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Abstract—Reliability assessment is mandatory to guarantee
the correct behavior of Deep Neural Network (DNN) hardware
accelerators in safety-critical applications. While fault injection
stands out as a well-established, practical and robust method for
reliability assessment, it is still a very time-consuming process. This
paper contributes with three recipes for optimizing the efficiency
of the reliability assessment: a) hybrid analytical and hierarchi-
cal FI-based reliability assessment for systolic-array-based DNN
accelerators; b) mixing techniques for the reliability assessment
of in-chip AI accelerators in GPUs; c) reliability assessment of
DNN hardware accelerators through physical fault injection. The
experimental results demonstrate the efficiency of the proposed
methods applied to their target DNN HW accelerator platforms.

Index Terms—deep neural networks, approximate computing,
fault simulation, error emulation, reliability, resiliency assessment

I. INTRODUCTION

Deep Neural Networks (DNNs) are a powerful tool assisting
different aspects of human life, e.g., healthcare, transportation,
security, IoT and edge applications [1] [2]. They are charac-
terised by the extremely complex computational kernels (i.e.,
several giga operations per second) and the high amount of
parameters to be transferred from and to the memory (i.e., in
the order of gigabytes). To achieve target energy efficiency and
high performance, several types of DNN Hardware Accelerators
(DNN-HAs) for the execution of DNN kernels were proposed.
[3].
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Fig. 1: DNN HW accelerator system

*The authors are sorted in alphabetic order.

Fig. 1 sketches a system-level view of a DNN-HA. The latter
is controlled by a microprocessor host and has to access the
main memory to retrieve data. The most widely used DNN-HAs
can be classified as Systolic Array (i.e., TPU), GPU and FPGA.
Independently from the type, employing DNN accelerators in
safety-critical applications raises hardware reliability concerns.
For example, in compliance with the ISO 26262 functional
safety standard for road vehicles, the FIT (Failures In Time) rate
of particular hardware components has to be 10 failures in 1
billion hours of operation at maximum to meet the target safety
integrity level, which necessitates very circumspect design [4],
[5].

The reliability of DNN accelerators is boosted by their
intrinsic ability to function correctly even in the presence of
environment-related faults (soft errors, electromagnetic effects,
temperature variations) or faults in the underlying hardware
(manufacturing defects, process variations, nanoelectronics ag-
ing effects) [6]. DNNs are known to be resilient to faults
due to their numerous interconnected layers and the ability to
mask faults [7] [8]. Unfortunately, assessing the reliability of
a DNN accelerator is not a trivial task [9], [10]: it depends
on several factors, such as the training set, the data type, and
the quality of the test set [11]. On top of that, we need to
consider the hardware that performs the computations since
specific platforms have specific faults [12].

There are three main methodologies for DNNs’ reliability
assessment radiation-based, platform-based, and simulation-
based [13]:

• Simulation-based: The injection process is carried out
without relying on the physical device finally running the
NN. Moreover, depending on the abstraction level, they
can be further ranked.
– Software Level: The injections are performed on a high-

level model of the NN, not considering any details of
the actual hardware architecture.

– Hardware Level: The injections are performed on a
more accurate model of the NN that simulates the target
hardware architecture. E.g., this can be described at the
register transfer level (RTL) or gate level.

• Platform-based: The measurements and the analyses are



performed directly on a physical device that emulates
the final implementation of a design using FPGAs or on
physical platforms running the NN, e.g., CPUs and GPUs.

• Radiation-based: The reliability assessment is performed
in the actual platform running the NN under assessment
by means of external electromagnetic interference, such as
ionizing particle incidence through accelerated radiation
test campaigns.

The goal of this paper is to present advanced methods to as-
sess the reliability of the three types of DNN-HAs, i.e., Systolic
Array, GPU and FPGA, through different methodologies.

The paper is organized as follows: Section II discusses a
hybrid approach for Systolic Array DNN accelerator. Section
III presents a method for evaluating the impacts of faults in
GPU by considering its low-level micro-architecture description
and its functional operation. Section IV leverages neutron
beam experiments to extract practical – and non-obvious –
information about GPUs and FPGA DNN accelerators. Finally,
Section V concludes the paper.

II. HYBRID ANALYTICAL AND HIERARCHICAL FI-BASED
RELIABILITY ASSESSMENT FOR SYSTOLIC-ARRAY-BASED

DNN ACCELERATORS

A. Motivation and Related Work

Simulation-based FI is less expensive in terms of equipment,
but at the same time, it implies the most resource-intensive
computations and is very time-consuming. On the other hand,
analytical and hybrid approaches are proposed to reduce the
complexity of exploiting FI for the reliability assessment of
DNNs [12]. Analytical approaches attempt to provide math-
ematical approaches to estimate reliability, nonetheless, their
evaluation accuracy is challenging to address and they are
mostly hardware-agnostic. Whereas hybrid FI-analytical ap-
proaches can take advantage of both FI and analytical ap-
proaches in terms of scalability, accuracy and hardware-based
analysis [12]. To our knowledge, there is no work assessing the
reliability of Systolic Arrays (SAs) running DNNs using hybrid
methods to accelerate the analysis process.

This section introduces a novel hybrid analytical and hi-
erarchical simulation-based reliability assessment for systolic-
array-based DNN accelerators based on FI. This methodology is
tailored to significantly accelerate the fault injection process on
systolic-array-based DNN hardware accelerators. The systolic-
array core of the DNN accelerators is modeled using a Uniform
Recurrent Equation (URE) system [14]. The proposed injection
flow has been implemented based on an SA simulator [15],
thus offering the advantage of being more precise than a
hardware-agnostic tool, yet much faster than traditional RTL-
level simulations. An analytical method [16] is used to prune
the fault space to further optimize the tool and speed up the
reliability assessment process.

B. Proposed method

The methodology for the proposed framework is illustrated
in Fig. 2. After providing the trained network parameters and
architecture, in Step 1, the fault list is generated. Possible fault
locations can be defined by the user or can be a random fault list
generated based on the network parameters by the framework.

Fig. 2: The proposed methodology for hybrid analytical and hierarchi-
cal reliability assessment for systolic array DNN-HAs

In this work, we consider random transient faults in the registers
of the systolic array’s processing elements.

In Step 2, to prune the fault space, we adopt and extend
the DeepVigor methodology presented in [16] that provides
vulnerability analysis for DNNs and QNNs, respectively. To
this end, we find error values for each output Feauture Map
(FMap) that misclassifies the network output. Let δlk(Xi) be
an added positive or negative error value to an output FMap
by a fault in the k-th neuron at layer l with input data Xi.
For each neuron, we find the minimum positive and maximum
negative δlk(Xi) that misclassifies the output from the golden
classification. This value is obtained for all input data X and
aggregated over them. The aggregation leads to a vulnerability
value range for each neuron, as shown in Fig. 3. It is labeled
as follows:

• Vulnerable (red area): if a fault deviates the output of a
neuron as in this range, it will certainly lead to misclassi-
fication for any input.

• Non-Vulnerable (green area): if a fault deviates the output
of a neuron as in this range, it will not change the output
classification for any input.

• Semi-vulnerable (grey area): if a fault deviates the output
of a neuron as in this range, it might or might not lead to
misclassification for any input.

-∞ +∞
min_neg max_neg min_pos max_pos

non-vulnerablesemi-vulnerablevulnerable

Fig. 3: Vulnerability ranges for fault space pruning

This analysis enables pruning the fault space in a way that we
map the deviations at the erroneous outputs of neurons induced
by fault to the obtained vulnerability ranges for neurons. If
the error corresponds to the red or green areas, we immedi-
ately classify them respectively as critical or non-critical, and
do not continue the fault simulation. Otherwise, if the error



Fig. 4: Fault injection across hierarchical and analytical abstractions

corresponds to a semi-vulnerable range, the fault simulation is
required to be performed.

In Step 3-A, the simulation is performed from the beginning
of the DNN to the fault’s location to obtain the erroneous
output of the corresponding neuron. The error is mapped to
the vulnerability values of the corresponding neuron (shown in
Fig. 3). If the fault is pruned (corresponding to green or red
areas), the fault impact is determined (Step 4). Otherwise, the
simulation continues (Step 3-B) to obtain the fault impact (Step
4).

In Steps 3-A and 3-B, switching between high-level API and
systolic-array simulator is done by solving the URE system
mentioned before; this step is described later in this section and
Fig. 4. In Step 4, the reliability of the network and the impact
of the faults are reported by different metrics. After evaluating
the impact of one fault, the next fault is selected for evaluation.

The hardware simulation in Step 3-A is based on a formal-
ization of the problem to solve through a URE system. Such a
system can describe the problem to be solved by the architecture
through a set of recurrence relations. In our specific case, we
are interested in solving the problem of matrix multiplication.
We associate the following system to such a task.

c(i, j, k) = c(i, j,k − 1) + a(i, j − 1, k)× b(i− 1, j, k)

a(i, j, k) = a(i, j − 1, k)

b(i, j, k) = b(i− 1, j, k)

The generalization of this process is described in [14].
This equation system can be associated with actual hardware
processing by projecting the iteration space to the physical
space. The iteration space contains all the points (i, j, k) of
the equation system. The physical space describes where (i.e.,
which processing element) and when (i.e., at what clock cy-
cle) each computation happens in the real world. To achieve
that, the iteration space is projected twice: the first time, the
resulting points will correspond to the spatial arrangement of
the processing elements; the second projection determines iso-
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Fig. 5: Fault propagation in systolic array. When injecting element s,
the fault is propagated in time (thus affecting elements s + δti and
s + 2δti) and in space (forwarding the faulty value to neighboring
elements s+ δxi + δti, s+ 2δxi + δti and so on).

temporal planes, identifying operations that are computed dur-
ing the same clock cycle but on different processing elements;
each plane corresponds to a different clock cycle. The space-
projection matrix P and the temporal dimension vector π are
used later.

In order to perform the simulation, it is sufficient to solve
the system shown above. Nevertheless, this method gives the
possibility of injecting faults in the values in a hardware-aware
fashion. To achieve the injection, it is sufficient to change the
values a, b and c at specific iterations (i, j, k). The faulty values
must then be propagated to the following Processing Elements
(PEs). Given the system of equations, the propagation can be
computed easily, taking into account the transformation matrix.
Figure 5 shows the concept. In this case, an injection in the
element s = (x, y, t) on the generic line i is done between
times 0 and ∞. The injected elements are visible in the figure.
Specifically, the fault will propagate in time, thus injecting
also s + δti and s + 2δti. In the same way, this fault will
propagate in the space to the element cascading from s. The
value propagation only happens after each clock cycle, which
means that the next injected element will be also displaced in
time, thus injecting element s+ δxi+ δti. In the same way, the
latter will propagate to the following element on the following
clock cycle, thus injecting element s+ 2δxi + 2δti and so on.
The injected points can be translated into iteration vectors i, j, k
using the inverse transformation. Formally, it is sufficient to
consider the injection as a function h applied to one of the
three values, e.g. a(i, j, k) = h(a(i, j − 1, k)

C. Experimental Results

To evaluate the methodology, experiments were performed
using a 16-bit quantized LeNet-5 trained on the MNIST dataset.
The network was injected with random transient faults (as-
suming that they are caused by Single-Event Upsets). More
specifically, a fault affects a random bit in the weight register of
a random processing element. The fault causes an error, which
manifests itself by fixing the value of a bit to either 0 or 1.
The target architecture is an Output-Stationary Systolic Array.
In this experiment, faults are injected only in the first layer of
the network. It is simulated using the URE system to obtain its
output values. The output is compared against the vulnerability
ranges obtained by the analytical approach, which determines
whether the injected fault is vulnerable, semi-vulnerable or



non-vulnerable (see Fig. 3). If the fault happens to be semi-
vulnerable, the simulation must be carried out until the end to
determine whether the fault produced misprediction or not; in
the other two cases, the output is pre-determined, and there is
no need to complete the simulation until the end. It is worth
mentioning that the vulnerability ranges are obtained in less
than one minute on an NVIDIA 3090 GPU. This methodology
allows to accelerate the process of fault injection simulations.

The produced fault list includes 964 random faults, each
simulated with 100 random input images.

TABLE I: Channel-wise analysis of the fault injection speedup.
The last column (su) indicates the percentage of vulnerable and
non-vulnerable simulations with respect to the total.

channel non-vulnerable semi-vulnerable vulnerable speed-up (%)
0 13673 3127 0 81.38
1 12606 3594 0 77.81
2 13044 2956 0 81.52
3 10392 5508 0 65.35
4 11811 3589 0 76.69
5 13173 2927 0 81.82

Table I shows the number of simulations in each category.
The simulations are grouped by channel for better under-
standing. The first column indicates the channel in which the
faults are injected. The “non-vulnerable”, “semi-vulnerable”,
and “vulnerable” columns indicate the number of simulations
with the corresponding vulnerability. The “speed-up” column
indicates the percentage of simulations that do not need to be
fully performed because of the vulnerability ranges gathered in
the previous step. More specifically, speed-up is the percentage
of pruned simulations.

As observed in Table I, no fault was pruned as vulnerable
using the analytical approach. This is because the analytical
approach did not provide any red area for the first layer of
LeNet-5, yet it provides an effective green area in which up to
81.52% of faults are pruned. Table I shows that consistently, for
each layer, at least 65% of the simulations are predetermined
using the analytical approach leading to a remarkable time-
saving for simulations.

If we assume that x is the time needed to perform a single
hardware simulation (computing a convolution between a kernel
and a feature map), we would need a total time t for a single
inference as follows:

t = x×
∑

Ki,j,l ∀(i, j, l) ∈ NNf ⊆ NN

where K is always equal to 1 and indicates a single convolution
and (i, j, l) is the triple (fmapinput, fmapout, layer) in the
neural network NN . NNf represents subset of the convolutions
affected by the fault f .

For example, in our LeNet-5, the set NN has 6
elements for the first layer: (1, 1, 1), (1, 2, 1), . . . (1, 6, 1).
The second layer has 6 × 16 elements: every FMap
of the output of the first layer has to be convoluted
with every kernel of the second layer, so we will have
(1, 1, 2), (1, 2, 2), · · · (1, 16, 2), · · · (2, 1, 2), · · · (6, 16, 2). Note
that the first layer only has one input FMap: the input image
itself, this we only have 6 convolutions in that case. The
subset NNf corresponds to all those convolutions whose in-
put FMap is different than the golden and thus needs to be

Fig. 6: Speedup per injected bit position

recomputed, taking into account the errors introduced by the
fault. In our case, with the type of fault chosen, we would
have an error affecting only one value in the first channel.
Such an error is propagated to the following layers, although it
may be masked. Especially when considering permanent faults,
we would be forced to simulate every convolution until the
output to determine the criticality of the fault. In our setup,
NNf would have a total of 102, considering that our systolic
array only computes convolutional layers. Using the analytical
approach made it possible to interrupt the simulation just after
the first layer. In the conducted fault injection campaign, about
76% of the total simulations were pre-determined, allowing
us to simulate the systolic array only once in 76% of the
total inferences. This gave us an average time per simulation
t′ = x × (0.24 × 102 + 0.76) ≈ 0.24 × t and a total 86% of
fault injection speed up.

Figure 6 shows the speed-up in percentage concerning the
injected bit position. It can be concluded that the most signifi-
cant bits (0 to 7) are the ones that produce a smaller speed-up
in general. Most of these faults fall in the ”semi-vulnerable“
category, thus it is necessary to propagate the error to infer the
fault criticality. The least significant bits (14 to 31), on the other
hand, provide great speed-up since the error is small enough for
the simulation to be classified as ”non-vulnerable”.

Finally, the methodology is applied for SDC-1 (i.e., Silent
Data Corruption leading to misclassification) analysis.

TABLE II: SDC1 computed over each channel. The second
column (misclassified) shows how many “semi-vulnerable” sim-
ulations ended up misclassifying the output. The third column
(SDC1) shows the metric computed over the whole batch.

channel misclassified SDC1 (%)
0 48 0.29
1 50 0.31
2 41 0.26
3 93 0.58
4 69 0.45
5 60 0.37

Using the data in table I, we could compute a lower bound
corresponding to the number of “non-vulnerable” simulations.
Since there is consistently no “vulnerable” simulation, the lower
bound effectively corresponds to the complement of the speed-
up. Furthermore, the SDC-1 was calculated for the “semi-
vulnerable” faults. Table II shows the metric computed for
the network under analysis. The second column shows the
number of simulations that ended up in misclassification. The
third column shows the metric itself. The network shows great
resilience to this type of fault. In total, the SDC1 is 0.37%.



In conclusion, the presented approach is capable of sig-
nificantly reducing the fault injection simulation time. This
method will be extended to larger DNNs considering various
fault models for obtaining reliability evaluation metrics and
combining the assessment with selective hardening techniques
[17], [18].

III. MIXING TECHNIQUES FOR THE RELIABILITY
ASSESSMENT OF IN-CHIP AI ACCELERATORS IN GPUS

A. Motivation and Related Work

Modern GPUs are highly adopted platforms to deploy AI
applications, since these devices efficiently exploit the pro-
gramming flexibility and structural parallelism to speed up the
execution of such data-intensive workloads [19]. In particular,
modern AI algorithms are characterized by repetitive opera-
tions (e.g., convolutions) that are implemented by resorting
to convolution mapping algorithms (e.g., GEMM, Winograd,
or direct) [20]–[22]. For this purpose, modern generations of
GPUs include specially optimized accelerators, called Tensor
Core Units or TCUs, that resort to compacted 2D/3D arrays of
Dot-Product Units (DPUs) [23]. TCUs comprise highly regular
DPU structures to increase performance and are controlled in
the GPU to exploit their implicit multi-threading parallelism
[24]. Unfortunately, the vast density of transistors in modern
accelerators (e.g., 100 billion) and the characterized amount
of data-intensive operations in AI applications (e.g., tens of
millions) impede the use of conventional strategies for the
fault characterization of structures, as well as the reliability
assessment of their running applications [25].

Classical strategies for GPUs, such as simulation- and
emulation-based fault analyses, provide fine-grain characteri-
zations and allow the identification of vulnerable structures
under focused evaluations [26], [27]. However, evaluations on
complete designs and large applications might involve unfeasi-
ble evaluation times. Other strategies, including software-based
error propagation on GPUs, depend on the error models used,
which might induce simplified evaluations and inaccurate analy-
ses [28]. Thus, strategies to effectively characterize fault effects
while providing an acceptable trade-off between performance
and accuracy are still required.

In particular, the individual adoption of fault characterization
strategies is insufficient and unfeasible for large hardware
accelerators, such as GPUs with in-chip accelerators (TCUs).
Some preliminary works evaluated faults in the TCU’s micro-
architecture and their propagation effects on the operation’s
outputs, considering number format impacts [29], and effects
on the operand sizes [30]. However, these works did not
consider the evaluation of large workloads, such as CNNs.
Similarly, other works [31] evaluated the impact of TCUs in
mixed-precision operations, indicating that TCUs seem to be
more fault-sensitive than equivalent applications without TCUs.
Unfortunately, these analyses hardly identified fault-sensitive
structures inside TCUs.

Other works resort to software-based error propagation
schemes to instrument the GPUs application’s code and rep-
resent error corruptions in software from faults affecting the
underlying system. Unfortunately, the accuracy of the method
directly depends on the targeted units (mostly data path units)
and the available error models to represent faults. In literature,

some works [32] addressed the software-based characterization
of large workloads (CNNs) in GPUs when errors affected
functional units under software error models limited to random
bit-flips. Authors in [33] analyzed the impact of errors in
CNNs and developed error models to represent corruptions on
applications, but neglecting the fine-grain micro-architecture
of the underlying hardware. In [34], the authors explored a
hybrid strategy to represent software errors from faults in GPU
controllers. Unfortunately, their analyses were limited to a few
structures with considerable evaluation times.

This work proposes a clever mixing method to effectively
assess the reliability of TCUs in GPUs for permanent faults,
considering the low-level micro-architecture description and
their functional operation to determine error patterns, which
are then used in the evaluation of large CNN workloads. Our
method combines three strategies to provide an affordable trade-
off between accuracy and performance evaluation.

B. Assessing the reliability of in-chip GPU accelerators

The proposed reliability assessment method for the TCUs
in GPUs combines three strategies to provide accuracy while
allowing feasible evaluation times when GPUs execute large
applications, such as CNNs, as depicted in Figure 7. The first
strategy (focused low-level micro-architecture fault evaluation)
resorts to fine-grain evaluations of the main structures in TCUs
(DPUs) in order to accurately characterize the fault propagation
effects on the scalar operations in TCUs. Then, a functional
evaluation characterizes fault effects on the array operations of
TCUs, considering their interaction with other GPU structures.
It must be noted that TCUs’ execution depends on GPU’s
scheduling and are operated through GPU’s machine instruc-
tions. Moreover, TCU cores are sequentially reused to operate
matrix’s fragments. Thus, the functional characterization allows
the identification of accurate spatial fault propagation patterns
during the complete execution of the TCUs. Finally, those scalar
impacts and the array fault propagation patterns are combined
to represent software errors effects on applications. In this
case, we exploit an application-level error propagation strategy
by using software-based error injection schemes to instrument
the application’s code (e.g. CNNs) with the identified error
effects. The combination of both strategies (error patterns +
software-based injection) allows the reliability assessment of
large applications with accuracy under feasible times. The next
subsections describe each strategy for the TCU’s assessment.

1) Focused micro-architecture evaluation: consist of a low-
level micro-architecture (Gate-level) evaluation of a DPU only
focusing on its scalar operations and the fault propagation
effects on the results. We use a commercial-grade logic sim-
ulator tool (ModelSim by Siemens EDA) to characterize the
fault-free operation of the DPU with typical workloads (e.g.,
matrix tiles). The output values are used for comparison in the
identification of fault effects. Then, a functional safety simulator
(ZOIX by Synopsis) is adapted to exhaustively evaluate the
propagation effects of permanent (stuck-at) faults in the DPU.
In the characterization, one hardware fault is placed in the
DPU and then all operations are independently evaluated, so
allowing the identification of faults prone to corrupt individual
DPU operations. We used normally distributed random matrix
tiles with values in ranges from ±1.0 to ±100.0 to represent
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CNN operations [35]. The output results are then evaluated to
identify scalar corruption patterns. This analysis also allows
us to identify vulnerable structures to faults for the further
development of countermeasures and mitigation mechanisms.

The fault effects are categorized based on their impact on
scalar results as follows: i) Silent Data Corruptions (SDCs)
occurs when faults in the DPU alter the results. ii) Detected
Unrecoverable Errors (DUEs) refer to faults that halt, collapse,
or hang the DPU’s operation, including faults generating Not-
a-Number (NaN) and infinite (Inf) values, and iii) Masked
effects encompass benign effects that leave the DPU’s results
unchanged despite the presence of faults.

2) Functional evaluation: consist on the characterization
of the spatial corruption effects on the output arrays (matrix
tiles) by faults in the TCUs. This evaluation aims to analyze
the operational features in TCUs to process large matrix tiles,
since TCU’s are reused and managed by machine instructions.
Moreover, this assessment considers the interaction with other
GPU structures (i.e., schedulers and register files).

We resort to an instruction-accurate architectural simulator
of the TCUs in GPUs (PyOpenTCU) [36] that integrates the
scheduling and the memories as in real TCUs. A pin-level fault
injector tool in PyOpenTCU supports the evaluation of hardware
faults on the TCU’s architecture. The injector tool places one
or more faults in the inputs, outputs, or internal structures of
the TCUs. Then, a complete set of input stimuli (matrix tiles)
is evaluated using the set of sequential machine instructions for
TCUs and the distribution of input operands among the threads
and warps in the GPU. After the fault evaluation of the TCUs,
the output results are compared with a fault-free operation
using the same input stimuli. In our evaluation, we employ
the same stimuli used in the micro-architecture evaluation from
representative CNNs. The corruption effects are classified as
SDCs, DUEs and masked effects.

3) Application-level error propagation: consist on the char-
acterization of fault propagation effects on complete applica-
tions by resorting to a combined representation in software of
the identified error patterns from the micro-architecture and
functional evaluations of the TCUs (i.e., scalar and spatial
errors patterns as Error Masks). Thus, Error Masks represent
software errors by corrupting operations, and values are used to
better describe the impacts of hardware faults while allowing
acceptable evaluation times for large applications.

We adapt a Hardware-Injection through Program Transfor-
mation (HIPT) framework [37] (Nvbit [38]) to instrument the

code of parallel programs for GPUs and inject software errors
as permanent faults from the TCU’s hardware. Our tool, called
NvBITPERFI [34], represents errors by instrumenting the appli-
cation’s assembly code controlling the TCU cores (e.g., MMA)
with custom functions that apply the previously identified scalar
and spatial error patterns. The scalar error patterns are injected
to corrupt output values to mimic the equivalent effect of a
faulty TCU. In addition, the spatial error patterns are used to
indicate the number of corrupted threads and warps, as well as
the spatial distribution of the corruptions.

The error propagation evaluation starts with the execution of
an error-free operation for the complete application (e.g., CNN)
on a real GPU. The overall results are collected and stored as a
reference for comparison. Then, NvBITPERFI instruments the
application’s code with one error pattern and starts its execution,
collecting the output results for corruption classification. It is
worth noting that the instrumented functions are used each time
the TCUs are used in the application. The evaluation is repeated,
injecting each one of the identified error patterns, and the error
corruptions in the application are evaluated by comparing the
results from the execution with errors and the reference one.

C. Experimental Results

For the experiments, we evaluated the typical configuration
of a GPU with two TCUs per SM and 16 DPUs per TCU.
In detail, the DPU operates four 16-bit wide inputs. The
synthesis of the micro-architecture DPU resorts to a 15nm open-
source technology library [39]. Furthermore, PyOpenTCU is
configured to compute 16x16 input matrix tiles per warp, so a
complete matrix tile requires a sequence of 8 MMA instructions.

For the fine-grain and functional fault characterizations, we
used four typical input matrix tiles that account for a total of
4,096 input stimuli for the DPU core. One exhaustive fault
injection campaign evaluates 82,912 faults on the DPU for
each individual input stimulus. Similarly, four fault injection
campaigns perform the exhaustive functional evaluation of the
TCUs by injecting an overall of 2.29x105 hardware faults
(57,344 faults per campaign). Then, for the evaluation of the
error propagation on the applications, we resort to three typical
CNNs (ResNet50, AlexNet, and MobileNetv3) on the ImageNet
data set by injecting 1,024 errors on the TCU core per CNN.
These CNN models are deployed on TensorRT with TCU
acceleration using FP16 data computations. All experiments
were performed on a workstation HP Z2 G5 with an Intel Core
i9-10800 CPU with 20 cores, 32BG of RAM, and one NVIDIA
Ampere 3070ti GPU. In our experiments, we targeted the TCU0

inside the SM0 for the functional evaluation and the error
propagation on a real GPU. In the end, the evaluation required
around 415.6 hours, which accounts for 264hrs of fine-grain
evaluation of the DPU, 128hrs of functional evaluation of the
TCUs, and 23.6 hours for the error propagation on applications.

First, we analyze the fine-grain fault impacts on the scalar
operations on the DPU. The results indicate that a considerable
percentage of faults (around 87%) are prone to propagate and
cause corruptions on the output results as SDCs, while other
faults are masked (13%). Our evaluation did not identify scalar
DUE effects, which can explained when considering that DPU
units are used in the data path of a GPU. In addition, a cautious
analysis of the results reveals that most DPU output corruptions
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Fig. 8: Fault sensitivity on the outputs of the DPU operations.
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Fig. 9: Distribution of errors among the structures of the ADD inside
the DPU.

mostly caused one bit-flip (around 46%), two bit-flips (about
18%) and three bit-flips (in around 8%). Then, we analyzed
the scalar impacts as errors corrupting bit-fields on the DPU
operations. Figure 8 illustrates the distribution of errors on
the output bit-fields, indicating that most effects in the DPU
operations are corruptions on the mantissa part (bits 22-13) and
the lower part of the exponents (bits 30, 25-23). Interestingly,
corruptions in the exponent fields (around 7% of all observed
errors) are responsible for large-error magnitudes and prone to
propagate effects on the application. In contrast, corruptions in
the mantissa or fraction (around 93% of errors) only caused
effects with magnitudes lower than 1.0 and might be neglected
as critical error sources in most CNN scenarios. An additional
evaluation reveals that infrastructures calculating the exponent
of an operation for the sub-units of addition (ADD or adder
tree) and multiplication (MUL) in the DPU (around 14.6%
of the DPU’s area) are highly vulnerable and prone to cause
large-magnitude errors, as depicted in the distribution of errors
(Exp.Sub, Exp Frc.nAdd, and TGL) for the DPU’s ADD in
Figure 9. We observed that for both structures (ADD and MUL)
produced similar error distributions with around 48% of the
corruptions caused by the ADD and around 13% produced by
faults inside any of the 4 MUL cores in the DPU.

The functional evaluation aims to indicate the distribution
of spatial corruption effects among the DPUs in the TCU.
Figure 10 reports the error patterns and their spatial distribution
for an output matrix tile (16x16). The results indicate that a
faulty DPU in a TCU can corrupt from 1 to 8 output elements.
The spatial distribution of errors in terms of relative distance
between corrupted elements, and the localized effects (i.e., left-
part of the output) is explained by a deterministic distribution of
matrix fragments to operate among the TCUs and its scheduling

Fig. 10: Distribution of output’s corruptions by a faulty TCU.
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Fig. 11: Corruption effects on the CNNs by TCU hardware faults.

policy, respectively. An analysis of the intermediate results (dur-
ing the MMA instruction’s execution) reveals that the sequential
use of TCUs contributes to accumulate errors and increases in
one the number of corrupted bits on the output value.

Finally, both sets of error patterns (scalar and spatial) are
used to instrument the applications. This evaluation considers
one error injected per application execution. Thus, an error (i.e.,
error mask) is only applied on those threads using the instruc-
tions to access a targeted unit (TCU0). Figure 11 illustrates the
fault rate on the outputs of the evaluated CNNs. The results
indicate that all the application level errors induce Silent Data
Corruption (SDC) effects, but a considerable percentage of error
effects (from 18% to 45%) critically caused wrong outcomes
at the CNN’s outputs. These results suggest that accumulated
errors from the reuse of faulty TCUs are highly prone to corrupt
several operations in CNNs and propagate their effects, so
increasing the probability of data corruption on the outputs.
Since errors affect several elements in the layer’s outputs, the
implicit resilience of a CNN is affected by these corruption
effects. In fact, we identified that during the inference of one
image, around 25% of the kernels are reused, and from those
kernels, around 80% rely on the TCU computations. These
features of the CNN implementation cause that a faulty TCU
corrupt multiple layers by the accumulation of error during the
CNN operation. Indeed, the results show that the average error
activation rate reaches ≈90,000, ≈ 300,000, and ≈1 million for
AlexNet, ResNet50, and MobileNet, respectively.

An analysis of the workload’s distribution in the GPU shows
that each kernel uses fixed configurations to distribute their tasks
among the SMs and use the TCUs. The workload distribution
in the GPU influences the error propagation when a faulty TCU
is in the system, which indicates that a clear understanding of
micro-architecture and the algorithms (i.e., convolutions) used
to map CNNs in the GPU’s TCUs are required to analyze and
develop effective countermeasures and mitigation mechanisms
correctly. The other parameter contributing to the error propa-
gation in CNNs is the total amount of SMs; since the CNNs are
distributed among all TCUs in a system, their error vulnerability
is proportionally inverse to the number of TCUs and SMs in a
system.



FPGA

Start a DUE 
checker thread

Accelerator runs 
an inference

Start app on 
DUT inside the 

beam room

Yes No

Log received data

Main server

Beam source

GPU Ethernet

Power 
switch

Hardware Setup at ChipIr Software Setup

Main server

Check 
hangs and 

crashes SDC

Fig. 12: Beam setup mounted at ChipIR beam line and the software setup.

IV. RELIABILITY ASSESSMENT OF DNN HARDWARE
ACCELERATORS THROUGH PHYSICAL FAULT INJECTION

A. Motivation and Related Work

Evaluating the sensitivity of DNN accelerators for transient
events is crucial for identifying errors that compromise DNN
accuracy. Fault simulation allows researchers to pinpoint spe-
cific fault sites and track how faults propagate through both the
hardware and the application [37], [40], [41]. This can be im-
plemented at various levels of abstraction. Low-level hardware
fault simulations (e.g., gate level) offer detailed insights but
are time-consuming, while higher-level hardware or software
simulations (e.g., microarchitectural or software) provide faster
but less accurate results. Additionally, selecting appropriate
fault models for simulation is critical to prevent inaccurate
conclusions [42]. In contrast, physical fault injection using
radiation exposes the system to a beam of ionizing particles,
offering a means to estimate realistic error rates. However, this
method does not support tracking fault propagation, as faults
are identified only when they lead to failures [43], [44].

By performing radiation experiments, recent studies have
demonstrated that DNNs accelerators are highly susceptible to
transient faults induced by radiation [31], [45]–[47]. Recent
research data suggests that while GPUs are mostly affected
because of the high amount of available resources [48], [49] and
the possibility of having multiple output elements corrupted,
which undermines DNN reliability [46], [50], FPGAs, are
mostly affected due to the programable hardware characteristics,
where a transient fault can change the configuration memory
and change the circuit [51]–[53].

In this section, we show how we can extract practical – and
non-obvious – information from neutron beam experiments with
GPUs and FPGAs running DNNs.

B. Neutron Beam Experiments

Our experiments were performed at the ChipIR facility within
the Rutherford Appleton Laboratory in the UK. The setup
within the ChipIR facility is depicted in Figure 12. ChipIR
delivers a neutron beam with an energy spectrum similar to
atmospheric neutrons [54]. The neutron flux available reaches
approximately 3.5×106n/(cm2/s), which is nearly eight orders
of magnitude greater than the terrestrial flux at sea level (13
neutrons/(cm2 · h) [55]).

Considering the low terrestrial neutron flux, encountering
more than one corruption during program execution in a real-

istic application is unlikely. Our experiments are meticulously
designed to uphold this characteristic, ensuring observed error
rates remain below one failure per 2,000 executions. Each
DNN configuration undergoes testing for a minimum of 3
effective hours, excluding setup, result checking, initialization,
and recovery from DUE time.

1) System Under Test: We selected the TUL PYNQ-Z2 board
based on the 28nm Xilinx Zynq-7000 SoC and the NVIDIA
Tesla V100 GPU based on a 12nm Volta microarchitecture as
hardware platforms.

For the GPU experiments, we target an evaluation to measure
the reliability of multiple floating-point precisions of a General
Matrix Multiplication (GEMM), such as FP16, FP32, and FP64
from the cuBLAS libraries [56]. The choice of multiple GEMM
configurations is guided as they are the core of the state-of-the-
art DNNs. As a study case, we also exposed an object detection
DNN, YOLOv3 [57], with two precisions, FP16 and FP32, with
the same setup as used in [58].

For the FPGA experiments, we created five ANN accelerators
using the HLS4ML tool [59]. HLS4ML is an open-source
tool that can translate machine learning models described with
libraries such as Pytorch and TensorFlow into HLS-compatible
high-level-description parametric models, which can be con-
figured, synthesized, and implemented to run on an FPGA.
We used a 2-layer ANN to classify handwritten digits on the
MNIST dataset and varied the number of multipliers used per
layer. Table III shows the number of multipliers used for each
evaluated FPGA configuration. As the number of multipliers
increases, the clock cycles decrease, but the area also increases.
As discussed in the next section, a larger area may increase the
failure rate.

2) Experimental Setup: Figure 12 presents an overview of
the experimental setup. We developed a software watchdog
composed of Python scripts, which operates on the server com-
puter located externally to the beam room. This watchdog over-
sees the DUT by monitoring its activity, executing programs,

TABLE III: Configurations generated by HLS4ML by varying
the number of multipliers used in each layer. 39,200 multipli-
cations are performed in the first layer and 500 in the second.

Multipliers Used (layer 1× layer 2) Clock Cycles
Opt1 1x1 39,804
Opt2 2x2 19,960
Opt3 10x5 4,154
Opt4 50x20 947



logging events, and effectively recovering from any device
malfunctions. When the program becomes unresponsive, it is
terminated and restarted based on a predefined timeout period.
Notably, the timeout duration for each code is meticulously set,
extending up to 10× the anticipated execution time, tailored to
the specific requirements of the code’s execution duration.

For every DUT configuration, we designate a host system
that is responsible for managing the DNN accelerator hardware.
For the GPU setup, the host system is an x86 Intel i3 CPU,
whereas for FPGA SoC configurations, the ARM CPU on the
PYNQ SoC is employed. Following each iteration performed
within the device, the host compares the kernel’s output against
a predefined constant golden value. Any discrepancy between
the actual output and the golden value prompts the host to relay
pertinent information back to the server outside the beam room,
before initiating a restart of the process. It is important to em-
phasize that our error rate analysis only considers discrepancies
observed in the kernel output.

The experiments conducted at ChipIR allow the estimation
of the Failure In Time (FIT) rates, representing the error
rate of a given accelerator. FIT rate is directly derived from
the application cross-section (σ), calculated by dividing the
number of observed errors by the received particle fluence
(neutrons/cm2). This cross-section is then multiplied by the
flux under which the system operates to yield the FIT rate.

While the FIT rate is valuable for estimating system fail-
ure rates, it overlooks the execution time variations stem-
ming from different HLS and GPU hardware optimizations.
To address this, we compute the Mean Executions Between
Failures (MEBF) to gauge how many correct executions can
be performed before a failure occurs, as defined by equation 1.

MEBF =
MTBF

ExecutionT ime
(1)

Where the MTBF is the inverse of the cross-section multi-
plied by the flux under which the device will operate (i.e.,
MTBF = FIT−1 = (σ ∗ flux)−1), and the ExecutionT ime
is the application execution time.

C. Experimental Results

Figure 13 shows experimentally measured FIT rate and
MEBF. Both FIT and MEBF are presented relative to the
configuration exhibiting the worst performance for each code.
Specifically, we present the experimental data relative to FP64
GEMM and FP32 YOLOv3 for the GPU and Opt1 for the
FPGA. The data in Figure 13 is presented with a 95% con-
fidence interval on a Poisson distribution.

1) FIT: Smaller precision results in a lower overall FIT
rate for both applications evaluated on GPUs (Figure 13a).
Specifically, the FIT rate of FP32 is 21.5% lower than that of
FP64, while the FIT rate of FP16 FIT is 38.43% lower than that
of FP16. Similarly, for YOLOv3, the FIT rate of FP16 is 46.29%
lower than that of FP32. Using smaller float precisions reduces
the probability of a fault that leads to a failure (SDC or DUE)
as it uses fewer hardware resources. Furthermore, compared
to the FP32 version, the FP16 version of YOLOv3 results in
fewer critical SDCs (misdetections) with 21.43% and 27.27%,
respectively. The lower representation capacity of FP16 reduces
the chances of very large corrupted values, which are known

to impact the reliability of DNNs [45], [60], thus changing the
detection result of YOLOv3.

The FPGA FIT rate exhibits different behavior compared to
the GPU results. The Opt2 FIT rate decreases compared to
Opt1, while the same does not happen for Opt3 and Opt4.
Specifically, the FIT rate for Opt2 is 82.81% of Opt1, while
the FIT rates for Opt3 and Opt4 are 98.35% and 107.74%
of Opt1 FIT rate, respectively. It is important to note that no
built-in fault detection functionalities, such as scrubbing and/or
the activation ECC, were utilized in any of the experiments.
As a result, smaller accelerators running for longer might
accumulate errors in the extensively reused hardware, and since
they experience less DUE stopping the execution, faults can
propagate to outputs, leading to more SDCs. Additionally,
the DUE FIT increases for larger accelerators. The larger the
accelerator area (i.e., more multipliers per layer), the higher the
chance that a bit flip corrupts a critical circuit resource, leading
to the application’s hang or crash.

The Critical SDCs for the FPGAs experiments correspond to
18.26%, 21.92%, 28.52%, and 28.81% of the SDC FIT for Opt1,
Opt2, Opt3, and Opt4, respectively. The chance of experiencing
critical SDCs is higher for larger accelerators than smaller ones
due to the usage of hardware resources. The amount of work
done remains constant, but larger accelerators have more area
to improve performance, which leads to a higher probability of
critical computation at any given time.

2) MEBF: When comparing the ANN accelerators, relying
on the FIT rate alone is insufficient, as it does not provide
information on the application’s execution time [61]. Therefore,
we must correlate error rates with performance to make the
comparison more holistic.

Figure 13b shows the MEBF for the different configurations
we evaluate. For the GEMM codes on GPU, we used all SDCs
and DUEs to calculate the MEBF, while for YOLOv3 and
MNIST ANN, we used the Critical SDCs (misclassification or
misdetection) and the DUE to calculate the MEBF. By using
only the Critical SDCs (+DUEs) to calculate the MEBF, we
can quantify the failures that will actually negatively affect the
accelerator utilization (i.e., crash or wrong classification) if no
fault mitigation is adopted.

Unsurprisingly, the GPU MEBF always increases when com-
paring the larger precisions GEMM FP64 and YOLOv3 FP32
to the lower precisions versions. For instance, the GPU MEBF
for GEMM is 2.52× higher for FP32 and 7.33× higher for
FP16 than FP64. Also, the YOLOv3 FP16 produces 1.89× more
correct predictions than the FP32 version. Optimized hardware
not only delivers higher performance but also ensures more
correct operations than slower hardware.

The results of the FPGA configurations show a significant
improvement trend from Opt1 to Opt4, in contrast to the FIT rate
results. The MEBF demonstrates a linear correlation with the
reuse parameters, and compared to Opt1, it increases by 2.72×
for Opt2, 6.35× for Opt3, and 26.25× for Opt4. In general,
the data suggests that fast and large accelerators are capable of
performing more inferences between two failures than slow and
small ones. However, when they fail, they are more likely to
experience a critical SDC.
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Fig. 13: Experimentally measured relative SDC and DUE Failure In Time (FIT) rates, as well as the relative Mean Executions Between Failure
(MEBF). FIT and MEBF values are expressed relative to the configuration exhibiting the worst performance. *While for the GEMM code, we
consider all the SDCs on the MEBF calculation, in the YOLOv3 and MNIST ANN, we consider only the SDCs classified as a misclassification
or misdetection.

V. CONCLUSIONS

The paper presents advanced methods to assess the reliability
of the three types of DNN-HAs, i.e., Systolic Array, GPU
and FPGA, through different tailored methodologies. These are
a) hybrid analytical and hierarchical FI-based reliability as-
sessment for systolic-array-based DNN accelerators; b) mixing
techniques for the reliability assessment of in-chip AI accel-
erators in GPUs; c) reliability assessment of DNN hardware
accelerators through physical fault injection. The experimental
results demonstrated the efficiency of the proposed methods
applied to their target DNN HW accelerator platforms.
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