∪B′ nor colored 2. Hence, if e is colored 2,
then e ∈ ∂2SB ∩∂2SB′ . Suppose by contradiction that e is not colored 2. Since B∩SB′ = SB ∩B′ = ∅
and e is not colored 2, e belongs to the interior of both SB and SB′ : hence, the two triangular puzzle
pieces whose boundary is e belong to SB and SB′ , and we deduce that there is an edge f1 colored 0, 1
or 3 which belong to SB ∩SB′ . If f1 ̸∈ B ∪B′, f1 belong to the interior of SB and SB′ , and thus there
exists an edge f2 ∈ SB ∩ SB′ with f2

i+1 = f1
i+1 + 1. Let us repeat the process until there is an edge

fs ∈ SB ∩ SB′ which belongs to either B or B′. This means that B ∩ SB′ or B′ ∩ SB is not empty,
which contradicts the fact proven previously that SB ∩ E = B and SB′ ∩ E = B′. Hence, any edge not
colored 2 does not belong to SB ∩ SB′ . □

Definition 4.12 (Crossing pairs). We say that two admissible pairs B = {e1, e2} and B′ = {e3, e4}
of EN cross when

• either B ∩ SB′ ̸= ∅ or B′ ∩ SB ̸= ∅,
• or B = {e1, e2}, B′ = {e3, e4} are blocks of size two which are of respective type j, j + 1 for
some j ∈ {0, 1, 2}, and

e3j ≤ e1j = e2j ≤ e4j e1j+1 ≤ e3j+1 = e4j+1 < e2j+1.

Lemma 4.13 (Non-crossing condition). For any distinct pairs B,B′ ⊂ EN , the two following prop-
erties are equivalent :

(1) B and B′ do not cross,
(2) SB ∩ SB′ ⊂ ∂2SB ∩ ∂2SB′.

Proof. Let B,B′ be admissible pairs of EN .
If B is a singleton, then ∂2SB = ∅ and thus ∂2SB ∩ ∂2SB′ = ∅. Moreover, since B is a singleton,

B = SB. Hence, the non-crossing condition is equivalent to SB ∩ SB′ = ∅, and B and B′ do not cross
if and only if SB ∩ SB′ ⊂ ∅ = ∂2SB ∩ ∂2SB′ .

If B = {e1, e2} and B′ = {e3, e4} are pairs of the same type j ∈ {0, 1, 2}, the non-crossing condition
means that B∩SB′ = ∅ and B′∩SB = ∅. Suppose that B and B′ cross, and without loss of generality,
assume that B ∩ SB′ ̸= ∅. Since B ∩ ∂2SB = ∅, we deduce that B ∩ SB′ ̸⊂ ∂2SB ∩ ∂2SB′ . Hence,
SB ∩ SB′ ̸⊂ ∂2SB ∩ ∂2SB′ .

Reciprocally, suppose that SB ∩ SB′ ̸⊂ ∂2SB ∩ ∂2SB′ , and assume without loss of generality that
SB ∩ SB′ ∩ (SB \ ∂2SB) ̸= ∅. Since ∂2SB is the set of edges of SB of type j + 1, there exists an
edge e = (x, y) of type j or j − 1 in SB ∩ SB′ . If e is of type j, this means that ej = e1j = e2j and

ej+1 ∈ [e1j+1, e
2
j+1]. Similarly, ej = e3j = e4j and ej+1 ∈ [e3j+1, e

4
j+1]. Hence, [e

1
j+1, e

2
j+1]∩[e3j+1, e

4
j+1] ̸= ∅,

and the extremity of one of these intervals is contained in the other. Assume without loss of generality
that e1j+1 ⊂ [e3j+1, e

4
j+1]. Then, e1 is an edge of type j such that e1j = e3j = e4j and e1j+1 ∈ [e3j+1, e

4
j+1],

thus e1 ∈ SB′ and thus B∩SB′ ̸= ∅. If e = (x, y) is of type j−1, then xj−1 = yj−1−1 and xj = yj+1,
see (4.1). Hence, the conditions xj , yj ∈ {e1j , e1j + 1} and xj−1, yj−1 ∈ [e2j−1, e

1
j−1] from Definition 4.10

yield that e′ = (x′, x) with x′j = yj and x′j−1 = xj is an edge of type j which belongs to SB. Similarly,

e′ ∈ SB′ , and the previous reasoning allows to conclude that B ∩ SB′ ̸= ∅ or B′ ∩ SB ̸= ∅.
Suppose finally that B = {e1, e2} and B′ = {e3, e4} are pairs of respective type j and j + 1 for

j ∈ {0, 1, 2}. Remark first that edges of ∂2SB have type j + 1 and edges of ∂2SB′ have type j + 2, so
that ∂2SB ∩ ∂2SB′ = ∅.

Suppose that B and B′ cross. First, if B ∩ SB′ ̸= ∅ or B′ ∩ SB′ ̸= ∅, then SB ∩ SB′ ̸= ∅ and thus
SB ∩ SB′ ̸⊂ ∂2SB ∩ ∂2SB′ . Suppose that B ∩ SB′ = B′ ∩ SB′ = ∅, and thus

e3j ≤ e1j = e2j ≤ e4j e1j+1 ≤ e3j+1 = e4j+1 < e2j+1.

Consider the edge e = (x, y) of type j + 1 with xj = e1j and xj+1 = e3j+1. Since e is of type j + 1,

yj = xj and yj+1 = xj+1 + 1. First, since xj+1, yj+1 ∈ {e3j+1, e
3
j+1 + 1} and xj = yj = e1j ∈ [e3j , e

4
j ],

e ∈ SB′ . Then, remark that

xj−1 = N − (xj + xj+1) = N − e1j − e3j+1, e
1
j−1 = N − e1j − e1j+1, e

2
j−1 = N − e2j − e2j+1.
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From the equality e1j = e2j and e1j+1 ≤ e3j+1 < e2j+1, we deduce that xj−1 ∈]e2j−1, e
1
j−1]. Since yj−1 =

N − yj − yj+1 = N − xj − xj+1 − 1 = xj−1 − 1, yj−1 ∈ [e2j−1, e
1
j−1]. The two latter inclusions together

with yj = xj = e1j yield that e ∈ SB. In particular, SB ∩ SB′ ̸= ∅ and thus SB ∩ SB′ ̸⊂ ∂2SB ∩ ∂2SB′ .

Suppose that SB ∩ SB′ ̸= ∅. If B ∩ SB′ ̸= ∅ or B′ ∩ SB ̸= ∅, then B and B′ cross. When
B ∩ SB′ = B′ ∩ SB = ∅, then SB ∩ SB′ ̸= ∅ if and only if ∂2SB ∩ SB′ ̸= ∅. One implication is
straightforward. For the other implication, remark that there is necessarily an edge e ∈ SB ∩ SB′

which belongs to B or ∂2SB, and since B∩SB′ = ∅, e ∈ ∂2SB. In particular, since B has type j, edges
of ∂2SB have type j + 1 and thus e has type j + 1.

The edge e = (x, y) of type j + 1 belongs to ∂2SB if and only
{
xj = yj ∈ {e1j , e1j + 1},
xj−1 ∈ [e2j−1, e

1
j−1] and yj−1 = xj−1 − 1 ∈ [e2j−1, e

1
j−1].

Similarly e of type j + 1 to belong to SB′ if and only if
{
xj+1 = yj+1 − 1 = e3j+1 = e4j+1,

xj = yj ∈ [e3j , e
4
j ].

Hence, e ∈ ∂2SB ∩ SB′ if and only if
{
xj = yj ∈ {e1j , e1j + 1} ∩ [e3j , e

4
j ], xj+1 = yj+1 − 1 = e3j+1

N − xj − e3j+1 ∈]N − e2j − e2j+1, N − e1j − e1j+1].

If xj = e1j , the latter conditions imply
{
e3j ≤ e1j = e2j ≤ e4j ,

e1j+1 ≤ e3j+1 = e4j+1 < e2j+1.

If xj = e1j + 1, the latter conditions yield
{
e3j − 1 ≤ e1j = e2j ≤ e4j − 1, xj+1 = yj+1 − 1 = e3j+1

e1j+1 − 1 ≤ e3j+1 = e4j+1 < e2j+1 − 1.

If e3j − 1 = e2j and e1j+1 − 1 ≤ e3j+1 < e2j+1 − 1, then e3j = e2j + 1 and

e3j−1 = N − e3j − e3j+1 ∈]N − e2j − e2j+1, N − e2j − e1j+1] =]e2j−1, e
1
j−1],

so that e3 ∈ SB by the condition following Definition 4.10. Likewise, if e3j+1 = e1j+1−1 and e1j ∈ [e3j , e
4
j ],

then e1 ∈ SB′ . Hence, the fact that B ∩ SB′ = B′ ∩ SB = ∅ strengthens the above condition to imply
{
e3j ≤ e1j = e2j ≤ e4j ,

e1j+1 ≤ e3j+1 = e4j+1 < e2j+1.

□

From the latter lemma, we deduce a description of puzzles in terms of their type I pieces.

Proposition 4.14 (Partitions determine puzzles). The map Φ : P 7→ (E , c) is a bijection from the set
of puzzles to the set of subsets of EN with a coloring c : E → {0, 1, 3} such that there exist a covering
Pv and a partition Pe of E with

• blocks of Pv are of size 3 or 2(r + 1), r ≥ 1 and satisfy the properties of Lemma 4.9,
• blocks of Pe are either singletons or pairs satisfying the properties of Lemma 4.11,
• If e belong to only one block of Pv, then e is not a singleton of Pe and if e ̸= e′ belong to a
same block of Pv, then {e, e′} ̸∈ Pe.

Proof. Let us build the candidate inverse bijection, and consider a subset E ⊂ EN with a coloring
c : E → {0, 1, 3} and a covering Pv and a partition Pe satisfying the conditions of Proposition 4.14. For
each pair B = (e, e′) ∈ Pe of type i and color c, color all edges of type i (resp. i+1, resp. i+2) of the
strip SB \ {e, e′} with the color c (resp. 2, resp. c+ 5). Remark that such a coloring is possible, since
by properties of Lemma 4.11, any edge belonging to SB ∩ SB′ for two strips of respective types i, i′

must be included in the boundary ∂2SB∩∂2SB′ , which consists then of edges of same type i+1 = i′+1
colored 2 by the above rule.
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Then, consider any block B ∈ Pv of order 2(r+1) whose edges e, e′ colored 1 are of type i. Remark
then that by the properties of Lemma 4.9, B = {e, e′} is an admissible pair of edges of E of same color
1. Moreover, all edges but two of the boundary ∂2SB of the strip SB consists of edges of E colored 0.

Let i be the type of B, and suppose by contradiction that there is an edge e0 of type i or i − 1
inside the strip SB which is contained in a strip SB̃ for some B̃ ∈ Pe. Suppose first that B̃ ̸= {e0}.
Then, since e0 shares a vertex with at least three edges of type i+ 1 colored 0, SB̃ must contain one

of those three edges, called f1; since Pe is non-crossing and f1 ∈ E ∩SB̃, f
1 ∈ B̃ and thus B̃ is of type

i+ 1. Since e0 ∈ SB̃ and B̃ is of type i+ 1, the other edge f2 of SB with same height as f1 must also

belong to SB̃, and by the non-crossing condition we have B̃ = {f1, f2}. This contradicts the fact that
two elements of the same block of Pv do not belong to the same block of Pe.

If e0 is a singleton of Pe, then e ∈ E and belongs to at least two blocks of Pv. Hence, there must be
another edge e1 between e0 and e in the strip SB which belongs to E . Iterating the process yields an
edge ẽ such that e and ẽ belong to a same block B̃ in Pv. Then, ẽ cannot be of type i− 1 otherwise
this block would be a block of order 3, contradicting the fact that the edge f of type i + 1 with
fi = ei, fi+1 = ei+1− 1, which would then belong to this block B̃, does not belong to E . Similarly, if ẽ
is of type i, then e and ẽ would be boundary edges of type I piece with 2(r′+1) edges, with 1 ≤ r′ < r.
This is impossible since the boundary ∂2S{e,ẽ} contains at most one edge which is not in E . Hence, no
edge of type i or i − 1 inside SB belongs to some strip SB for B ∈ Pe and thus none of those edges
has been colored 2 in the previous labelling. Therefore, one can color all type i edge in SB̃ different
from e, e′ with the label 7 and all type i− 1 edge in SB̃ with label 6.

Finally, the edge f of type i + 1 with fi = ei, fi+1 = ei+1 − 1 can not be part of a strip SB̃ for

some B̃ = (f1, f2) of type i+1 or i− 1, for otherwise e would also belong to SB̃ and Pe would not be
non-crossing. Hence, either f ∈ ∂2SB for some strip SB and f has been labelled 2 in the first coloring
step, or f has not been colored before and thus f can be colored 2.

Color all remaining edges with the label 2. One then checks that the labels on the boundary of any
triangle of the puzzle satisfy the conditions of Figure 8, so that the labelling of edges of EN yields a
genuine puzzle P . It is then straightforward to check that Pv = Pv and Pe = Pe. The map Φ is thus
surjective.

For the injectivity, remark that the data of Pv alone gives the list and position of type I pieces of
the puzzle, which uniquely characterizes it. □

4.4. Graph of a puzzle.

Definition 4.15 (Graph of a puzzle). The graph of a puzzle P is the graph GP whose set of vertices
is Pv, set of edges is Pe and set faces is Pf .

The endpoints of an edge Be ∈ Pe are the vertices Bv, Bv′ ∈ Pv such that Be ∩ Bv ̸= ∅ and
Be ∩Bv′ ̸= ∅.

The boundary of a face Bf ∈ Pv are the edges B ∈ Pe such that there is e ∈ B, v ∈ Bf such that v
is an endpoint of e. A face Bf ∈ Pf is called an outer face (resp. inner face) if there is an element
(resp. no element) v ∈ Bf on the border of TN .

Remark that elements of Pv and Pe are sets of edges of TN while elements of Pf are set of vertices
of TN . Moreover, any edge B ∈ Pe has a type ℓ ∈ {0, 1, 2} and a color c ∈ {0, 1, 3}, which is the type
and the color of the edges of TN in B.

Let Bf ∈ Pf and denote by ∂Bf the set of edges on the boundary of Bf . Then, there is a natural
cyclic order on ∂Bf such that ∂Bf = (B1 < . . . < Bp) where Bi and Bi+1 share a vertex of Pv and
the edges of ∂Bf are read in the clockwise order around the region Bf .

Lemma 4.16 (Type of face boundaries). Let Bf ∈ Pf . Then, the sequence of type of edges on the
boundary of Bf is a subsequence of (0, 1, 2, 0, 1, 2) (up to cyclic rotation), and two consecutive edges
B < B′ on the boundary of Bf sharing a vertex Bv ∈ Pv are

• of type (ℓ, ℓ+1) if Bv is a block of size three and the color of B and B′ are either both 0, both
1 or (3, 0), (0, 1) or (1, 3), or a block of size 2r, r ≥ 2 and B,B′ have respective color (0, 1).

• of type (ℓ, ℓ+ 2) if Bv is a block of size 2r, r ≥ 2 and B and B′ have color (0, 1),
• of type ℓ if Bv is a block of size 2r, r ≥ 3 and B and B′ have color 0.

Proof. Let (B1, . . . , Bp) be the previously defined cyclic ordering of the edges around Bf such that
Bi, Bi+1 share a vertex in Pv. Let 1 ≤ i ≤ p and denote by ℓ the type of Bi. Since Bi, Bi+1 share the
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vertex Bv, there exist ei ∈ Bi and ei+1 ∈ Bi+1 such that ei, ei+1 ∈ Bv. Since ei, ei+1 are not colored
2, the type and colors of ei (resp. ei+1) are the ones of Bi (resp. Bi+1).

If Bv is a block of size 3, then it is a triangle vertex whose boundary colors in the clockwise order
are either (0, 0, 0), always (1, 1, 1), or (1, 3, 0) up to a rotation. Since the angle between ei and ei+1 is
−π/3, the type of ei+1 is ℓ+ 1, and the colors Bi, Bi+1 are either (0, 0), (1, 1), (3, 0), (0, 1) or (1, 3).

If Bv is a block of size 2(r + 1), r ≥ 1, then 3 configurations can occur depending on the colors of
the consecutive edges :

• if ei is colored 1 and ei+1 is colored 0, then the type of ei+1 is ℓ+ 1,
• if ei is colored 0 and ei+1 is colored 1, then the type of ei+1 is ℓ− 1,
• if ei and ei+1 are both colored 0 then the edges are adjacent and have same type ℓ. Remark
that in this case, the vertex Bv must have at least 6 edges.

Finally, remark that the angle between two consecutive edges Bi, Bi+1 is equal to (1 − ri/3)π if the
difference of the type from Bi to Bi+1 is ri (with ri = 3 if Bi and Bi+1 have both type ℓ). Since the
sum of the angles must be equal to the (p− 2)π if Bf is an inner face and smaller otherwise, we must
have

∑p
i=1(1− ri/3) ≤ p− 2, so that

p∑

i=1

ri ≤ 6.

We deduce that the sequence of types of edges of the boundary must be a subsequence of (0, 1, 2, 0, 1, 2),
up to cyclic permutation. □

5. Discrete two-colored dual hive model

In this section, we associate to each puzzle of size N a two-colored hive in the same spirit as in [19].
Beware that because of the rigid crossings from Figure 9, the discrete hives won’t be actual hives as
in [19] but rather a dual hive. Let us fix in this section the number k of edges colored 0 or 1 on one
edge of the puzzles. This number is the same on each edge of the puzzle and is part of the boundary
data of the puzzle. The two colored dual hive associated to a puzzle will then be a decoration of the
triangular grid Tk instead of TN . All the notation introduced for TN are thus still valid for Tk.

Definition 5.1 (Two-colored discrete dual hive). A two-colored discrete dual hive of size (k,N) is
given by the following combinatorial data on Tk:

• a color map C : Ek → {0, 1, 3,m}, such that the boundary colors around each triangular face
in the clockwise order is either (0, 0, 0), (1, 1, 1), (1, 0, 3) or (0, 1,m) up to a cyclic rotation.

• a label map L : Ek → N, with the two following conditions:
(1) for all f ∈ Fk with boundary edges e0, e1, e2, L(e0) + L(e1) + L(e2) = N − 1 except when

f ∈ F−
k with boundary colors different from {0, 1,m}, in which case L(e0)+L(e1)+L(e2) =

N − 2,
(2) if e, e′ are edges of same type ℓ ∈ {0, 1, 2} on the boundary of a same lozenge, then

(a) L(e) = L(e′) if the middle edge is colored m,
(b) L(e) ≥ L(e′) if e′ℓ+1 = eℓ+1 + 1 and no edge different from e′ is colored m,
(c) L(e) > L(e′) if either eℓ > e′ℓ or if both e′ℓ+1 = eℓ+1 + 1 and one of the boundary

edges different from e′ is colored m.

The boundary value [(c(0), c(1), c(2)), (l(0), l(1), l(2))] of a two-colored discrete dual hive is the restriction

of (C,L) to ∂Tk, where c(i) ∈ {0, 1, 3,m}k (resp. l(i) ∈ Nk) is the restriction of C (resp. L) to ∂T
(i)
k ,

for 0 ≤ i ≤ 2.

For (c, l) = (c(0), c(1), c(2), l(0), l(1), l(2)) ∈ {0, 1}3k × N3k, we denote by H(c, l, N) the set of two-
colored discrete dual hives with boundary value (c, l).

Remark 5.2. As a corollary of the Condition (2) on the label map, we have L(e) > L(e′) for any
pair of edges e, e′ of same type ℓ such that eℓ > e′ℓ and eℓ+1 ≤ e′ℓ+1. Indeed, it suffices to show this
for e, e′ such that eℓ = e′ℓ + 1 and e′ℓ+1 ∈ {eℓ+1, eℓ+1 + 1}. The case e′ℓ+1 = eℓ+1 is given by Condition
(2.c), and we now suppose that e′ℓ+1 = eℓ+1 + 1. Let e′′ be such that e′′ℓ+1 = e′ℓ+1 and e′′ℓ = eℓ = e′ℓ + 1.
If the middle edge of the lozenge with boundary e′, e′′ is not colored m, then by Condition (2.c) we
have L(e′′) > L(e′), and then by (2.a) or (2.b), we get L(e) ≥ L(e′′) > L(e′). If the middle edge of
the lozenge with boundary e′, e′′ is colored m, then L(e′) = L(e′′). Then, the middle edge colored m of
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this lozenge is then a boundary edge of the lozenge with boundary e′′, e different from e′′ and e, so that
(2.c) implies that L(e) > L(e′′) = L(e′).

For any triple ω = (ω0, ω1, ω2) of words {0, 1, 2}N with k0 occurrences of 0 and k1 occurrences of 1,

denote by (c(ω), l(ω)) the sequence (c(0), c(1), c(2), l(0), l(1), l(2)) ∈ {0, 1}3k ×N3k where k = k0+ k1 and

c(i) is the word obtained from ωi by deleting the letters 2 and l(i) is the sequence of positions of the
letters 0 or 1 in ωi. The following result gives a formulation of Theorem 4.5 in terms of integer points
counting of polytopes.

Theorem 5.3 (Dual hive in the two-step case). For any triple ω = (ω0, ω1, ω2) of words {0, 1, 2}N
with k0 occurrences of 0 and k1 occurrences of 1,

(5.1) ⟨σω0σω1σω2 , σ0⟩HF(k0,k1,N) = #H(c(ω), l(ω), N).

By Corollary 4.6, the latter theorem directly yields a similar expression of the quantum Littlewood-
Richardson coefficients as the number of integer points in discrete dual hives. For three partitions
λ, µ, ν of length n with first part smaller than N − n and such that |λ|+ |µ| = |ν|+ dN , set

H(λ, µ, ν,N) = H(c(ω), l(ω), N),

where ω is the triple of words in {0, 1, 2}N built as in Corollary 4.6 for λ1 = λ, λ2 = µ, λ0 = ν and
for the corresponding d.

Corollary 5.4 (Dual hive for the q-LR coefficients). For λ, µ, ν of length n with first part smaller
than N − n and such that |λ|+ |µ| = |ν|+ dN ,

cν,dλ,µ = #H(λ, µ, ν,N).

The rest of this section is then devoted to a proof of Theorem 5.3, which is obtained by exhibiting
a bijection ζ : P (ω) → H(c(ω), l(ω), N).

Given a puzzle P ∈ P (ω), let GP be the corresponding graph introduced in Section 4.4. Let us first

transform the graph GP into a new graph ĜP by blowing up each vertex v ∈ Pv of size 2(r + 1) as
follows.

Definition 5.5 (Blowup of vertex). Let vertex v ∈ Pv be a vertex of size 2(r+1) with adjacent edges
(B1, . . . , B2r+2) (indexed in the cyclic order) such that B1, Br+2 have type ℓ ∈ {0, 1, 2} and are colored

1 and Bi, i ̸∈ {1, r+2} have type ℓ+1 and are colored 0. Introduce 2r− 1 new edges B̃1, . . . , B̃2r−1 of
type ℓ−1, ℓ, . . . , ℓ−1 and colored m, 1, . . . ,m and transform v into 2r vertices v1, . . . , v2r such that the
edges adjacent to v2j+1 are (B̃2j , B2r+2−j , B̃2j+1) and edges adjacent to v2j+2 are (B̃2j+1, B̃2j+2, Bj+2)

with the convention B̃0 = B1 and B̃2r = Br+2. We define the height of B̃i as h(B̃2i) = h(B1) and

h(B̃2i−1) = N − 1− h(B1)− h(B2i) for 1 ≤ i ≤ r − 1.

The resulting graph is called the blowup of v.

The picture of the blowup of a vertex of size 6 is given in Figure 11.

v
v1

v2

v3

v4

B1

B1

B2

B2

B3

B3

B4

B4

B5
B5

B6

B6

B̃1

B̃2
B̃3

Figure 11. Blowup of a vertex of size 6 : edges in blue (resp. red, resp. green) are of
type ℓ (resp. ℓ+ 1, resp. ℓ+ 2) and colored 1 (resp. 0, resp. m).
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Definition 5.6 (Blowup of the graph of a puzzle). The blowup ĜP of the graph GP is the graph
obtained by blowing up every vertex of size 2(r + 1), r ≥ 1.

Remark that the blowup of graph is well-defined because any vertex of size 2(r + 1) of GP has the
form of Definition 5.5 thanks to Lemma 4.9. The blowup graph has then only vertices of degree 3 or
singletons (which correspond to edges of TN on the boundary of the triangle).

Lemma 5.7 (Faces in ĜP ). Let Bf be a face in ĜP . Then, the boundary of Bf has

• 6 edges if no edge of the boundary of Bf is a boundary edge of GP ,
• 4 edges if two edges of the boundary of Bf are boundary edges of GP of the same type,
• 2 edges if two edges of the boundary of Bf are boundary edges of GP of different type.

Proof. By Lemma 4.16 and the blowing-up of vertices of degree larger than 4, two edges B,B′ on the
boundary of Bf sharing a vertex are of type (ℓ, ℓ + 1), and the edge type of boundary edges of Bf

is a subsequence of (0, 1, 2, 0, 1, 2) (up to a cyclic rotation). The only possibility for Bf to have less
than 6 edges on the boundary is then having edges which have a singleton as boundary vertex. The
edge of E corresponding to this singleton is necessary a boundary edge of the graph and thus Bf is a
connected component of P2 touching the boundary of TN . There are then two possibilities : either Bf

contain one of the three extreme vertex of TN , in which case the boundary edges of Bf have different

type and by convexity, Bf has only two edges in ĜP , or Bf contains only boundary vertices which are
not extreme points of TN , in which case the boundary edges have same type ℓ and the boundary of
Bf consists of four edges of type (ℓ, ℓ+ 1, ℓ+ 2, ℓ). □

Construction of a discrete two-colored dual hive from a puzzle. The resulting planar graph ĜP is thus
a graph with only trivalent vertices and hexagonal inner faces. From each side of the triangle TN ,
there are k − 2 faces B ∈ Pf which have degree 4 (one for each pair of consecutive boundary edge
labeled 0 or 1 on a same side of TN ) and from each extreme vertex of TN there is a face of degree 2.

Let us denote by G̃P the dual graph, namely the graph whose vertices are faces of ĜP , faces are

vertices of ĜP and such that there is one edge between each neighboring faces of G̃P (which correspond

then to vertices of ĜP ).

Lemma 5.8 (Dual graph to Tk). There is an isomorphism from G̃P to Tk mapping edges of type ℓ of

G̃P to edges of type ℓ of Tk.

Proof. Since vertices of ĜP are trivalent, faces of G̃P are triangular. Similarly, inner faces of ĜP have

degree 6, and thus inner vertices of G̃P have degree 6. Hence, G̃P is isomorphic to a polygon H of the

planar triangular grid. Since the sequence of degrees of the 3k outer faces of ĜP is

(2, 4, . . . , 4︸ ︷︷ ︸
k times

, 2, 4, . . . , 4︸ ︷︷ ︸
k times

, 2, 4, . . . , 4︸ ︷︷ ︸
k times

),

the same holds for the sequence of degrees of outer vertices of G̃P . Remark that for each vertex of

degree 4 (resp. 2) in G̃P , the angle of the boundary at the corresponding vertex in H is π (resp. 5π/3).

We deduce that the boundary of the G̃P is isomorphic to the one of Tk, and thus G̃P is isomorphic to

Tk. Let us denote by ζ : E(G̃P ) → Ek the corresponding bijection between set of edges.

Remark that around every triangle of G̃P the type of the edges is (ℓ, ℓ+1, ℓ+2) (this is true for faces
coming from trivalent vertex of GP and true by construction for faces coming from the blowing up of

higher order vertices of ĜP ). We deduce that all edges with the same type in G̃P are sent through ζ
to edges with the same orientation in Tk. Up to composing ζ with an internal rotational symmetry of
Tk, we can thus assume that ζ preserves the type of the edges. □

Each edge B of G̃P has then a color c(B) and a height h(B) coming from the dual edge of ĜP .
Composing with ζ−1 yields maps C : Ek → N and L : Ek → N with C = c ◦ ζ−1 and L = h ◦ ζ−1.

Lemma 5.9 (Image is a dual hive). The resulting pair of maps (C,L) is a discrete two-colored dual
hive ζ(P ) in H(c(ω), l(ω), N).

Proof. Lemma 4.9 and the color rules introduced before in case of blowing-up of even degree vertices

yield that edges around each trivalent vertex of G̃P are colored (0, 0, 0), (1, 1, 1), (1, 0, 3) or (0, 1,m)
in the clockwise order, which translates into the same color rule around each triangular face of Tk.
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It remains to prove that the map L on Ek satisfies the two conditions of Definition 5.1. The sum
condition (1) around a triangle is a consequence of Lemma 4.7 in case no edge is colored m, and the
direct deduction of the blowing up of vertices of even degree in case one of the edges is colored m.

The condition (2) is checked case by case. By Lemma 4.9 and the definition of L on edges colored
1 coming from the blowing-up of even vertices, L(e) = L(e′) for any opposite edges e, e′ of a lozenge
with middle edge colored m, yielding the condition (2.a).

Without loss of generality, suppose that e ∈ Ek has type ℓ and let s be a lozenge such that e is a
border edge of type ℓ of s and the opposite edge e′ is a translation of e such that h(e) ≥ h(e′) and
eℓ+1 ≤ e′ℓ+1. Hence, either h(e) = h(e′), eℓ+1 = e′ℓ+1−1 and the middle edge f of s is of type k = ℓ−1
or h(e′) = h(e)− 1, e′ℓ+1 = eℓ+1 and the middle edge f is of type k = ℓ+1. Suppose now that at least

one of the edges of the lozenge is colored m and the middle edge f is not dual to an edge of ĜP coming
from blowing-up an even vertex. Hence, f corresponds to a strip Sf of type k. Moreover, there exist

ẽ, ẽ′ ∈ E2
N of type ℓ with h(ẽ) = L(e) and h(ẽ′) = L(e′), f̃ , f̃ ′ ∈ Sf of type k such that ẽ and f̃ (resp.

ẽ′ and f̃ ′) comes from a same vertex v (resp. v′) of Pv (either directly or after a blowing-up).

Remark that f̃ℓ ≥ f̃ ′
ℓ for otherwise, in the strip Sf , there would be an edge of type different from f

and labeled 0 or 1 coming from v, which is not possible from Figure 10. Then, if ẽ is of type ℓ and f̃
is of type ℓ − 1 coming from a same triangle of TN , we resume in Figure 12 the relation between f̃ℓ
and h(ẽ) depending on the orientation of the triangle and the colors of the boundary edges (the color

and position of f̃ is bold). Those relations are consequences of Lemma 4.9 and blowups of even degree
vertices.

Coloring of a direct triangle
y

zx
x, y, z ̸= m

0

m1

m

10

1

0m

f̃ℓ h(ẽ) + 1 h(ẽ) + 2 h(ẽ) + 1 h(ẽ) + 1

Coloring of a reversed triangle

y

xz
x, y, z ̸= m

0

1m

1

m0

m

01

f̃ℓ h(ẽ) + 1 h(ẽ) h(ẽ) + 1 h(ẽ)

Figure 12. Coordinates of an edge in function of the coloring and height of the next
edge in a triangle (f̃ correspond to the bold edge and ẽ corresponds to the horizontal
edge).

From those relation and the fact that f̃ℓ ≥ f̃ ′
ℓ, we deduce that h(ẽ) ≥ h(ẽ′), i.e L(e) ≥ L(e′), in the case

e′ℓ+1 = eℓ+1+1 and that h(ẽ) > h(ẽ′), i.e L(e) > L(e′), if one of the boundary edge of s different from
e is colored m. The case eℓ = e′ℓ + 1 is done similarly, yielding always h(ẽ) > h(ẽ′), i.e L(e) > L(e′).
Finally, if the middle edge is coming from the blowing up of an even vertex and is not colored m,
then this edge is necessarily colored 1, and thus e and e′ are colored 0 and the opposite edges of their
lozenge are colored 1. The strict inequality is directly deduced from construction of L = h ◦ ζ−1 and
Lemma 4.9 giving the height of edges colored 0 in an even vertex.

Hence, Tk with the labelling (C,L) is a genuine discrete two-colored dual hive, which we denote by
ζ(P ). The boundary values are directly deduced from the boundary of P , so that the resulting hive
is in H(c(ω), l(ω), N). □

Proof of Theorem 5.3. Let us construct the reverse bijection. Let H = (C,L) be a two-colored dual
hive in H(c(ω), l(ω), N). We first define the candidate vertex partition (without the coloring for now)
Pv as follows :

• for each triangle face t = (t0, t1, t2) ∈ Tk, with tℓ of type ℓ, with boundary colors in (0, 0, 0),
(1, 1, 1) or (1, 0, 3) (up to a cyclic order), we define a block Bt ⊂ EN with edges e0, e1, e0, with
eℓ of type ℓ, and such that :

h(eℓ) = L(tℓ), eℓℓ+1 = L(tℓ+1) + 1.
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• for each long rhombus with boundary u = (s0, t1, . . . , tr, s1, tr+1, . . . , t2r) with si of type ℓ and
ti of type ℓ+ 1 and t1i = s0i + 1 such that C(s0) = C(s1) = 1, C(ti) = 0, L(ti) = L(t2r+1−i) =
L(t1)− (i− 1) for 1 ≤ i ≤ 2r, and which is not included in an other rhombus satisfying such
property, we define a block Bu ⊂ EN with edges (e0, e1, f1, . . . , f2r) with h(v) = L(v) for
v ∈ Bu and

e0ℓ+1 = L(t1) + 2, e1ℓ+1 = L(tr), f i
ℓ+2 = f2r+1−i

ℓ+2 − 1 = e0ℓ+2 + i, 1 ≤ i ≤ r.

Remark that for 1 ≤ i ≤ r, f i
ℓ+2 = f2r+1−i

ℓ+2 − 1 = t(gi), where gi is the edge of type ℓ + 2

colored m adjacent to f i or f2r+1−i.
• for each edge s of type ℓ on the boundary of Tk, we define a singleton in Be ⊂ EN consisting
of the unique edge e of type ℓ with h(e) = L(s).

Moreover, by Lemma 5.10 below, edges e, e′ coming from different edges t, t′ ∈ Tk by the previous
constructions are distinct. Let E =

⋃
B∈Pv

B. We can thus define a coloring c on E by setting
c(e) = C(t) when e is constructed from t above. By construction and the property (1) of Definition
5.1, the covering Pv satisfies all the properties of Lemma 4.9. With the above constructions and the
conditions (1) and (2.a) of a two-color dual hive, we can then check that all the relations from Figure
12 is still satisfied when the bold edge is an element of E .

Define then a relation ∼ on E by saying that e ∼ e′ if e, e′ are coming from a same edge of Tk

through the previous construction, and denote by Pe the set partition coming from this relation. By
the properties of a two-colored dual hive, any long rhombus considered before of border edges of type
ℓ, ℓ+1 has its inner middle edges of type ℓ−1 colored m, so that none of the triangles inside this long
rhombus yields block of Pv through the first step. Hence, each edge of Tk yields at most 2 edges of
E . Remark that an edge of Tk is either adjacent to two faces or to one face and the boundary of Tk,
so that Pe consists of pairs or singletons, and in the latter case the singleton belongs to two blocks
of Pv. If e ∼ e′, by the above construction c(e) = c(e′), L(e) = L(e′) and e, e′ have the same type, so
that Pe only has admissible pairs (which can be reduced to a singleton). If e ̸= e′ belong to a same
block of Pv they come from different edges of Tk and thus {e, e′} ̸∈ Pe.

In view of applying Proposition 4.14, it suffices to prove that two pairs of Pe do not cross. Suppose
that B = {e1, e2} and B′ = {e3, e3} are two blocks of Pe. If they are of same type ℓ, then Lemma 5.10
yields that B ∩ SB′ = B′ ∩ SB = ∅. If B are of different type ℓ and ℓ+ 1, Lemma 5.11 yields that the
second condition of crossing strips is never satisfied, and the first condition may only be satisfied in
the case (4) of Lemma 5.11 where t′ℓ ≥ tℓ and t′ℓ+1 ≥ tℓ+1, when e2ℓ+1 = e3ℓ+1. But in the latter case,

by Definition 4.10, edges of type ℓ+1 of the strip SB have ℓ+1-coordinate strictly smaller than e2ℓ+1,
so that B′ ∩ SB = ∅. Likewise, edges of the strip SB′ of type ℓ have ℓ + 1-coordinate strictly larger
than min(e3ℓ+1, e

4
ℓ+1) so that B ∩ SB′ = ∅. Hence, SB and SB′ do not cross.

Pairs of Pe are admissible and any two different pairs B,B′ ∈ Pe do not cross, thus partition Pe

satisfies the properties of Lemma 4.11. Finally, by Proposition 4.14 applied to (Pv,Pe), there exists a
unique puzzle P such that the corresponding vertex and edge partitions are respectively Pv and Pe.
Denote by χ(H) this puzzle. It is clear from the above constructions that χ(H) ∈ P (ω) and that χ ◦ ζ
and ζ ◦ χ are respectively identity maps of P (ω) and H(c(ω), l(ω), N). □

Lemma 5.10 (Same type blocks do not cross). Let t ̸= t′ ∈ Tk of same type ℓ in blocks of Pv, and
suppose without loss of generality that tℓ+1 > t′ℓ+1 or tℓ+1 = t′ℓ+1 and h(t′) > h(t). Then, if h(t) < h(t′)
and tℓ+1 > t′ℓ+1, the edges e1, e2 (resp. e3, e4) of TN associated to t (resp. t′) satisfy

h(e1) = h(e2) < h(e3) = h(e4),

if h(t) < h(t′) and tℓ+1 = t′ℓ+1,

min(e1ℓ−1, e
2
ℓ−1) > max(e3ℓ−1, e

4
ℓ−1).

and if h(t) ≥ h(t′) and tℓ+1 > t′ℓ+1,

min(e1ℓ+1, e
2
ℓ+1) > max(e3ℓ+1, e

4
ℓ+1).

Proof. Since t and t′ are in blocks of Pv, neither t nor t
′ are colored m. If h(t) < h(t′) and tℓ+1 > t′ℓ+1,

L(t) < L(t′) by Remark 5.2. Since h(e1) = h(e2) = L(t) and h(e3) = h(e4) = L(t′), this implies

h(e1) = h(e2) < h(e3) = h(e4).
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If tℓ+1 = t′ℓ+1 and h(t′) > h(t), then by Condition (2.c) of Definition 5.1, L(t′) > L(t) except if the
middle edge of all lozenges between t and t′ are colored m. In the latter case, let s (resp. s′) be the
edge of type ℓ − 1 such that t, s form a reverse triangle (resp. t′, s′ form a direct triangle). Since
sℓ = tℓ + 1 and s′ℓ = t′ℓ + 1, the inequality t′ℓ > tℓ implies that s′ℓ > sℓ. Similarly, since sℓ−1 = tℓ−1 − 1
and s′ℓ−1 = t′ℓ−1, we have

sℓ−1 = tℓ−1 − 1 = N − tℓ − tℓ+1 − 1 > N − t′ℓ − t′ℓ+1 − 1 ≥ t′ℓ−1 ≥ s′ℓ−1.

Hence, L(s′) ≤ L(s). Let us introduce the third edge r (resp. r′) of the triangle with edges s, t
(resp. s′, t′). By Figure 12 and Condition (1) from Definition 5.1, we get that e3ℓ−1 = N − e3ℓ − e3ℓ+1 =

N − L(t′) − L(r′) − 1 = L(s′) and e2ℓ−1 = N − e2ℓ − e2ℓ+1 = N − L(t) − L(r) = L(s) + 1 and thus

e2ℓ−1 = L(s) + 1 > L(s′) = e3ℓ−1, so that

e1ℓ−1 ≥ e2ℓ−1 > e3ℓ−1 ≥ e4ℓ−1.

If h(t) ≥ h(t′) and tℓ+1 > t′ℓ+1, then t′ℓ+2 > tℓ+2. Suppose without loss of generality that e1ℓ+1 ≥ e2ℓ+1

and e3ℓ+1 ≥ e4ℓ+1. Let us consider the edges s, s′ of type ℓ + 1 such that (t, s, u) and (t′, s′, u′) are
respectively direct and reverse triangles of Tk so that the corresponding edge of t and the piece
containing the direct triangle is e2 and the corresponding edge for t′ and the reverse triangle is e3.
Since h(s) = tℓ+1 − 1 and sℓ+2 = tℓ+2 + 1 and h(s′) = t′ℓ+1 − 1 and s′ℓ+2 = t′ℓ+2, h(s) > h(s′) and
s′ℓ+2 ≥ sℓ+2, so that L(s) > L(s′) by Remark 5.2. Then, since (t, u, s) is a direct triangle, Figure

12, e2ℓ+1 = L(s) + 1, except if c(t) = 1, c(s) = 0 and c(u) = m where e2ℓ+1 = L(s) + 2. Likewise,

since (t′, s′, u′) is a reverse triangle, e3ℓ+1 = L(s′) + 1 except if c(t) = 1, c(s) = 0, c(u) = m or

c(t) = 0, c(s) = m, c(u) = 1 where e3ℓ+1 = L(s′). Hence, in any case,

e3ℓ+1 ≤ L(s′) + 1 < L(s) + 1 ≤ e2ℓ+1

and

e1ℓ+1, e
2
ℓ+1 > e3ℓ+1, e

4
ℓ+1.

□

Lemma 5.11 (Different type blocks do not cross). Let t, t′ ∈ Tk be of respective type ℓ, ℓ+ 1 yielding
edges in E, and denote by e1, e2 (resp. e3, e4) the edges of TN corresponding to t (resp. t′). Then,

(1) if t′ℓ > tℓ and t′ℓ+1 < tℓ+1, then

e1ℓ = e2ℓ < e3ℓ ≤ e4ℓ .

(2) if t′ℓ < tℓ and t′ℓ+1 ≥ tℓ+1, then

e3ℓ ≤ e4ℓ < e1ℓ = e2ℓ .

(3) if t′ℓ ≤ tℓ and t′ℓ+1 < tℓ+1,

e3ℓ+1 ≤ e4ℓ+1 < e1ℓ+1 ≤ e2ℓ+1.

(4) if t′ℓ ≥ tℓ and t′ℓ+1 ≥ tℓ+1,

e1ℓ+1 ≤ e2ℓ+1 ≤ e3ℓ+1 = e4ℓ+1.

Proof. The proof of the four assertions are similar.

(1) Suppose that t′ℓ > tℓ and t′ℓ+1 < tℓ+1. Let (t′, s′, r′) and (t′, s′′, r′′) be the reverse and direct

triangles belonging to pieces yielding respectively e3 and e4, with s′, s′′ of type ℓ. Since then
e4ℓ ≥ e3ℓ , it suffices to show that e3ℓ > e2ℓ . Since s′ℓ = t′ℓ − 1 and s′ℓ+1 = t′ℓ+1 + 1, we have
s′ℓ ≥ tℓ and tℓ+1 ≥ s′ℓ+1, so that L(s′) ≥ L(t). Since t′ is of type ℓ+ 1 not and colored m and
(t′, s′, r′) is a reverse triangle, Figure 12 and Condition (1) from Definition 5.1 yield that either
e3ℓ+2 = L(r′)+1 and L(r′)+L(s′)+L(t′) = N−2 or e3ℓ+2 = L(r′) and L(r′)+L(s′)+L(t′) = N−1.

In any case, e3ℓ+2 = N − 1− L(t′)− L(s′), so that

e3ℓ = N − e3ℓ+1 − e3ℓ+2 = N − L(t′)− (N − 1− L(t′)− L(s′)) = L(s′) + 1 > L(t) = e2ℓ = e1ℓ .
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(2) Suppose that t′ℓ < tℓ and t′ℓ+1 ≥ tℓ+1, and let s′ be the edge of type ℓ such that (t′, s′, r′) is a
direct triangle. Since s′ℓ = t′ℓ and s′ℓ+1 = t′ℓ+1+1, s′ℓ < tℓ and s′ℓ+1 > tℓ+1, so that L(t) > L(s′)
by Remark 5.2. Since (t′, s′, r′) is a direct triangle, Figure 12 and Condition (1) from Definition
5.1 yield by a same reasoning as above that e4ℓ+2 ≥ L(r′) + 1 = N − L(s′) − L(t′), so that,

using that e4ℓ+1 = L(t′),

e4ℓ = N − e4ℓ+1 − e4ℓ+2 ≤ L(s′) < L(t) = e1ℓ = e2ℓ .

(3) Suppose that t′ℓ ≤ tℓ and t′ℓ+1 < tℓ+1, and let s be the edge of type ℓ+1 such that (t, s) is part
of a direct triangle. Then, sℓ = tℓ and sℓ+1 = tℓ+1 − 1, so that sℓ ≥ t′ℓ and sℓ+1 ≥ t′ℓ+1. We

deduce that sℓ+2 ≤ t′ℓ+2, and thus L(s) ≥ L(t′). Since e1ℓ+1 ≥ L(s) + 1 by Figure 12, we thus
have

e3ℓ+1 = e4ℓ+1 = L(t′) ≤ L(s) < e1ℓ+1 ≤ eℓ+1.

(4) Suppose that t′ℓ ≥ tℓ and t′ℓ+1 ≥ tℓ+1, and let s be the edge of type ℓ + 1 such that (t, s, r)
is a reverse triangle. Then, sℓ = tℓ + 1 and sℓ+1 = tℓ+1 − 1. Hence, t′ℓ+1 > sℓ+1 and
t′ℓ+2 = N−t′ℓ+1−t′ℓ ≤ N−sℓ+1−1−sℓ+1 ≤ sℓ+2 and the inequality is strict except when t′ℓ = tℓ
and t′ℓ+1 = sℓ+1. Hence, by Remark 5.2 in the case of strict inequality and Condition (2.b)
and (2.c) from Definition 5.1, L(t′) > L(s), except when t′ℓ = tℓ, t

′
ℓ+1 = sℓ+1 and C(r) = m, in

which case L(t′) = L(s). In the first case, by Figure 12 we have e2ℓ+1 ≤ L(s) + 1 ≤ L(t′). In

the second case, since C(r) = m we have e2ℓ+1 = L(s) ≤ L(t′), so that in any case

e1ℓ+1 ≤ e2ℓ+1 ≤ e3ℓ+1 = e4ℓ+1.

□

6. Color swap

The goal of this combinatorial section is to exhibit a convex body of dimension D = (n−1)(n−2)
2

having integer points counted by quantum Littlewood-Richardson coefficients, so that the limit ex-
pression (3.26) converges to the volume of a polytope. From this section to the end of the paper, we

set k = n+ d and ξ = e
iπ
3 . We also assume that the color maps of dual hives are regular in the sense

of Definition 6.1.

Definition 6.1 (Regular boundaries). A color map C : Ek → {0, 1, 3,m} is regular (or has regular
boundaries) if for every i ∈ {0, 1, 2},
(6.1) c(i) = (1, . . . , 1︸ ︷︷ ︸

d times

, 0, . . . , 0︸ ︷︷ ︸
n−d times

, 1, . . . , 1︸ ︷︷ ︸
d times

).

Moreover, we say that a dual hive H = (C,L) is regular if its color map C is.

6.1. Arrows and hexagons. Let us start with some definitions on local configurations of edges in
Ek.

Definition 6.2 (Openings and arrows). Let x ∈ Tk. An opening of type l ∈ {0, 1, 2} at x is the pair
of edges (e, e′) ∈ E2

k such that

{e, e′} = {(x, x+ ξ1+l), (x, x+ ξ5+l)} or {e, e′} = {(x+ ξ2+l, x), (x+ ξ4+l, x)}
C(e) = C(e′) ∈ {0, 1}.

The color of the opening is defined as the color of edges e and e′.

Consider an opening a = (e, e′) at x of type l and color c ∈ {0, 1}. Let e′′ = e′′(a) be the edge such
that e, e′ are edges of the lozenge with middle edge e′′. The only possible colors of the edge e′′ are
C(e′′) ∈ {0, 1}. If C(e′′) = c, faces of the lozenge with middle edge e′′ have all of their edges colored c.
If C(e′′) ̸= c, then there is an opening a′ of type l and color c at the other endpoint of e′′. Note that
there can only be finitely many such openings r ≥ 0 before C(e′′) = c.

Definition 6.3 (Arrow). Let a = (e, e′) be an opening of type l and color c. Let r ≥ 0 be the number of
successive openings having middle edge e′′ such that C(e′′) ̸= c with C(e′′) ∈ {0, 1} as in the previous
paragraph. We say that the configuration of edges consisting of the r ≥ 0 successive pairs of 3 and m
lozenges together with the pair of direct and reverse faces with boundary edges of color c is an arrow
of length r ≥ 0 at the opening a.
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See Figure 13 for examples of openings and arrows.
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Figure 13. First row from left to right : an opening a with color 0 and type 0 at x,
the case C(e′′) = c, the case C(e′′) ̸= c and an arrow of length r = 4. The second row
is the analog for color 1. Uncolored edges have color 3.

Definition 6.4 (ABC hexagons). Let C be a color map and let h be a hexagon, that is, the union of
six triangular faces sharing one vertex in Tk. We say that h is an ABC hexagon (for the color map
C) if the color map C restricted to h is any of the three configurations in Figure 14 up to a rotation.
A rotation of an ABC hexagon h is the replacement of the values of C by the ones obtained from a
rotation of h which preserves the value of C on the boundary ∂h ∩ Ek.
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Figure 14. The three types of hexagons : A (left), B (center) and C (right).

Note that type B has three possible rotations whereas A and C only have two. For a hexagon h,
denote Eh the edges of Ek which are in h.

Let A be an arrow of length r ≥ 1 and type l at an opening with center x. The center of the last open-
ing is y ∈ {x+ rξl, x− rξl}. Notice that if the color c of A is 0 (resp. 1), then the hexagon h(y) with
center y is of type C (resp.) A. Applying a rotation to h(y) yields an arrow A′ of length r− 1 of type
l at the same opening with center x. By applying hexagon rotations to x+ rξl, x+(r−1)ξl, . . . , x+ ξl

(or x − rξl, x − (r − 1)ξl, . . . , x − ξl) in this order, one gets an arrow R(A) of length r of type l the
same opening with center x + rξl. We call this sequence of r hexagon rotations the reversal of the
arrow A. An example of arrow reversal is given in Figure 15
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Figure 15. Reversal of an arrow of length 4 at x. Uncolored edges have color 3.

6.2. Gash propagation. We define a local configuration called a gash in Definition 6.5 which one
can propagate in a dual hive. Local propagation rules are given in Definition 6.6 and the general
propagation algorithm on dual hives is defined in Definition 6.7. The goal of the propagation algorithm
is to find rigid lozenges of a dual hive in view of the next section.

Definition 6.5 (Gash). Let x ∈ Tk. A gash g with center x = x(g) is the union of the two edges
(x, x− ξ2l), (x+ ξ2l, x) for l ∈ {0, 1, 2} such that

C((x, x− ξ2l)) = 1, C((x+ ξ2l, x)) = 0 if l ∈ {0, 1}
C((x, x− ξ2l)) = 0, C((x+ ξ2l, x)) = 1 if l = 2.
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The type of a gash denoted t(g) is defined as the type l ∈ {0, 1, 2} of its edges.

Note that this definition only depends on the color map C of H. Let g be a gash. There are only six
possible configurations given in Figure 16 adjacent to g. In this section, we show that such a gash
g can be moved across the color map C using local moves until reaching configuration (v) or (vi) of
Figure 16.
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Figure 16. The six possible adjacent configurations to a gash of type 2 shown in
dashed edges. The same holds for a gash of other types up to rotations.

Definition 6.6 (Gash propagation). Let g be gash of type l with center x.

(1) Suppose that g is adjacent to a configuration (i). Let y = x+ ξ4, (resp. y = x+1, y = x+ ξ5)
if l = 0, (resp. l = 1, l = 2). We call the propagation of g the gash g′ of type l at center y.

(2) Suppose that g is adjacent to a configuration (ii). Let y = x+ ξ5, (resp. y = x+ ξ, y = x+ 1)
if l = 0, (resp. l = 1, l = 2). We call the propagation of g the gash g′ of type l at center y.

(3) Suppose that g is adjacent to a configuration (iii). Let y = x+1 if l = 1 or l = 2. We call the
propagation of g the gash g′ of type 3− l at center y.

(4) Suppose that g is adjacent to a configuration (iv). Notice that there is a 0 opening at x and
thus an arrow of color 0 at x with type l + 1. Reverting this arrow yields a configuration (i)
adjacent to g and we define the propagation of g to be the gash g′ of type l as in step (1). See
Figure 17 for an illustration.
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Figure 17. Propagation of a gash g adjacent to a configuration (iv). The arrow of
color 0 has been reversed yielding a configuration (i) adjacent to g.

Remark that the only propagation in which the type of the gash changes is (iii). We now give a
general procedure using local propagations from Definition 6.6. This procedure starts from a gash and
propagates it until reaching a configuration that is either (v) or (vi).

Definition 6.7 (Propagation algorithm). Define the following algorithm.

Input: A color map C and a gash g of type l ∈ {1, 2}.
(1) Set g(0) = g, x(0) = x(g), t(0) = t(g).

(2) WHILE g(s) is adjacent to (i), (ii), (iii) or (iv): set g(s+1) to be the propagation of g(s) with

center x(s+1) and type t(s+1).

Proposition 6.8 (Propagation algorithm is correct). Let g be a gash of type 2 in Tk. The propagation
algorithm terminates at a gash g̃ adjacent to configuration of type (v) or (vi).

For the proof of Proposition 6.8, we need Lemma 6.9 which shows that any triangular region having
two of its sides with edges colored c ∈ {0, 1} has all its edges colored c.

Lemma 6.9 (Regular equilateral triangles). Let C : Ek → {0, 1, 3,m} be a color map on edges of Tk.
Let R be any subset of edges of Ek such that ∂R is an equilateral triangle of size s ≥ 1. Let c ∈ {0, 1}
and assume that two boundaries of R have edges e which are all colored c. Then, every edge in R is
colored c.
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Proof. Let us first show a general fact about a shape described below that we call a cup. For r ≥ 1,
we call a cup of length r and type i the union of r consecutive type i edges together with one edge
of type i + 1, respectively of type i − 1, forming an angle of 2π

3 with type i edge with maximal and
minimal heights. See Figure 18 for an example. Suppose that edges of a cup are all colored c ∈ {0, 1}.
Let us show by induction on r that the only possible color of edges in the convex hull of the cup is c.

1 1 1 1 1 1 1 1
1 1

Figure 18. A cup of length r = 8 and type 0 with color c = 1. Edges in the convex
hull of the cup are dotted

Two adjacent edges of the cup of different types form an opening of color c. One checks that the
arrow at this opening has length zero for otherwise all the r edges of type i would belong to some
non-rigid lozenges with opposite edges of type i (resp. i − 1) colored c (resp. 1 − c) which is incom-
patible with the color c of the other opening of the cup. Thus, the arrow has zero length. Then, the
rest of the convex hull is a cup of length r−1 which completes the proof of cup completion by induction.

Let us consider the region R of the statement, and suppose that the boundary of type i − 1 and
i+ 1 of R are colored c. The corner of the triangular face between boundaries of type i− 1 and i+ 1
has all of its edges colored c, as two of them lie on the boundary of R. This induces a cup of length
1 and type i having edges of color c. By the previous reasoning, its only color completion consists of
edges of color c. Each completion of a cup of size r with r < s yields a cup of size r + 1 with edges
colored c. Filling cups of sizes 1, 2, . . . , s− 1 with edges of color c fills then R with edges colored c and
thus proves the claim. □

Corollary 6.10 (Corners of regular boundaries). Let C : Ek → {0, 1, 3,m} be a regular color map.
Then, the three equilateral regions of side length d each containing an extremal vertex of Tk have all
of their edges colored 1.

Proof. Notice that the regularity of the color map C implies that each such triangular region of side

length d has two boundaries which lie on ∂T
(0)
k ∪ ∂T

(1)
k ∪ ∂T

(2)
k having edges colored 1. Applying

Lemma 6.9 yields the result. □

Proof of Proposition 6.8. At each step of the gash propagation, one has that x
(s+1)
0 < x

(s)
0 or x

(s+1)
1 >

x
(s)
1 and t(s) ∈ {1, 2} which implies that the while loop terminates on a last gash g(∞). Assume for the

sake of contradiction that g(∞) is not adjacent to a configuration (v) or (vi). Since g(∞) is the last

gash, it is of type 1 with center x(∞) ∈ ∂T
(1)
k . As the boundary ∂T

(1)
k is regular, the edge of color 1

in g(∞) is the edge with height n so that x
(∞)
1 = n, see Figure 19. Moreover, by Corollary 6.10, the

equilateral triangle Rd ⊂ Ek of length d having one of its boundaries between x(∞) and (n, 0) has all
of its edges colored 1.

Consider the last (iii) configuration encountered before reaching ∂T
(1)
k having a gash g′ of type 1.

Note that such a configuration exists as all other configurations preserve the type of the gash during
propagation of Definition 6.6. Consider the last gash g with center x resulting from a propagation
of type (i) after g′ with the convention that g = g′ if no configuration (i) or (iv) happen after g′

(recall that configuration (iv) reduces to a propagation of type (i), see step (4) of Definition 6.6).

Propagations (g(s), s ≥ 0) after g = g(0) are then of type (ii) so that for s ≥ 0, x
(s+1)
1 = x

(s)
1 and

x
(s+1)
0 = x

(s)
0 − 1. Since x(∞) ∈ Rd, we would have x ∈ Rd and the edge e′ ∈ Ek with origin x+ ξ5 of

type 0 and color 0 in the last (i) configuration before g (or in the last configuration (iii) if no such
configuration (i) exists) would have both its endpoints in Rd which contradicts the fact that edges in
Rd are all colored 1. See Figure 19 for an illustration of the above argument. □
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d

d

x(∞)

•

x(0)
•

e′
Rd

1
1
1

1 0

1

1
1
1

1 0

1

1
1
1

1 0

1

0

0

0
000

0

1 1

Figure 19. The 0 colored edge e′ in the last configuration (i) would be in Rd.

Remark 6.11 (Type 1 propagation algorithm). Note that the argument given in the proof of Propo-
sition 6.8 remains valid in the case of a type 1 gash g with center x such that the type 0 edge with
origin x+ ξ5 is colored 0.

6.3. Color swap path. In Proposition 6.8, we showed that any gash g of type 2 can be propagated to
find a configuration (v) or (vi) having a rigid lozenge in it. In this section, we show that via hexagon
rotations of Definition 6.4, one can bring this rigid lozenge at the location of x = x(g).

Lemma 6.12 (Back propagation). Let g be gash with center x adjacent to a configuration (i, ii) or
(iii) and suppose that its propagation g′ with center x′ is adjacent to a configuration (v) or (vi).
Then, the hexagon h′ with center x′ is an ABC hexagon. Moreover, using a hexagon rotation of h′,
the hexagon h with center x is an ABC hexagon.

Proof. One can check that the statement of Lemma 6.12 holds in all possible cases of configurations,
see Figure 14. □

Proposition 6.13 (Gash reduction). Let C be a color map and let g be a gash of type 2 in C. Let

g̃ = g(s) for some s ≥ 0 be the last gash as in Proposition 6.8. Using hexagon rotations of ABC
hexagons with centers given by x(s), x(s−1), . . . , x(0) in this order, C can be mapped to a color map C ′

such that g is a gash for C ′ adjacent to a configuration (v) or (vi).

Proof. Applying Lemma 6.12 to every center x(s), x(s−1), . . . , x(1) in this order yields the desired con-
figuration. □

Remark 6.14 (Reduction of a type 1 gash). As in Remark 6.11, the result of Proposition 6.13 still
holds if one considers g of type 1 with center x such that the type 0 edge with origin x+ ξ5 is colored
0.

6.4. Color map reduction. Recall that we only consider regular boundary conditions for Tk that
is, the color map C : Ek → {0, 1, 3,m} is given by 1 . . . 10 . . . 01 . . . 1 on every boundary of Tk, where
there are d ones on each side of the n− d zeros. The goal of this section is to show that any regular
color map can be mapped via hexagon rotations to the simple color map of Definition 6.15.

Definition 6.15 (Simple color map). Let n ≥ d ≥ 0 and k = n + d. The color map C0 : Ek →
{0, 1, 3,m} called the simple color map is defined by

(1) C0 is regular and thus C0(e) = 1 for every edge e ∈ Ek in any corner equilateral triangle of
side length d in Tk as in Corollary 6.10,

(2) C0(e) = 1 for every edge e ∈ Ek in the lozenge of side length d in Tk having outer vertices
nξ, nξ + dξ, nξ + d, nξ + dξ5,

(3) C0(e) = 0 for every edge e ∈ Ek in the equilateral triangle having outer vertices d, n and d+nξ,
(4) C0(e) = m, respectively C0(e) = 3 for every edge e ∈ Ek of type 0 with origin x such that

d ≤ x0 ≤ n− 1 and 1 ≤ x1 ≤ d, respectively for every edge e ∈ Ek of type 0 with origin y such
that 0 ≤ y0 ≤ d− 1 and d+ 1 ≤ y1 ≤ n.
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Figure 20 shows an example of the simple color map C0 for k = 5 and d = 2.
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0
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Figure 20. The color map C0 for k = 5 and d = 2. Uncolored edges have color 3
(picture done with the module Knutson-Tao puzzles of Sage [33]).

Proposition 6.16 (Color map reduction). Let C : Ek → {0, 1, 3,m} be a regular color map. Using
hexagon rotations, one can map C to C0, where C0 is the simple color map of Definition 6.15.

Proof. Let {x(s), 1 ≤ s ≤ d(k − d)} be the vertices in Tk ordered such that for 1 ≤ s ≤ d(k − d),
s− 1 = s1d+ s2 with s1 ≥ 0 and 0 ≤ s2 ≤ d− 1,

x(s) = (d+ s1)ξ + s2ξ
5.

Let C be a regular color map on Ek. Let us show by induction on s that using hexagon rotations, C
can be mapped to a regular color map C(s) such that the type 0 edges with origins x(1)+1, . . . , x(s)+1
are colored m. We first prove it for s = 1. Notice that since C is regular, there is a gash g(1) of type 2
with center x(1). Applying Proposition 6.13 yields that using hexagon rotations, C can be mapped to
C(1) such that g(1) is adjacent to a configuration (v) or (vi). Since C(1) is regular, this configuration

is necessarily (v) which implies that the edge of type 0 with origin x(1) + 1 is colored m.

Assume that C(s) is a color map such that the type 0 edges with origins x(1) + 1, . . . , x(s) + 1 are
colored m. Notice that there is a 01 opening at x(s+1) that is, the edges (x(s+1), x(s+1) + ξ) and

(x(s+1), x(s+1)+ξ5) are colored respectively 0 and 1. A 01 opening has only three possible completions
showed in Figure 21.

0

1

0

1 0

1
m

0

1 1

3
1

1
0 0

1 3

0
0

1
0

Figure 21. A 01 opening (left) and its possible completions

In the case of the first completion, the color map C(s+1) = C(s) satisfies the desired conditions. In
the case of the third and fourth completion, there is a gash g(s+1) of type 2 and 1 respectively with
center x(s+1) + 1. Applying Proposition 6.13 and Remark 6.14 respectively shows that using hexagon
rotations along the propagation path started from g(s+1), the latter is adjacent to a configuration
(v) or (vi). Note that rotations in this propagation path do not affect edges colored m with origins

x(1) + 1, . . . , x(s) + 1 thanks to the above ordering. Using a hexagon rotation for the hexagon with
center x(s+1)+1 yields a color map C(s+1) such that the type 0 edges with origins x(0)+1, . . . , x(s+1)+1
are colored m and ends the induction. Therefore, C is equivalent up to hexagon rotations to the color
map where type 0 edges with origins x(0)+1, . . . , x(d(k−d))+1 are colored m. From this configuration,
there is only one possible color map to complete the rest of the hive Ek which is the simple color map
C0. □
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Since the number of pieces of each type is preserved under hexagon rotations, one derives the following
enumerations (only the enumeration of edges colored m will be used afterwards).

Corollary 6.17 (Tiles enumeration). Let H be a dual hive with regular boundaries. Let hc(H),
respectively, sc(H), be the number of m, respectively 3 colored edges inside H. Then,

(6.2) hc(H) = d(n− d) = sc(H).

Moreover, for i ∈ {0, 1}, denote nt(i)(H), respectively st(i)(H), the number of direct, respectively
reversed, triangular pieces of size 1 with color i on each side. Then,

(6.3) nt(i)(H) =
n(i)(n(i) + 1)

2
and st(i)(H) =

n(i)(n(i)− 1)

2
.

where n(0) = n− d and n(1) = 2d.

The detailed number of each type of triangles is thus

nt(0)(H) =
(n− d)(n− d+ 1)

2
, st(0)(H) =

(n− d)(n− d− 1)

2
, nt(1)(H) = d(2d+1), st(1)(H) = d(2d−1).

6.5. Quasi dual hives. The goal of this section is to extend hexagon rotations to hives. As of now,
hexagon rotations map one color map to another. To also change label maps, we need to relax the
inequality constraints of Definition 5.1 leading to quasi hives of Definition 6.20. From this section to
the end, we view regular dual hives of Tn+d as in the discrete hexagon Rd,n, see Definitions 6.18, 6.19
and Figure 22 below.

Definition 6.18 (Hexagonal dual hives). Let n, d ≥ 1. Denote En,d = {{u, v} ∈ R2
d,n : d(u, v) = 1}

the set of edges of the discrete hexagon Rd,n. A hexagon dual hive is a pair of maps (C,L), C : En,d →
{0, 1, 3,m} and L : En,d → 1

NZ such that NL(.) satisfies the conditions of Definition 5.1 restricted to
edges e ∈ En,d.

Definition 6.19 (Boundary value of a hexagonal dual hives). Define the following subsets of En,d for
l ∈ {0, 1, 2}.

∂(l,l)En,d = {e ∈ En,d : e is of type l and el−1 = 0}
∂(l,l+1)En,d = {e ∈ En,d : e is of type l and el−1 = n}.

The boundary value [(c(0,0), c(1,1), c(2,2), c(0,1), c(1,2), c(2,0)), (ℓ(0,0), ℓ(1,1), ℓ(2,2), ℓ(0,1), ℓ(1,2), ℓ(2,0))] of a hexag-
onal dual hive is the restriction of (C,L) to ∂En,d where

• c(l,l) ∈ {0, 1, 3,m}n−d (resp. c(l,l+1) ∈ {0, 1, 3,m}d) is the restriction of C to ∂(l,l)En,d (resp.

∂(l,l+1)En,d ),

• ℓ(l,l) ∈ ( 1
NN)d (resp. ℓ(l,l+1) ∈ ( 1

NN)d) is the restriction of L(.) to ∂(l,l)En,d (resp. ∂(l,l+1)En,d).

For (c, l) = (c(0,0), c(1,1), c(2,2), c(0,1), c(1,2), c(2,0), ℓ(0,0), ℓ(1,1), ℓ(2,2), ℓ(0,1), ℓ(1,2), ℓ(2,0)) ∈ {0, 1}3(n−d) ×
{0, 1}3d× ( 1

NN)3(n−d)× ( 1
NN)3d, we denote by Hhex(c, l) the set of hexagonal dual hives with boundary

value (c, l).

Let (λ, µ, ν) be partitions of length n with first part smaller than N −n such that |λ|+ |µ| = |ν|+Nd

and such that min(λn, µn, N − n − ν1) ≥ d − 1. Then, the associated boundary labels (l(0), l(1), l(2))
defined in Definition 5.1 on Tn+d are given by

l(0) = (0, . . . , d− 1, N − n− ν1, N − n− ν2 + 1, . . . , N − νn−d − d− 1, N − νn−d+1 − d, . . . , N − νn − 1)

l(1) = (0, . . . , d− 1, µn, µn−1 + 1, . . . , µd+1 + n− d− 1, µd + n− d, . . . , µ1 + n− 1)

l(2) = (0, . . . , d− 1, λn, λn−1 + 1, . . . , λd+1 + n− d− 1, λd + n− d, . . . , λ1 + n− 1)

so that the associated boundary colors (c(0), c(1), c(2)) are regular in the sense of Definition 6.1 which
means that on each boundary of Tn+d, the d first and last edges are colored 1 and the remaining n−d
edges are colored 0. By Lemma 6.10, any dual hive H = (C,L) ∈ H(λ, µ, ν,N) with regular boundary
conditions has every of its equilateral triangles of size d anchored in a corner of Tn+d colored 1. Each of
these triangular regions have one boundary with labels equal to (0, . . . , d−1). The corresponding region
in the puzzle yields a unique position of the corresponding triangular pieces with edge colors (1, 1, 1)

and this unique configuration gives labels to the third boundary edge of the region. Let l̃(0), l̃(1), l̃(2)
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Figure 22. The restriction of a regular dual hive on En+d to the hexagon En,d and
induced boundary value for the label map. Blue labels are determined by the unique
label map on each triangular corner. Multiplying edge labels by 1

N yields boundary
conditions in Hhex(λ, µ, ν,N).

be the respective labels of edges in ∂(0,1)En,d, ∂
(1,2)En,d, ∂

(2,0)En,d. Then, reading decreasingly with
respect to edges heights h(e), these labels are given by the following (see Figure 22 below),

l̃(0) = (N − n− λd + d− 1, N − n− λd+1 + d, . . . , N − n− λ1),(6.4)

l̃(1) = (N − n− µd + d− 1, N − n− µd+1 + d, . . . , N − n− µ1),(6.5)

l̃(2) = (νn−d+1 + d− 1, . . . , νn−1 + 1, νn).(6.6)

In this section, we now view regular dual hives H = (C,L) on Tn+d as hexagonal dual hives by
restricting C and L to En,d. By the above, the boundary conditions on En,d are given by

(6.7) c(l,l) = (0, . . . , 0), c(l,l+1) = (1, . . . , 1), ℓ(l,l) =
1

N
L|∂(l,l)En,d

, ℓ(l,l+1) =
1

N
l̃(l).

for l ∈ {0, 1, 2}. We write Hhex(λ, µ, ν,N) for the set of hexagonal dual hives having boundary colors
and labels given by (6.7) coming from restriction of dual hives on Tn+d. This restriction

(6.8) H(λ, µ, ν,N) → Hhex(λ, µ, ν,N)

is a bijection where the inverse map is given by extending C from the hexagon Rd,n to the triangle
Tn+d setting C(e) = 1 for e ∈ En+d \ En,d and completing the labels L in the unique possible way in
corner triangles. In this section, we now view dual hives in the hexagon Rd,n and we will omit the
subscript writing H(λ, µ, ν,N) for notation convenience.

Definition 6.20 (Quasi label map, quasi dual hive). Let C : En,d → {0, 1, 3,m} be a color map and

N ≥ 1. A quasi label map is a map L : En,d → 1
NZ such that NL(.) satisfying the equality conditions

of Definition 5.1, that is, equality condition on every triangular face and rigid lozenges with respect
to the color map C, and boundary values on ∂En,d given by the corresponding two-colored dual hives.
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Denote L̃C(λ, µ, ν,N) the set of such label maps.

A quasi dual hive is the data of a color map C and a quasi label map L. We denote by H̃(λ, µ, ν,N)
the set of quasi dual hives with boundary conditions (λ, µ, ν).

The difference with label maps of dual hives is that one does not impose the inequality constraints
of Definition 5.1 inside the hexagonal region En,d. Note that dual two-colored hives are in particular

quasi dual hives that is, H(λ, µ, ν,N) ⊂ H̃(λ, µ, ν,N).

Lemma 6.21 (Boundary value determine interior). Let H = (C,L) be a quasi dual hive and h an
ABC hexagon for its color map C. Then, the values of L on Eo

h, the set of interior edges of h, are
uniquely determined by the values of L on boundary edges of h and by the position of the rigid lozenge
in h. Moreover, the values of L on Eo

h are affine combinations of the values of L on boundary edges
of h.

Proof. Suppose that the values of L on ∂h are given by l1, . . . , l6 and values on Eo
h by l7, . . . , l12.

We will do the proof for a type A hexagon and the other types B and C can be treated using similar
arguments. Without loss of generality up to some permutation of the indexes suppose that C(e7) = m,
see Figure 23.

l4

l5

l6

l1

l2

l3 l10 l11

l12

l7l8

l9

Figure 23. Labels of edges in h a type A hexagon.

By the equality conditions on opposite sides of the rigid lozenge, one has l12 = l1 and l8 = l6. Let us
show that the values l7, l9, l10, l11 are uniquely determined in the region. Writing equality conditions
on the five triangular faces gives

l9 + l8 + l2 = 1− 1

N

l10 + l9 + l3 = 1− 2

N

l11 + l10 + l4 = 1− 1

N

l12 + l11 + l5 = 1− 2

N

l12 + l7 + l6 = 1− 1

N

which implies

(6.9) l1 + l3 + l5 = l2 + l4 + l6 −
2

N
.

Suppose that the former holds. The fourth equations of the system is redundant with the others and
(6.9) so that l7, l8, l9, l10, l11, l12 is solution to the invertible system

(6.10)




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1







l7
l8
l9
l10
l11
l12




=




1− 1
N − l1 − l6

l6
1− 1

N − l2 − l6
1− 2

N − l3
1− 1

N − l4
l1




.
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The labels on the inner edges are thus uniquely determined as linear combinations of the labels on
the outer edges.

□

We now give a definition of hexagon rotations that incorporates the label map of a quasi hive.

Definition 6.22 (Rotation map). Let C,C ′ be two color maps that differ by a hexagon rotation h → h′

that is, C ′(e) = C(rot(e)) where rot : En,d → En,d is the permutation of edges induces by the rotation
mapping h to h′. Define

Rot[C → C ′] : L̃C(λ, µ, ν,N) → L̃C′
(λ, µ, ν,N)(6.11)

L 7→ Rot[C → C ′](L) = L′(6.12)

by setting L′(e) = L(e) for e ∈ En,d \ Eo
h and extending L′ to Eo

h = Eo
h′ by Lemma 6.21.

For notation convenience, we will call a hexagon rotation the image of a map of Definition 6.22 for
some ABC hexagon h inside a quasi hive.

Lemma 6.23 (Rotation is affine bijection). Let C,C ′ be two color maps that differ by a hexagon

rotation. The map R[C → C ′] : L̃C(λ, µ, ν,N) → L̃C′
(λ, µ, ν,N) is an affine bijection with coefficients

in Z[λi, µi, νi, 1/N ] and whose inverse is R[C ′ → C].

Proof. For every edge e not interior to h, one has L′(e) = L(e). In particular, L′(e) = L(e) for e ∈ ∂h.
Since the matrix of (6.10) has integer coefficients and is lower triangular, the values {L′(e), e ∈ Eo

h}
are integer combinations of the values {L(e) = L′(e), e ∈ ∂h} and 1

NZ. □

Figure 24 shows an example of a hexagon rotation and the corresponding affine map L 7→ L′.
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l3 l′10 l′11

l′12

l′7l′8

l′9

Figure 24. Action of a rotation on labels of inner edges.

Using face summation constraints together with equality constraints in the rigid lozenge in h′ one has

l′9 = l4, l′7 = 1− 1

N
− l6 − l′12 =

1

N
+ l3 + l5 − l6,

l′11 = l3, l′8 = 1− 2

N
− l1 − l′7 =

1

N
+ l3 + l5 − l6,

l′12 = 1− 2

N
− l3 − l5, l′10 = 1− 1

N
− l4 − l′3.

which is a affine combination of values of L with integer coefficients.

For two color maps C, C ′ that differ by more than one hexagon rotation, we denote Rot[C → C ′] the
composition of maps in Definition 6.22 for each hexagon rotation needed to go from C to C0 and then
from C0 to C ′ where the existence of such paths was given by Proposition 6.16. Note that there might
be multiple rotation paths from C to C ′ so that such a map is not unique.

Let I ⊂ En,d be the set of edges of En,d that are not in a rigid lozenge of C0 except the edges of
type 2 between a rigid lozenge and a triangular face with colors (0, 0, 0) and edges of type 1 between
a rigid lozenge and a triangular face with colors (1, 1, 1), see Figure 25 below for an example. Denote
I0 the edges of I of type 0 where we remove the east-most such edge on each row. By a counting

argument, there are D = (n−1)(n−2)
2 such edges so that I0 = (e1, . . . , eD).
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Lemma 6.24 (Simple quasi hive). For any z = (z1, . . . , zD) ∈
(
1
NZ
)D

, there exists a unique label map

ΦC0(z) ∈ LC0(λ, µ, ν,N) such that for all 1 ≤ i ≤ D: ΦC0(z)(ei) = zi. Moreover, for all 1 ≤ i ≤ D,
ΦC0(z)(ei) is given by an affine combination with integer coefficients of (z1, . . . , zD, λ, µ, ν,

1
N ).

e1 e2 e3

e4 e5

e7

e12

e14 e15

e6

e8 e9

e10 e11

e13

Figure 25. The region I for n = 7 and d = 3. I0 = {ei, 1 ≤ i ≤ 15 = D}. Dashed
edges are edges of type 0 in I \ I0.

Proof. Let L : ∂En,d ∪ I0 → 1
NZ be a function satisfying the boundary condition (λ, µ, ν,N) as in

(6.7). We will show that L can be extended to a quasi label En,d in a unique way. For any edge
of type 2 part of an rigid lozenge, there exists an edge e∂(e) ∈ ∂En,d of the same type obtained by

translation of e by a multiple of ei
2π
3 . Likewise, for any edge of type 1 part of an rigid lozenge, there

exists an edge e∂(e) ∈ ∂En,d of the same type obtained by translation of e by a multiple of ei
π
3 . Assign

L(e) = L(e∂(e)) for each such edge e. By the equality condition on opposite edges of rigid lozenges,
any quasi label map has the same values on these edges.

It remains to extend L to edges e ∈ I. The values of ∂I are already determined uniquely by the
boundary conditions. Set L(ei) = zi for 1 ≤ i ≤ D. We call a band the following configuration of
adjacent faces where the west-most triangular face has both its edges of type 0 and 2 labeled, the
east-most triangular face has its type 1 edge labeled and all other faces in between have their type 0
edge labeled.

|
1|

|
32

|
54

|
76

| | | 8

|

Figure 26. A band of size four. Marked edges are the already labeled edges. The
labels of other edges are determined in the order of the red numbers by face summation
constraints.

We claim that there in a unique labeling of the edges in the band such that the face summation
constraints hold. The west-most face of the band has two of its three edges labeled so that the third
label is determined uniquely. The south pointing triangular face east to it has two out of three edges
labeled so that the third one is also fixed. By inductively propagating east, one labels the edges of
the band. Note that the label of the last east-most edge of type 0 is determined. This is why we do
not require to fix the values of type 0 edges in I \ I0.

The previous paragraph shows that one can extend L to all edges in the south most band of I.
Notice then that the region above is also a band. By induction, one extends L to the n − d south
most bands of I. The remaining region consists of bands turned upside down which are also uniquely
determined by the same reasoning. The resulting map L on En,d satisfies the face summation con-

straints so that L ∈ L̃C0(λ, µ, ν,N). Since the band completions are unique at each step, the labels of

any other quasi label map L′ ∈ L̃C0(λ, µ, ν,N) with same values on I0 would agree with L. □
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Definition 6.25 (Label map associated to edge coordinates). Define ΦC0(z) ∈ LC0(λ, µ, ν) to be the

unique label map constructed in Lemma 6.24 from specifying edge coordinates z ∈
(
1
NZ
)D

on I0. Let
C : En,d → {0, 1, 3,m} be any color map and let D = (n− 1)(n− 2)/2. Define the following map

ΦC :

(
1

N
Z
)D

→ LC(λ, µ, ν,N)

z = (z1, . . . , zD) 7→ ΦC(z) = Rot[C0 → C](ΦC0(z)).

Proposition 6.26 (Quasi hive structure). The map ΦC of Definition 6.25 is bijective. Moreover, for

any z ∈
(
1
NZ
)D

and edge e ∈ En,d , ΦC(z)(e) is an affine combination of (z1, . . . , zD, λ, µ, ν,
1
N ) with

integer coefficients.

Proof. The map ΦC is the composition of two bijections : z 7→ ΦC0(z) ∈ LC0(λ, µ, ν,N) and L 7→
Rot[C0 → C](L) which are both affine in (z1, . . . , zD, λ, µ, ν,

1
N ) by Lemma 6.23 and Lemma 6.24.

Its inverse is given by (ΦC)−1(L) = Rot[C0 → C](L)|I0 where to a label map L ∈ LC0(λ, µ, ν,N),
L|I0 = (L(e1), . . . , L(eD)) are the labels of the edges in I0.

□

So far we have defined the maps Rot[C → C ′] and ΦC from L̃C(λ, µ, ν,N) → L̃C′
(λ, µ, ν,N) and(

1
NZ
)D → L̃C(λ, µ, ν,N) respectively. We will now extend their definitions to quasi hives.

Definition 6.27 (Extension to dual hives). Let C,C ′ be two color maps. We extend the maps Rot[C →
C ′] and ΦC of Definitions 6.22 and 6.25 to quasi hives by

Rot[C → C ′] : H̃C(λ, µ, ν,N) → H̃C′
(λ, µ, ν,N)(6.13)

H = (C,L) 7→ Rot[C → C ′](H) = (C ′, Rot[C → C ′](L)),(6.14)

and

ΦC :

(
1

N
Z
)D

→ H̃C(λ, µ, ν,N)(6.15)

z = (z1, . . . , zD) 7→ (C,ΦC(z)).(6.16)

7. Convergence to a volume of hives

Since dP[γ+2r|α+ r, β+ r] = dP[γ|α, β] for r > 0, assume in this section without loss of generality
that α, β, γ ∈ Hreg are such that αn, βn > 0 and γ1 < 1. In particular, if λN , µN , νN are such that
1
N λN → α, 1

N µN → β, 1
N νN → γ, then min((λN )n, (µN )n, N − n− (νN )1) > d+ 1 for N large enough.

Hence, we will assume throughout this section that the hives with boundary (λN , µN , νN ) are regular
in the sense of (6.7), see Figure 22.

7.1. Limit dual hives. This section introduces limit dual hives which will be linked to the limit of
quantum Littlewood-Richardson coefficients of Theorem 3.8.

Definition 7.1 (Limit dual hive). For α, β, γ ∈ (R≥0)
3, the limit dual hive H(α, β, γ,∞) is the set of

pairs (C,L) on the hexagon edges En,d such that :

(1) C : En,d → {0, 1, 3,m} is a color map,
(2) L : En,d → R≥0 is the label map satisfying

(a) L(e1) + L(e2) + L(e3) = 1 for every triangular face of Fk,
(b) if e, e′ are edges of same type on the boundary of a same lozenge f ,

(i) L(e) = L(e′) if the middle edge of f is colored m,
(ii) L(e) ≥ L(e′) if h(e) > h(e′).

(c) The values of L on ∂En,d are given by (α, β, γ) so that, sorted in decreasing height of
edges, see Figure 27 below.

ℓ(0,1) = (1− αd, . . . , 1− α1), ℓ(2,2) = (αd+1, . . . , αn)

ℓ(2,0) = (1− βd, . . . , 1− β1), ℓ(1,1) = (βn, . . . , βd+1)

ℓ(1,2) = (γn, . . . , γn−d+1), ℓ(2,2) = (1− γn−d, . . . , 1− γ1).
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αn

αd+1

1− γn−d 1− γ1

βn

βd+1

γn

γn−d+1

1− βd

1− β1

1− αd 1− α1

∂(1,2) ∂(2,0)

∂(0,1)

∂(2,2) ∂(1,1)

∂(0,0)

Figure 27. Boundary labels for limit hives in H(α, β, γ,∞).

As in the discrete case, if C is a color map, we denote by HC(λ, µ, ν,∞) ⊂ H(λ, µ, ν,∞) the subset

of limit dual hives of having color map C. As in the previous section, we denote by H̃(λ, µ, ν,∞) the
set of pairs (C,L) as above where we remove the inequality conditions (2.b.ii) on L.

Remark 7.2 (Maps ΦC and Rot on limit dual hives). Note that Lemmas 6.21, 6.23 and 6.24 hold

for limit quasi dual hives H = (C,L) ∈ H̃(λ, µ, ν,∞) extending z ∈
(
1
NZ
)D

to z ∈ RD. Using the

same construction as in Section 6, we define Rot[C → C ′] : H̃C(λ, µ, ν,∞) → H̃C′
(λ, µ, ν,∞) and

ΦC : RD → H̃C(λ, µ, ν,∞) which are affine bijections with coefficients in Z[α, β, γ] obtained by setting
1
N = 0.

7.2. Convergence to a volume. The goal of this part is to prove Proposition 7.3 which expresses
the limit quantum cohomology coefficients as the volume involving limit dual hives. The proof relies
on Lemma 7.4 and Lemma 7.6 below.

Proposition 7.3 (Convergence to volume of dual hives).

(7.1) lim
n→∞

N−DcνN ,d
λN ,µN

=
∑

C

V ol
(
u ∈ RD,ΦC [u] ∈ HC(α, β, γ,∞)

)
.

Recall from Corollary 5.4 that

N−DcνN ,d
λN ,µN

= N−D|H(λN , µN , νN , N)| = N−D|H̃(λN , µN , νN , N) ∩ Ineq(n)|(7.2)

=
∑

C

∫

RD

∑

z=(z1,...,zd)∈( 1
N
Z)D:ΦC(z)∈H̃(λN ,µN ,νN ,N)∩Ineq(n)

1(u)z+[− 1
N
, 1
N
[Ddu.(7.3)

where Ineq(n) are the inequality constraints given in (2b) and (2c) of Definition 5.1.

Lemma 7.4 (Pointwise convergence). For any color map C and N ≥ 1, define

fC
N : RD → R

u 7→
∑

z=(z1,...,zd)∈( 1
N
Z)D:ΦC(z)∈H̃(λN ,µN ,νN ,N)∩Ineq(n)

1(u){z+[− 1
N
, 1
N
[D}.

Recall that 1
N λN = α + o(1), 1

N µN = β + o(1) and 1
N νN = γ + o(1) as N → +∞. Then, for almost

all u ∈ RD with respect to the Lebesgue measure:

(7.4) lim
N→∞

fC
N (u) = 1(u){ΦC [u]∈HC(α,β,γ,∞)}.
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Remark 7.5. Note that a priori, ΦC [u] ∈ H̃C(α, β, γ,∞) is a label map such that (C,L) is a limit
hive of Definition 7.1 without inequality constraints (2c) and (2d). Here, the right hand side is more

restrictive as it requires that (C,ΦC [u]) ∈ HC(α, β, γ,∞) = H̃C(α, β, γ,∞) ∩ Ineq(n).

Proof. Take u such that ΦC [u] in the interior of HC(α, β, γ,∞). We want to show that fC
N (u) = 1 for

N ≥ N0 which means that one can find a sequence (z(N), N ≥ N0) = ((z
(N)
1 , . . . , z

(N)
D ), N ≥ N0) such

that for each N ≥ N0 : ΦC(z(N)) ∈ H̃(λN , µN , νN , N) ∩ Ineq(n) and u ∈ z(N) + [−1/N, 1/N [. Let us
take the label map

(7.5) L(N) : e 7→ ΦC
N (⌊Nu⌋/N)(e) ∈ 1

N
Z.

associated to z(N) = ⌊Nu⌋/N : L(N) = ΦC
N (z(N)) where ΦC

N is associated to the boundaries (λN , µN , νN ).

One has |z(N)−u| < 1/N by construction. We need to check that L(N) ∈ H̃(λN , µN , νN , N)∩Ineq(n).

By definition, ΦC
N is a quasi label map with boundary conditions (λN , µN , νN ) so that L(N) ∈

H̃(λN , µN , νN , N). Let us check the inequality constraints of Ineq(n). Take any pair of edges (e, e′)
subject to an inequality. Since ΦC [u] ∈ HC(α, β, γ,∞) is in the interior, this equality is sharp for
ΦC [u] that is

(7.6) ∃ϵe,e′ > 0 : ΦC [u](e) ≤ ΦC [u](e′) + ϵe,e′ .

Since limN→+∞ L(N)(e) = ΦC [u](e) for any edge e, there exists N0(e, e
′) such that for N ≥ N0(e, e

′):

(7.7) L(N)(e) ≤ L(N)(e).

Hence, L(N) satisfies all the inequality constraints for N ≥ N0, where N0 is the largest of the thresholds
N0(e, e

′) for (e, e′) related by an inequality constraint in Definition 7.1. Therefore,

(7.8) ∀N ≥ N0 : L
(N) ∈ H̃(λN , µN , νN , N) ∩ Ineq(n).

so that limN→+∞ fC
N (u) = 1 as desired. For ΦC [u] /∈ HC(α, β, γ,∞), one of the inequalities in (2.b.ii)

of Definition 7.1 is violated, for all other conditions being satisfied by construction of ΦC . Let (e, e′)
be a pair of edge such that (2.b.ii) is not satisfied : ΦC [u](e) < ΦC [u](e′) while h(e) > h(e′) for some

pair of edges of same type adjacent to a same lozenge. Using that limN→+∞ L(N)(e) = ΦC [u](e), one

has that for N large enough L(N)(e) < L(N)(e′) so that L(N) /∈ H̃(λN , µN , νN , N) ∩ Ineq(n). Hence,
(7.4) holds for almost all u ∈ RD with respect to the Lebesgue measure.

□

Lemma 7.6 (Uniform bound). Let fC
N (u) be as in (7.4). Then, there exists a compact K(C) ⊂ RD

such that for every N ≥ 1,

(7.9) |fC
N (u)| ≤ 1{u∈K(C)}.

Proof of Lemma 7.6. If C = C0, the values z ∈ ZD such that ΦC0
N (z) ∈ H̃C0(λN , µN , νN , N)∩ Ineq(n)

are in [0, 1]D since (z1, . . . , zD) are the values of (Φ
C0
N (z)(e1), . . . ,Φ

C0
N (z)(eD)) for some horizontal edges

(e1, . . . , eD) ∈ En,d which are in [0, 1] by construction.
If C ̸= C0 by definition

(7.10) ΦC(z) = Rot[C0 → C](ΦC0(z))

where ΦC0(z) is the label map of the quasi hive with simple color map C0 having horizontal edge

labeled z. For z ∈ ZD such that ΦC
N (z) ∈ H̃C(λN , µN , νN , N) ∩ Ineq(n), we know from Ineq(n) that

values {ΦC
N (z)(e), e ∈ En,d} are in [0, 1]En,d . Applying the affine hence continuous map Rot[C → C0],

we get that Rot[C → C0]Φ
C(z) = ΦC0(z) ∈ Rot[C → C0]([0, 1]

En,d) which is compact. In particular,
the labels (zi = ΦC0(z)(ei), 1 ≤ i ≤ D) of horizontal edges ei in I are in compact sets hence bounded.

□

Proof of Proposition 7.3. By Lemma 7.4 and Lemma 7.6, using dominated convergence theorem in
(7.3):
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(7.11) lim
n→∞

N−DcνN ,d
λN ,µN

=
∑

C

V ol
(
u ∈ RD,ΦC [u] ∈ HC(α, β, γ,∞)

)
.

□

7.3. Volume preserving map. This subsection aims at proving that there is a volume preserving
map between dual hives H(α, β, γ,∞) and hives P g

α,β,γ of Definition 2.4. Refer to the notations of

Section 2 for the hives and related notions.

Let H = (C,L) ∈ H̃C(α, β, γ,∞). We assign to H an function ΨC : Rd,n → R constructed as

follows. Set ΨC [L](v) = d where v is the south-east vertex of Rd,n. For any other vertex v ∈ Rd,n

such that e = (u, v) ∈ En,d and ΨC(u) has been set, the value ΨC(v) is given by

(7.12) ΨC(v) =

{
ΨC(u) + L(e) if e is of type 1 or 2

ΨC(u) + 1− L(e) if e is of type 0.

See Figure 28 for a picture of the recursive construction of ΦC along edges.

v u
+(1− L(e))

v

u

+L(e)

u

v

+L(e)

Figure 28. Values at vertices when traversing an edge e = (u, v).

Definition 7.7 (Dual hive to hive). Let C be a color map. Define

(7.13) SC = {v4 : l = (v1, v2, v3, v4) is a rigid lozenge} ⊂ Rd,n

and

(7.14) P̃C
α,β,γ := {f : Rd,n \ SC → R, f∂Rd,n

given by α, β, γ}.
Moreover, define

ΨC : H̃C(α, β, γ,∞) → P̃C
α,β,γ(7.15)

(C,L) 7−→ ΨC [L](7.16)

where ΨC is given by (7.12) in the above construction.

Remark that the choice of v4 and the coloring on the boundary ensures that v4 is never on the boundary
of Rd,n in the above definition. That the map ΨC is well defined is due to the face summation constraint
L(e1) +L(e2) = 1−L(e0) around every face f ∈ Fk having edges (e0, e1, e2) of respective types 0, 1, 2

for the label maps L of dual hives in H̃C(α, β, γ,∞). Remark that ΨC depends on C only through its
domain and target space.

Remark 7.8 (Extension of functions of P̃C
α,β,γ ). Let f ∈ P̃C

α,β,γ. Then f can be uniquely extended to

a map f : Rd,n → R by setting f(v4) = f(v3) + f(v1)− f(v2) for any v4 ∈ SC .

Let C : En,d → {0, 1, 3,m} be a regular color map. Define

g[C] : Rd,n → Z3

v 7→ g[C](v)

where the value at vertex v ∈ Rd,n is set as follows. If v = A0 the south-east most vertex in Rd,n,
set g[C](v) = 0. Orient the edges in En,d around direct triangles clockwise and edges around reversed
triangles counterclockwise. For any oriented edge e = (u, v), set

(7.17) g[C](v) =





g[C](u) + 1 if C((u, v)) = 1

g[C](u) + 2 if C((u, v)) = 0

g[C](u) if C((u, v)) ∈ {3,m}.
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Proposition 7.9 (From color maps to regular labelings). The above map C 7→ g[C] is a bijection
between color maps on En,d and regular labelings on Rd,n. For any regular labeling g, its inverse is
given by

C[g] : En,d → {0, 1, 3,m}
e = (u, v) 7→ C[g](e)

where, if w ∈ Rd,n denotes the third vertex so that (u, v, w) is a direct triangular face,

(7.18) C[g](e) =





1 if g(v)− g(u) = 1

0 if g(v)− g(u) = 2

3 if g(v) = g(u) and g(w) = g(u)− 1 = g(v)− 1

m if g(v) = g(u) and g(w) = g(u) + 1 = g(v) + 1.

Proof. Let us show that g[C] is well defined. Since C is a color map, the only colors around a triangular
face in En,d are up to cyclic permutations (0, 0, 0), (1, 1, 1), (1, 0, 3) and (0, 1,m). One checks that sum-
ming the clockwise differences of values of g going from a vertex to itself around any such color triple
gives a zero contribution in Z3. Therefore, the value of g[C](v) does not depend on the choice of the
path from A0 to v. That (g[C]A, g[C]B, g[C]C) has the right boundary conditions is due to the fact that
C is regular. It remains to check the lozenge condition on g[C] from Definition 2.1. Take any lozenge
l = (v1, v2, v3, v4) and suppose that g[C](v2) = g[C](v4). Note that from Figure 3, the edge between
v2 and v4 is always oriented from v4 to v2. The edge e = (v4, v2) has color either 3 or m. Since C is
a color map, the two faces adjacent to e have either (1, 0, 3) or (0, 1,m) colors. The face with vertices
(v1, v2, v4), respectively (v3, v2, v4) is always direct, respectively reversed, see Figure 3. If C(e) = 3,
g[C](v1) = g[C](v2)+1 and g[C](v3) = g[C](v2)+2 whereas if C(e) = m, g[C](v1) = g[C](v2)+2 and
g[C](v3) = g[C](v2) + 1. In both cases, {g[C](v1), g[C](v3)} = {g[C](v2) + 1, g[C](v2) + 2} and thus
g[C] is a regular labeling.

Let us show that g 7→ C[g] maps a regular labeling g to a color map. Since g is regular, C[g]
also is by the same argument as above. Let us show that the only cyclic colors triples around
any triangular face are (0, 0, 0), (1, 1, 1), (1, 0, 3) and (0, 1,m). Take any triangular face and de-
note X,Y, Z the clockwise differences of values of g. Then, X + Y + Z = 0[3] so that (X,Y, Z) ∈
{(1, 1, 1), (2, 2, 2), (0, 1, 2), (0, 2, 1)} up to cyclic rotation. Note that we exclude (0, 0, 0) by the lozenge
condition in Definition 2.1 since no lozenge can have three vertices with equal values, for otherwise
the second condition of Definition 2.1 is violated. These possible height differences give the clock-
wise colors {(1, 1, 1), (0, 0, 0), (3, 1, 0), (m, 0, 1)} respectively. Therefore, C[g] is a color map and by
construction g 7→ C[g] is the inverse of C 7→ g[C]. □

Lemma 7.10 (Image of limit dual hives are toric concave functions). For any regular color map C,

(7.19) ΨC(HC(α, β, γ,∞)) = P
g[C]
α,β,γ .

where g[C] is the regular labeling associated to C as in Proposition 7.9 and P
g[C]
α,β,γ is the polytope

defined in Definition 2.4.

Proof. The image ΨC [(C,L)] of any limit hive (C,L) ∈ HC(α, β, γ,∞) can be extended by Remark
7.8 to a function f : Rd,n → R such that by construction ΨC [(C,L)] = f|Rd,n\SC = f|Supp(g[C]). Let us

check that f ∈ P
g[C]
α,β,γ . By construction, the values of f on ∂Rd,n are as in Definition 2.4, see Figure

29. By definition of the extension, f satisfies the equality constraints over any rigid lozenge in Rd,n.
For any other lozenge l = (v1, . . . , v4), the inequality f(v2) + f(v4) ≥ f(v1) + f(v3) is equivalent to
the inequality (2c) of Definition 7.1.

Conversely, to any function f ∈ P
g[C]
α,β,γ , associate the label map L[f ] : En,d → R≥0, e = (u, v) 7→

L[f ](e) = f(v) − f(u) if e has type 1 or 2 and L[f ](e) = 1 − (f(v) − f(u)) if e has type 0. We have
that ΨC(C,L) = f . Moreover, the equality and inequality constraints in Definition 7.1 are equivalent
to the rhombus concavity of f so that (C,L) ∈ HC(α, β, γ,∞). □

With the definitions above, we have an affine map ΨC ◦ΦC : RD → P̃C
α,β,γ . In the rest of this section,

we write det(ΨC ◦ ΦC) for the determinant of the linear part of this application.
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Figure 29. Boundary conditions on P
g[C]
α,β,γ induced by ΨC on boundary conditions in

Figure 27.

Proposition 7.11 (Volume preservation by duality). Let C be a color map. Then, the map

(7.20) ΨC ◦ ΦC : RD → P̃C
α,β,γ

satisfies

(7.21) | det(ΨC ◦ ΦC)| = 1

and thus

(7.22) V ol(u ∈ RD,ΦC(u) ∈ HC(λ, µ, ν,∞)) = V ol(u ∈ RD,ΨC ◦ ΦC [u] ∈ P
g[C]
α,β,γ) = V ol(P

g[C]
α,β,γ).

Proof. For C = C0, enumerate e1, . . . , eD the horizontal edges in C0 as in Lemma 6.24. Then, for
u ∈ RD and v ∈ Rd,n,

[ΨC0 ◦ ΦC0(u)](v) =
∑

ei

(1− ui) + (d− v2)
+ +

v2∑

i=1

βi

where the sum is over edges ei of type 0 connecting v to the east boundary of En,d with inverse

[ΨC0 ◦ ΦC0(f)]−1(i) = 1− (f(v)− f(v′))

where v, v′ the both endpoint of ei with the correct orientation. Since ΨC0 ◦ΦC0 and [ΨC0 ◦ΦC0(f)]−1

have integer coefficients, det(ΨC0 ◦ ΦC0) = 1.

If C is general, introduce for each hexagon rotation C → C ′ given by an hexagon h the map
R̃C→C′ : P̃C

α,β,γ → P̃C′
α,β,γ by

(1) For f ∈ P̃ c
α,β,γ , extend f uniquely to a function f : Rd,n → R,

(2) Let us describe how the hexagon rotation C → C ′ maps f to another function f ′ : Rd,n → R.
The value of the center vertex c of h is uniquely determined by the position of the rigid
lozenge in h and the values of f on ∂h. Indeed, if (v, v′, v′′) are the three other vertices
of the rigid lozenge such that C((c, v′′)) = m, then f(c) = f(v) + f(v′) − f(v′′). Note that
v, v′, v′′ ∈ ∂h. For every vertex u ∈ Rd,n other that the center vertex c of h, we set f ′(u) = f(u).
In the hexagon rotation C → C ′, the position of the the rigid lozenge changes and we set
f ′(c) = f(w) + f(w′) − f(w′′) where w,w′, w′′ ∈ ∂h are the new vertices of the rigid lozenge
which are located on ∂h = ∂h.

(3) The map R̃C→C′(f) is defined as the restriction of f ′ of the previous step to Rd,n \ SC′
.
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Note that the map R̃C→C′ is an affine bijection with integer coefficients whose inverse is given by
R̃C′→C . Let us check that the following diagram is commutative

(7.23)

P̃C
α,β,γ P̃C′

α,β,γ

H̃C(α, β, γ,∞) H̃C′
(α, β, γ,∞)

R̃C→C′

ΨC

Rot[C,C′]

ΨC′

Let H = (C,L) ∈ H̃C(α, β, γ,∞) having an ABC hexagon h with center vertex c. Denote by C ′

the color map obtained after any rotation h 7→ h′ and set (C,L′) = Rot[C,C ′](C,L). For any vertex

u ̸= c ∈ Rd,n, one has R̃C→C′(ΨC)(u) = ΨC(u). Moreover, if u ̸= c then one can find a path of edges
from the south-east most vertex of Rd,n to u without any edge incident to c. Since the labels of these

edges are not changed by Rot[C → C ′], ΨC′
(L′)(u) = ΨC(L)(u) = R̃C→C′(ΨC(L))(u) as desired. It

remains to check that the same property holds for u = c. Denote (v, v′, v′′), respectively (w,w′, w′′)
the vertices on ∂h such that up to cyclic rotation (v, c, v′, v′′), respectively (w, c, w′, w′′), are vertices
of the rigid lozenge in h, respectively h′, and that C((u, v′′)) = C ′((u,w′′)) = m. Then,

R̃C→C′(ΨC(L))(u) = ΨC(L)(w) + ΨC(L)(w′)−ΨC(L)(w′′)

and

ΨC′
(Rot[C,C ′](L))(u) = ΨC′

(L′)(u)

Since the values of Ψ do not depend on the chosen path, let us choose the following four paths. Take
any path p = (e1, . . . , er) ∈ (En,d)

r from the south-east vertex A0 to w such that for each 1 ≤ i ≤ r,
ei is not an interior edge of h. then,

(1) To evaluate ΨC(L)(w), we choose the path p,
(2) To evaluate ΨC(L)(w′′), we append the edge (w,w′′) ∈ ∂h to p,
(3) To evaluate ΨC(L)(w′), we append edges (w,w′′), (w′′, w′) ∈ (∂h)2 to p,

(4) To evaluate ΨC′
(L′)(u), we append the edge (w, u) to p,

which gives

ΨC(L)(w) =
∑

1≤i≤r

L(ei) + d

ΨC(L)(w′′) =
∑

1≤i≤r

L(ei) + L((w,w′′)) + d

ΨC(L)(w′) =
∑

1≤i≤r

L(ei) + L((w,w′′)) + L((w′′, w′)) + d

ΨC′
(L′)(u) =

∑

1≤i≤r

L′(ei) + L′((w, u)) + d.

Since we have chosen edges ei ∈ p not interior to h, L(ei) = L′(ei) for 1 ≤ i ≤ r. The commutativity
of the diagram is thus equivalent to

L′((w, u)) = L((w,w′′)) + L((w′′, w′))− L((w,w′′)) = L((w′′, w′)),

i.e

L′((w, u)) = L((w′′, w′)).

Notice that (w, u), (w′′, w′) are two edges of the same type in the rigid lozenge in C ′ which implies that
L′((w, u)) = L′((w′′, w′)) = L((w′′, w′)), where the last equality is due to the fact that (w′, w′′) ∈ ∂h
so that its label value is unchanged by Rot[C,C ′]. The commutativity of (7.23) is thus showed.

Using (7.23), we have for any sequence of hexagon rotations C0 → C1 → · · · → C,

∏
R̃Ci→Ci+1Ψ

C0 ◦ ΦC0 = ΨC
∏

Rot[Ci → Ci+1]Φ
C0 = ΨC ◦ ΦC .

On the left hand side, every map is affine with integer coefficient and with inverse having integer
coefficients, so the same is true on the right hand-side, and thus

det(ΨC ◦ ΦC) = 1.
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The first equality of (7.22) is due to Lemma 7.10 and the second is a consequence of det(ΨC ◦ΦC) = 1.
□

7.4. Proof of Theorem 2.5 and Corollary 2.6.

Proof of Theorem 2.5. By Theorem 3.8 we have

(7.24) dP[γ|α, β] = sf(n− 1)(2π)(n−1)(n−2)/2∆(e2iπγ)

n!∆(e2iπα)∆(e2iπβ)
lim

N→∞
N−(n−1)(n−2)/2cνN ,d

λN ,µN
.

By Proposition 7.3 and Proposition 7.11,

dP[γ|α, β] = sf(n− 1)(2π)(n−1)(n−2)/2∆(e2iπγ)

n!∆(e2iπα)∆(e2iπβ)

∑

C

V ol[u ∈ RD,ΦC [u] ∈ HC(α, β, γ,∞)](7.25)

=
sf(n− 1)(2π)(n−1)(n−2)/2∆(e2iπγ)

n!∆(e2iπα)∆(e2iπβ)

∑

C

V ol(P
g[C]
α,β,γ)(7.26)

=
sf(n− 1)(2π)(n−1)(n−2)/2∆(e2iπγ)

n!∆(e2iπα)∆(e2iπβ)

∑

g:Rd,n→Z3 regular

V olg(P
g
α,β,γ).(7.27)

□

Proof of Corollary 2.6. From the expression [36, Eq. (4.116)] proven in [15], we have

V ol
[
M(Σ3

0, α, β, γ)
]
=

#Z(SUn)V ol(SUn)

V ol((R/2πZ)n−1)3

∑

λ∈Zn
≥0

1

dimVλ
χλ(e

2iπα)χλ(e
2iπβ)χλ(e

2iπγ),

where Z(SUn) is the center of SUn. From (3.3), we deduce that

V ol
[
M(Σ3

0, α, β, γ)
]
=

#Z(SUn)V ol(SUn)(2π)
n−1n!

V ol((R/2πZ)n−1)3|∆(e2iπγ)|2dP[−γ|α, β].

Corollary 2.6 is then deduced from Theorem 2.5 and the fact that Z(SUn) = 2(n+1)[2], V ol(SUn) =
(2π)n(n+1)/2−1∏n

k=1 k!
and V ol((R/2πZ)n−1) = (2π)n−1. □
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