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NORMAL CROSSING IMMERSIONS, COBORDISMS AND FLIPS

KARIM ADIPRASITO AND GAKU LIU

Abstract. We study various analogues of theorems from PL topology for cubical com-
plexes. In particular, we characterize when two PL homeomorphic cubulations are equivalent
by Pachner moves by showing the question to be equivalent to the existence of cobordisms
between generic immersions of hypersurfaces. This solves a question and conjecture of
Habegger and Funar.

1. Introduction

Pachner’s influential theorem proves that every PL homeomorphim of triangulated manifolds
can be written as a combination of local moves, the so-called Pachner moves (or bistellar
moves). Geometrically, they correspond to exchanging, inside the given manifold, one
part of the boundary of a simplex by the complementary part. For instance, in a two-
dimensional manifold, a triangle can be replaced by three triangles with a common vertex,
and two triangles sharing an edge can be replaced by two different triangles sharing the
edge connecting the vertices opposite the original edge.
Cubical complexes, popularized for their connection to low-dimensional topology and
geometric group theory (see for instance [Gro87]), have analogous moves called cubical
Pachner moves. However, the situation is not as simple as the simplicial case. Indeed, a
cubical Pachner move can never change, for instance, the parity of the number of facets.
But cubical polytopes, for instance in dimension 3, can have odd numbers of facets as well
as even; see [SZ04] for a few particularly notorious constructions.
Hence, there are at least two classes of cubical 2-spheres that can never be connected
by cubical Pachner moves. Indeed, Funar [Fun99] provided a conjecture for a complete
characterization for the cubical case that revealed the problem’s depth depth: Every cubical
manifold of dimension d has associated an immersed normal hypersurface. To construct this,
consider an edge of the cubical complex; transversal to it, draw a pd� 1q-dimensional disk.
Continue drawing through adjacent edges, that is, edges that are in a common square, but
have no vertex in common. Repeating this for every edge yields the desired hypersurface.
We refer to [Fun99] for more on these notions.
Note that the union of these normal hypersurfaces form precisely the codimension one-
skeleton of the dual cell decomposition. Notice further that every self-intersection of that
hypersurface is normal crossing; the intersections are transversal.
We call two normal crossing hypersurfaces cobordant if they are cobordant as normal crossing
hypersurfaces: If H, H 1 are normal crossing hypersurfaces in a manifold M , then they are
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cobordant if there is a normal crossing hypersurface in M � r0, 1s that restricts to H and
H 1 in the two boundary components.
Funar conjectured, and we prove:

Theorem 1.1. For two PL cubulations X0, X1 of the same manifold M , the following three
conditions are equivalent:
(1) The normal surfaces of X0, X1 of a manifold M are cobordant as generic immersions.
(2) There is a PL cubulation of M � r0, 1s such that M � t0u � X0, M � t1u � X1.
(3) X0 and X1 are related by cubical Pachner moves.

This resolves a problem of Habegger and Funar [Fun99], see the remark on top of his
third page. Habegger in fact assumed that only a PL homeomorphism is necessary for two
cubulations to be related through cubical Pachner moves; it was Funar that recognized the
importance of normal crossing cobordisms for the problem, and in particular also computed
these cobordism groups for spheres [FG02]. In fact, Funar proved almost all implications,
except one: that (2) implies (3). For surfaces and 1-dimensional manifolds, the problems
were solved by Funar [Fun08] and independently sketched by Thurston [Thu93].

2. Preliminaries

2.1. Basic definitions. A polyhedral complex is a complex of polytopes where the intersection
of any two polytopes is a union of faces of each polytope, and where we do not allow
identification of faces of the same polytope. A simplicial complex and a cubical complex
are complexes whose polytopes are all simplices and cubes, respectively. These are also
called triangulations and cubulations, respectively. Given a polyhedral complex A and a
subcomplex B of A, we let AzB be the complex generated by the facets of A that are not
in B. Given a complex A and a face τ of A, we let A� τ be the complex consisting of faces
of A that do not contain τ .
Given a polyhedral complex A and a face τ of A, the star stτ A of τ in A is the subcomplex
generated by all faces of A containing τ . A disk is a PL disk if it admits a PL homeomorphism
to the simplex. A polyhedral manifold is a polyhedral complex homeomorphic to a manifold,
and a PL manifold is a polyhedral manifold in which the star of any vertex is a PL ball.
Hence a PL triangulation resp. PL cubulation is a triangulation resp. cubulation in which
every star is a PL ball.
The link lkτ A of a face τ in A is, in terms of the poset, the principal filter of τ in
A. Geometrically, it can be understood as follows: If τ is a vertex, then its link is the
intersection of A with a sufficiently small metric sphere with center τ . Here, a metric sphere
is the boundary of a metric ball. Provided this metric sphere is contained entirely in the
star of τ , this yields a spherical polyhedral complex whose face poset is the filter discussed
above.
The link of a general face τ is defined iteratively, by considering one of its vertices v, and
defining lkτ A to be the link of lkv τ in lkv A. The link of the empty set in a complex is
naturally the complex itself.

2.2. Cubical Pachner moves. First, it is useful to have different moves available. Let us first
recall the definitions of Pachner moves.
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A simplicial Pachner move in a d-dimensional simplicial complex S picks a d-dimensional
subcomplex of S isomorphic to a subcomplex of the boundary of the pd� 1q-simplex, and
replaces it with the complementary subcomplex of that simplex. Here is the cubical version.

Definition 2.1 (Cubical Pachner moves). If X is a cubical manifold, that is, a cubulation
of a manifold, and C is a cube of one dimension higher, then a cubical Pachner move
consists of removing a pure, full dimensional, contractible subcomplex of X isomorphic to a
subcomplex of BC and replacing it with the complement.

A good way to think about Pachner moves is in terms of cobordisms and shellings. A
relative complex P � pA, Bq is a pair of polyhedral complexes where B � A. The faces of
P are the faces of A that are not faces of B. Geometrically, we identify P with ||A||.
Consider a relative polyhedral complex P � pA, Bq and a facet F of P . We say that P
shells to P zF :� ppAzF q Y B, Bq if F X ppAzF q Y Bq is shellable of dimension dim F � 1
and P zF is of the same dimension as P or has no faces.
A relative complex pA, Bq is shellable if iterated shelling steps reduce it to pB, Bq. A
complex A is shellable if pA,∅q is shellable.
With this, we have:

Lemma 2.2. If a triangulation/cubulation of pM�r0, 1s, M�t0uq is shellable then M�t0u
and M � t1u are related through Pachner moves.
Conversely, if two cubulations or triangulations are related by (cubical) Pachner moves,
then they related by a shellable cobordism. (That is, there is a triangulation/cubulation
of M � r0, 1s where M � t0u and M � t1u are the given triangulations/cubulation and
pM � r0, 1s, M � t0uq is shellable.)

Proof. Every shelling step exactly corresponds to a Pachner move: Consider the change
in M � t1u in such a step. Observe then that the part of the removed polytope (cube or
simplex) in the shelling step that intersects M � t1u is replaced by the remaining facets of
the boundary, as desired. □

Concerning regular subdivisions of convex disks, that is, regions of linearity of a convex
function, the following is useful to keep in mind:

Proposition 2.3 ([BM71]). A regular subdivision of a convex disk D in Rd is shellable. If,
moreover, v is any point outside of D, and M is the part of the boundary of D illuminated by
v, that is, those facets that can be connected to v with a line segment that does not intersect
D in the interior, then pD, Mq is shellable.

2.3. Cubical stellar and cubical derived subdivisions. We next describe the cubical analogue
of stellar subdivisions and derived subdivisions. Recall that a stellar subdivision of a
polyhedral complex S picks a face τ of S and considers the complex S � τ . It then glues
ConepstS τ � τq to S � τ along stS τ � τ . In geometric situations the conepoint is often
placed inside τ . Here is the cubical variant.

Definition 2.4 (Cubical stellar subdivision). Let C be a polyhedral complex in Rd, and let
τ be any face of C. Let xτ denote a point anywhere in the relative interior of τ , and let λ
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be any number in the interval p0, 1q. Define
c-stpτ, Cq :� pC � τqY

tconvpσ Y pλσ � p1� λqxτ qq : σ P Stτ C � τuY

pλStτ C � p1� λqxτ q.

The complex c-stpτ, Cq is the cubical stellar subdivision, or c-stellar subdivision, of
C at τ .

Figure 2.1. A cubical stellar subdivision of a complex C, seen as a subcomplex of
the product of C with an interval.

A useful way to think about a cubical stellar subdivision is to think of think of it as a stellar
subdivision, that is, the removal of τ from C and coning over the boundary of the hole left
over, followed by "cutting off " the conepoint. In particular, if the link of τ is regular, then
we can indeed achieve this visually by introducing new linear constraints at the apex vertex
of the cone.
Finally, we look at cubical derived subdivisions. In the simplicial case, these derived
subdivisions arise by performing stellar subdivisions at the faces in order of decreasing
dimension. The analogue here is:

Definition 2.5 (Cubical derived subdivision). Let C denote any polytopal d-complex, with
faces ordered by decreasing dimension. A cubical derived subdivision, or c-derived
subdivision, is any subdivision C obtained by first c-stellar subdividing all d-faces of C,
then c-stellar subdividing the resulting complex at all the original pd� 1q-faces of C, then
all original pd� 2q-faces, and so on up to the faces of dimension 1.

Again, in the way they were introduced, it is natural to think of stellar subdivisions as
cobordisms, obtained by attaching Stτ C � r0, 1s to the complex in question. Cubical stellar
subdivisions have several nice properties; for example, they preserve shellability. More
importantly, it is useful to note the following corollary of the main theorem.

Corollary 2.6. Every cubical stellar subdivision of a PL cubical manifold X can be achieved
by cubical Pachner moves.

Proof. By attaching StF X � r0, 1s to X with the identification StF X � t0u � StF X, we
obtain a cubical cobordism of X to the cubical stellar subdivision of X at F . This gives the
desired by the main theorem. □

Let us observe a weaker version, which we can prove immediately.

Proposition 2.7. Every cubical stellar subdivision of a PL cubical manifold X can be
achieved by cubical Pachner moves provided, assuming the link of the subdivided face is
shellable.
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Proof. StF X � r0, 1s is shellable relative to StF X � t0u by assumption. □

Note that the converse does not hold: not every cubical Pachner move is obtainable by
cubical stellar moves. Specifically, note that cubical stellar moves are topologically “boring”
with respect to the associated normal hypersurfaces; they only introduce null-homotopic
spheres as hypersurfaces, or remove them. But general cubical Pachner moves can change
the topology or intersection patterns of the immersed surfaces. For example, a loop in S2

with two self-intersection is normal crossing equivalent to the loop with no self intersection,
but this cannot be obtained by stellar moves only.
This is contrary to the case of simplicial complexes, where bistellar moves are less general
than stellar moves, and they only coincide for PL manifolds.

2.4. From cubical-stellar to stellar and back: the confinement map. Let us compare cubical
stellar and stellar subdivision for the briefest moment: Recall, the cubical stellar subdivision
of a complex C at a face τ is

c-stpτ, Cq :� pC � τqY

tconvpσ Y pλσ � p1� λqxτ qq : σ P Stτ C � τuY

pλStτ C � p1� λqxτ q.

Compared to that, the stellar subdivision is
stpτ, Cq :� pC � τqY

tconvpσ Y xτ qq : σ P Stτ C � τu

In other words, the stellar subdivision is the limit of the cubical stellar subdivision when
λ Ñ 0.
In particular, using this contraction we obtain a polyhedral map, called confinement map,

φτ : c-stpτ, Cq ÝÑ stpτ, Cq

that is, a map that sends polyhedra to polyhedra and in particular induces a map of posets.
The following is clear: Given a polyhedral complex I, let I¡0 denote the filter generated by
all faces of positive dimension.
Lemma 2.8. The confinement map is injective on stpτ, Cq¡0, that is, on the order filter
and its preimage, the map is one to one as a map of posets. The preimage of a vertex is a
vertex, unless the vertex is xτ , in which case it is Stτ C

In other words, the source of non-injectiveness is the 0-skeleton of stpτ, Cq, that is, the
vertices. This Lemma allows us to associate to any iterated stellar subvision of C a canonical
cubical stellar subdivision. If, say, C is stellarly subdivided at a face τ , then there is an
associated cubical stellar subdivision of C carried out in τ .
Now if we consider a further stellar subdivision of the resulting complex C 1, then the
preimage of the subdivided face under the confinement map is a face (by Lemma 2.8) that
is we can analogously perform a cubical stellar subvision on.
Hence, to an iterated simplicial stellar subdivision we have an associated cubical stellar
subdivision, and an associated confiment map. Lemma 2.8 still applies to this iterated
confinement map: The map is injective on the order filter of faces of positive dimension.
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2.5. A non-useful subdivision. There is another kind of subdivision in cubical manifolds.
While simple, it is, from the view of cobordisms of normal crossing hypersurfaces, boring.
But we record it here for curiosity’s sake. Specifically, consider a cubulation X of a d-
manifold M . The normal crossing hypersurface of X divides every d-cube of M into 2d

smaller d-cubes. It divides every edge into two components, each of which can be cancelled
out with each other in a cobordism. We obtain:
Proposition 2.9. The hypersurface of the above subdivision is cobordant to the trivial
hypersurface; the empty one.

3. Whitehead’s neighborhood theorem

Before we start, let us observe a basic proposition, going back to of Whitehead [Whi38].
Recall: In a polyhedral complex, an elementary collapse is the removal of a free face, that
is, a face A contained strictly only in one other face B. Both the free faces and the face B
are removed together, yielding a smaller cell complex.
A collapse is the combination of elementary collapses.
Proposition 3.1 (See also [MST19]). Consider a collapse X × Y of simplicial (or cubical)
complexes of dimension d such that stars of collapsed faces are shellable of dimension d.
Then the second (cubical) derived subdivision of X shells to the induced subdivision of Y .

Proof. Consider first the simplicial case: Define the neighborhood NAX of a subcomplex A
in a polyhedral complex X to be the closure of all faces of X containing A.
Consider now the vertices of the first derived subdivision; as the original complex admits a
collapse, the vertices come in pairs corresponding to those collapsing pairs.
Now, we consider the neighborhoods Nγ of these pairs in the second derived subdivsion X2

of X. The basic observation is that the neighborhoods Nγ of the barycenter of A in X2 can
be shelled relative to the remainder. This is due to lkA X, and therefore its second derived
subdivision, being shellable (it is easy to see that derived subdivisions preserve shellability
and collapsibility). Therefore, the order of collapses gives a shelling of X2 to the induced
subdivision of Y .
For the cubical case, we note that the image under the confinement map has the desired
shellability property, and it is easy to see that the fibers of the confinement map at vertices
individually are shellable (as they are cubical derived subdivisions of shellable stars, and
derived subdivisions preserve shellability), hence the second cubical derived subdivision has
the desired shelling property. □

We close this section with another simple fact:
Lemma 3.2. A star Stτ C collapses to any of its vertices.

We need an auxiliary lemma of Brugesser and Mani [BM71].
Lemma 3.3. Consider a polytope P , and F and face of its boundary. Then P collapses to
StFBP .

Proof. Brugesser and Mani proved this in the context of shellings, but it is an easy and
classical fact that a shelling induces a collapse. □
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Proof of Lemma 3.2. Consider the minimal face T of Stτ C containing τ and the vertex
v we wish to collapse to.
Consider now a maximal face F of Stτ C, and assume F is not T . Following Lemma 3.3,
F collapses to StτBF and hence Stτ C collapses down to pStτ CzF q Y StτBF , the complex
obtained by removing F and all its faces from Stτ C, and adding StτBF .
Since

Stτ ppStτ CzF q Y StτBF q � pStτ CzF q Y StτBF,

we can iterate this process until we collapsed Stτ C to T . Now, we use the Lemma Lemma 3.3
again and collapse the latter to v. □

4. Cubical Pachner Theorem

We now prove the main theorem. The directions p1q ùñ p2q and p3q ùñ p1q are shown
in [Fun99]; it remains to prove p2q ùñ p3q. Let M be a manifold with two PL cubulations
X0 and X1, and let Y be a PL cubulation of M � r0, 1s such that Y X pM � t0uq � X0,
Y X pM � t1uq � X1.
We have the following lemma, following from the main result of [AB12].

Lemma 4.1. Let Y be a PL cubical manifold with boundary. After some iterated cubical
stellar subdivison, the links of faces in Y are shellable.

Proof. This is really a simplicial lemma, as links of faces in cubical complexes are simplicial
complexes, and cubical stellar subdivisions on the cubical complex result in simplicial stellar
subdivisions in the links: We begin by the considering the maximal face τ whose link is
not shellable. We then perform stellar subdivisions at those faces containing it: newly
introduced faces clearly have links that are shellable, so it remains to see what happens in
the link of τ .
It therefore suffices to prove that a PL sphere or ball becomes shellable after iterated derived
subdivision that does not affect the boundary. For spheres, this is a result of [AB12]. For the
case of a ball B, we observe that stellar subdivision in the interior adjacent to a boundary
face, followed by a shelling step at the boundary, is isomorphic to a subdivision step at the
boundary. Hence, restricting to subdivisions at interior faces does not pose a restriction. □

Next, we observe that the cobordism may be chosen so that M � r0, 1s collapses to M �t0u.
Indeed, we have the following result following from the main result of [AB17]:

Lemma 4.2. After some iterated cubical stellar subdivision of interior faces, Y collapses to
Y X pM � t0uq.

Proof. Following [AB17], there exists an ordinary (simplicial) stellar subdivision Y 1 of the
interior faces of Y so that Y 1 collapses to Y 1 X pM � t0uq.
Now, to every ordinary stellar subdivision, we have an associated a cubical stellar subdivision.
Recall that this cubical stellar subdivision Y 2 of the interior faces of M � r0, 1s admits
a polyhedral map to Y 1, that is, a map that sends polyhedra to polyhedra: This is the
confiment map of Section 2.4. We claim this map preserves collapses:
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Recall that a collapse consists of a pair of faces pA, Bq, such that B is the only face that
strictly contains A (and A is called free in this case)
Now, if A is of positive dimension, then the preimage of both A and B are unique faces by
Lemma 2.8, and the preimage of A is hence free as well.
If A is of dimension 0, then it’s preimage φ�1A is of the form Stτ C that collapses to the
intersection with the closure of φ�1B by Lemma 3.2.
Hence Y 2 collapses to Y 2 X pM � t0uq. □

Hence, we have a cubulation Y 2 of M � r0, 1s which collapses to Y 2 X pM � t0uq and such
that Y 2 X pM � t0uq � Y 2 X pM � t0uq � X0, and in which we can assume that the link of
any face is shellable.
Hence, using Proposition 3.1, after sufficiently many cubical derived subdivisions, we have a
cubulation of M � r0, 1s which shells to M � t0u and M � t0u � X0, M � t1u � X1. This
gives the desired implication. □
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