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On the quadratic stability of asymmetric Hermite
basis and application to plasma physics

R. Dai and B. Després

May 12, 2024

Abstract

We analyze why the discretization of linear transport with asymmetric
Hermite basis functions can be instable in quadratic norm. The main
reason is that the finite truncation of the infinite moment linear system
looses the skew-symmetry property with respect to the Gram matrix.
Then we propose an original closed formula for the scalar product of any
pair of asymmetric basis functions. It makes possible the construction of
two simple modifications of the linear systems which recover the skew-
symmetry property. By construction the new methods are quadratically
stable with respect to the natural L2 norm. We explain how to generalize
to other transport equations encountered in numerical plasma physics.
Basic numerical tests illustrate the unconditional stability properties of
our algorithms.

1 Introduction
Asymmetric Hermite basis are widely used for the numerical discretization of
transport phenomenon in plasma physics, since they are amenable for the preser-
vation of natural invariants such as the total mass or the total energy. However
they are not symmetric which, on mathematical grounds, means that they do
not constitute an orthonormal family of the space L2(R) endowed with the scalar
product

(α, β) =
∫
R
α(v)β(v)dv, α, β ∈ L2(R). (1)

In consequence they can trigger numerical instabilities in numerical methods.
The aim of our work is to explain how to recover the hidden quadratic stability of
asymmetric Hermite basis, which turns into new and stable numerical methods.
Mathematically this is based on exact formulas for the calculation of the scalar
product of two asymmetric functions. To the best of our knowledge, these
formulas are original with respect to the huge literature on special functions
[16, 12].

In plasma physics literature [1, 7, 8, 9, 11, 17, 10, 13, 18, 4], the theory
of Hermite basis is often motivated by the development of plasma numerical
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simulators. The convergence of the Hermite-Fourier method with symmetric
functions is provided in [13, 6, 3]: unfortunately the theory is difficult to extend
to the asymmetric case. The seminal reference is Holloway who discussed these
two cases in [8]. When employing symmetrically-weighted basis functions, par-
ticle number, mass and total energy are preserved for odd number of moments,
or momentum are preserved for even number of moments. On the other hand,
asymmetrically-weighted basis functions, conserves particle number, total en-
ergy and momentum simultaneously. In [10], K. Kormann and A. Yurova, using
the idea of telescoping sums to show conservation for the symmetrically-weighted
and asymmetrically-weighted cases, reached conclusions consistent with those
in [8]. This is the reason why researchers are more interested in asymmetrically-
weighted basis functions.

Subsequent research [18] by Schumer and Holloway conducted comprehen-
sive numerical simulations of both symmetric and asymmetric methods, re-
vealing that the asymmetrically-weighted Hermite method became numerically
unstable. On the contrary, the symmetrically-weighted method is more robust
and suitable for long-time simulations. Among recent works which explicitly
mention the instability of asymmetric basis, we quote [13, 2] where the first
contribution relies on adding a Fokker-Planck perturbation to enforce stability
while the second contribution details a weighted norm which changes dynami-
cally in time (its net effect is that the underlying reference temperature increases
in time). Funaro and Manzini provide in [6] a mathematical investigation of the
stability of the Hermite-Fourier spectral approximation of the Vlasov-Poisson
model for a collisionless plasma in the electrostatic limit. The analysis includes
high-order artificial collision operators of Lenard-Bernstein type. In [15], the au-
thors proposed a spectral method for the 1D-1V Vlasov-Poisson system where
the discretization in velocity space is based on asymmetrically-weighted Her-
mite functions, dynamically adapted through two velocity variables, which aims
to maintain the stability of the numerical solution. To our knowledge, none of
the quoted works has ever explained the origin of the numerical instability of
asymmetric basis.

Our theoretical contributions are threefold. Firstly we provide a simple linear
explanation of the numerical instability phenomenon. Secondly we propose in
Theorems 4.1 and 4.4 original compact formulas for the scalar product (1) of two
asymmetric Hermite functions. Thirdly we show how to modify the matrices of
the discrete problem so as to recover the natural stability of the model problem,
as in Lemma 5.1 for example.

The plan of this work is as follows. In Section 2, we provide a simple exam-
ple of the instability attached to truncated asymmetric basis for the numerical
simulation of ∂tf+e∂vf = 0. Then in Section 3, we analyze the structure of the
Gram matrix of asymmetric basis. Section 4 is devoted to the exact calculation
of the coefficients of the Gram matrix, where we propose formulas which are new
to our knowledge. In Section 5 we present two easy-to-implement modifications
of the matrix of the problem, where the antisymmetry with respect to the Gram
matrix is recovered by construction. The next Section 6 is devoted to a simple
generalization to the equation ∂tf + v∂xf = 0. Finally, Section 7, we illustrate
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the general properties with numerical tests.
The notations try to keep the technicalities to the minimum, and we will use

the language of linear algebra to detail the properties of the various objects.

2 Notations and illustration of the numerical in-
stability

Our model problem is the transport equation in velocity

∂tf(t, v) + e∂vf(t, v) = 0. (2)

The constant e > 0 represents some constant electric field (for plasma physics
applications). Any solution of the equation preserves the quadratic norm

d

dt

∫
R
f(t, v)2dv = 0. (3)

Let (Hm)m∈N be the family of Hermite polynomials [16, 19, 12] which is or-
thogonal with respect to the Gaussian weight e−v2 . Introducing a reference
temperature T > 0 (for plasma physics applications), the asymmetric basis
(ψm)m∈N and the asymmetric basis (ψm)m∈N are defined as{

ψm(v) = e
−v2
T T−

1
2 (2mm!

√
π)− 1

2Hm(v/
√
T ),

ψm(v) = (2mm!
√
π)− 1

2Hm(v/
√
T ) = e

v2
T T

1
2ψm(v).

Due to orthogonality property
∫
R ψm(v)ψn(v)dv = δmn, the two families are

dual. The classical symmetric Hermite function corresponds to

φm(v) = e
v2
2T T

1
4ψm(v) = e

−v2
2T T−

1
4ψm(v).

The family of Hermite functions (φm)m∈N forms a complete orthonormal family
(Hilbertian family) of L2(R). Other important identities for all m ∈ N are

(ψm)′(v) = −
√

2(m+ 1)
T

ψm+1(v) and (ψm)′(v) =
√

2m
T

ψm−1(v).

The second identity is natural because the derivative of a polynomial is a poly-
nomial of lesser degree. The first property can be deduced with the help of
duality between (ψm)m∈N and (ψm)m∈N.

Then the common procedure to discretize (2) starts from the a priori infinite
representation

f(v) =
∑
m≥0

umψm (v) (4)

where the coefficients um are the moments of the function f . By definition one
has

e
v2
2T T

1
4 f(v) =

∑
m≥0

umφm (v) . (5)
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The condition for the convergence in L2(R) of the series in (5) writes as

e
v2
2T T

1
4 f ∈ L2(R)⇐⇒

∥∥∥e v2
2T T

1
4 f
∥∥∥2

L2(R)
=
∑
m≥0

|um|2 <∞. (6)

Let f(v, t) be a solution of the transport equation (2). Under convenient con-
vergence conditions on the series, one has{

∂tf(t, v) =
∑

m≥0 u
′
m(t)ψm (v) ,

∂vf(t, v) = −
∑

m≥0 um(t)
√

2(m+1)
T ψm+1 (v) .

Therefore (2) rewrites as

∑
m≥0

u′m(t)ψm (v)− e
∑
m≥0

um(t)
√

2(m+ 1)
T

ψm+1 (v) = 0

from which one deduces the identities

u′0(t) = 0 and u′m(t)− e
√

2m
T
um−1(t) = 0 for all m ≥ 1. (7)

Remark 2.1. The equations (7) display two remarkable properties:

• the variation of the first moment is zero which expresses that the density∫
f(t, v)v is constant in time,

• the other equations are ordered in an ascending series in the sense that
the variation of um depends only on um−1.

In our opinion, these properties are the reasons why the ascending series (7) is
very popular in plasma physics.

In this work, we will systematically rewrite such relations as linear systems.
Let us define the infinite triangular and sparse matrix D ∈ RN×N

D = (dmn)m,n≥0, dmn = −e
√

2m
T
δm−1,n. (8)

Only the first diagonal below the main diagonal is non zero. The notation for
the infinite vector of moments is U(t) = (um(t))m≥0 ∈ RN. With these notations
the transport equation (2) yields the infinite system

d

dt
U +DU = 0. (9)

Let Π be the reconstruction operator such that

ΠU = f where U = (um)m≥0 and f(v) =
∑
m≥0

umψm(v).
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This definition is formal in the sense that the spaces are not specified. From (9)
one can write Π∂tU + ΠDU = 0. By construction on has Π∂tU = ∂tΠU = ∂tf
and

ΠDU = e∂vf. (10)

So (9) formally implies the transport equation (2). To give a rigorous meaning
to these formal calculations, it is sufficient to take U ∈ X where X is the space
of vectors with compact support

X =
{
U ∈ RN | um = 0 for m ≥ m0

}
. (11)

The numerical discretization is easily performed with a simple truncation for
moments between 0 ≤ m ≤ N . That is one considers the truncated vector of

Figure 1: Results of the advection test computed the scheme (12) at time t1 = 1,
t2 = 2, t3 = 3 then t4 = 4 (N = 19 and ∆t = 0.1. Until time t ≈ t2, the solution
is correct. Then a numerical instability starts to be visible for t ≈ t3, and blows
up exponentially for t ≥ t4.
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moments UN (t) = (um(t))0≤m≤N ∈ RN+1 and the truncated matrix

DN = (dmn)0≤m,n≤N , N ∈ R(N+1)×(N+1).

For the simplicity of the numerical analysis, the discretization will be systema-
tically performed with a Crank-Nicholson technique, which means that the fully
discrete system writes

Un+1
N − Un

N

∆t
+DN U

n
N + Un+1

N

2
= 0, n ≥ 0, (12)

where the time step is ∆t > 0. This numerical method is in principle adapted
to equations which preserve some quadratic energy as it is the case for the
transport equation. It has the advantage that, a priori, no CFL condition is
required.

An example of a simulation is provided in Figure 1 at four different time
t1 = 2, t2 = 3, t3 = 4 and t4 = 5. The initial data is U = (1, 0, 0, . . . ), that is
only the first moment is non zero. The electric field is e = 1. The initial data is
a pure Gaussian. It is clear on the final result that the numerical simulation is
spoiled with an important numerical instability which is in clear contradiction
with the preservation of the quadratic norm (3). If one believes the numerical
scheme (12) is correct (which is the case), then the instability visible in Figure
1 is a paradox since the initial equation (2) is stable. The rest of this work is
devoted to analyze the reason of this instability and to propose ways to control
it.

3 Structure of the Gram matrix
To understand the nature of the problem at stake, let us expand the quadratic
norm of f(t) as

∫
R
f(t, v)2dv =

∫
R

∑
m≥0

um(t)ψm(v)

2

dv. (13)

Formally, that is considering that all sums are convergent, one has the double
expansion

∫
R

∑
m≥0

um(t)ψm(v)

2

dv =
∑
m≥0

∑
n≥0

amnum(t)un(t)

where the coefficients are

amn = anm =
∫
ψm (v)ψn (v) dv. (14)

It yields to the following definition which is central in our work.
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Definition 3.1. The doubly infinite symmetric Gram matrix A = AT = (amn)m,n≥0 ∈
RN×N of the problem is the collection of all scalar products of the asymmetric
basis functions.

Let 〈·, ·〉 be the standard Euclidean scalar product between vectors. By
definition of the matrix A, one has formally

〈AU, V 〉 =
∫
R
f(v)g(v)dv where f = ΠU and g = ΠV. (15)

Remark 3.2. In the references [2, 10], the authors consider a weighted scalar
product (α, β)ω =

∫
R α(v)β(v)ω(v)dv. In both references the weight function is

a non trivial Maxwellian function ω(v) = ev
2/T where the parameter T > 0 can

take different values. The temperature T = T (t) can even change dynamically
in time, as in [2]. In our case, the weight function is the trivial one ω(v) ≡ 1
and the scalar product (1) is non weighted.

The properties of the Gram matrix are studied below.

Lemma 3.3. The triangular matrix D is skew-symmetric with respect to the
scalar product induced by the matrix A, that is AD +DTA = 0.

Proof. Take any U, V ∈ X. One has

〈ADU, V 〉 =
∫
R

Π(DU)(v)g(v)dv =
∫
R
e∂vf(v)g(v)dv.

An integration by parts yields

〈ADU, V 〉 = −
∫
R
f(v)e∂vf(v)g(v)dv = −〈U,ADV 〉 .

Since it holds for all U, V ∈ X, one gets the claim.

Remark 3.4. Based on this property, a solution of (9) satisfies the formal
identities

0 =
〈
AU,

d

dt
U

〉
+ 〈AU,DU〉 = d

dt

〈U,AU〉
2

+ 〈U,ADU〉 = d

dt

〈U,AU〉
2

(16)

since AD is a skew-symmetric matrix. One recovers that the quadratic energy
〈U,AU〉 is constant in time, see (3). This strongly suggests that the instability
visible in Figure 1 is a finite dimensional effect caused by the truncation of the
number of moments.

To analyze the effect of moment truncation on this phenomenon we decom-
pose the lower triangular infinite matrix D as

D =
(
DN

11 DN
12

DN
21 DN

22

)
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where the blocks are{
DN

11 = DN ∈ R(N+1)×(N+1), DN
12 = 0 ∈ R(N+1)×N,

DN
21 ∈ RN×(N+1), DN

22 ∈ RN×N.

Similarly we decompose the infinite Gram matrix

A =
(
AN

11 AN
12

AN
21 AN

22

)
where the blocks are{

AN
11 ∈ R(N+1)×(N+1), AN

12 ∈ R(N+1)×N,
AN

21 ∈ RN×(N+1), AN
22 ∈ RN×N.

Lemma 3.5. For all N ≥ 1, one has

AN
11D

N
11 + (DN

11)TAN
11 6= 0. (17)

Proof. The equality AD +DTA = 0 reduces to
AN

11D
N
11 +AN

12D
N
21 + (DN

11)TAN
11 + (DN

21)TAN
21 = 0,

AN
12D

N
22 + (DN

22)TAN
21 = 0,

AN
21D

N
11 +AN

22D
N
21 + (DN

11)TAN
21 + (DN

21)TAN
21 = 0,

AN
22D

N
22 + (DN

22)TAN
21 = 0.

(18)

One obtains AN
11D

N
11 + (DN

11)TAN
11 = −AN

12D
N
21 − (DN

21)TAN
21 ∈ R(N+1)×(N+1).

Since D is an infinite triangular matrix with only one non zero diagonal just
below the main diagonal (see (8)), then the coefficients of DN

21 are all zero except
one at its top right corner which is non zero

DN
21 =


0 0 0 0 . . . . . .

−e
√

2(N+1)
T

0
0
0
· · ·
0
0
0
· · ·


∈ RN×(N+1). (19)

The multiplication by AN
12 yields a matrix which is zero everywhere except its

last column (which is proportional to the first column of AN
12) that is

AN
12D

N
21 =


0 0 0 0 . . . . . .

m0
m1
m2
m3
· · ·
· · ·
mN


∈ R(N+1)×(N+1).
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One obtains AN
12D

N
21 − (DN

21)TAN
21 6= 0. So one obtains

AN
11D

N
11 + (DN

11)TAN
11 = −AN

12D
N
21 − (DN

21)TAN
21 6= 0

which yields the claim.

In our opinion, this property (17) expresses that fact that the truncation
to a finite number of moments (parameter N , representing N + 1 moments)
spoils the skew-symmetric property explained in Lemma 3.3. That is why the
boundedness (16) of the solution is not preserved by moment truncation.

4 Coefficients of the Gram matrix
The coefficients of the matrix A are L2 scalar products of asymmetric func-
tions. These coefficients are computable in finite terms since the product of two
asymmetric functions can be expressed as a Gaussian function multiplied by a
polynomial function. However, to our knowledge, the exact value of these coeffi-
cients is not available in the reference literature on special functions [16, 19, 12].
For further developments in the next Section, we propose in this Section some
formulas for the calculation of the quadratic scalar product of asymmetric Her-
mite functions.

Theorem 4.1. If the sum of the indices is odd m+ n ∈ 2N + 1, then amn = 0.
Otherwise

am−l,m+l = (−1)lT− 1
2 2−2m− 1

2
(2m)!

m!
√

(m− l)!(m+ l)!
. (20)

Proof. If m + n is odd, then ψmψn is equal to a Gaussian function multiplied
by an odd polynomial, so its integral vanishes. In this case amn = 0. So let us
consider the other case.

One has
√

2m/T amn =
√

2m/T
∫
ψm(v)ψn(v)dv. Using the general iden-

tity (ψm)′(v) = −
√

2(m+1)
T ψm+1(v), one can write√

2m/T amn = −
∫
ψ′m−1(v)ψn(v)dv =

∫
ψm(v)ψ′n(v)dv

= −
√

2(n+ 1)/T
∫
ψm(v)ψn+1(v)dv = −

√
2(n+ 1)/T am−1,n+1.

That is √
m amn = −

√
n+ 1 am−1,n+1. (21)

One gets by iteration

(m(m− 1) . . . 2)
1
2 amn = (−1)m(n(n+ 1) . . . (m+ n))

1
2 a0,m+n

that is

amn = (−1)m
(

(n+m)!
n!m!

) 1
2

a0,m+n. (22)
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The technical Lemma 4.2 yields the value of a0,m+n from which one obtains

amn = (−1)m
(

(n+m)!
n!m!

) 1
2

(−1)(m+n)/2T−
1
2 2−(m+n)− 1

2
(m+ n)! 1

2(
m+n

2
)
!

that is
amn = (−1)

m−n
2 T−

1
2 2−(m+n)− 1

2
(m+ n)!(

m+n
2
)
!
√
m!n!

.

This is the claim up to the change of indices (m,n)← (m− l, n+ l).

Lemma 4.2. Let m ∈ 2N. One has a0m = (−1)m/2T−
1
2 2−m− 1

2
(m!)

1
2

(m/2)! .

Proof. One has ψ0(v)ψm(v) = T−1π−
1
2 (2mm!)− 1

2 e−2v2/THm(v/
√
T ). To be

able to perform a rescaling in this expression, one can use the general formula
[12, page 255]

Hm(λx) =
[m/2]∑
l=0

λm−2l(λ2 − 1)l m!
(m− 2l))!l!

Hm−2l(x).

Take λ = 1/
√

2 and x =
√

2v/
√
T . Then

Hm(v/
√
T ) =

(
−1

2

)m/2
m!

(m/2)!
+R(v)

where the residual R(v) is orthogonal to the weight e−2v2/T because it is a linear
combination of Hermite polynomials of degree ≥ 1 (with convenient weight).
One obtains

a0m =
∫
ψ0(v)ψm(v)dv = T−1π−

1
2 (2mm!)− 1

2

(
−1

2

)m/2
m!

(m/2)!
√
Tπ/2

which yields the claim after simplification.

Lemma 4.3. Take m ∈ N. Then

amm = T−
1
2 2−2m− 1

2
(2m)!
(m!)2 . (23)

For large m� 1, one has amm ≈ (Tπ2m)− 1
2 .

This formula is approximately in accordance with the fact that the ampli-
tude of the Hermite functions decreases like O(m− 1

4 ) in the main ”support” of
Hermite functions [19].

Proof. The Stirling formula written as m! ≈
√

2πm(m/e)m yields that

amm ≈ T−
1
2 2−2m− 1

2

√
2π2m(2m/e)2m(√
2πm(m/e)m

)2 ≈ (Tπ2m)− 1
2 .
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Unfortunately the previous formula (23) cannot be used to calculate the
coefficients in a stable manner because the calculation on the computer of the
factorial of large natural numbers is difficult. Nevertheless amm = O(m− 1

4 )
which is an indication that the ratio of large numbers in (23) is asymptotically
a small number. It gives the intuition of the following formulas which provide
a stable method to calculate all coefficients.
Theorem 4.4. The coefficients of the Gram matrix can be evaluated with com-
putationally stable formulas.
i) To calculate the diagonal coefficients of the Gram matrix, use the recurrence
formulas {

a00 = (2T )− 1
2 ,

am+1,m+1 = 2m+1
2m+2amm, m ≥ 0. (24)

ii) To calculate the upper extra-diagonal coefficients of the Gram matrix, use
the recurrence formulas which starts from the diagonal

∀m ≥ 1 : am−l−1,m+l+1 =
√

m−l
m+l+1am−l,m+l, l = 0, . . . ,m− 1, (25)

iii) The lower diagonal coefficients are equal to the upper extra-diagonal coeffi-
cients

∀m ≥ 1 : am+l,m−l = am−l,m+l for 1 ≤ l ≤ m. (26)
Proof. The first set (24) of formulas are deduced from (23). The second set
(25) of formulas are deduced from (23). The Gram matrix being symmetric, the
symmetry (26) is trivial.

The computational stability of the formulas is because the only operations
are multiplication by positive numbers ≤ 1.

5 Application to truncated matrices
Our objective now is to modify the matrix DN = DN

11 such that one recovers
the skew-symmetry with respect to AN = AN

11. The new matrix will be denoted
as DN = D

N

11 and one will typically enforce

AND
N + (DN )TAN = 0. (27)

Lemma 5.1. Assume the modified matrix satisfies (27). Then the solution of

∂tU
N +D

N
UN = 0

preserves the weighted quadratic norm, that is d
dt

〈
UN , ANUN

〉
= 0.

Proof. Indeed one has
d

dt

〈
UN , ANUN

〉
= 2

〈
UN , AN∂tU

N
〉

= −2
〈
UN , AN

11D
N
UN
〉

= 0

since the matrix AND
N is skew-symmetric (27).

However it is needed to modify DN as small as possible to keep the good
approximation properties of this matrix. We will consider two methods.
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5.1 First method
The first method is more efficient than the second one. However we discovered
this possibility through numerical explorations which explains why it is de-
scribed more as a numerical recipe rather than the application of some general
principle. The final result of the Section is described in Theorem 5.8.

Consider the formal identities of a solution of (9)〈
U,A

d

dt
U

〉
+ 〈U,ADU〉 = 0 (28)

where the infinite vector has finite number of moments, that is U ∈ X where X
is defined in (11). More precisely assume that U = (UN

1 , UN
2 )T with UN

2 = 0.
Substituting U into (28), one obtains〈

UN
1 , AN

11
d

dt
UN

1

〉
+
〈
UN

1 ,
(
AN

11D
N
11 +AN

12D
N
21
)
UN

1
〉

= 0.

The first modified matrix DN = D
N

11 is defined such that the previous identity
is a triviality for solutions of ∂tUN

1 + D
N

11U
N
1 = 0. One obtains AN

11
d
dtU

N
1 +(

AN
11D

N
11 +AN

12D
N
21
)
UN

1 = 0 which yields

−AN
11D

N

11U
N
1 +

(
AN

11D
N
11 +AN

12D
N
21
)
UN

1 = 0.

Requiring that it holds for all possible UN
1 ∈ RN+1 yields

D
N

11 = DN
11 +

(
AN

11
)−1

AN
12D

N
21, (29)

which leads to formal identity
〈
UN

1 , d
dtU

N
1
〉

+
〈
UN

1 , D
N

11U
N
1

〉
= 0. In fact, this

formal identities is equivalent to the formal identities (28), considering U in X
(the space of vectors with compact support). This can also be interpreted as
the consideration of the quadratic norm of (13) being taken into account. The
following result shows that the requirement of skew symmetry is recovered.

Lemma 5.2. The modified matrix (29) is skew-symmetric with respect to the
Gram matrix (27).

Proof. By definition one has AN
11D

N

11 = AN
11D

N
11 + AN

12D
N
21. The right hand

side is skew-symmetric because of the first line of (18). Therefore one has

AN
11D

N

11 +
(
AN

11D
N

11

)T
= 0.

It remains to calculate explicitly the correction term
(
AN

11
)−1

AN
12D

N
21 for

the modified matrix (29) to be completely constructed. This is the purpose of
the next technical results. For the first lemma, we consider a matrix XN ∈
R(N+1)×N where only the first column of the square matrix XN is non zero.

XN =
(
zN 0 0 0 . . .

)
, where 0, zN ∈ RN+1. (30)

12



Lemma 5.3. Take z as the unique solution of AN
11z

N = gN where gN ∈ RN+1

is the first column of AN
12. Then one has DN = DN

11 +XNDN
21.

Proof. Let us study the equation XNDN
21−

(
AN

11
)−1

AN
12D

N
21 = 0. It is equivalent

to the equation (
AN

11X
N −AN

12
)
DN

21 = 0 ∈ R(N+1)×(N+1).

Due to the special form (19) of DN
21, the first N columns of

(
AN

11X
N −AN

12
)
DN

21
vanish identically. Moreover the last column also vanishes provided the first
column of AN

11X
N − AN

12 vanishes as well. It writes AN
11z

N − gN = 0 which
corresponds to the claim.

If N = 2M is even, then one can check that all coefficients with an even
index of gN vanish by construction. On the other hand if N = 2M + 1 is
odd, then one can check that all coefficients with an odd index of gN vanish
by construction. Since one diagonal over two consecutive ones of matrix AN

11
vanish, this is also the case for the inverse matrix

(
AN

11
)−1. It explains that the

vector zN has an additional structure:
for even N = 2M, zN2k = 0 for all 0 ≤ k ≤M,
for odd N = 2M + 1, zN2k+1 = 0 for all 0 ≤ k ≤M.

(31)

The index of lines is counted from 0 because it is in accordance with the index
of the first moment which is 0 as well. We split the calculation of the coefficients
of the vector in two cases depending on the parity of N .

5.1.1 First case N = 2M

Proposition 5.4. zN2k+1 =

√
(2M + 1)!
(2k + 1)!

(
−1

4M−k(M − k)!

)
for all 0 ≤ k ≤M .

Proof. The proof goes by checking the identity AN
11z

N = gN where the coeffi-
cients of zN with odd index are given in the claim. The coefficients with even
index vanish identically.

According to Proposition 4.1, one has for 0 < p = 2q + 1 < 2M

ap,2k+1 = (−1)
p+2k+1

2 +p T−
1
2 2−(p+2k+1)− 1

2
(p+ 2k + 1)!

(p+2k+1
2 )!

√
p!(2k + 1)!

.

Here p is the index of a line of the matrix AN
11. Using the value given in the

claim, one calculates
M−1∑
k=0

ap,2k+1z
N
2k+1 =(−1)

p+2M+1
2 +p T−

1
2 2−(p+2M+1)− 1

2

×
M∑
k=0

(−1)k−M−1
(
p+ 2k + 1

p

)(
(p+ 2M + 1)/2
(p+ 2k + 1)/2

)
× 1√

p!(2M + 1)!
p!(2M + 1)!
(p+2M+1

2 )!
.

13



Then using Lemma 5.5, one has

M−1∑
k=0

ap,2k+1z
N
2k+1 =(−1)

p+2M+1
2 +p T−

1
2 2−(p+2M+1)− 1

2

×
(
p+ 2M + 1

p

)
1√

p!(2M + 1)!
p!(2M + 1)!
(p+2M+1

2 )!
.

=(−1)
p+2M+1

2 +p T−
1
2 2−(p+2M+1)− 1

2
(p+ 2M + 1)!

(p+2M+1
2 )!

√
p!(2M + 1)!

=ap,2M+1.

That is
∑M−1

k=0 ap,2k+1z
N
2k+1 = ap,2M+1 for all 0 < p < 2M . Note that the

coefficients ap,2M+1 for all 0 < p < 2M are those of gN (one coefficient over two
consecutive ones). Therefore the coefficients given in the claim are exactly the
coefficients of zN .

To show the following purely technical Lemma 5.5 needed in the above proof,
we define

S(N, p) =
M−1∑
k=0

(−1)k−M−1
(
p+ 2k + 1

p

)(
(p+ 2M + 1)/2
(p+ 2k + 1)/2

)
where N = 2M is even and p = 2q + 1 (for all 0 ≤ q < M) is odd.

Lemma 5.5. S(N, p) =
(
p+ 2M + 1

p

)
.

Proof. One checks the identity

S(N, p) =
M∑
k=0

(−1)k−M−1
(
p+ 2k + 1

p

)(
(p+ 2M + 1)/2
(p+ 2k + 1)/2

)
+
(
p+ 2M + 1

p

)
rewritten as

S(N, p) =
M∑
k=0

(−1)kP (N, p, k)
(
M

k

)
+
(
p+ 2M + 1

p

)
(32)

where P (N, p, k) is defined as

P (N, p, k) = (−1)−M−1 ((p+ 2M + 1)/2)!
p!M !

× (p+ 2k + 1)!k!
(2k + 1)! ((p+ 2k + 1)/2)!

= C(N, p) × (2q + 2k + 2)!k!
(2k + 1)! (q + k + 1)!

.

By direct expansion, one checks P (N, p, k) can be written as a polynomial with

respect to the variable k. To show this fact, defineA(k, q) = (2q + 2k + 2)!k!
(2k + 1)! (q + k + 1)!

.

14



It is clear that A(k, 0) = 2. It is also clear that

A(k, q + 1) = (2q + 2k + 4)(2q + 2k + 3)
q + k + 2

A(k, q) = 2(2q + 2k + 3)A(k, q).

By iteration, one has that A(k, q) is a polynomial in k of degree q. So P (N, p, k)
is also a polynomial in k of degree q = (p− 1)/2 < M .

On the other hand, one has the general identity for all degrees 0 < r < M .

M∑
k=0

(−1)kkr
(
M

k

)
= 0, r < M.

Since P (N, p, k) is a polynomial in k of the convenient degree, then the sum
in (32) vanishes, which ends the proof.

5.1.2 Second case N = 2M + 1

The analysis is very similar to the first case.

Proposition 5.6. zN2k =

√
(2M)!
(2k)!

(
−1

4M−k(M − k)!

)
.

Proof. The proof is similar to that of Proposition 5.4. It relies on the technical
Lemma 5.7.

Define

S(N, p) =
M−1∑
k=0

(−1)k−M−1
(
p+ 2k + 2
p+ 1

)(
(p+ 2M + 2)/2
(p+ 2k + 2)/2

)
where N = 2M + 1 is odd and p = 2q − 2 (for all 1 ≤ q ≤M) is even.

Lemma 5.7. S(N, p) =
(
p+ 2M + 2

p+ 1

)
.

Proof. The proof is similar to that of Lemma 5.5, so it is omitted.

5.1.3 Final result

Theorem 5.8. The modified matrix (29) can be written as

D
N = DN

11 − e
√

2(N + 1)
T

Y N

where the last matrix is Y N =
(

0 0 . . . 0 zN
)
∈ R(N+1)×(N+1) and

0, zN ∈ RN+1.
For N = 2M even, the first (equation for mass) and third line (equation for

kinetic energy) vanish. For N = 2M + 1 odd, the second line (impulse) vanish.

15



Proof. It comes from the structure (19) of DN
12 and the structure (30) of XN .

The coefficients vanish accordingly to (31).

In addition, according to Proposition 5.4 and 5.6, we have

z1 =
√

(2M + 1)!
(
−1

4M (M)!

)
.

and

z0 =
√

(2M)!
(
−1

4M (M)!

)
, z2 =

√
(2M)!
(2)!

(
−1

4M−1(M − 1)!

)
.

When M takes a relatively large value, these corresponding values can become
notably small, thereby allowing (up to arbitrary precision of course) for simulta-
neous conservation of mass, momentum, and energy. For example, with M = 20,
we observe z0 = 3.38× 10−7, z2 = 1.9102× 10−5 and z1 = 2.162× 10−6.

Remark 5.9. In practice one can as well neglect very small coefficients. For
example one can nullify z1 or the pair z0, z2. This will be used in one of the
numerical tests.

5.2 Second method
The second method uses a natural penalization technique with a parameter
ε > 0 and is much simpler. The modified matrix is now defined as

D
N = DN − 1

2 (AN + εIN )−1 ((AN + εIN )DN + (DN )T (AN + εIN )
)

= 1
2D

N − 1
2 (AN + εIN )−1(DN )T (AN + εIN ).

(33)
The penalization term εIN helps to calculate the inverse matrix (AN + εIN )−1

because we have observed that the condition number of the matrix AN blows
up as N increases. The drawback of the second method with respect to the first
one is that it incorporates an additional source of approximation through the
penalization parameter.

Lemma 5.10. Assume (33). Then the solution of

∂tU
N +D

N
UN = 0

preserves the weighted quadratic norm with penalization, that is

d

dt

(〈
UN , ANUN

〉
+ ε‖UN‖2) = 0.

Proof. Similar as proof of Lemma 5.1.
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6 Generalization to ∂tf + v∂xf = 0
Consider in 1D the equation

∂tf(t, x, v) + v∂xf(t, x, v) = 0. (34)

This equation is usually a building block in a splitting strategy used for the
numerical discretization of a classical Vlasov equation such as

∂tf + v · ∇xf + (E + v ×B) · ∇vf = 0. (35)

The other building block is the transport equation (1).
Discretization of the model problem (34) with the method of moment yields

the infinite differential system

∂tU +B∂xU = 0 (36)

where B = (bnm) ∈ RN×N is defined by its coefficients

bnm = T
1
2

(√
m+ 1

2
δm+1,n +

√
m

2
δm−1,n

)
. (37)

Lemma 6.1. Formal solutions to (36) satisfy the conservation of two quadratic
norms d

dt

∫
x
‖U‖2 = 0 and d

dt

∫
x
〈U,AU〉 = 0.

Proof. Evident.

Corollary 6.2. The matrix B is symmetric BT = B and is symmetric with
respect to the Gram matrix AB = BA.

Proof. The first property is just the definition (37). The second is a corollary
of the preservation of the norm 〈U,AU〉 of Lemma 6.1: a detailed proof can be
performed with the method of Lemma 3.3.

The approximation of B with a finite number of moments yields the matrix
BN := BN

11 ∈ R(N+1)×(N+1) where

B =
(
BN

11 BN
12

BN
21 BN

22

)
with BN

11 ∈ R(N+1)×(N+1), BN
12 = (BN

21)T ∈ RN×(N+1) and BN
22 ∈ RN×N.

Since BN is symmetric by construction, then the solution of the equation
∂tU

N +BN∂xU
N = 0 preserves the quadratic norm d

dt

∫
x
‖UN‖2 = 0. However

one important problem remains, which is the fact that the equation ∂tf+v∂xf =
0 is usually just one stage in a splitting algorithm where many basic equations
are discretized. The other equation can be for instance the model equation
∂tf + e∂vf = 0 (actually this block is always present in all physical models we
are interested in). That is why it is important to guarantee the stability with
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respect to a criterion which is common to all parts of the general method. This
criterion is the preservation of the norm 〈U,AU〉.

In our opinion, the only way to obtain such a general criterion is to modify
BN as it was done for DN so that it becomes symmetric with respect to AN =
AN

11. The two methods for the modification of the matrix DN are quite easy to
generalize to the matrix BN so we provide only the main ideas.

A first modified matrix writes

B
N = BN + (AN

11)−1AN
12B

N
21. (38)

Lemma 6.3. The modified matrix (38) is symmetric with respect to the trun-
cated Gram matrix ANBN = BNAN and is computable explicitly.

Proof. The first property is because AN
11B

N = AN
11B

N
11 +AN

12B
N
21 is a symmetric

matrix since B is symmetric. The second property is because BN
21 is proportional

to DN
21. More precisely one has the relation BN

21 = − T
2eD

N
21 which is deduced

from (19) and (37). So one obtains

B
N = BN

11 +
√
T (N + 1)

2
Y N

where the matrix Y N is explicitly given in Proposition 5.8.

Another possibility is to use to penalization technique of Section 5.2. That
is we define the second modified matrix (still with the notation AN = AN

11)

B
N = BN − 1

2 (AN + εIN )−1 ((AN + εIN )BN −BN (AN + εIN )
)

= 1
2B

N + 1
2 (AN + εIN )−1BN (AN + εIN ).

(39)

Lemma 6.4. Solutions to ∂tU
N + B

N
∂xU

N = 0 with the first (resp. sec-
ond) modified matrix preserves the norm

〈
UN , ANUN

〉
(resp.

〈
UN , ANUN

〉
+

ε‖UN‖).

Proof. Evident.

7 Numerical illustrations
We have implemented a specialized research code1 in Python to evaluate the
new moments methods. We discretize space with a finite difference (FD) method
and time with a Crank-Nicolson scheme. Solving each time step involves solving
a set of linear equations using the Krylov method, specifically the GMRES[20]
method, with the initial guess derived from the solution at the preceding time
step.
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Figure 2: Results of the advection test computed the scheme (12) at time t1 = 1
to t4 = 4 (N = 19 and ∆t = 0.1).

7.1 Transport equation
In this Section, we recalculate the test of Figure 1 with N = 19, ∆t = 0.1 and
T = 2. We use the stabilized method explained in Section 5. In Figures 2-3 we
plot the results where the matrix D

N is obtained with the method of Section
5.1. A numerical recurrence phenomenon [14] with a change of sign is visible
if N is odd. In Figure 4 we plot the results where the matrix D

N is obtained
with the method of Section 5.2. The norm

〈
UN , ANUN

〉
+ε‖UN‖2 is rigorously

constant one time step after the other, as stated in Lemme 5.10.
Next, we desire to perform a numerical test with the capability to establish

the numerical accuracy of the method, even if it is not directly part of the
objective of this work. In this case, the parameters N = 19, ∆t = 0.1 and
T = 2. To this aim we propose to start from the known formula [16] which is

1Repository: https://gitlab.lpma.math.upmc.fr/asym
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Figure 3: Results of the advection test computed the scheme (12) at time t5 = 5
to t8 = 8 (N = 19 and ∆t = 0.1). No numerical instability even at further time.

valid in the sense of distribution

δ(v) =
∑
m≥0

ϕm(0)ϕm(v).

One has as well in the sense of distribution

δ(v) = δ(v)e−v
2/2T =

∑
m≥0

ϕm(0)ψm(v).

We consider the initial data

UN = (ϕi(0))0≤i≤N .

The reference solution is a Dirac mass which moves at velocity e = 1. In the
Figure 5, we plot the initial discrete solution and the numerical solution at time
t = 2 (for convenience all results are post-multiplied by a factor c = −1). It is
clear at inspection of the Figure 5 that the velocity at which the Dirac evolves
is numerically close to e = 1.

20



Figure 4: Results of the advection test computed the scheme (12) at time t1 = 1,
t2 = 2, t3 = 3 then t4 = 4 (N = 19 and ∆t = 0.1. No numerical instability even
at further time.

7.2 Diocotron instability
As outlined in Section 6, our method can be employed for solving the Vlasov
equation (35) coupled with the Poisson equation. The diocotron instability,
observable in magnetized low-density nonneutral plasmas with velocity shear,
generates electron vortices akin to the Kelvin-Helmholtz fluidic shear instabil-
ity. It arises when charge neutrality is disrupted, observed in scenarios like
non-neutral electron beams and layers. The magnetic field’s strength induces
electron motion dominated by advection within the self-consistent E×B veloc-
ity field. The initial non-monotonic electron density profile creates an unstable
E × B shear flow, resembling Kelvin-Helmholtz shear layer instability in fluid
dynamics and the diocotron instability in beam and plasma physics. As this
instability progresses nonlinearly, the initially axisymmetric electron density dis-
tribution distorts, resulting in discrete vortices and eventual breakup. This test
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Figure 5: Results of the advection of a Dirac mass (multiplied by -1 for conve-
nience). The final time is t = 2.

case holds significance in both fundamental physics and practical applications,
such as beam collimation.

The initial condition and the parameters are the same as those in [21], with
a uniform external magnetic field B = (0, 0, 5) applied along the z-axis within
a domain of length L = 22. Additionally, the external electric field is set to 0
for this particular problem. The initial condition is given by

f(t = 0, r, v) = C

2π
exp

{
−|v|2

2

}
exp

{
−(r − L/4)2

2(0.03L)2

}
,

where r =
√

(x− L/2)2 + (y − L/2)2, and the constant C is selected to ensure
that the overall electron charge Qe equals −400. The time integrator employs
a time step of ∆t = 0.01, and the simulation is executed until the final time
T = 10.0.

We consider three distinct methods. The first method is the original one
without stabilization. The second method is with the first stabilization method.
The third method implements the simplification explained in Remark 5.9, that
is we nullify the first coefficients of the modified matrices.

We perform tests at N = 40. For finite difference grid, we test a grid
resolution of 64. We are interested in the way our new methods recover the
quadratic stability.

Fig. 6 illustrates how the electron charge density changes over time, for
the unstabilized method (first row), the stabilized method (second row) and
the stabilized method conservative in mass (third row). From the first row one
can observe the numerical instability (t = 3.80), and the blow-up. From the
second and third rows, one can observe that two methods are well stabilized for
all times. The results in the third row closely align with the results presented
in the second row, based on visual standards. Conversely, none of the three
methods enforces the positivity of the particle distribution function, resulting
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(a) time= 0 (b) time= 3.80

(c) time= 0 (d) time= 3.80 (e) time= 10

(f) time= 0 (g) time= 3.80 (h) time= 10

Figure 6: 2D diocotron instability: Evolution of electron charge density over
time utilizing three distinct methods: the unstabilized method (first row), the
stabilized method (second row), and the numerically conservative method (third
row). These visualisations are based on a 642 mesh grid. Each figure’s color bar
displays the respective minimum and maximum values of the charge densities.

in minor oscillations around zero values.

7.3 Two-stream instability
We take the data of the two stream instability from [5]. The initial data is

f0(x, v) = 2
7

(1 + cos kx+ α(cos 2kx+ cos 3kx)/1.2) (1 + v2) 1√
2π
e−v

2/2
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with α = 0.01 and k = 0.5. For this problem only two moments are non
zero, which are u0(x) = 12

7 (1 + cos kx+ α(cos 2kx+ cos 3kx)/1.2) and u2(x) =
10
√

2
7 (1 + cos kx+ α(cos 2kx+ cos 3kx)/1.2). All other moments vanish. The

results are shown in Figure 7 and 8. The density function calculated at time
t = 20 is represented together with the history of the norm of the electric field
with respect to the time variable. Up to a multiplicative constant, the norm of
the electric field is in accordance with the result from [5].

Figure 7: Density function at time t = 20.

In our opinion our numerical results illustrate that the stabilization of the
asymmetric Hermite functions has a potential for the computation of such non
linear dynamics without any post-processing or filtering of the numerical results.

Figure 8: History of the electric field norm with respect to the time variable.
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