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VANISHING VISCOSITY VERSUS ROSENAU APPROXIMATION FOR

SCALAR CONSERVATION LAWS: THE FRACTIONAL CASE

N. ALIBAUD, G. M. COCLITE, M. DALERY, AND C. DONADELLO

Abstract. We consider approximations of scalar conservation laws by adding nonlocal dif-
fusive operators. In particular, we consider solutions associated to fractional Laplacian and
fractional Rosenau perturbations and show that, for any t > 0, the mutual L1 distance of
their profiles is negligible as compared to their common distance to the underlying inviscid
entropy solution. We provide explicit examples showing that our rates are optimal in the
supercritical and critical cases, in one space dimension and for strictly convex fluxes. For
subcritical equations, our rates are not optimal but they remain explicit.

1. Introduction

The classical approach in the analysis of the Cauchy problem for multi-dimensional scalar
conservation law,

(1.1)

{
∂tw + div f(w) = 0, t ∈ R

+, x ∈ R
d,

w(0, x) = w0(x), x ∈ R
d,

where the divergence is taken with respect to the space variable x, the flux f ∈W 1,∞
loc (R,Rd)

and the initial condition w0 ∈ L∞(Rd), relies on singular approximations as the vanishing
viscosity and the relaxation methods, see [18] and references therein.

The well-posedness of (1.1) was established in [31] in the framework of entropy solutions,
that are weak solutions which satisfy additional selection criteria called entropy inequalities.
The unique entropy solution coincides with the strong Lp limit as ε→ 0 of vanishing viscosity
regularized solutions, which solve

(1.2)

{
∂twε + div f(wε) = ε∆wε, t ∈ R

+, x ∈ R
d,

w(0, x) = w0(x), x ∈ R
d,

with the Laplacian in space. This regularization procedure is the most classical, but other
ones have been considered. In [36], Rosenau proposed a regularized version of the Chapman-
Enskog expansion of hydrodynamics, which can be rewritten as the following perturbation of
(1.1):

(1.3) ∂tvε + div f(vε) = −εF−1

( | · |2
1 + ε2| · |2 F(vε)

)
.

Here and throughout, the space Fourier transform and its inverse are respectively denoted by

(1.4) F(φ)(ξ) =

ˆ

Rd

φ(x)e−ix·ξ dx and F−1(φ)(x) =
1

(2π)d

ˆ

Rd

φ(ξ)eix·ξ dξ.

Since the diffusion in (1.2) can be rewritten as

∆φ = −F−1
(
| · |2F(φ)

)
,
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the right hand side of (1.3) resembles the one in (1.2) at low wave numbers ξ, but is intended
to model a bounded approximation of a linearized collision operator for higher ξ. As explained
in [36, 39], this avoids artificial instabilities occurring when the Chapman-Enskog expansion
for such an operator is truncated after a finite number of terms. The model retains the
essential properties of the usual viscosity approximation, e.g., existence of travelling waves,
monotonicity, upper-Lipschitz continuity, etc., and it sharpens the standard viscous shock
layers. However, discontinuities of w may persist in vǫ.

In [39], it is proved in one space dimension that this regularization converges to the under-
lying inviscid entropy solution as ε→ 0, and estimated the convergence rate in all Lp spaces
for 1 ≤ p < ∞. In particular, the convergence rate in L1 coincides with the convergence rate
of the vanishing viscosity approximation (1.2) established in [32]. The extension to several
space dimensions (with the same rates) is due to [28]. If w0 ∈ L1 ∩ L∞ ∩ BV (Rd) then for
any T > 0,

(1.5) ‖wε − w‖C([0,T ];L1), ‖vε − w‖C([0,T ];L1) = O(
√
ε).

These rates are expected to be optimal even for nonlinear equations as suggested by the
analysis of [17] for numerical schemes, see also Theorem 2.5 for a proof in our setting for both
(1.2) and (1.3).

It was expected from the modelization that the solution of the Rosenau approximation is
closer to the viscous approximation than to the inviscid limit. The fact that wε−w and vǫ−w
decay with the same rate despite the persistence of discontinuities in vǫ goes in that sense.
But in the literature we did not find any proof that wε − vε indeed decays faster, and this
is the motivation of our interest in the problem. Unfortunately we cannot handle standard
Laplace and Rosenau operators, but we will give a rather complete analysis for fractional
versions of (1.2) and (1.3). We are talking about (1.6) and (1.7) below, probably respectively
studied for the first time by [10] and [25] as concerning the mathematical community. More
references will be given later, after having introduced the equations on which we shall focus
from now on.

Throughout, α ∈ (0, 2] is fixed, ε > 0 is the perturbation parameter and we consider the
Cauchy problems

(1.6)

{
∂tu+ div f(u) = ε∆α/2u, t ∈ R

+, x ∈ R
d,

u(0, x) = w0(x), x ∈ R
d,

and

(1.7)

{
∂tv + div f(v) = εRαε (v), t ∈ R

+, x ∈ R
d,

v(0, x) = w0(x), x ∈ R
d,

with the space fractional Laplacian

(1.8) ∆α/2φ = −F−1 (| · |αF(φ)) ,

and its corresponding Rosenau approximation

(1.9) Rαε (φ) = −F−1

( | · |α
1 + εα| · |α F(φ)

)
.

We notably recover (1.2) and (1.3) if α = 2. Equation (1.6) is respectively said to be

• subcritical if α > 1,
• critical if α = 1,
• supercritical if α < 1,

in reference to the cases where the diffusion’s order is less or above the nonlinear convection’s
order, see e.g. [12, 13, 29, 30] for the terminology.
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Remark 1.1. In (1.6) and (1.7), u = uε and v = vε depend on ε but we simply denote them
u and v all along the paper.

Scalar conservation laws with fractional diffusions and variants appear in many applications
such as over-driven gas detonations [15], radiation hydrodynamics [25, 35, 36, 37, 39], anoma-
lous diffusion in semiconductor growth [42], fractional porous media [19, 20], or fluid dynamics
[29, 30]. Equation (1.7) is a very natural counterpart to (1.3) for fractional diffusions, see

[25] and references therein. The Fourier symbol |ξ|α

1+εα|ξ|α is a bounded approximation of |ξ|α
resembling the former Rosenau approximation for α = 2. We recognize as well a standard
approximation procedure from subordinate semigroup theory [7, 9, 27, 38], where the semi-

group generated by Rαε is obtained by subordinating the semigroup generated by ∆α/2 via
the usual Bernstein function r 7→ r

1+εαr , see [27, Examples 3.9.23 & 4.3.3].

As concerning well-posedness, (1.6) admits a unique smooth solution in the subcritical and
critical cases [12, 22], and a unique possibly discontinuous entropy solution in the supercritical
one [1]. The notion of entropy solutions was then extended in [14] to scalar conservation laws
with general pure jump Lévy diffusions, whose fractional Laplacian is a prototype. Lévy
operators are generators of Lévy processes or equivalently linear and translation invariant
operators L : C∞

c (Rd) → C(Rd) satisfying the maximum principle:

(1.10) L(φ)(x) ≤ 0 at any global maximum point x of φ,

see [7, 9, 16, 27, 38].
Lévy processes modelize diffusion via random motions of particles. Contrarily to the clas-

sical Laplacian, these particles may jump for the fractional Laplacian which roughly speaking
makes it nonlocal, see [7, 9, 27, 38, 42]. The classical and fractional Rosenau operators are
bounded nonlocal Lévy operators, see [7, 9, 27, 38, 39] or Lemma 2.1. The well-posedness of
[14] then applies to both (1.6) and (1.7).

Now considering the limits as ε→ 0, we recover the unique entropy solution w of (1.1) from
both (1.6) and (1.7). Moreover, for all α ∈ (0, 2], the solutions of (1.6) and (1.7) converge to
the inviscid limit w with the same rate

(1.11) ‖u− w‖C([0,T ];L1), ‖v − w‖C([0,T ];L1) =





O(ε1/α), α ∈ (1, 2],

O(ε ln(1/ε)), α = 1,

O(ε), α ∈ (0, 1),

see Corollary 2.1. This result is due to [1, 21] for (1.6). As concerning (1.7), this follows from
general continuous dependence estimates for scalar conservation laws with Lévy diffusions [2].

Our contribution is to first rigorously verify that the above rates are optimal even for
nonlinear f , and then show that u − v decays strictly faster at least in the purely fractional
case α ∈ (0, 2). We identify in particular the optimal rates in the supercritical and critical
cases, and we prove non optimal but explicit rates in the subcritical case. More precisely we
establish in Theorem 2.4 that

(1.12) ‖u− v‖C([0,T ];L1) =





O(ε2−α), α ∈ (1/2, 1],

O(ε3/2 ln(1/ε)), α = 1/2,

O(εα+1), α ∈ (0, 1/2),

and we show that these general estimates are optimal even for nonlinear f as concerning the
asymptotic behavior of the above global L1 distance for small ε; see Theorem 2.5 and Remark
2.4. For subcritical equations, see Theorem 2.3, we get that

(1.13) ‖u− v‖C([0,T ];L1) = O
(
ε

3−α
2

)
, α ∈ (1, 2).

This suffices to show that u− v vanishes faster than u−w and v −w.
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The proofs of (1.12) and (1.13) are based on the error estimation technique of Kuznestov
[32]; see [1, 2, 3, 21, 23, 28, 35, 39] for nonlocal PDEs. More precisely (1.13) follows from the
continuous dependence result of [2] combined with a fine estimate on the difference between

the respective Lévy measures of ∆α/2 and Rαε (Lemma 3.1). To prove the optimal rates (1.12),
we go back inside the Kuznetsov’s argumentation while taking more advantage of properties
specific to our equations. We notably show that if α ∈ (0, 1], then ε(∆α/2 − Rαε ) satisfies
the maximum principle (1.10). This is particularly important for α = 1/2 which is a critical
value in (1.12). The monotonicity of this error operator relies on a finer estimate on the
Lévy measures (Lemma 3.2). It fails for α > 1 which might explain why our Kuznetsov’s
argumentation does not give optimal rates in that case.

Another ingredient to get (1.12) is a fractional Sobolev estimate on the resolvent’s kernel of
the fractional Laplacian (Lemma A.6). It roughly speaking gives enough regularizing effects
from the error term itself.

We prove Lemmas 3.1 and 3.2 via sophisticated tools on Bessel functions inspired from
classical far field asymptotic results on the fractional heat kernel [11, 33]. We also have
simpler and self-contained proofs in one space dimension, relying on PDEs arguments.

Our optimal examples are inspired from [17] as previously noticed, and also from [1, 3, 21,
23, 26]. The paper [3] estimated the continuous dependence in both α and porous medium
nonlinearities. The optimality of the obtained results was established for the linearized equa-
tions via Fourier methods; see [1, 21, 23, 26] for the vanishing viscosity case. In [17], the
author proved the optimality of error estimates for numerical approximations of (1.1) with
nonlinear strictly convex fluxes. The idea is that, if considering the global L1 distance and
appropriate initial datas generating infinitely many shocks, then we cannot get better rates
for nonlinear fluxes than for linear fluxes. Here we combine Fourier arguments and the latter
idea to get optimal examples for (1.11) and (1.12).

The most difficult is for (1.12). It necessitates sufficiently larger and larger distances be-
tween shock waves, at infinity. The key to handle the nonlocal effects is a “finite-infinite”
propagation speed estimate from [1, 24]. It is a modified version of the finite propagation speed
estimate for scalar conservation laws involving the convolution semigroups of the diffusions.

We are finally convinced that (1.13) is suboptimal, because we can get better rates for
linear fluxes. Remaining open questions are to strictly improve (1.13), and show that u − v
vanishes faster than u− w and v − w when α = 2. The latter is indeed not a consequence of
(1.13), whose limit as α→ 2 is robust but just gives the same rate than in (1.5).

The rest of this paper is organized as follows. In Section 2 we recall the representation of the
fractional Laplace and Rosenau operators as Lévy operators, the notion of entropy solution
for conservation laws with such diffusion terms, and the continuous dependence result of [2].
We conclude the section stating our main results (Theorems 2.2, 2.3, 2.4 and 2.5). Section
3 contains the key estimates on the Lévy measures (Lemmas 3.1 and 3.2). They may be of
independent interest, particularly Lemma 3.2. We establish our convergence rates in Section
4, while their optimality is the topic of Section 5. Two technical results in the latter have
rather long proofs, postponed to Section 6. Some classical results in fractional calculus and
for Bessel functions are collected in Appendix A, together with technical lemmas. Appendix
B recalls the finite-infinite propagation speed estimate of [1, 24], and Appendix C provides
the alternative proofs of Lemmas 3.1 and 3.2, in one space dimension.

2. Preliminaries and main results

In this section we first recall known facts on the well-posedness of (1.6) and (1.7), and then
state our main results.
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2.1. Reminders on Lévy operators and the fractional Laplacian. Given a Borel mea-
sure µ on R

d such that

(2.1) µ ≥ 0, µ({0}) = 0, µ(z) = µ(−z) and

ˆ

Rd

min
{
|z|2, 1

}
dµ(z) <∞,

we define the operator

(2.2) Lµ(φ)(x) =
ˆ

Rd

(
φ(x+ z)− φ(x)−∇φ(x) · zχ{|z|≤1}

)
dµ(z)

where χ denotes indicator function of sets. We recognize a symmetric pure jump Lévy operator
with Lévy measure µ. These are nonlocal diffusion operators whose above general form is
related to the Lévy-Khintchine Formula [7, 9, 27, 38]. Because of the symmetry

Lµ = Lµ|{|z|≤r} + Lµ|{|z|>r}

for any r > 0, where Lµ|{|z|≤r} : W 2,p → Lp and Lµ|{|z|>r} : Lp → Lp are linear and bounded
for any p ∈ [1,∞].

The fractional Laplacian in (1.8) is of the form (2.1)–(2.2) when α ∈ (0, 2). Its Lévy
measure is given by

(2.3) dµ(z) =
cα

|z|d+α dz, where cα =
α2α−1Γ

(
d+α
2

)

π
d
2Γ
(
2−α
2

) > 0

and Γ is the usual Gamma function. Therefore

(2.4)

∆α/2φ(x) = cα

ˆ

|z|<r
(φ(x+ z)− φ(x)−∇φ(x) · z) dz

|z|d+α

+ cα

ˆ

|z|>r
(φ(x+ z)− φ(x))

dz

|z|d+α ,

for all α ∈ (0, 2), φ ∈ C∞
c (Rd), x ∈ R

d and r > 0. We refer to e.g. [23, Theorem 1] for
the computation of cα whose exact value is important for us.1 For shortness we also use the
following notation:

∆α/2φ(x) = cα PV

ˆ

(φ(x+ z)− φ(x))
dz

|z|d+α .

2.2. Lévy-Khintchine Formula for Rosenau operators. The classical and fractional
Rosenau operators are bounded Lévy operators.

Lemma 2.1. Let α ∈ (0, 2] and gα = F−1
(

1
1+|·|α

)
. Then

(2.5) 0 ≤ gα ∈ L1(Rd) and is radially symmetric with ‖gα‖L1 = 1.

Moreover for any φ ∈ C∞
c (Rd), the operator Rαε in (1.9) satisfies

Rαε (φ)(x) =

ˆ

Rd

(φ(x+ z)− φ(x))
gα(z/ε)

εd+α
dz.

In particular Rαε (φ) is a Lévy operator of the form (2.1)–(2.2) with the measure

(2.6) dν(z) = ε−d−αgα(z/ε) dz.

1Notably F(φ)(ξ) =
´

e−2iπx·ξφ(x)dx in [23] and we get the constant in (2.3) with our choice (1.4) of

Fourier transform.
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This follows from fundamental results on subordinate semigroups since |ξ|α is continuous
and negative definite as opposite of the symbol of the Lévy operator ∆α/2, and r 7→ r

1+εαr is

a Bernstein function. For details, see [27, Theorem 3.7.8] and [27, Examples 3.9.23 & 4.3.3],
as well as [39] for α = 2. We will notably compare µ and ν, see (2.3) and (2.6), and the exact
computation of ν is also important. We thus provide for completeness a self-contained proof
of Lemma 2.1; see Appendix A.2.

2.3. Reminders on scalar conservation laws with Lévy diffusions. Let us consider a
general Cauchy problem of the form

(2.7)

{
∂tw

µ + div f(wµ) = Lµ(wµ), t ∈ R
+, x ∈ R

d,

wµ(t = 0, x) = w0(x), x ∈ R
d,

where f ∈ W 1,∞
loc (R,Rd), w0 ∈ L1 ∩ L∞(Rd) and Lµ is as in (2.1)–(2.2). Let us recall the

well-posedness and continuous dependence results of [2, 14].

Definition 2.1. In the setting above, we say that wµ ∈ L∞(R+ × R
d) ∩ C([0,∞);L1) is an

entropy solution of (2.7) if and only if for every r > 0, convex entropy η ∈ C∞(R), entropy
flux q ∈ C∞(R,Rd) such that q′ = η′f ′, and 0 ≤ φ ∈ C∞

c ([0,∞) ×R
d),

¨

R+×Rd

(
η(wµ)∂tφ+ q(wµ) · ∇φ+ η(wµ)Lµ|{|z|≤r} (φ) + η′(wµ)Lµ|{|z|>r} (u)φ

)
dx dt

+

ˆ

Rd

η(wµ(0, x))φ(0, x) dx ≥ 0.

Theorem 2.1. In the hypothesis above, the Cauchy problem (2.7) admits a unique entropy
solution wµ. As concerning moreover the continuous dependence in the Lévy measure, we
have the following estimate: For any T > 0 there is a constant CT , only depending on T and
d, such that

‖wµ − wν‖C([0,T ];L1) ≤ CT TV(w0)

(
ˆ

|z|≤r
|z|2 d|µ − ν|(z)

)1/2

+CT

ˆ

|z|>r
‖w0(·+ z)− w0(·)‖L1 d|µ − ν|(z),

(2.8)

for all w0 ∈ L1 ∩ L∞ ∩ BV (Rd), measures µ and ν satisfying (2.1), respective corresponding
entropy solutions wµ and wν of (2.7), and r > 0.

Remark 2.1. We also have the following maximum and L1 contraction principles [14]:

‖wµ(t, ·)‖L∞ ≤ ‖w0‖L∞ and ‖wµ(t, ·)− w̃µ(t, ·)‖L1 ≤ ‖w0 − w̃0‖L1

for all t > 0 and entropy solutions of (2.7) with respective initial datas w0 and w̃0.

If ν ≡ 0 and µ is successively taken in (2.8) as the Lévy measures of ε∆α/2 and εRαε ,
then we recover the rates of convergence below, for the respective corresponding fractional
approximations (1.6) and (1.7) of the scalar conservation law (1.1).

Corollary 2.1. Assume α ∈ (0, 2], f ∈ W 1,∞
loc (R,Rd), w0 ∈ L1 ∩ L∞ ∩ BV (Rd), and T > 0.

There then exists CT > 0 such that for any ε ∈ (0, 1/2),

‖u− w‖C([0,T ];L1), ‖v − w‖C([0,T ];L1) ≤ CTσε,

where w, u and v respectively solve (1.1), (1.6) and (1.7), and

(2.9) σε =





ε1/α, α > 1,

ε ln(1/ε), α = 1,

ε, α < 1.
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See [1, 21, 32, 39] for the original proofs as concerning (1.2), (1.3) and (1.6). The depen-
dences of the constant CT is precised in Remark 2.3. These rates are known to be optimal
for linear f . This might be less known for the fractional Rosenau operator, but in any way
we will give optimal examples even for nonlinear f in Theorem 2.5.

2.4. Main results. We are ready to state our main results. The proofs are given in the next
sections. Our first contribution is the following:

Theorem 2.2. Assume α ∈ (0, 2), f ∈ W 1,∞
loc (R,Rd), w0 ∈ L1 ∩ L∞ ∩ BV (Rd), and T > 0.

Then

lim
ε→0

‖u− v‖C([0,T ];L1)

σε
= 0,

where u and v respectively solve (1.6) and (1.7), and σε is defined as in Corollary 2.1.

This is a consequence of our next two results, where we provide sharp estimates of the
decay rate of the distance between u and v.

Theorem 2.3 (Explicit rates for subcritical PDEs). Assume α ∈ (1, 2), f ∈ W 1,∞
loc (R,Rd),

w0 ∈ L1 ∩L∞∩BV (Rd), and T > 0. There then exists CT > 0 such that for any ε ∈ (0, 1/2),

‖u− v‖C([0,T ];L1) ≤ CT ε
3−α
2 ,

where u and v respectively solve (1.6) and (1.7).

Remark 2.2. These rates are strictly better than in (2.9) excepted for the limit case α = 2.
Let us recall that it remains open to show a result as in Theorem 2.2 in that case.

As concerning α ∈ (0, 1], we have optimal estimates given by the next result.

Theorem 2.4 (Optimal rates for critical and supercritical PDEs). Let now α ∈ (0, 1], f ∈
W 1,∞
loc (R,Rd), w0 ∈ L1 ∩ L∞ ∩ BV (Rd), and T > 0. There then exists CT > 0 such that for

any ε ∈ (0, 1/2),

‖u− v‖C([0,T ];L1) ≤ CT sε,

where u and v respectively solve (1.6) and (1.7), and

sε =





ε2−α, 1/2 < α ≤ 1,

ε
3
2 ln(1/ε), α = 1/2,

εα+1, α < 1/2.

Remark 2.3. The constants CT in Corollary 2.1 and Theorems 2.3 and 2.4 only depend on
T , d, α, TV(w0), and eventually ‖w0‖L1 . More precisely they depend on the latter norm if
α ≤ 1 in Corollary 2.1, and if respectively α ≤ 1/2 in Theorem 2.4.

Let us now give optimal examples for Corollary 2.1 and Theorem 2.4. For simplicity we
consider one-dimensional PDEs, but we allow for nonlinear f .2 We say that ω : (0,∞) →
(0,∞) is a modulus if it is nondecreasing and limε→0 ω(ε) = 0.

Theorem 2.5 (Optimal examples). Let d = 1, f ∈W 1,∞
loc (R) be strictly convex, and T > 0.

(i) Assume that α ∈ (0, 2] and define σε as in Corollary 2.1 for any ε > 0. Then for

any modulus ω such that limε→0
ω(ε)
σε

= 0, there is w0 ∈ L1 ∩ L∞ ∩ BV (R) whose

corresponding solutions of (1.1), (1.6) and (1.7) satisfy

lim
ε→0

‖u(t, ·)− w(t, ·)‖L1

ω(ε)
= lim

ε→0

‖v(t, ·) − w(t, ·)‖L1

ω(ε)
= ∞, ∀t ∈ (0, T ].

2See Propositions 5.1 and 5.2 for f ′ ≡ 0, or equivalently linear f up to changing variables.
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(ii) Assume that α ∈ (0, 1]and define sε as in Theorem 2.4. Then for any modulus ω such

that limε→0
ω(ε)
sε

= 0, there is w0 ∈ L1 ∩ L∞ ∩ BV (R) whose corresponding solutions

of (1.6) and (1.7) satisfy

(2.10) lim
ε→0

‖u(t, ·) − v(t, ·)‖L1

ω(ε)
= ∞, ∀t ∈ (0, T ].

Remark 2.4. Being fixed f , α, T , note that for any modulus ω such that sε 6= O(ω(ε))
as ε → 0, there is always an initial data w0 such that ‖(u− v)(t)‖L1 6= O(ω(ε)) for any
t ∈ (0, T ].3 Our convergence rates in Theorem 2.4 are optimal in that sense, and so are those
in Corollary 2.1.

3. Preliminary estimates on |x|d+αgα(x)
This section provides two key estimates on the difference between the Lévy measures in

(2.3) and (2.6). They are in terms of far field asymptotic results on the convolution kernel gα
of the fractional Laplacian’s resolvent appearing in Lemma 2.1. It is more or less standard
that {

0 ≤ gα ∈ L1(Rd) ∩ C(Rd \ {0}), and
gα(x) ∼ cα|x|−d−α as |x| → ∞,

for some positive constant cα only depending on d and α; see Appendices A.2 and A.3. It is
particularly important that the above cα is exactly as in (2.3), and this follows from [11, 33];
cf. Lemmas A.1 and A.3.

The first result below estimates the rate at which |x|d+αgα(x)
|x|→∞−−−−→ cα.

Lemma 3.1. Let α ∈ (0, 2). There exists Nα > 0, only depending on d and α, such that for
any x 6= 0, ∣∣∣|x|d+αgα(x)− cα

∣∣∣ ≤ Nα

|x|α

where gα = F−1
(

1
1+|·|α

)
and cα is as in (2.3).

To show it, we will go back inside the computations of [11, 33] and call for a more general
version of these results from [34]. From now on, we use the notation from Appendix A.1 for

the fractional heat kernel Gα(t, x) = t−d/αPα
(
x/t1/α

)
and Bessel functions Jγ(z).

Proof of Lemma A.1. Since Pα(x) = F−1(e−|·|α), from Theorem A.1, we have

|x|d+αPα(x) =
|x|d+α

(2π)
d
2 |x| d2−1

ˆ

R+

e−r
α
r
d
2J d

2
−1(r|x|) dr

=
|x|α + 1

(2π)
d
2

ˆ

R+

e−r
α

(r|x|) d2J d
2
−1(r|x|)︸ ︷︷ ︸

= 1
|x|

d
dr

(
(r|x|)

d
2 J d

2
(r|x|)

)

dr

(integrating by parts) =
α|x|α

(2π)
d
2

ˆ

R+

rα−1e−r
α
(r|x|) d2J d

2
(r|x|) dr

(changing the variable to s = r|x|) =
α

(2π)
d
2

ˆ

R+

e
− sα

|x|α s
d
2
+α−1J d

2
(s) ds.

3Indeed there is then εn → 0 such that ω(εn)
sεn

→ 0 and we can construct another modulus ω̃ such that

limε→0
ω̃(ε)
sε

= 0 while ω̃(εn) = ω(εn). By Theorem 2.5 there is w0 such that limε→0 ‖(u− v)(t)‖L1 /ω̃(ε) = ∞,

for any t ∈ (0, T ]. Recall that u = uε and v = vε, so taking the latter limit along the sequence εn proves our
claim.
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These computations are justified by the properties of Bessel functions recalled in (A.4). The
above function of x is radially symmetric. Let us take its derivative with respect to the norm
of x. It is equaled to

(3.1)
α2

(2π)
d
2 |x|α+1

ˆ

R+

e
− sα

|x|α s
d
2
+2α−1J d

2
(s) ds

︸ ︷︷ ︸
=:I(x)

.

The term I(x) is as the integral in [34, Lemma 1].4 This result implies that I(x) = O(1) as
|x| → ∞. The whole term in (3.1) thus equals O(|x|−α−1) for large |x|. Using now Lemma
A.1 and integrating the function r ∈ (1,∞) 7→ |rx|d+αPα(rx) for an arbitrary fixed x,

(3.2) − Nα

2|x|α + cα ≤ |x|d+αPα(x) ≤
Nα

2|x|α + cα

for some constant Nα > 0 independent of x. Injecting this into (A.7) gives us the desired
result. �

The following lemma improves the estimate above for α ∈ (0, 1].

Lemma 3.2. Assume α ∈ (0, 1], then |x|d+αgα(x) ≤ cα for any x 6= 0 (where gα and cα are
as previously).

Remark 3.1. In that case µ− ν ≥ 0, see (2.3) and (2.6), and ∆α/2 −Rαε is a Lévy operator.

Proof. It is enough to show that x 7→ |x|d+αPα(x) is radially nondecreasing. Recalling (3.2),
its derivative with respect to the norm of x is

α2

(2π)
d
2

ˆ

R+

e
− sα

|x|α
s
d
2
+2α−1

|x|α+1
J d

2
(s) ds =

α2

(2π)
d
2

ˆ

R+

e
− sα

|x|α
s2α−2

|x|α+1
s
d
2
+1J d

2
(s) ds

(setting r|y| = s for a fixed y ∈ R
d+2 s.t. |y| = |x|) =

α2|y| d2+α−1

(2π)
d
2

ˆ

R+

e−r
α
r2α−2r

d
2
+1J d

2
(r|y|) dr

(by Theorem A.1) = 2πα2|y|d+α−1F−1
d+2

(
e−|·|α | · |2α−2

)
(y),

with the Fourier transform Fd+2 in space dimension d + 2. If α ∈ (0, 1) then we have
F−1
d+2

(
| · |2α−2

)
= C| · |−d−2α for some C = C(d, α) > 0; see e.g. [40, Chap. IV, Sec. 4,

Thm. 4.1]. Hence

F−1
d+2

(
e−|·|α| · |2α−2

)
(y) = C

(
(Pα)d+2 ∗d+2 | · |−d−2α

)
(y) ≥ 0,

with the convolution in R
d+2 and where we used properties of (Pα)d+2 := F−1

d+2

(
e−|·|α

)
recalled

in (A.3). Otherwise, if α = 1,

1

(2π)
d
2

ˆ

R+

e
− s

|x|
s
d
2
+1

|x|2 J d
2
(s) ds = 2π|y|d(P1)d+2(y) ≥ 0,

and we deduce that x 7→ |x|d+αPα(x) is radially nondecreasing in all cases. �

4See [34, page 302] for the definition of D in this reference.
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4. Proofs of Theorems 2.3 and 2.4

We are ready to prove Theorems 2.3 and 2.4. Let us recall from Sections 2.1 and 2.2 that
the Lévy operators ∆α/2 and Rαε are associated respectively to the measures

dµ(z) =
cα

|z|d+α dz and dν(z) =
gα (z/ε)

εd+α
dz.

We also use the shorthand notation

(4.1) gεα(z) =
gα(z/ε)

εd
so that dν(z) =

gεα(z)

εα
dz.

Proof of Theorem 2.3. Let u and v respectively solve (1.6) and (1.7). The general continuous
dependence estimate (2.8) implies that

(4.2)

‖u− v‖C([0,T ];L1) ≤ CT ε
1
2 TV(w0)

(
ˆ

|z|<r
|z|2

∣∣∣∣
1

εd+α
gα

(z
ε

)
− cα

|z|d+α
∣∣∣∣ dz
)1/2

+ CT ε

ˆ

|z|>r
‖w0(· − z)− w0(·)‖L1

∣∣∣∣
1

εd+α
gα

(z
ε

)
− cα

|z|d+α
∣∣∣∣ dz,

for all positive T , ε and r. The estimate in Lemma 3.1 together with Lemma A.3 allow us to
write

(4.3)

∣∣∣∣
1

εd+α
gα

(z
ε

)
− cα

|z|d+α
∣∣∣∣ ≤ max {Mα + cα, Nα} ·

{
1

|z|d+α
, if |z| ≤ ε,

εα

|z|d+2α , if |z| > ε.

Recall that α ∈ (1, 2) in Theorem 2.3. We can then consider r = ∞ in (4.2) and cut the
remaining integral in two pieces to obtain

‖u− v‖C([0,T ];L1) ≤ CT ε
1
2

(
ˆ

|z|<ε
|z|2 dz

|z|d+α + εα
ˆ

|z|>ε
|z|2 dz

|z|d+2α

)1/2

≤ CT ε
3−α
2 ,

with a new constant CT only depending on T , d, α, TV(w0).
This completes the proof of Theorem 2.3. �

Proof of Theorem 2.4. For α = 1 we argue as previously by taking r = ε in (4.2) while using
that ‖w0(· − z)−w0(·)‖L1 ≤ |z|TV(w0) and (4.3). It only remains to consider α ∈ (0, 1). Let
us go back inside the Kuznetsov’s argumentation [1, 2, 3, 21, 23, 28, 32, 35, 39] to get optimal
estimates.5

Define ρκ(x) =
1
κd
ρ(xκ) for any κ > 0 and some fixed

0 ≤ ρ ∈ C∞
c (Rd) such that ‖ρ‖L1 = 1.

Restarting from [2, Equation (5.22)], there is C = C(d) > 0 such that

‖u(T, ·)− v(T, ·)‖L1

≤ C TV(w0)κ+ εPV

˘

(0,T )×R3d

ρκ(x− y) sign(u(t, x)− v(t, y))

· [(u(t, x+ z)− u(t, x)) dµ(z)− (v(t, y + z)− v(t, y)) dν(z)] dx dy dt

(4.4)

for all positive T , ε and κ.6 Recall that principal values are computed by first integrating
with |z| > r > 0 before letting r → 0. Recall also that ν ≥ 0, and µ − ν ≥ 0 by Remark 3.1.

5In our setting (2.8) provides optimal results only if α ≤ 1/3 or α = 1.
6There were two time variables t and s in the integral term of [2, Equation (5.22)], and the test function

was θδ(t− s)ρκ(x− y) for some time approximate unit θδ as δ → 0. Letting δ → 0 led us to (4.4). Moreover

C is Cθ from [2, Lemma 3.1] where θ corresponds to our ρ. This constant only depends on d via ρ.
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Therefore

sign(a− c) [(b− a) dµ(z) − (d− c) dν(z)]

≤ (|b− d| − |a− c| dν(z) + (|b− c| − |a− c|) d(µ − ν)(z)

for all reals a, b, c, d. Hence, denoting I the integral of the right hand side of (4.4),

I ≤ PV

˘

(0,T )×R3d

ρκ(x− y)

· (|u(t, x+ z)− v(t, y + z)| − |u(t, x) − v(t, y)|) dν(z) dx dy dt

+ PV

˘

(0,T )×R3d

ρκ(x− y)

· (|u(t, x+ z)− v(t, y)| − |u(t, x)− v(t, y)|) d(µ − ν)(z) dx dy dt

=: I1 + I2.

Integrating by parts,7

I1 ≤ PV

˘

(0,T )×R3d

|u(t, x) − v(t, y)| (ρκ((x+ z)− (y + z))− ρκ(x− y))︸ ︷︷ ︸
=0

dν(z) dx dy dt

and similarly

I2 ≤ PV

˘

(0,T )×R3d

|u(t, x)− v(t, y)| (ρκ(x− y + z)− ρκ(x− y)) d(µ− ν)(z)︸ ︷︷ ︸
=∆α/2ρκ(x−y)−Rαε (ρκ)(x−y) after integrating in z

dx dy dt.

Injecting this into (4.4) while using Lemma A.4 in appendix,

(4.5)

‖u(T, ·) − v(T, ·)‖L1

≤ C TV(w0)κ+ ε1+α
˚

(0,T )×R2d

|u(t, x)− v(t, y)| (gεα ∗∆αρκ) (x− y) dx dy dt

for all positive T , ε and κ, and where we recall that C = C(d). In the remaining of the proof
we consider several cases according as the value of α.

CASE 1: α ∈ (1/2, 1). Let us notice that ∇2α−1gα ∈ L1(Rd,Rd) by Lemma A.6, see also
Lemma A.5. By (4.1) we infer that ρκ ∗ ∇2α−1gεα ∈ C∞

b ∩W∞,1(Rd) and

gεα ∗∆αρκ = div
(
ρκ ∗ ∇2α−1gεα

)
,

thanks to the formula ∆α = div(∇2α−1) which readily follows from (1.8) and (A.8). With
that regularity in hands, we can integrate the last term in (4.5) by parts in x. For any fixed
(t, y) ∈ R

+ × R
d we get
ˆ

Rd

|u(t, x) − v(t, y)| (gεα ∗∆αρδ) (x− y) dx

= −
ˆ

Rd

(
gεα ∗ ∇2α−1ρκ

)
(x− y) · d (∇x |u(t, ·)− v(t, y)|) (x)

≤
ˆ

Rd

∣∣gεα ∗ ∇2α−1ρκ
∣∣ (x− y) d|∇u(t, ·)|(x).

(4.6)

We notably used the BV regularity of x 7→ u(t, x) due to the L1 contraction principle, see
Remark 2.1, and in particular the fact that

|∇x |u(t, ·) − v(t, y)|| ≤ |∇u(t, ·)|
7That is we integrate with |z| > r > 0, change variables to put the translations in z on ρκ, and let r → 0.
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in the sense of measures.8 Injecting (4.6) into (4.5), and integrating in y first, then x, and
finally t,

‖u(T, ·)− v(T, ·)‖L1 ≤ C TV(w0)κ+ ε1+α ‖ρκ‖L1︸ ︷︷ ︸
=1

∥∥∇2α−1gεα
∥∥
L1

ˆ T

0
TV(u(t, ·)) dt.

︸ ︷︷ ︸
≤T TV(w0) by Remark 2.1

We could notably call for the Fubini-Tonelli Theorem because t was fixed since (4.6), and
d|∇u(t, ·)|(x) dy is a product of σ-finite measures. We conclude the case α ∈ (1/2, 1) by
letting κ→ 0 and using that ‖∇2α−1gεα‖L1 = ε1−2α

∥∥∇2α−1gα
∥∥
L1 by (4.1) and (A.8).

CASE 2: α = 1/2. Let r ∈ (0, 1) and let us split the integral in the right hand side of
(4.5) into three terms. We omit the integration in time for a while and we get
¨

R2d

|u(t, x)− v(t, y)|∆1/2(gε1/2 ∗ ρκ)(x− y) dx dy

=

˚

R2d×{|z|<r}
|u(t, x)− v(t, y)|

·
(
gε1/2 ∗ ρκ(x− y + z)− gε1/2 ∗ ρκ(x− y)− z · ∇(gε1/2 ∗ ρκ)(x− y)

) c1 dz dx dy
|z|d+1

+

˚

R2d×{r<|z|<1}
gε1/2 ∗ ρκ(x− y) (|u(t, x+ z)− v(t, y)| − |u(t, x) − v(t, y)|) c1 dz dx dy|z|d+1

+

˚

R2d×{|z|>1}
gε1/2 ∗ ρκ(x− y) (|u(t, x+ z)− v(t, y)| − |u(t, x)− v(t, y)|) c1 dz dx dy|z|d+1

=: J1 + J2 + J3.
(4.7)

Here we used (2.2) while putting back the translations in z on entropy solutions in J2 and
J3.

9 Let us use Taylor’s formula to compute J1. We denote the Hessian by D2 and the inner
product by 〈, 〉. Using as previously the BV regularity of x 7→ u(t, x) to integrate by parts,
etc., we get

J1 =

˚

R2d×{|z|<r}
|u(t, x) − v(t, y)|

·
ˆ 1

0

〈(
D2(gε1/2 ∗ ρκ)(x− y + sz)

)
z, z
〉
(1− s) ds

c1 dz dx dy

|z|d+1

=

˚

Rd×{|z|<r}×(0,1)
(1− s)

·
ˆ

Rd

〈−∇(gε1/2 ∗ ρκ)(x− y + sz), z〉〈z, d∇x|u(t, ·) − v(t, y)|(x)〉
︸ ︷︷ ︸

≤|z|2
∣∣∣gε1/2∗∇ρκ(x−y+sz)

∣∣∣d|∇u(t,·)|(x)

c1 ds dz dy

|z|d+1

≤
∥∥∥gε1/2

∥∥∥
L1

‖∇ρκ‖L1 TV(w0)
1

2

ˆ

|z|<r

dz

|z|d−1

=
Cr

κ
TV(w0),

for some constant C = C(d) thanks to (4.1) and (2.5). Notably C may differ from the constant
in (4.5), but we use the same letter for simplicity and we may proceed similarly below as well

8Recalling that (t, y) is fixed, this is standard since η(·) := | · −v(t, y)| ∈W 1,∞
loc (R) with |η′| ≤ 1.

9As before this follows from using that
˝

(· · · − . . . ) =
˝

· · · −
˝

. . . and changing variables.
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as in other proofs. Integrating also J2 first in y, then x, and z, we have

J2 ≤ −C ln(r)
∥∥∥gε1/2

∥∥∥
L1

‖ρκ‖L1 TV(w0) = −C ln(r)TV(w0)

and similarly J3 ≤ C ‖u(t, ·)‖L1 ≤ C ‖w0‖L1 , where C = C(d) thanks again to Remark 2.1.
We can put all our estimates together in (4.7) and then (4.5) to get

‖u(T, ·) − v(T, ·)‖L1 ≤ C TV(w0)κ+ CTε3/2
[
TV(w0)

( r
κ
− ln(r)

)
+ ‖w0‖L1

]
,

so taking r = κ = ε3/2 completes the proof.

CASE 3: α ∈ (0, 1/2). Now ∆α : L1 ∩ BV → L1 is bounded from (2.2) and Taylor’s
formula. Putting back the fractional Laplacian on entropy solutions in the last term of (4.5)
then gives the desired result. The proof of Theorem 2.4 is complete. �

5. Proof of Theorem 2.5

Let us now construct examples for which our rates are optimal. We follow the approach
of Şabac in [17], which first requires optimal examples for linear fluxes or equivalently for
f ′ ≡ 0 up to changing variables. We start with the latter case in Section 5.1, whose proofs
are rather long and postponed in Section 6. Nonlinear f are consider in Section 5.2, and all
our examples are for d = 1.

5.1. Examples of optimal convergence rates for the zero convection case. Let us
give two examples, respectively for the rates in u− w and u− v.

5.1.1. Vanishing fractional Laplacian approximation of a stationary solution. Consider the
initial condition w0 = χEJ as the characteristic function of the set

(5.1) EJ =
J⋃

j=0

[(
−2j − 3

2
,−2j − 1

2

)
∪
(
2j +

1

2
, 2j +

3

2

)]
.

and the initial value problems
{
∂tu = ε∂αxxu, t > 0, x ∈ R,

u(0, x) = w0(x), x ∈ R,

{
∂tw = 0, t > 0, x ∈ R,

w(0, x) = w0(x), x ∈ R.
(5.2)

Hereafter we use the shorthand notation ∂αxx = (∂2xx)
α/2 for the one-dimensional fractional

Laplacian (cf. (1.8)). To distinguish it with the usual derivatives ∂nxn , n ∈ N, we use the
subscript “xx” in ∂αxx referring to ∂2xx from which we take the fractional power.

Proposition 5.1. Let α ∈ (0, 2]. Then

(5.3) inf
0<tε≤1, J≥1

´

EJ
(w(t, x)− u(t, x)) dx

Jσtε
> 0,

where for every ε > 0 and integer J , we let u and w denote the solutions of (5.2) with w0 as
in (5.1). Recall also that σr is the rate from Corollary 2.1, i.e.

σr =





r1/α, α ∈ (1, 2],

r ln(1/r), α = 1,

r, α ∈ (0, 1),

r ≥ 0.

Remark 5.1. As concerning our notation, u = uε,J and w = wJ but we denote them u and
w for short. We proceed similalry for u and v in (5.5), etc. It is also understood that t and ε
are positive in (5.3).
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This result gives in particular an optimal example for the rates in Corollary 2.1 when f ′ ≡ 0.
Fixing indeed t > 0 and taking ε > 0 small enough,

(5.4) ‖u(t, ·) − w(t, ·)‖L1 ≥
ˆ

EJ

(w − u)(t, x) dx ≥ cJσtε

where c > 0 is the infimum in (5.3) and only depends on α.

Remark 5.2. We could also take EJ as the union of two intervals, i.e. J = 0, or even one
interval. This would provide optimal examples even though this cannot be seen from (5.4). A
more accurate estimate in fact holds with J replaced by the number of intervals constituting
EJ , a number that could be any integer. But taking such EJ and showing only (5.3) will
simplify the computation, and this will be enough for later.

5.1.2. On the L1 distance between the vanishing fractional Laplacian and vanishing Rosenau
approximations. Consider now the initial value problems

{
∂tu = ε∂αxxu, t > 0, x ∈ R,

u(0, x) = w0(x) = χEJ (x), x ∈ R,

{
∂tv = εRαε (v), t > 0, x ∈ R,

v(0, x) = w0(x), x ∈ R,
(5.5)

with common initial condition w0 in (5.1).

Proposition 5.2. Let α ∈ (0, 1]. For any fixed T > 0 we have that

(5.6) inf
0<t≤T,

0<ε≤1, J≥1

´

EJ
(v(t, x) − u(t, x)) dx

Jtsε
> 0,

where for every ε > 0 and integer J , we let u and v denote the solutions of (5.5) with w0 as
in (5.1). Recall also that sε is the rate from Theorem 2.5, i.e.

(5.7) sε =





ε2−α, 1/2 < α ≤ 1,

ε
3
2 ln(1/ε), α = 1/2,

εα+1, α < 1/2.

Arguing as previously, this result gives an optimal example for the rates in Theorem 2.5
when f ′ ≡ 0.

5.2. Optimal convergence rates in the nonlinear, strictly convex case. We are ready
to prove Theorem 2.5. To make the computations as readable as possible we focus on the
Burgers’ equation, in which f(ξ) = ξ2/2, but the proof applies with very minor modifications
to the case of a general strictly convex flux.

Proof of Theorem 2.5(ii). Consider the initial value problems

{
∂tu+ ∂x

(
u2

2

)
= ε∂αxxu, t > 0, x ∈ R,

u(0, x) = w0(x), x ∈ R,

{
∂tv + ∂x

(
v2

2

)
= εRαε (v), t > 0, x ∈ R,

v(0, x) = w0(x), x ∈ R,

(5.8)

where w0 is defined below. It depends on given ℓ > 0, {ℓi}i≥1 ⊂ (ℓ,∞) and {Ji}i≥1 ⊂ 4+ 2N.
We assume that ℓi+1 ≥ ℓi. For every i ≥ 1 and 1 ≤ j ≤ Ji define the real intervals Iij by

inf Iij =

(
2

(
j +

i−1∑

m=1

Jm

)
− i

)
ℓ+

i−1∑

m=1

ℓm, sup Iij = inf Iij + ℓ,
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with the convention
∑0

m=1 = 0, i.e. I1j =
(
(2j − 1)ℓ, 2jℓ

)
.10 Let ci > 0 be such that

(5.9)
∞∑

i=1

Jici <∞,

and define w0 =
∑∞

i=1

∑Ji
j=1 ciχIij .

Being the sets Iij pairwise disjoint we have w0 ∈ L1 ∩ L∞ ∩ BV (R). We moreover choose
ℓ large enough so that when the dynamics is governed by the inviscid conservation law, then
the waves associated to the evolution of each of the non-zero components of w0, ciχIij , do not
interact before time T , i.e.

(5.10) ℓ ≥ 2T
∥∥f ′(w0)

∥∥
L∞ = 2T max

i≥1
ci.

Let us more precisely impose that

(5.11) max
i≥1

ci ≤ 1 and ℓ = 2T.

We will require more conditions on {ℓi}i, {Ji}i and {ci}i, as we go along.
Consider now, for any i ≥ 1, the Cauchy problems given by the linearization of the equa-

tions11 about the state ci and the truncated initial conditions wi0 = ci
∑Ji

j=1 χIij , i.e.

(5.12)

{
∂tqi + ci∂xqi = ε∂αxxqi, t > 0, x ∈ R,

qi(0, x) = wi0(x), x ∈ R,

{
∂tzi + ci∂xzi = εRαε (v), t > 0, x ∈ R,

zi(0, x) = wi0(x), x ∈ R,

and the sets

(5.13) Ii = (inf Ii1, sup IiJi) , Iti = Ii + cit.

We call ui and vi the solutions of the equations in (5.8) corresponding to the initial condition
wi0, then we observe that

‖u(t, ·)− v(t, ·)‖L1 ≥ ‖u(t, ·) − v(t, ·)‖L1(Iti )

≥ ‖ui(t, ·)− vi(t, ·)‖L1(Iti )
− ‖u(t, ·)− ui(t, ·)‖L1(Iti )

− ‖v(t, ·) − vi(t, ·)‖L1(Iti )
.

(5.14)

By Lemma B.1 in appendix and (5.10),

‖u(t, ·) − ui(t, ·)‖L1(Iti )

≤
ˆ

Iti+(−‖f ′(w0)‖L∞ ,‖f ′(w0)‖L∞)t
(Gα(εt, ·) ∗ |u(0, ·) − ui(0, ·)|)(x) dx

≤
ˆ

Iti+(− ℓ
2
, ℓ
2
)
(Gα(εt, ·) ∗ |u(0, ·) − ui(0, ·)|)(x) dx

=
∑

k 6=i, k≥1

Jk∑

j=1

ck

ˆ

Iti+(−
ℓ
2
, ℓ
2)
(Gα(εt, ·) ∗ χIkj)(x) dx

︸ ︷︷ ︸
=:Ekj

,

(5.15)

10If denoting E ≤ F iff supE ≤ inf F for subsets of the real line, each Ei := ∪Jij=1Iij is such that ℓ is the
common lenght of the Iij as well as the common distance between two consecutive Iij ≤ Ii,j+1. The distance
between two consecutive Ei ≤ Ei+1 is ℓi > ℓ.

11If f is a general strictly convex function we have to modify this part, but the only difference would be to
consider f ′(ci) as coefficients instead of ci.
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while t ≤ T . Similar computations show that

‖v(t, ·) − vi(t, ·)‖L1(Iti )

≤
∑

k 6=i, k≥1

Jk∑

j=1

ck

ˆ

Iti+(−
ℓ
2
, ℓ
2)

(
F−1

(
e
− εt|·|α

1+εα|·|α

)
∗ χIkj

)
(x) dx

︸ ︷︷ ︸
=:Ẽkj

.(5.16)

Putting these bounds in (5.14), we get

‖u(t, ·) − v(t, ·)‖L1 ≥ ‖qi(t, ·)− zi(t, ·)‖L1(Iti )

−
∑

k 6=i, k≥1

Jk∑

j=1

ck

(
Ekj + Ẽkj

)
− ‖ui(t, ·)− qi(t, ·)‖L1(Iti )

− ‖wi(t, ·)− zi(t, ·)‖L1(Iti )
.

(5.17)

For the last two terms, we use the continuous dependence results with respect to the flux (see
[2, Theorem 3.1] for the nonlocal case). We have

‖ui(t, ·) − qi(t, ·)‖L1(Iti )
≤ ‖ui(0, ·) − qi(0, ·)‖L1︸ ︷︷ ︸

=0

+TV




Ji∑

j=1

ciχIij


∥∥f ′ − ci

∥∥
L∞(0,ci)

t ≤ 2Jic
2
i t,

and we argue similary for ‖wi(t, ·)− zi(t, ·)‖L1(Iti )
.

Let us now focus on the first term of the right hand side of (5.17). We claim that there are
positive CT and εT , only depending on T and α, such that for all t ∈ (0, T ], ε ∈ (0, εT ] and
i ≥ 1,

(5.18) ‖qi(t, ·)− zi(t, ·)‖L1(Iti )
≥ CTJicitsε.

Let us show it via Proposition 5.2. Note that wi0 = ci
∑Ji

j=1 χIij = ciχEi where Ei = ∪Jii=1Iij
is almost as in (5.1). The main difference is that the common length and distance between
the intervals constituting Ei is not 1 but ℓ. The flux in (5.12) is also not zero as it was in
(5.5). We then consider the rescaled solutions q̃i(t, x) = qi(ℓ

α−1t, ℓx+ciℓ
α−1t) and z̃i similarly

defined. They solve ∂tq̃i = ε̃∂αxxq̃i and ∂tz̃i = Rαε̃ (z̃i) with ε̃ = ε/ℓ, while

‖qi(t, ·)− zi(t, ·)‖L1(Iti )
≥ ℓ

ˆ

Ei/ℓ

(
z̃i(ℓ

1−αt, x)− q̃i(ℓ
1−αt, x)

)
dx.

We can apply Proposition 5.2 to the latter integral. Indeed q̃i(t = 0) = z̃i(t = 0) = ciχEi/ℓ
where Ei/ℓ is as in (5.1), up to a last space translation to recenter it. With these observations
in hands, we can easily obtain (5.18) from (5.6).12 Notably CT and εT only depend on T and
α because ℓ = 2T , see (5.11). Putting all these estimates in (5.17),

(5.19) ‖u(t, ·)− v(t, ·)‖L1 ≥ CTJicitsε − 4Jic
2
i t−

∑

k 6=i, k≥1

Jk∑

j=1

ck

(
Ekj + Ẽkj

)
.

We need a more explicit estimate on the nonlocal terms to continue.

Lemma 5.1. Assume α ∈ (0, 2] and the previous hypotheses on ℓ, {ℓi}i and {Ji}i. There is
an increasing modulus ωT (·) only depending on T and α such that for all t ∈ (0, T ], ε ∈ (0, 1],
i ≥ 2, k 6= i, k ≥ 1, 1 ≤ j ≤ Jk,

(5.20) Ekj, Ẽkj ≤ ε1−αtωT (1/ℓi−1) .

12To be more precise 2J + 2 was the number of intervals constituting EJ in (5.1). It was larger than 4 in
(5.6). Here Ei has Ji intervals. To be in accordance with Proposition 5.2, Ji will then be taken even and larger

than 4 in (5.23). In particular Ji−2
2

≥ Ji
4

and we used it to get (5.18) from (5.6).
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Let us admit it for a while. We will do the proof once having completed the one of Theorem
2.5(ii). Using (5.19)

(5.21) ‖u(t, ·)− v(t, ·)‖L1 ≥ Jicitsε

(
CT − 4ci

sε
−

2ε1−α
∑

k≥1 Jkck

Jicisε
ωT (1/ℓi−1)

)
.

Recalling (5.18) the above estimate holds for all t ∈ (0, T ], ε ∈ (0, εT ] and i ≥ 2, as well as all
{ℓi}i ⊂ (ℓ,∞), {Ji}i ⊂ 4 + 2N and{ci}i, satisfying (5.9), (5.11) and ℓi+1 ≥ ℓi. Moreover the
positive constants CT and εT only depend on T and α. We notably assumed εT ≤ 1 without
loss of generality when injecting (5.20) into (5.19).

Consider now ω : (0,∞) → (0,∞) nondecreasing such that limε→0 ω(ε)/sε = 0, and let us
specify more precisely how to choose the latter sequences to get (2.10). It is useful to have
in mind that ε 7→ sε is increasing on [0, ε0] for some ε0 > 0 only depending on α, see (5.7).
Define

ω̃(ε) =
1

ε

ˆ 2ε

ε

√
sξω(ξ) dξ.

Being ω̃ continuous, increasing and positive for ε ≤ ε0, we have

(5.22) lim
ε→0

ω̃(ε)

ω(ε)
= ∞, lim

ε→0

ω̃(ε)

sε
= 0

(13). Denoting s 7→ εs the inverse of ε 7→ sε (for ε ≤ ε0), define for any i ≥ 1,




i(ε) =
⌊√

sε/ω̃(ε)
⌋
,

S(i) = {s ∈ (0, sε0 ] ; i = i(εs)} ,
ci = min

{
CT
16 minS(i), i−2

}
,

Ji = 4
⌈
c−1
i i−2

⌉
,

(5.23)

where the third line is replaced by ci = i−2 if S(i) = ∅. Denoting moreover c = 16
∑

k≥1 k
−2

and ω−1
T the reciprocal function to the increasing modulus from Lemma 5.1, define finally

(5.24) ℓi =
1

ω−1
T

(
CT

c(i+1)2
min

{
sε
ε1−α

; ε ∈ (0, ε0] and i(ε) ≤ i+ 1
})

if {ε ∈ (0, ε0]; i(ε) ≤ i+1} 6= ∅ and the above right hand side is larger than 2T +1. If at least
one of the two latter conditions fails, set ℓi = 2T + 1. We are planning to take i = i(ε) in
(5.21), but we first need to check that the above ℓi, Ji and ci satisfy the conditions required
from the beginning.

Note that s 7→ s/ω̃(εs) is continuous and positive on (0, sε0 ] while lims→0 s/ω̃(εs) = ∞,
thanks to (5.22). Hence S(i) 6= ∅ provided that i is large enough, and it is moreover positively
lower bounded for such i. In particular 0 < ci ≤ i−2 for any i ≥ 1, and clearly

(5.25) 4i−2 ≤ Jici ≤ 8i−2.

This shows that (5.9) holds. Moreover maxi≥1 ci ≤ 1 as desired in (5.11), so we have (5.10)
with ℓ = 2T . Finally (5.24) implies that ∞ > ℓi+1 ≥ ℓi > ℓ, for any i ≥ 1, because
ε ∈ (0, ε0] 7→ sε/ε

1−α is continuous and positive while limε→0 i(ε) = ∞. This verifies all the
conditions previously required.

To continue, use (5.23) and (5.25) to show that for any ε ∈ (0, ε0],

Ji(ε)ci(ε)sε ≥ 4i(ε)−2
sε =

4sε⌊√
sε/ω̃(ε)

⌋2 ≥ 4sε
sε/ω̃(ε)

= 4ω̃(ε).

13Indeed ω̃(ε)
ω(ε)

≥
√

sε ω(ε)

ω(ε)
=

√
sε

ω(ε)
→ ∞ and ω̃(ε)

sε
= 1

ε

´ 2ε

ε

sξ

sε

√
ω(ξ)
sξ

dξ → 0 as ε→ 0.
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Taking i = i(ε) in (5.21) then gives

(5.26) ‖u(t, ·)− v(t, ·)‖L1 ≥ 4tω̃(ε)

(
CT −

4ci(ε)

sε
− cε1−αi(ε)2

4sε
ωT
(
1/ℓi(ε)−1

))
,

where for the last term we used that i(ε)2

4 ≥ 1
Ji(ε)ci(ε)

and c = 16
∑

k≥1 k
−2 ≥ 2

∑
k≥1 Jkck by

(5.25). It remains to estimate the last two terms in parenthesis of (5.26), and it is sufficient to
consider small ε because we will take the limit as ε→ 0. Consider more precisely 0 < εω ≤ ε0
such that S(i(ε)) 6= ∅ for any ε ∈ (0, εω ]. Such an εω exists and only depends on α and ω(·)
by (5.22). Moreover sε ∈ S(i(ε)) for ε ≤ εω, by construction. Recalling also the choice of ci
in (5.23), we infer that

−4
ci(ε)

sε
≥ −CT

4sε
min S(i(ε))︸ ︷︷ ︸

containing sε

≥ −CT
4
.

Finally using in (5.24) that each ε is such that i(ε) ≤ (i(ε) − 1) + 1,

ℓi(ε)−1 ≥
1

ω−1
T

(
CT sε

cε1−αi(ε)2

) ,

and the last term in parenthesis in (5.26) is also larger than −CT
4 . The latter equation then

rewrites

‖u(t, ·) − v(t, ·)‖L1 ≥ 2CT tω̃(ε),

for all t ∈ (0, T ] and ε ∈ (0,min{ε0, εω}]. Recalling (5.22) the proof of Theorem 2.5(ii) is
complete. �

Let us now show the lemma which we admitted during the previous proof.

Proof of Lemma 5.1. Let us estimate Ekj from (5.15). Consider the case i < k. Recall-
ing (5.13) and using the notation from the footnote 10 at page 15, we have Ii ≤ Ikj and

dist(Ii, Ikj) ≥ ℓi > ℓ. In particular Iti +
(
− ℓ

2 ,
ℓ
2

)
≤ Ikj by (5.10). Now by (A.1)–(A.3) and

Lemma A.1, there is c = c(α) such that Pα(x) ≤ c
|x|1+α

and thus Gα(εt, x) ≤ cεt
|x|1+α

. It follows

that

Ekj ≤ cεt

ˆ

Ikj

(
ˆ

Iti+(−
ℓ
2
, ℓ
2)

1

|x− y|1+α dx
)
dy

=
cεt

α

ˆ

Ikj

(
1

|y − sup Ii − cit− ℓ
2 |α

− 1

|y − inf Ii − cit+
ℓ
2 |α

)
dy

≤ cεtℓ

α
(inf Ikj − sup Ii − ℓ)−α.

Since ℓ = 2T and inf Ikj−sup Ii ≥ ℓi, we get Ekj ≤ εtωT (1/ℓi) with ωT (κ) =
2cT
α (1/κ−2T )−α

for any κ > 0. We leave it to the reader to verify that we can argue similarly for i > k. Note
just that dist(Ikj , Ii) ≥ ℓi−1 since then Ikj ≤ Ii. In particular we will get Ekj ≤ εtωT (1/ℓi−1).
In anyway ℓi−1 ≤ ℓi and the latter estimate holds in all cases. It is moreover as desired in
(5.20) since εα ≤ 1 when ε ≤ 1.

Let us now estimate Ẽkj from (5.16). Arguing in Fourier variables,

Ẽkj =

ˆ

Iti+(−
ℓ
2
, ℓ
2)

F−1

(
e
− εt|·|α

1+εα|·|αF
(
χIkj

))
(x) dx

=
1

2π

ˆ

R

e
− εt|ξ|α

1+εα|ξ|αF
(
χIkj

)
(ξ)F

(
χIti+(−

ℓ
2
, ℓ
2)

)
(ξ) dξ.
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Recall that F(χ(a,b))(ξ) = 2
sin( b−a2 ξ)

ξ e−i
a+b
2
ξ for all a < b, and let us continue with the

shorthand notation I = Iti +
(
− ℓ

2 ,
ℓ
2

)
. Simple computations lead to

(5.27) Ẽkj =
2

π

ˆ

R

e
−

εt|ξ|α

1+εα|ξ|α
sin (ℓξ/2)

ξ

sin(|I|ξ/2)
ξ

cos
(
(mI −mIkj)ξ

)
dξ

since e
−imIkj ξ e−imIξ = cos

(
(mI −mIkj)ξ

)
+i sin

(
(mI −mIkj)ξ

)
with the respective intervals’

middle points mIkj and mI . The imaginary part canceled in (5.27) as integral of an odd
function. We also denoted |I| the lenght of I and used that |Ikj| = ℓ. Note that if having

1 instead of e
− εt|ξ|α

1+εα|ξ|α , the right hand side of (5.27) would cancel. Doing indeed the reverse
computations, it would equal

´

I χIkj = 0 since Ikj ∩ I = ∅. Applying then Taylor’s formula
to rewrite the exponential,

Ẽkj = − 2

π

ˆ

R

ˆ 1

0

εt|ξ|α
1 + εα|ξ|α e

− sεt|ξ|α

1+εα|ξ|α
sin (ℓξ/2)

ξ

sin(|I|ξ/2)
ξ

cos
(
(mI −mIkj)ξ

)
ds dξ.

Recall now that F−1

(
e
−

t|·|α

1+εα|·|α

)
≥ 0 because |ξ|α

1+εα|ξ|α is the (opposite of the) symbol of the

Lévy operator Rαε , see [27, Thm. 3.7.8 & Def. 3.6.1]. In particular

I 7→ Ẽkj =

ˆ

I

(
F−1

(
e
− εt|·|α

1+εα|·|α

)
∗
(
χIkj

))
(x) dx

is nondecreasing for the inclusion. Let us consider the case i > k to continue. Defining
IR =

(
inf Ii − ℓ

2 , R
)
⊃ I for large R, the previous monotonicity shows that

Ẽkj ≤ − 2

π

ˆ

R

ˆ 1

0

εt|ξ|α
1 + εα|ξ|α e

−
sεt|ξ|α

1+εα|ξ|α

· sin (ℓξ/2)
ξ

sin(|IR|ξ/2)
ξ

cos
(
(mIR −mIkj)ξ

)
ds dξ.

(5.28)

Moreover mIR −mIkj =
(
mIR − inf Ii +

ℓ
2

)
+
(
inf Ii − ℓ

2 −mIkj

)
= |IR|/2 + dist(Ikj, Ii), so

cos
(
(mIR −mIkj)ξ

)
= cos (|IR|ξ/2) cos (ξdist(Ikj , Ii))− sin (|IR|ξ/2) sin (ξdist(Ikj, Ii))

and injecting this into (5.28) while letting R→ ∞ leads to

(5.29) Ẽkj ≤ 2

ˆ

R

ˆ 1

0

εt|ξ|α
1 + εα|ξ|α e

−
sεt|ξ|α

1+εα|ξ|α
sin (ℓξ/2)

ξ2
sin (ξdist(Ikj, Ii)) ds dξ.

During this passage to the limit, we used that cos (|IR|ξ/2) sin (|IR|ξ/2) and sin2 (|IR|ξ/2)
weakly-∗ converge in L∞(R) to their respective mean values, and noticed that the first limit
cancels as integral of an odd function. Now define

fT (κ) = 2 sup
t∈(0,T ],ε∈(0,1]

ˆ

R

ˆ 1

0

εα|ξ|α
1 + εα|ξ|α e

− sεt|ξ|α

1+εα|ξ|α
sin (Tξ)

ξ2
sin (ξ/κ) ds dξ,

for κ > 0. Note that sin (ξ/κ) weakly-∗ vanishes as κ → 0, while εα|ξ|α

1+εα|ξ|α ≤ |ξ|β for all

ε ∈ (0, 1], ξ ∈ R and β ∈ (0, α), and sin(Tξ)
ξ2−β

is integrable if fixing moreover 0 < β < min{α, 1}.
Hence, elementary arguments using sequences show that limκ→0 fT (κ) = 0. We then eas-
ily get (5.20) from (5.29) for any increasing modulus above fT ; recall indeed that ℓ = 2T
and dist(Ikj , Ii) ≥ ℓi−1. For i < k, we leave it to the reader to verify that taking IR =
(−R, sup Ii + ℓ) ⊃ I allows to argue similarly. The proof of Lemma 5.1 is complete. �

It remains to show the first part of Theorem 2.5.
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Sketch of the proof of Theorem 2.5(i). We can argue as for (ii). Let us give insights for u−w.
Take w in place of v, σε in place of sε, and the second equation in (5.12) with zero right hand
side. In (5.14) and thanks to (5.10), ‖w(t, ·) − wi(t, ·)‖L1(Iti )

= 0 while t ≤ T . There is thus

no Ẽkj in (5.19) and we can reach (5.21) more easily. Notably we used (5.18) to show (5.21),
and this followed from Proposition 5.2. Now this will follow from Proposition 5.1 but we have
to take care of the different forms of σtε and tsε in (5.3) and (5.6). Note then that σtε ≥ tσε
for all t ∈ (0, T ] and ε small enough, up to a positive multiplicative constant only depending
on T and α. We can thus argue with the term tσε being of the same form than tsε, and the
same computations work to get (5.18). The rest of the proof will be the same as well. We

could similarly consider v−w, for which there would remain Ẽkj in (5.19) instead of Ekj . �

6. Proofs of Propositions 5.1 and 5.2

Let us now establish the results admitted in Section 5.1.

First step: reduction of the proofs to two lemmas. Consider w0 = χEJ as in (5.1), and let us
first provide some computations on its Fourier transform. We have

F (χEJ ) (ξ) =

ˆ

R

χEJ (x)e
−ixξ dx =

J∑

j=0

(
ˆ −2j− 1

2

−2j− 3
2

e−ixξ dx+

ˆ 2j+ 3
2

2j+ 1
2

e−ixξ dx

)

=

J∑

j=0

(
ei(2j+1)ξ

ˆ −2j− 1
2

−2j− 3
2

e−i(x+2j+1)ξ dx+ e−i(2j+1)ξ

ˆ 2j+ 3
2

2j+ 1
2

e−i(x−2j−1)ξ dx

)

=

J∑

j=0

(
ei(2j+1)ξ + e−i(2j+1)ξ

) ˆ 1
2

− 1
2

e−ixξ dx

=
J∑

j=0

(
ei(2j+1)ξ + e−i(2j+1)ξ

) sin (ξ/2)

ξ/2

=
4

ξ
sin

(
ξ

2

)
Re




J∑

j=0

ei(2j+1)ξ


 =

4

ξ
sin

(
ξ

2

)
Re


eiξ

J∑

j=0

e2ijξ




=
4

ξ
sin

(
ξ

2

)
Re

(
eiξ

e2i(J+1)ξ − 1

e2iξ − 1

)
=

4

ξ
sin

(
ξ

2

)
Re

(
e2i(J+1)ξ − 1

eiξ − e−iξ

)

=
4

ξ
sin

(
ξ

2

)
Re

(
e2i(J+1)ξ − 1

2i sin(ξ)

)
=

2

ξ sin(ξ)
sin

(
ξ

2

)
Re

(
i− ie2i(J+1)ξ

)
,

which finally gives

(6.1) F (χEJ ) (ξ) =
2 sin(2(J + 1)ξ)

ξ sin(ξ)
sin

(
ξ

2

)
.

Consider now entropy solutions u and w of (5.2), as in Proposition 5.1. Since f ′ ≡ 0 they
correspond to the classical solutions

(6.2) w(t, x) = χEJ (x), u(t, x) =
(
F−1

(
e−εt|·|

α
)
∗ χEJ

)
(x),

where we recall that Gα(t, x) = F−1
(
e−|·|α

)
(x); see [1, 14] and Appendix A.1. Now by

Parseval Identity, the formula
´

F (f) g = 2π
´

fF−1 (g),14 and since χEJ (·) and e−εt|·|
α
are

14The factor 2π comes from our choice of Fourier transform in (1.4).
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real-valued and even, we have
ˆ

EJ

(w − u) dx =

ˆ

EJ

χEJ dx−
ˆ

EJ

(
F−1

(
e−εt|·|

α
)
∗ χEJ

)
dx

=

ˆ

R

|χEJ |2 dx−
ˆ

R

F−1
(
e−εt|·|

α
)
(χEJ ∗ χEJ ) dx

=
1

2π

ˆ

R

|F (χEJ )|2 dξ −
1

2π

ˆ

R

e−εt|ξ|
αF (χEJ ∗ χEJ )︸ ︷︷ ︸

=|F(χEJ )|2
dξ

=
1

2π

ˆ

R

(
1− e−εt|ξ|

α
)
|F (χEJ )|2 dξ.

Therefore, using (6.1),

(6.3)

ˆ

EJ

(w − u) dx =
2

π

ˆ

R

(
1− e−εt|ξ|

α
) sin2(2(J + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ.

Denoting tε = r and defining

E(r, J) = 1

Jσr

ˆ

R

(
1− e−r|ξ|

α
) sin2(2(J + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ,

we deduce from (6.3) that

1

Jσtε

ˆ

EJ

(w − u)(t, x) dx =
2

π
E(tε, J).

This reduces the proof of (5.3) to the one of the following lemma.

Lemma 6.1. The above quantity satisfies inf0<r≤1, J≥1 E(r, J) > 0.

The proof consists of a long case by case study. Before doing it, let us repeat the same
procedure for Proposition 5.2.

Starting again from (6.1), the difference is that w is replaced by v solving (5.5). Recalling
(1.9), a standard Fourier procedure now leads to

v(t, x) =

(
F−1

(
e
−εt

|·|α

1+εα|·|α

)
∗ χEJ

)
(x),

in place of w in (6.2), and Equation (6.3) becomes
ˆ

EJ

(v − u) dx =
2

π

ˆ

R

(
e
−εt

|ξ|α

1+εα|ξ|α − e−εt|ξ|
α

)
sin2(2(J + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ.

Defining

E(t, ε, J) = 1

Jtsε

ˆ

R

(
e
−εt |ξ|α

1+εα|ξ|α − e−tε|ξ|
α

)
sin2(2(J + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ,

the proof of (5.6) reduces to the one of the following lemma.

Lemma 6.2. For any T > 0, the above quantity is such that inf 0<t≤T,
0<ε≤1, J≥1

E(t, ε, J) > 0.

Second step: proofs of Lemmas 6.1 and 6.2. We need a preliminary result.

Lemma 6.3. For any ϕ ∈ C
([
π
2 ,

3π
2

])
,

(6.4) lim
J→∞

1

J

ˆ 3π/2

π/2
ϕ(ξ)

sin2(2(J + 1)ξ)

sin2(ξ)
dξ = 2πϕ(π).
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Proof. Using that ξ 7→ sin2(2(J+1)ξ)
sin2(ξ)

is π-periodic, and denoting z = (ξ − π)(J + 1),

1

J

ˆ 3π/2

π/2
ϕ(ξ)

sin2(2(J + 1)ξ)

sin2(ξ)
dξ = 4

J + 1

J

ˆ π(J+1)/2

−π(J+1)/2
ϕ

(
π +

z

J + 1

)
sin2(2z)

(2z)2

(
z

J+1

)2

sin2
(

z
J+1

) dz.

Since
ˆ

R

sin2(2z)

(2z)2
dz =

π

2
and max

z∈
[
−π(J+1)

2
,π(J+1)

2

]

(
z

J+1

)2

sin2
(

z
J+1

) =
π2

4
,

(15) the Dominated Convergence Theorem shows that

lim
J→∞

4
J + 1

J

ˆ π(J+1)/2

−π(J+1)/2
ϕ

(
π +

z

J + 1

)
sin2(2z)

(2z)2

(
z

J+1

)2

sin2
(

z
J+1

) dz

= 4ϕ(π)

ˆ

R

sin2(2z)

(2z)2
dz = 2πϕ(π). �

We are ready to prove Lemmas 6.1 and 6.2.

Proof of Lemma 6.1. Let {(rn, Jn)}n ⊂ (0, 1] × [1,∞) be a minimizing sequence, namely

(6.5) inf
0<r≤1, J≥1

E(r, J) = lim
n

E(rn, Jn).

Passing to a subsequence, we can assume that

∃ lim
n
rn = r∞ ∈ [0, 1], ∃ lim

n
Jn = J∞ ∈ [1,∞].

We distinguish eigth cases. Let us recall and notice that

E(rn, Jn) =
1

Jnσrn

ˆ

R

(
1− e−rn|ξ|

α
) sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

=
rn

Jnσrn

ˆ

R

ˆ 1

0
|ξ|αe−srn|ξ|α sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
ds dξ.

(6.6)

CASE 1. Assume
r∞ = 0, J∞ = ∞, α < 1.

Since rn ≤ 1, (6.6) and (6.4) imply that

E(rn, Jn) ≥
1

Jn

ˆ 3π/2

π/2
ξαe−ξ

α sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

n→∞−−−→ 2πα−1e−π
α
> 0.

CASE 2. Assume
r∞ = 0, J∞ = ∞, α > 1.

Denoting c0 = minz∈[π/2,3π/2]
1−e−z

α

z2
> 0 and using that ξ 7→ sin2(2(Jn+1)ξ)

sin2(ξ)
sin2

(
ξ
2

)
is

2π-periodic, we have

E(rn, Jn) =
1

Jnr
1/α
n

ˆ

R

(
1− e−rn|ξ|

α
) sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

=
1

Jn

ˆ

R

(
1− e−|z|α

) sin2(2(Jn + 1)r
−1/α
n z)

z2 sin2(r
−1/α
n z)

sin2

(
r
−1/α
n z

2

)
dz

15For the first identity use that 1 =
´

|χ(−1/2,1/2)|2 = 1
2π

´

|F(χ(−1/2,1/2))|2 = 1
2π

´

R

sin(ξ/2)
ξ/2

dξ. For the

second one, use the symmetry and monotonicity of the function whose we take the maximum.
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≥ c0
Jn

ˆ 3π
2

π
2

sin2(2(Jn + 1)r
−1/α
n z)

sin2(r
−1/α
n z)

sin2

(
r
−1/α
n z

2

)
dz

=
c0r

1/α
n

Jn

ˆ

3πr
−1/α
n
2

πr
−1/α
n
2

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ c0r
1/α
n

Jn

ˆ

πr
−1/α
n
2

+2π

⌊
1

2r
1/α
n

⌋

πr
−1/α
n
2

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ

=
c0r

1/α
n

Jn

⌊
1

2r
1/α
n

⌋
ˆ

πr
−1/α
n
2

+2π

πr
−1/α
n
2

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ

=
c0r

1/α
n

Jn

⌊
1

2r
1/α
n

⌋
ˆ 3π/2

π/2

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ.

Hence

(6.7) lim
n

E(rn, Jn) ≥ lim
n

c0r
1/α
n

Jn

⌊
1

2r
1/α
n

⌋
ˆ 3π/2

π/2

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ,

and this limit is c0π > 0 by (6.4).
CASE 3. Assume

r∞ = 0, J∞ = ∞, α = 1.

For n so large that π/2 is less than 1/rn, we infer from (6.6) that

E(rn, Jn) ≥
1

Jne ln(1/rn)

ˆ 1/rn

π/2

sin2(2(Jn + 1)ξ)

ξ sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ 1

Jne ln(1/rn)

∑

k≥0, (2k+ 3
2
)π≤ 1

rn

ˆ (2k+ 3
2
)π

(2k+ 1
2
)π

sin2(2(Jn + 1)ξ)

ξ sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ 1

2Jne ln(1/rn)

∑

k≥0, (2k+ 3
2
)π≤ 1

rn

ˆ (2k+ 3
2
)π

(2k+ 1
2
)π

sin2(2(Jn + 1)ξ)

ξ sin2(ξ)
dξ

≥ 1

2Jne ln(1/rn)

∑

k≥0, (2k+ 3
2
)π≤ 1

rn

1

(2k + 3
2)π

ˆ (2k+ 3
2
)π

(2k+ 1
2
)π

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ

=
1

2Jne ln(1/rn)

ˆ 3π/2

π/2

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ

∑

k≥0, (2k+ 3
2
)π≤ 1

rn

1

(2k + 3
2)π

.

We notably used that sin2(ξ/2) ≥ 1/2 for ξ ∈
(
π
2 ,

3π
2

)
+ 2πN. Using now that

∑M
m=1m

−1 M→∞∼ ln(M), we have c1 := limn
1

ln(1/rn)

∑
k≥0, (2k+ 3

2
)π≤ 1

rn

1
(2k+ 3

2
)π

> 0.

In particular

(6.8) lim
n

E(rn, Jn) ≥
c1
2e

lim
n

1

Jn

ˆ 3π/2

π/2

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ,

and this limit is c1π
e > 0 by (6.4).

CASE 4. Assume

r∞ > 0, J∞ = ∞.
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Since σrn ≤ 1 and rn ≥ r∞
2 for large n, (6.6) implies that

E(rn, Jn)

≥ 1

Jn

ˆ 3π/2

π/2

(
1− e−

r∞
2
ξα
) sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

n→∞−−−→ 2

π

(
1− e−

r∞
2
πα
)
> 0.

CASE 5. Assume

r∞ = 0, J∞ <∞, α < 1.

By (6.6), we have E(rn, Jn) ≥ 1
J∞

´

R
|ξ|αe−|ξ|α sin2(2(J∞+1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ
2

)
dξ > 0 for any n

large enough so that Jn = J∞.
CASE 6. Assume

r∞ = 0, J∞ <∞, α > 1.

By (6.7), limn E(rn, Jn) ≥ c0
2J∞

´ 3π/2
π/2

sin2(2(J∞+1)s)

sin2(s)
sin2

(
s
2

)
ds > 0.

CASE 7. Assume

r∞ = 0, J∞ <∞, α = 1.

By (6.8), limn E(rn, Jn) ≥ c1
2eJ∞

´ 3π/2
π/2

sin2(2(J∞+1)ξ)

sin2(ξ)
dξ > 0.

CASE 8. Assume

r∞ > 0, J∞ <∞.

Using again that σrn ≤ 1, rn ≥ r∞
2 and Jn = J∞ for large n, we have

E(rn, Jn) ≥
1

J∞

ˆ

R

(
1− e−

r∞
2

|ξ|α
) sin2(2(J∞ + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ > 0.

In this way, thanks to (6.5), Lemma 6.1 is completely proved. �

Proof of Lemma 6.2. Let {(tn, εn, Jn)}n ⊂ (0, T ] × (0, 1] × [1,∞) be a minimizing sequence,
namely

inf
0<t≤T,

0<ε≤1, J≥1

E(t, ε, J) = lim
n

E(tn, εn, Jn).

Passing to a subsequence, we can assume that

∃ lim
n
εn = ε∞ ∈ [0, 1], ∃ lim

n
Jn = J∞ ∈ [1,∞].

We distinguish eigth cases. Recall and notice that

E(tn, εn, Jn) =
1

Jntnsεn

ˆ

R

(
e
−tnεn

|ξ|α

1+εαn |ξ|α − e−tnεn|ξ|
α

)
sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

=
ε1+αn

Jnsεn

ˆ

R

ˆ 1

0

|ξ|2α
1 + εαn|ξ|α

exp

(
−tnεn|ξ|α

1 + sεαn|ξ|α
1 + εαn|ξ|α

)

· sin
2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
ds dξ.

(6.9)

CASE 1. Assume

ε∞ = 0, J∞ = ∞, α < 1/2.

By (6.9) and (6.4),

E(tn, εn, Jn)

≥ 1

Jn

ˆ 3π/2

π/2

ˆ 1

0

ξ2(α−1)

1 + ξα
e−Tξ

α sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
ds dξ

n→∞−−−→ 2π2α−1

1 + πα
e−Tπ

α
> 0.
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CASE 2. Assume

ε∞ = 0, J∞ = ∞, 1/2 < α ≤ 1.

Define c0 = minz∈[π/2,3π/2]
z2(α−1)

1+zα e−Tz
α
> 0. By (6.9) and 2π-periodicity of the func-

tion ξ 7→ sin2(2(Jn+1)ξ)

sin2(ξ)
sin2

(
ξ
2

)
, we have

E(tn, εn, Jn)

=
1

Jnε
1−2α
n

ˆ

R

ˆ 1

0

|ξ|2(α−1)

1 + εαn|ξ|α
exp

(
−tnεn|ξ|α

1 + sεαn|ξ|α
1 + εαn|ξ|α

)
sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
ds dξ

=
1

Jn

ˆ

R

ˆ 1

0

|z|2(α−1)

1 + |z|α exp

(
−tnε1−αn |z|α 1 + s|z|α

1 + |z|α
)

sin2(2(Jn + 1)zε−1
n )

sin2(zε−1
n )

sin2
(

z

2εn

)
ds dz

≥ 1

Jn

ˆ 3π
2

π
2

z2(α−1)

1 + zα
e−Tz

α sin2(2(Jn + 1)zε−1
n )

sin2(zε−1
n )

sin2
(

z

2εn

)
dz

≥ c0
Jn

ˆ 3π
2

π
2

sin2(2(Jn + 1)zε−1
n )

sin2(zε−1
n )

sin2
(

z

2εn

)
dz =

c0εn
Jn

ˆ 3π
2εn

π
2εn

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ c0εn
Jn

ˆ π
2εn

+2π
⌊

1
2εn

⌋

π
2εn

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ

=
c0εn
Jn

⌊
1

2εn

⌋
ˆ 2π

0

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ.

Hence

(6.10) lim
n

E(tn, εn, Jn) ≥ lim
n

c0εn
Jn

⌊
1

2εn

⌋
ˆ 3π/2

π/2

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ,

and this limit is c0π > 0 by (6.4).
CASE 3. Assume

ε∞ = 0, J∞ = ∞, α = 1/2.

Let us start again from (6.9) and argue as in CASE 3 of the previous lemma. We get

E(tn, εn, Jn)

≥ 1

2JneT ln(1/εn)

ˆ ε−1
n

π/2

sin2(2(Jn + 1)ξ)

ξ sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ 1

4JneT ln(1/εn)

∑

k≥0,(2k+ 3
2)π≤ε

−1
n

ˆ (2k+ 3
2)π

(2k+ 1
2)π

sin2(2(Jn + 1)ξ)

ξ sin2(ξ)
dξ

≥ 1

4JneT ln(1/εn)

∑

k≥0,(2k+ 3
2)π≤ε

−1
n

1(
2k + 3

2

)
π

ˆ (2k+ 3
2)π

(2k+ 1
2)π

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ

=
1

4JneT ln(1/εn)

ˆ 3π/2

π/2

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ

∑

k≥0,(2k+ 3
2)π≤ε

−1
n

1(
2k + 3

2

)
π
.

Denoting c1 = limn
1

ln(1/εn)

∑
k≥0, (2k+ 3

2
)π≤ε−1

n

1
(2k+ 3

2
)π
> 0, we have

(6.11) lim
n

E(tn, εn, Jn) ≥
c1
4eT

lim
n

1

Jn

ˆ 3π/2

π/2

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ,

and this limit is c1πe
−T /2 > 0 by (6.4).
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CASE 4. Assume
ε∞ > 0, J∞ = ∞.

Since sε ≤ 1 and εn ∈ (ε∞2 , 1] for large n, (6.9) implies that

E(tn, εn, Jn) ≥
(ε∞2 )1+α

Jn

ˆ 3π/2

π/2

ξ2(α−1)

1 + ξα
e−Tξ

α sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ,

whose limit as n→ ∞ is 2π2α−1

1+πα e−Tπ
α
(ε∞2 )1+α > 0 by (6.4).

CASE 5. Assume
ε∞ = 0, J∞ <∞, α < 1/2.

Recall that Jn = J∞ for large n, so by (6.9) we have

E(tn, εn, Jn) ≥
1

J∞

ˆ

R

|ξ|2α
1 + |ξ|α e

−T |ξ|α sin
2(2(J∞ + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ > 0.

CASE 6. Assume
ε∞ = 0, J∞ <∞, 1/2 < α ≤ 1.

By (6.10), limn E(tn, εn, Jn) ≥ c0
2J∞

´ 3π/2
π/2

sin2(2(J∞+1)ξ)

sin2(ξ)
sin2

(
ξ
2

)
dξ > 0.

CASE 7. Assume
ε∞ = 0, J∞ <∞, α = 1/2.

By (6.11), limn E(tn, εn, Jn) ≥ c1e−T

4J∞

´ 3π/2
π/2

sin2(2(J∞+1)ξ)

sin2(ξ)
dξ > 0.

CASE 8. Assume
ε∞ > 0, J∞ <∞.

Using again that sεn ≤ 1, εn ∈ (ε∞2 , 1] and Jn = J∞ for large n, (6.9) implies that

E(tn, εn, Jn) ≥
(ε∞2 )1+α

J∞

ˆ

R

|ξ|2(α−1)

1 + |ξ|α e−T |ξ|
α sin2(2(J∞ + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ > 0. �

Conclusion. Having established Lemmas 6.1 and 6.2 and recalling that the proofs of Propo-
sitions 5.1 and 5.2 were reduced to these two lemmas, we have completed the proofs of these
two propositions. �

Appendix A. Some tools of fractional calculus

This appendix recalls basic facts on the fractional heat kernel and Bessel functions. It
moreover contains a proof of Lemma 2.1, and technical results on gα. Most of the material is
well known, see e.g. the books [7, 8, 9, 27, 38, 40, 41] and references therein.

A.1. The fractional heat kernel and Bessel functions. Given α ∈ (0, 2], define for any
t > 0 and x ∈ R

d,

(A.1) Gα(t, x) = F−1
(
e−t|·|

α
)
(x) and Pα(x) = Gα(1, x).

Recall that

(A.2) Gα(t, x) = Gα(1, t
− 1
αx) =: t−

d
αPα(t

− 1
αx),

where

(A.3)

{
0 ≤ Pα ∈ C∞

b ∩W∞,1(Rd), and

Pα is radially symmetric with ‖Pα‖L1 = 1.

For proofs, see e.g. [11, 22, 23, 26, 33]. Here is another property due to [11, 33].

Lemma A.1. Let α ∈ (0, 2). Then lim|x|→∞ |x|d+αPα(x) = cα with cα as in (2.3).

The exact value of this limit is important for us. Here are details for completeness.
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Proof. By [11, Theorem 1], lim|x|→∞ |x|d+αPα(x) = α2α−1

π
d
2+1

sin
(
απ
2

)
Γ
(
d+α
2

)
Γ
(
α
2

)
. Indeed the

Fourier transform used in [11, Equation (1.1)] is as in (1.4) up to the choice of the sign of
±ix · ξ, but this sign does not change the above limit since e−|·|α and Pα = F−1(e−|·|α) are
even. Conclude by Euler Reflection Formula Γ(z)Γ(1 − z) = π

sin(πz) , valid for z /∈ Z. �

Consider now the Bessel function

Jγ(z) =
∞∑

n=0

(−1)n

n! Γ(n+ γ + 1)

(z
2

)2n+γ
,

which we use for γ = −1/2, 1/2, 3/2, etc. For any γ > −1/2,

(A.4)





Jγ ∈ C∞(R) (meaning it is real-valued if considering it on R),

Jγ(z) = O
(
1/
√

|z|
)
as |z| → ∞, and

(zγJγ)′ = zγJγ−1,

while J−1/2(z) =
(

2
πz

)1/2
cos(z). Moreover:

Theorem A.1. Let f ∈ L1(Rd) be radially symmetric of the form f(|ξ|) = f0(|ξ|). Then16

(A.5) F−1(f)(x) =
1

(2π)
d
2 |x| d2−1

ˆ

R+

f0(r)r
d
2J d

2
−1(r|x|) dr.

For proofs, see e.g. [40, Chap. IV, Sect. 3, Thm. 3.3 & Lem. 3.11].17 See also [8, 41] for
standard references on Bessel functions.

A.2. Calculation of the fractional Rosenau Lévy measure. In this section we prove
Lemma 2.1. Let us recall that it is standard in subordinate semigroup theory [7, 9, 27, 38],
but the exact computation of the measure ν is fundamental for us, so we give details for
completeness. The proof is very short from the knowledge of Gα from (A.1) and the result
below.

Lemma A.2. Let α ∈ (0, 2]. Then gα = F−1
(

1
1+|·|α

)
∈ L1(Rd) and

(A.6) gα(x) =

ˆ ∞

0
e−tGα(t, x) dt =

ˆ ∞

0
e−tt−

d
αPα

( x

t1/α

)
dt.

This is a classical formula on semigroups and their resolvents, see e.g. [27]. Let us give the
proof for completeness.

Proof. Define f(x) to be the right hand side of (A.6). It is measurable with values in [0,∞],
thanks to the nonnegativity of Pα, see (A.2)–(A.3). Moreover

‖f‖L1 =

ˆ ∞

0
e−t‖Gα(t, ·)‖L1 dt =

ˆ ∞

0
e−t dt = 1 <∞.

This shows that f ∈ L1(Rd) thus F(f) is continuous, and it suffices to show that F(f)(ξ) =
1

1+|ξ|α for any ξ ∈ R
d. By the Fubini-Tonelli Theorem,

F(f)(ξ) =

ˆ

Rd

e−ix·ξ
ˆ ∞

0
e−tGα(t, x) dt dx =

ˆ ∞

0
e−t
ˆ

Rd

e−ix·ξGα(t, x) dx dt

=

ˆ ∞

0
e−t(1+|ξ|α) dt =

1

1 + |ξ|α . �

16The right hand side of (A.5) makes sense by (A.4) and since
´∞

0
|f0(r)|rd−1 dr <∞, thanks to recomputing

‖f‖L1 in spherical coordinates.
17In [40] the above theorem is stated for another choice of Fourier transform, see [40, Page 2]. This is

why we have different constants. The proof is given for d ≥ 2, but the result for d = 1 easily follows from
F−1(f)(x) = 1

2π

´

R
cos(xξ)f(ξ)dξ rewritting ξ as r.
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Proof of Lemma 2.1. The properties in (2.5) are immediate from Lemma A.2 and (A.3). Re-
calling our notation gεα(x) = ε−dgα(x/ε) we have for all φ ∈ C∞

c (Rd) and x ∈ R
d,

Rαε (φ)(x) = −F−1

( | · |α
1 + εα| · |α F(φ)

)
(x)

= −φ(x)
εα

+
1

εα

(
F−1

(
1

1 + εα| · |α
)
∗ φ
)
(x)

= −φ(x)
εα

+
1

εα
(gεα ∗ φ) (x)

=

ˆ

Rd

(φ(x+ z)− φ(x))
gεα(z)

εα
dz,

since
´

gεα = 1 by (2.5) which we already proved. Using now that gεα is radially symmetric
(thus even), we have

´

|z|≤1∇φ(x) · zgεα(z) dz = 0 and

Rαε (φ)(x) =

ˆ

Rd

(
φ(x+ z)− φ(x)−∇φ(x) · zχ{|z|≤1}

) gεα(z)
εα

dz. �

A.3. Further technical results. Let us end this appendix with several lemmas on Rαε (cf.

(1.9)) and gα = F−1
(

1
1+|·|α

)
.

Lemma A.3. Let α ∈ (0, 2). Then gα is continuous in R
d \ {0} with

lim
|x|→∞

|x|d+αgα(x) = cα, Mα := sup
x 6=0

|x|d+αgα(x) <∞,

where cα is as in (2.3).

Remark A.1. Note that limx→0 gα(x) = ∞ since gα(x) ≥ c0
´∞
|x|α e

−tt−
d
α dt ∼x→0 c1|x|−d+α,

for some positive constants ci, thanks to (A.6) and radial monotonicity of Pα (cf. [4]).

Proof. We remark first by (A.6) that

(A.7) |x|d+αgα(x) =
ˆ ∞

0
e−tt

∣∣∣
x

t1/α

∣∣∣
d+α

Pα

( x

t1/α

)
dt.

then Lemma A.1 and the Dominated Convergence Theorem allow us to conclude. �

Lemma A.4. For any α ∈ (0, 2], ε > 0 and φ ∈ C∞
c (Rd), ∆α/2φ − Rαε (φ) = εαgεα ∗∆α(φ)

where gεα(·) = ε−dgα(·/ε).
Proof. We have

∆α/2φ−Rαε (φ) = −F−1

((
| · |α − | · |α

1 + εα| · |α
)
F(φ)

)

= −F−1

(
εα| · |2α

1 + εα| · |α F(φ)

)

= εα F−1

(
1

1 + εα| · |α
)

︸ ︷︷ ︸
=gεα

∗F−1
(
−| · |2αF(φ)

)
. �

Lemma A.5 (Fractional gradient). For any β ∈ (0, 1) and φ ∈ C∞
c (Rd), define

(A.8) ∇βφ = F−1 (ihβF(φ))

where hβ(ξ) = ξ|ξ|β−1. Then for any x in R
d,

(A.9) ∇βφ(x) = C

ˆ

Rd

(φ(x+ z)− φ(x))
z

|z|d+β+1
dz,



FROM VANISHING VISCOSITY TO ROSENAU APPROXIMATION 29

for some constant C = C(d, β).

The proof is probably classical but we did not find any reference. Let us give it.

Proof. The Fourier transform of the right hand side of (A.9) equals

F(φ)(ξ)

ˆ

Rd

eiz·ξ − 1

|z|d+β+1
z dz = F(φ)(ξ)i

ˆ

Rd

sin(z · ξ)z
|z|d+β+1

dz.

For ξ 6= 0 fixed, write z = z·ξ
|ξ|2

ξ + z⊥ where z⊥ ∈ (span{ξ})⊥. Then
ˆ

Rd

sin(z · ξ)z
|z|d+β+1

dz = ξ
1

|ξ|2
ˆ

Rd

sin(z · ξ)z · ξ
|z|d+β+1

dz

︸ ︷︷ ︸
=:Iβ(ξ)

,

since
´

Rd
sin(z·ξ)z⊥

|z|d+β+1 dz = 0. The latter integral can indeed be computed by fixing the coordinate

in ξ, while noting that sin(z · ξ) and z⊥/|z|d+β+1 will then be respectively constant and odd
during the integration in z⊥. Given moreover any orthogonal transformation O, Iβ(Oξ) =
Iβ(ξ) thanks to the change of variable z 7→ Oz. In particular Iβ(·) is radial and noting that

Iβ(λξ) = λβ−1Iβ(ξ), for any λ > 0, Iβ(ξ) = |ξ|β−1 up to a multiplicative constant. �

Lemma A.6. For any 0 < β < α ≤ 1, ∇βgα ∈ L1(Rd,Rd).

Proof. We will use the Fubini-Tonelli Theorem applied to the right hand side of (A.9), while
computing gα via (A.6). To justify the computations, let us first show that

I :=

˚

R+×R2d

e−tt−
d
α

∣∣∣Pα
(
x+z
t1/α

)
− Pα

(
x
t1/α

)∣∣∣
|z|d+β dz dx dt <∞.

Changing the variables by x
t1/α

7→ x, and similarly for z, we get

I =

˚

R+×R2d

e−tt−
β
α
|Pα (x+ z)− Pα (x)|

|z|d+β dz dx dt.

Cut I in two pieces I1+I2, according as |z| < 1 or not. Writing Pα as integral of its derivative,

I1 ≤
˚

R+×Rd×{|z|<1}

ˆ 1

0
e−tt−

β
α
|∇Pα(x+ sz)|

|z|d+β−1
ds dz dx dt

=

ˆ ∞

0
e−tt−

β
α dt ‖∇Pα‖L1

ˆ

|z|<1
|z|−d+(1−β) dz <∞,

thanks to integrating first in x. Using that |Pα (x+ z)− Pα (x)| ≤ |Pα (x+ z)|+ |Pα (x+ z)|,
a similar reasoning gives

I2 ≤ 2

ˆ ∞

0
e−tt−

β
α dt ‖Pα‖L1

ˆ

|z|>1
|z|−d−β dz <∞.

The Fubini-Tonelli Theorem then implies that

x 7→
ˆ

Rd

´∞
0 e−tt−

d
αPα

(
x+z
t1/α

)
dt−

´∞
0 e−tt−

d
αPα

(
x
t1/α

)
dt

|z|d+β+1
z dz

is a well-defined L1 function. We recognize ∇βgα as in the right hand side of (A.9), up to the

multiplicative constant C. We denote this operator (with C) by ∇̃βgα for a while. It remains
to show that it equals ∇βgα in (A.8). The latter makes sense as a tempered distribution.
Considering a test function φ,

〈∇βgα, φ〉 = −
ˆ

Rd

gα∇βφdx = −
ˆ

Rd

gα∇̃βφdx =

ˆ

Rd

φ∇̃βgα dx,
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where the latter integration by parts follows from elementary computations.18 This proves

that ∇βgα = ∇̃βgα ∈ L1(Rd). �

Appendix B. Finite-infinite propagation speed estimate

We adapt here [1, Theorem 3.2] to (2.7), see [24] and also [5, 6] for nonlinear diffusions.
Let us first recall standard results on Lévy operators and convolution semigroups. Assuming
(2.1)–(2.2) and denoting

ψ(ξ) =

ˆ

Rd

(
1− eiz·ξ + iz · ξχ{|z|≤1}

)
dµ(z),

we have Lµ(φ) = −F−1 (ψF(φ)) for any φ ∈ C∞
c (Rd), where ψ is continuous and negative

definite, see [27, Theorem 3.7.8].19 In particular Gµ(t, ·) := F−1
(
e−tψ

)
is a nonnegative Borel

measure of mass 1, defining a convolution semigroup as in [27, Thm. 3.6.16 & Def. 3.6.1].

Proposition B.1. Assume (2.1)–(2.2) and f ∈W 1,∞
loc (R,Rd). Let w and w̃ be the respective

entropy solutions of (1.7) associated to given w0 and w̃0 in L1 ∩L∞(Rd). Then for all t > 0,
x0 ∈ R

d, and R > 0,
ˆ

|x−x0|<R
|w − w̃|(x, t) dx ≤

ˆ

|x−x0|<R+Lt
(Gµ(t, ·) ∗ |w0 − w̃0|) (x) dx

where L = ‖f ′‖L∞((−M,M),Rd), M = max{‖w0‖L∞ , ‖w̃0‖L∞}, and Gµ is as above.

Proof. Use [24, Proposition 4.2] for (2.7) to get

(B.1)

ˆ T

0

ˆ

Rd

|w − w̃|∂tφ+ sgn(w − w̃) (f(w)− f(w̃))∇φ+ |w − w̃|Lµ(φ) dx dt

+

ˆ

Rd

|w0(x)− w̃0(x)|φ(0, x) dx ≥
ˆ

Rd

|w(T, x)− w̃(T, x)|φ(T, x) dx

for all T > 0 and 0 ≤ φ ∈ C∞
b ([0, T ]× R

d).20 As usually

|sgn(w − w̃) (f(w)− f(w̃))| ≤ L|w − w̃|,
since w and w̃ are bounded by M by the maximum principle, see Remark 2.1. Choose

φn(x, t) = (Gµ(T − t, ·) ∗ ϕn(t, ·)) (x)

where ϕn(t, x) = γ
(√

|x− x0|2 + 1/n2 −R− L(T − t)
)

for some 0 ≤ γ ∈ C∞(R) fixed,

nonincreasing, and equaled to 1 on R
−. Note that ϕn ∈ C∞

c ([0, T ]×R
2) with ∂tϕn ≤ −L|∇ϕn|.

Recalling moreover that for any fixed Φ ∈ C∞
c (Rd), (x, t) 7→ (Gµ(T − t, ·) ∗ Φ) (x) is smooth

with
∂t (Gµ(T − t, ·) ∗ Φ) (x) = −Lµ (Gµ(T − t, ·) ∗Φ) (x)

(21), easy computations show that φn ∈ C∞
b ([0, T ] × R

d) with

∂tφn + L|∇φn|+ Lµ(φn) ≤ 0.

Putting finally φn in (B.1), letting n → ∞, and then γ approximate χR− gives the desired
result. �

18˜

|z|>r
gα(x)

φ(x+z)−φ(x)

|z|d+β+1 z dz dx =
˜

|z|>r

gα(x)φ(x+z)

|z|d+β+1 z dz dx −
˜

|z|>r

gα(x)φ(x)

|z|d+β+1 z dz dx, do x + z 7→ x and

z 7→ −z in the first integral, let r → 0+, and get the result.
19It is standard that Lµ(φ) = −F−1 (ψF(φ)) by computing F (Lµ(φ)) and identifying the multiplier.
20In [24], T = ∞ and φ ∈ C∞

c ({t ≥ 0}). But a standard procedure gives (B.1) since entropy solutions are
Ct(L

1
x). It is moreover easy to pass to the limit in the Rosenau term via Lemma 2.1, when approximating

φ ∈ C∞
b by functions with compact supports.

21See [27, Example 4.3.1], or derivate F−1(e−(T−t)ψF(Φ))(x) under the integral sign using that Re(ψ) ≥ 0
and |ψ(ξ)| ≤ cψ(1 + |ξ|2) to justify the computations; see respectively (3.123) and Lemma 3.6.22 in [27].



FROM VANISHING VISCOSITY TO ROSENAU APPROXIMATION 31

Appendix C. Alternative proofs of Lemmas 3.1 and 3.2 in 1-D

This final appendix contains more simple an purely PDEs proofs of Lemmas 3.1 and 3.2
when d = 1. It is convenient to start with the second lemma.

Proof of Lemma 3.2. Define Hα(t, x) =
´ x
−∞Gα(t, y) dy and recall that

(C.1)





∂tHα = ∂αxxHα, t ∈ R
+, x ∈ R

d,

Hα(0, x) = Heav(x) :=

{
1, for x > 0,

0, otherwise,
x ∈ R,

thanks to (A.1) and (A.3). Recall also our shorthand notation ∂αxx = (∂2xx)
α/2 defined as in

(1.8). Injecting the identity (A.2) into the above equation, straightforward computations give

(C.2)
( x

t1/α

)1+α
Pα

( x

t1/α

)
= −αxα∂αxxHα(t, x) =: f(t, x),

for all positive t and x. Using again the equation in (C.1),

(C.3) ∂tf(t, x) = −αxα ∂αxx (∂
α
xxHα)︸ ︷︷ ︸

=−∂2αxxHα by (1.8)

(t, x).

When α ∈ (0, 1], ∂2αxx is a Lévy operator. If in particular α 6= 1 we can apply (2.4). Hence for
all positive t and x,

(C.4) ∂2αxxHα(t, x) = c2α lim
r→∞

ˆ

|z|<r
(Hα(t, x+ z)−Hα(t, x)− ∂xHα(t, x)z)

dz

|z|1+2α
≤ 0.

The latter inequality holds since x 7→ Hα(t, x) is odd, nondecreasing, and concave on R
+; see

[4].22 Indeed the integrand in (C.4) is nonpositive for positive or small z, while these regions
compensate those with the wrong sign by symmetry. If α = 1 we still have ∂2α=2

xx Hα(t, x) ≤ 0
for positive t and x by concavity of Hα(t, ·) on R

+. From (C.2), (C.3), (C.4), and Lemma
A.1, we get that f(t, x) ≤ lims→0 f(s, x) = cα for positive t and x. This proves Lemma 3.2
via (A.7), first for positive x and then all x since gα is even. �

Remark C.1. We can also recover Lemma A.1 with our arguments. Indeed (2.4) shows that

lim
t→0

−αxα∂αxxHα(t, x) = −αxαcα
ˆ

R

(Heav(x+ z)−Heav(x))
dz

|z|1+α︸ ︷︷ ︸
=− 1

αxα

= cα

for any x > 0, and this proves Lemma A.1 via (C.2). The computation of the abvove limit
via (2.4) is notably justified by Lemma C.1.

Proof of Lemma 3.1. Now α ∈ (0, 2), ∂αxx is well-defined via (1.8), but it is not a Lévy operator
if α ∈ (1, 2). Assume the latter case, since Lemma 3.1 is a consequence of Lemma 3.2 if
α ∈ (0, 1]. We need the result below.

Lemma C.1. Assume α > 0 and Hα solve (C.1) as previously. Then Hα(t, ·) t→0−−→ Heav(·)
in C∞(R \ {0}) (meaning all space derivatives converge locally uniformly).

Proof. For any n ∈ N, |∂nxnPα(x)| = O(|x|−n−1) as |x| → ∞,23 because ∂n+1
ξn+1(ξ|ξ|n−1e−|ξ|α) =

O(|ξ|α−1) as ξ → 0 and thus remains integrable on R. For any 0 < a < b,

‖∂nxnGα(t, ·)‖L1(a,b) =
1

tn/α

ˆ bt−1/α

at−1/α

|∂nxnPα(x)| dx ≤ Ca

tn/α
(b− a)t

n+1
α

t1/α
≤ Ca(b− a),

22These properties are also straightforward from the maximum and comparison principles for (C.1).
23In fact O(|x|−n−1−α), see [34], but we will not need it.
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thanks to (A.2) and to what precedes to ensure that the above constant C depends on a > 0
but not on small t. This gives enough compacity estimates on Gα(t, ·) as t→ 0 to conclude. �

Going back to the proof of Lemma 3.1, note that (C.2) and (C.3) remain valid under our
assumption that α ∈ (1, 2). By (C.3) and Lemma C.1, limt→0 ∂tf(t, x) = αxα∂2αxxHeav(x) for
any x > 0. But ∂2αxxHeav(x) = −∂2xx(∂2α−2

xx Heav)(x) where 2α− 2 ∈ (0, 2). Hence

∂2α−2
xx Heav(x) = c2α−2

ˆ

R

(Heav(x+ z)−Heav(x))
dz

|z|2α−1
= − c2α−2

2α− 2

1

x2α−2

by (2.4), and limt→0 ∂tf(t, x) = αxαc2α−2
2α−1
x2α

= α(2α−1)c2α−2

xα . Lemma 3.1 then follows from
(C.2), Lemma A.1, and (A.7). �
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