N

N

VANISHING VISCOSITY VERSUS ROSENAU
APPROXIMATION FOR SCALAR CONSERVATION
LAWS: THE FRACTIONAL CASE
Nathaél Alibaud, Giuseppe Maria Coclite, Maxime Dalery, Carlotta Donadello

» To cite this version:

Nathaél Alibaud, Giuseppe Maria Coclite, Maxime Dalery, Carlotta Donadello. VANISHING VIS-
COSITY VERSUS ROSENAU APPROXIMATION FOR SCALAR CONSERVATION LAWS: THE
FRACTIONAL CASE. 2024. hal-04572655

HAL Id: hal-04572655
https://hal.science/hal-04572655

Preprint submitted on 11 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License


https://hal.science/hal-04572655
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

VANISHING VISCOSITY VERSUS ROSENAU APPROXIMATION FOR
SCALAR CONSERVATION LAWS: THE FRACTIONAL CASE

N. ALIBAUD, G. M. COCLITE, M. DALERY, AND C. DONADELLO

ABSTRACT. We consider approximations of scalar conservation laws obtained by adding non-
local diffusive operators. In particular, we compare solutions associated to fractional Lapla-
cian and fractional Rosenau perturbations and show that for any ¢ > 0 the mutual L'-distance
of their profiles is lower than their common distance to the underlying inviscid entropy so-
lution. We provide explicit examples showing that our rates are optimal in the subcritical
case, in one space dimension and for convex fluxes.

1. INTRODUCTION

The classical approach in the analysis of the Cauchy problem for multi-dimensional scalar
conservation law,

11) {@w +div f(w) =0, t e RY, z € RY,

w(0,x) = wo(z), r € R4,

where the flux f is in W,2*°(R,R%) and the initial condition wp is in L N BV(R?), relies on
singular approximations as the vanishing viscosity and the relaxation methods, see [9] and
references therein.

The well-posedness of was established in [I§] in the framework of entropy solutions,
that are weak solutions which satisfy additional selection criteria called entropy inequalities.
The unique entropy solution coincides with the strong LP-limit as € — 0 of vanishing viscosity
regularized solutions, which solve

{8,51115 + div f(we) = eAw,, teRt, z e RY,

(1.2) w(0, z) = wo(z), z € R4,

This regularization procedure is the most classical, but other ones have been considered. In
[22], Rosenau proposed a regularized version of the Chapman-Enskog expansion of hydrody-
namics, which can be rewritten as the following nonlocal perturbation of (1.1

12
(1.3) oo + div f(v,) = —eF 1 <1+|€2|.|2}‘(n€)> .

Here and throughout,
i 1 )
FO© = [ o) eds and F0)e) = gy [ o0

stand for the Fourier transform and its inverse, respectively. Since the diffusion in can
be rewritten as

A¢p=—F (|- PF(9)
the right-hand side of resembles the one in at low wave numbers £, but is intended
to model a bounded approximation of a linearized collision operator for higher £. As explained
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in [22] 24], this avoids artificial instabilities occurring when the Chapman-Enskog expansion
for such an operator is truncated after a finite number of terms. The model retains the
essential properties of the usual viscosity approximation, e.g., existence of travelling waves,
monotonicity, upper-Lipschitz continuity, etc., and it sharpens the standard viscous shock
layers. However, v, may remain discontinuous. Schochet and Tadmor, in [24] proved, in one
space dimension, that this regularization converges to the underlying inviscid entropy solution
as € goes to zero, and estimated the convergence rate in all LP spaces for 1 < p < oco. In
particular, the convergence rate in L' coincides with the convergence rate of the vanishing
viscosity approximation established in [19]. The extension to several space dimensions
(with the same convergence rates) is due to Katsoulakis and Tzavaras in [17]. For any T > 0,
we have

(1.4) |we —wllco,01)s 10e = wlleqom, Lty = O(VeT).

The rates in are expected to be optimal even for nonlinear equations as suggested by
the analysis of [§] for numerical schemes, see also Theorem for a proof in our setting for
both and . It is thus remarkable that w. —w and v, — w converge to 0 at the same
speed, since discontinuities from w may persist in v, whereas w, is smooth.

Formally, however, the solutions to the Rosenau approximate problem should be closer to
the viscous approximations than to the inviscid limit. In the literature we did not find a
rigorous proof of this fact, and this is the motivation of our interest in the problem. In this
paper we focus our attention to the comparison between the fractional Laplacian and their
corresponding Rosenau approximations as defined in [I4], see respectively and
below, for the whole range « € (0,2]. Unfortunately, our results are not optimal in the case
a € (1,2], which includes the classical approximations and (L.3).

Let us now introduce the fractional vanishing viscosity and Rosenau approximations of
(1.1). Throughout, o € (0,2] is fixed, € > 0 is the perturbation parameter and we consider
the following Cauchy problems

(1.5) Oy + div f(u) = eA*?u, t e R, z € RY,
' u(0, ) = wo(x), r € RY,

and

(1.6) O + div f(v) = eR%(v), t € RY, z € RY,
' v(0,z) = wo(z), r € RY,

with the fractional Laplacian

(1.7) APy =—F (|- |*F(9),

and its corresponding Rosenau approximation

1.8 rog) = -7 (—_Fe).
(18) 0 (157 @)

We notably recover (1.2)) and (1.3)) if & = 2. Equation (1.5) is respectively said to be

e subcritical if a > 1,

e critical if a =1,

e supercritical if a < 1,
in reference to the cases where the diffusion’s order is less or above the nonlinear convection’s
order. Such fractional conservation laws appear, of course, in radiation hydrodynamics [21]
22, 23], 24], but also in the description of over-driven gas detonations [7], anomalous diffusion
in semiconductor growth [25], flow in porous media [10 11]. Problem admits a unique
smooth solution in the subcritical and critical cases [13], and a unique possibly discontinuous
entropy solution in the supercritical one [I]. Equation is a very natural counterpart to
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for fractional diffusions, see [I4] and references therein. As concerning well-posedness,
the notion of entropy solutions from [I] has been extended in [6] to scalar conservation laws
with general Lévy diffusions, whose fractional Laplacian is a prototype. This theory applies
in particular to , and actually also to , see Section |2f for details. Now considering
the limits as € — 0T, we recover the unique entropy solution w of from both and
. Moreover, for all a € (0,2], the solutions of and converge to the inviscid
limit w with the same rate

O(e'/®), a e (1,2],
(1.9) lu —wllcqom,ory lv —wleqomy = § Oen(l/e), a=1,
O(e), a e (0,1).

This result is due to [I, 12] for (1.5). It also follows from general continuous dependence
estimates for scalar conservation laws with Lévy diffusions, see [2], which apply to both (1.5)

and .

In this paper we identify the optimal rates of decay of the distance between v and v in the
supercritical and critical cases, and we prove non optimal but explicit rates in the subcritical
case. More precisely, for o € (0,1), we establish in Theorem that

0(e™9), a e (1/2,1],
(1.10) lu = vlloqorm = { OE2(1/e),  a=1/2
O(eT1), a € (0,1/2),

and we exhibit optimal examples for and in Theorem These examples, given
for simplicity in one space dimension, are inspired from the approach used in [§] combined
with Fourier arguments, and they work for nonlinear strictly convex fluxes f. As concerning
subcritical equations, see Theorem [2.3] we get that

33—«
(1.11) lu= vl =0 (%), ae@2

This suffices to show that u© — v vanishes faster than u — w and v — w, but these rates are
probably not optimal. Indeed, as we show in Proposition in the zero convection case (|1.9))
and (|1.10) are optimal, while the optimal rates for subcritical equations turn out to be

(1.12) lu —vllcqom,ey = 0E™®), a>1and f =0.

Hence, we conjecture that (1.12)) hold for nonlinear f as well, and this would be the best
possible rates in the subcritical case, including for the classical one o = 2.

As concerning the proofs, Theorems and and are based on the Kuznetsov’s
method [19], nonlocal arguments from [2], and fine estimates on the fractional heat and Rose-
nau kernels. The general estimates from [2] compare solutions of different scalar conservation
laws with Lévy diffusions, as we have. To get Corollary we combine these now stan-
dard results with a fine estimate on the asymptotic behavior of the kernels for large |z|, see
Lemma But for the optimal estimates , we roughly speaking need to restart the
Kuznetsov’s argumentation, while essentially taking advantage of a key monotonicity result
on the difference operator A*/2 — RZY. The latter estimate on the kernels is even more precise,
see Lemma [3.21

The rest of this paper is organized as follows. In Section 2] we recall the representation of the
fractional Laplacian and the Rosenau operators as Lévy operators, together with the definition
of entropy solution for fractal conservation laws, and a result on their continuous dependence.
We conclude the section stating our main results. Section [3| contains the proof of preliminary
technical lemmas. We establish our convergence rates in Section [4] while their optimality in
the topic of Section o} Two lemmas in the latter have rather long proofs, postponed to Section
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[Bl Some classical results in fractional calculus are collected in the Appendix [A] Finally, in
Appendix [B] we present alternative proofs in one space dimension for two technical lemmas.

2. PRELIMINARIES AND MAIN RESULTS

In this section we first recall known facts on the well-posedness of (1.5 and ((1.6)), and then
state our main results.

2.1. Lévy diffusion operators. Given a Borel measure p on R? such that

(2.1) w>0, pu(z)=p(—2) and / min{|z|2, 1} dp(z) < oo,

R4
we define the (symmetric) Lévy diffusion operator £ associated to the Lévy measure p as
(2.2) LH[g)(x) = /Rd (@(z +2) — d(x) — Vo(x) - 2) du(2).

Any Lévy diffusion operator can be written as the sum of two operators associated respectively
to pyq|z1<r) and pigpz)>py, for any r >0

=L, + LMy
lz1<ry

Note that £"141>} (¢) € L®(R?) when ¢ € L®(R%), since the measure M. s,y 18 finite on
R?. Following the classical results in [13, 6] the fractional Laplacian, defined in (1.7, is a

Lévy diffusion operator associated to the measure

020 1T (#40)

miT (35°)
and I is the usual Gamma function. Therefore, the fractional Laplacian admits at each point
x € R? the following integral representation for o € (0,2), ¢ € C°(R?), r > 0,

AP29(a) =ea(@) [ (ol +2) = ble) = Vola) =)

|z|<r

(2.3) p(z) = calo) dz where  ¢g(a) :=

= Cpeds >0,

dz
eaa) [ (@+2) - 6la) s
|z|>r |Z|
=Lor0|(z) + LY [9](2).
For shortness, in the next Sections we will also use the following notation

AP29(2) = )PV [ (9o +2) = 6(0) i

(2.4)

The fractional Rosenau operator defined in (|1.8]) is also a Lévy diffusion operator for any
a € (0,2) and £ > 0, associated to the measure

(2.5) v(z) = go;gi/;)dz, where  gq = F ! <1+1Ha> )

A detailed proof of this (known) fact is deferred to the Appendix

2.2. Entropy solutions for fractal conservation laws with Lévy diffusion. Let us
consider a general Cauchy problem of the form

{Gtw“ + div f(w*) = LF(wH), t € RY, z € RY,

(2.6) wh(t = 0,2) = wo(x), z € RY,

where f € VVllofo(R, RY), wg € L® NBV(R?) and £ is a symmetric Lévy diffusion operator.
This problem is well-posed in L*° within the class of entropy solutions.
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Definition 2.1. In the setting above, we say that w* € L>®°(R*T x R?) is an entropy solution
of if and only if for all r > 0, for all non-negative ¢ € C([0,00) x R?) and for every
convez entropy n € C*®(R) and entropy flur ¢ € C°(R,RY) such that ¢\(&) = 0/ (&) f1(€), for
anyéE €Randi=1,...,d,

/Ooo /Rd (n(w“)@td) + q(w“) Vo + n(wﬂ>£ (¢) _ n/(w“)ﬁu‘ﬂzbﬂ’ (u)¢) da dt

Higz1<ry

+ /Rd (w0 (0, 2))6(0, 2) dz > 0.

An important ingredient in our analysis are the general continuous dependence estimates
of [2]. They mesure the distance between two entropy solutions in terms of their respective
data. Here we are only interested in the dependence with respect to the Lévy measure.
We summarize in the next theorem the well-posedness results from [I} 2] [13] needed for our
analysis

Theorem 2.1. In the hypothesis above, the Cauchy problem admits a unique entropy
solution w* € L°(R* x R?). Additionally, w* € C([0,00); LL ) with wh(t = 0,-) = wo(-).

If in addition wy € L' N L>® N BV (RY), p and v are two measures satisfying , and w*
and wY are the respective corresponding entropy solutions of . Then for all T > 0 and

r >0,

vd+1

T / ol + 2) — wo ()l padls — v|(2).

1/2
2d
' =" oqo e ST~ TV(w0) ( /| RS u\<z>)

If v = 0 and p is successively taken as the Lévy measures of eA®/2 and eRZ, then we
recover existence for the respective corresponding fractional approximations (|1.5)) and ((1.6)
of the scalar conservation law (|1.1)) and the known rates of convergence.

Corollary 2.1. Assume f € W2 (R,RY), a € (0,2), wy € L' N L N BV(RY), and T > 0.

loc

There then exists Cr > 0 such that for any ¢ € (0,1/2),

|w —wllegor),nr) v — wlleqom,ry < Croe,

where w, u and v respectively solve (1.1), (L.5) and (1.6)), and

gl/e a>1,
(2.7) 0. = ¢ eln(1/e), a=1,
g, a < 1.

The convergence rates of Corollary are optimal for zero convection PDEs (f’ = 0); see
the discussion in [8] and Proposition We will also give optimal examples for nonlinear
strictly convex f in Theorem

We refer to [II, 12] for the original proofs of Corollary and to [2] for alternative proofs
using Theorem

2.3. Main results. We are ready to state our main results. The proofs are given in the next
sections. Our first contribution is the following

Theorem 2.2. Assume [ € Wflf)’fo(R,Rd), a € (0,2), wog € L' N L>® N BV (RY), and T > 0.
e Ju— o
u—v :
].lm C([OrT]le) — 0’
e—0t O¢

where u and v respectively solve (1.5)) and (1.6), and oc is defined as in Corollary .
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Let us now provide sharp estimates of the decay rate of the distance between v and wv.

Theorem 2.3 (Explicit rates for subcritical PDEs). Let a € (1,2], f € WEP(R,RY), wy €

loc

L' N L® N BV(RY), and T > 0. There then exists Cr > 0 such that for any e € (0,1/2),
3—a
v —vlcqor,y < Cre 2,
where u and v respectively solve (1.5)) and (|1.6)).
As concerning « € (0, 1], we have optimal estimates given by the next result.

Theorem 2.4 (Optimal rates for critical and supercritical PDEs). Let now « € (0,1], f €
WL (R, RY), wo € L' N L>® N BV (RY), and T > 0. There then exists Cr > 0 such that for

loc

any € € (0,1/2),

(2.8) v = vlleqor,ry < Crse,
where u and v respectively solve (1.5) and (1.6), and
g2 1/2<a<l,
Sc 1= 5%111(1/5), a=1/2,
gatl, a<1/2.

Remark 2.1. The constants Cp appearing in the statements of Corollary[2.1] and Theorems
and[2.4) only depend on T, d, o, ||wol|re, TV (wo) and, if a <1, on |lwol|z:.

Let us now give optimal examples for Corollary and Theorem [2.4] For simplicity we
consider one-dimensional PDEs, but we allow for nonlinear f. We say that w : (0, 00) — (0, 00)
is a modulus if it is nondecreasing and lir% w(e) =0.

E—

Theorem 2.5 (Optimal examples). Letd =1, f € I/Vlicoo(R) be strictly convez, and T > 0.
(i) Assume that o € (0,2) and define 0. as in C’orollaryfor any € > 0. Then for any

modulus w such that

(2.9) tim ©&) o,
e—=0 0
there is wg € L'NL>®NBV (R) whose corresponding solutions of (1.1)), (1.5) and (1.6
satisfy
o 10009 =0 Tl =0l _ e oy
e—0 w(e) e—0 w(e) ’ T
(ii) Assume that o € (0,1]and define s. as in Theorem[2.4} Then for any modulus w such
that
(2.10) tim ©&) o,
e—0 §¢
there is wg € L' N L™ N BV (R) whose corresponding solutions of (1.5) and (1.6))
satisfy
t.) — wlt. -
(2.11) tim 1) =0 gy e (0, 7.

=0 w(e)

Remark 2.2. If (2.9) and (2.10) simultaneously hold, there is a common wy which works
for both|(i)| and |(i1)).



FROM VANISHING VISCOSITY TO ROSENAU APPROXIMATION 7

3. PRELIMINARY ESTIMATES ON |z]|9t%g, (z)

The two following lemmas are crucial ingredients in our estimates of convergence rates.

Lemma 3.1. There exists N, > 0 such that for any x € RY,

where go and cq(a) are respectively defined in (2.5) and (2.3)).

Proof. Thanks to (A.12)) the function z + |z|9"“P,(z) admits the limit value cq() as |z| —
oo. Using the identity (see the proof of Lemma |A.1))

(3.1) N p— djf ¢ 1 7, () ds,
5 2

it is also clear that

Since the function is radially symmetric and its derivative with respect to the norm of x, that
is

2 @ oFt2a-1
(3.2) (;‘)d / e T 7,(s)ds,
T)2

is bounded as |z| — co. Then z — |z|9T*P,(z) is bounded on R¢ and there exist N, /2 > 0
such that

N, ; N,
. _ « < +aPa < @ .
33) S cale) < 5P 0) < o cala)

From the equation (A.5)) we have

d+aPa( v ) dt,

drag (o) = [ e te| L =z
(3.4 ol gua) = [ et | e

so that (3.3) gives us

Na

|z[*

N,
+cala) < [z ga(a) < T+ ca(a).

e
O

The following lemma improves the estimate above for a € (0, 1]. The convergence rates we
obtain for this range are optimal, see Section [f]

Lemma 3.2. Assume o € (0,1], then for any x € R?\ {0},

(3.5) lz|* T go(z) < cq(a).
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Proof. Tt is enough to show that the function  + |z|%+® P, (z) is radially monotone increasing.
Its derivative with respect to the norm of z is

2 o 242a-1
(6% _ S S2
/ e " ———— Ja(s)ds
R+

(2%)% |l’|o‘+1 2

2 o J20-2

- @ @ dyy

_(27r)g/1R+e ! |x’a+182 Ja(s)ds

(36) 20,1 4+a—1
2 «
Change variable to rly| = s, y € R**? = % / e " 7*20‘727’%“‘74 (rlyl) dr
(2m)2 R+ 2
By Th. [A] = 2wa2]y\d+a*1f*1 (e*\-l‘*’ ) |2a*2> (v)

— 27Ta2|y‘d+a71 (Pa *ffl (‘ . |2a72)) (y)
If « € (0,1) then
2

d
7‘04 §+204—1
[ Ty ds = eyttt
(2m)2 JR+ 2

go—1p (g + a)

Otherwise, if a =1,

1 s g3l J
(2 )i Rt e Il |:C‘2 .,7%(8) ds = 271—‘y| Pl(y) > 0.
)2

4. PROOF OF THEOREMS [2.3] AND [2.4]

As recalled in the Introduction, the Lévy operators A%/2 and R are associated respectively
to the measures p and v

cq(ar) 1

z
HE) = Crrads V() = g (2

1
g) dz = g—agz (z)dz.

The following preliminary lemma is essential in the proof of our main results.
Lemma 4.1. For any ¢ € C°(R?) and o € (0, 1], we have
A2 — R () = e%g5, * A%().

Proof. We can verify the equality by a direct computation

a2 - re(o) =5 (1417 - a ) 7))

I

I 8Oc"|20z
nd <1+sa\-|af(‘z’)>

—co p <1a> wF (| F(9))

1+e9 |

=g5
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Let u and v be the solutions of (1.5)) and (1.6). For any r > 0, Theorem implies

1/2
1 z cqla
o= ulleqoayen <CEDA V@) [ 1| e (2) - | s
(41) |z|<r € € ‘Z|
1 z ca(o)
el [ ol = 2) = wol)llp | —gpme (2) = e 4
|z|>r € ’Z‘
The estimate in Lemma |3.1| together with (A.4]) allows us to write
1 .
1 z cq(a) TajFa if |z] <e¢,
S ) - < max {M, + cqg(a), Ny} - { %
€d+o‘ga <€> |Z|d+a N X{ ¢ d( ) a} {Z|Z+2a7 if ‘Z| > €.

If a € (1,2), we consider r = +o0 in (4.1]) and we obtain

1/2
1 dz dz 3—a
Hv—mw@ﬂwn<cww(j m?wﬁﬂ+f{LpJaﬂdﬁm) < ores,

z|<e
where Cr = Cp(T, o, TV (wy)).

If o € (0,1], we apply the same argument as in the proof of Theorem as it appears in
[2] to get a more precise result. The argument relies on a doubling of variables, then in the
following (¢,7) € RT x R? are the variables of v and (t,y) € RT x R? the ones of v. For any
given ¢t > 0 we have

Olu(t, x) — v(t, y)| + (divy + divy) [sign(u(t, ) — v(t, y))(f (u(t, z)) = f(v(t,y)))]
= esign(u(t,z) —v(t,y)) (Aa/Qu(t,a}) — R?v(t,y)),

and we can use the measures p and v to rewrite the right hand side as follows

sign(u(t, x) — v(t,y)) (Aa/Qu(t,a}) — R2v(t, y))

— sign(u — ) </E+ w(t,z+ 2) — ult ) du(z) — /E+ oty + 2) — v(t,y) dy(z)>

(4.2)

+ sign(u — v) (/ u(t,x + z) —u(t,z) du(z) /
=11 + I,
where BT = {z € RY|(v — pu)(z) > 0} and E~ = {z € R¥|(v — p)(2) < 0}. We have

va+z>Mawdwa)

I =sign(u — v) (/E+ u(t,x 4+ 2) —ul(t,z) —v(t,y + z) + v(t,y) du(z)
—/ v(t,y+z) —ou(t,y) +u(t,x) —u(t,z) d(v — ,u)(z))
B+
< / u(t, z + 2) —v(t,y + 2)| = [ult, ) — v(t,y)[dp(z)
o

+ / [ty + 2) —ult, )] — ot y) — ult, 2)[d(v — p)(2).
E+

A similar computation gives us

<[ uta )= oty + 2] - luta) - v(t. )] dv(z)

[t 2) = ot )] = lult,2) = ot 9) dlp = ) 2).
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Let &€ — ps(€), for € € R?, be defined by

p5<5>=§p('§’), pecEnLi®, p>0, [ pede=1

We multiply the two sides of the equation (4.2)) by ps(z —vy), then we integrate with respect
to both variables = and y. To shorten our notation, in the following we call v the Borel

measure y = [y g+ + V|-
2wt 2) = vt DsCe = )
< ///de (Ju(t,z + 2) —v(t,y + 2)| — |u(t,z) — v(t,y)]) ps(z — y) dy(2) dz dy
+ ///R2de+ (lv(t,y + 2) —ult,z)| — |v(t,y) —u(t, z)]) ps(x —y) d(v — p)(2) dz dy
+ ///R2d><E (lu(t,z + 2) —v(t,y)| — |u(t,z) —v(t,y)]) ps(x —y) d(p — v)(z) dz dy

) = [, lult) = ol sl = 2) = (= 2) — pslo = ) dr(e) dody

+ ///RMXE+ lu(t,y) —u(t,z)| (ps(z —y + 2) — p5£x —y)) dlv — p)(z) dzdy

LE=T (p5) (2—y)

+ ///R?de— lu(t,z) —v(t,y)| (ps(z —y — 2) — ps(x —y)) d(p — v)(2) dzdy

LE=T (ps)(z—y)
= [, tuttsa) = o)) — )y

Under the assumption « € (0, 1], Lemma implies that
cq(a) 1 (z) 1 cq(a) <z>
(n=v)(2) <|Z|d+a cdrada \ 2 cdta \ 2 /e[d+o 9o \Z)) = 0

rln=vl — plu-v) _ (Aa/z _ Rg) 7
and, by Lemma the inequality in (4.3)) becomes

Hence

% [(u(t, o) = v(t,y))ps(-a — )11
< ot //R Jult2) — o(t,v)] (05 * A%ps) (z — y) drdy.

In the remaining of the proof we consider separately the three cases o € (1/2,1], « = 1/2 and
a € (0,1/2).

(4.4)

4.1. Case « € (1/2,1]. For any fixed y € R? we have
» u(t, z) = v(t,y)| (95 * A%ps) (x — y) dx

= |, lult:2) = o(t)|A% (g5 % p5) (& — ) do

= /Rd (€2 (Jult, ) = v(t,y)]) * F (g& * ps(- —y)) (€) d€
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= | FH(EF (ult,) — v(t, ) F (i€IEP*T2F (g5 * ps(- — 1)) da

R4
= - / sign(u(t, @) — v(t,y)) Vau(z) Vi (g5 * ps) (z — y) da,
R4
where the operator V2~! is defined as in (A.13)) and we use that
Fain s =) (O = [ e (g2 s pola =) o

=o€ [ I (=) de = e VEF (5 ) (6)
Rd
which means
V2 (g 5 00) (=) @) gy [ HERTR SR (g () (6) e

:vga " (g5 * ps) (z — ).
Finally, using Lemmam the estimate (4.4)) becomes

&t 2) — vl s — Dl
_““//RM ult,2) — o(t, )| (65 * A%ps) (& — y) dr dy

(4.5) = —gt! //R _ sign(u(t, z) = v(t,9)) Vau(@) Vi (g5 * ps) (@ = y) du dy
< eIV (wo) || V22 (g2 * ps)|| 1 < e TV (wo) || V22 g || sl
=1
= €a+1TV(w0)62a_1 HV?ﬁ’lgaHLl = CEZiaTV(w()),

for a constant C depending on a. We notice that

Juts o) = vltoo)ls = [ futt,) = oft,2)] da
<|l(ult; =) — v(t, - ))pa( — )l + 6TV (wo).
Then integrating with respect to time the inequality (4.5) we get
(4.7) ult, o) —v(t,2)| 2 < (6+ Cte:?*a) TV (wo).
Then we conclude

(4.8) u(t, ) —v(t, )| 1 < OTV(wp)te 2.

(4.6)

4.2. Case a =1/2. We fix r € (0,1) and we split the integral in the right hand side of (4.4))
into three terms as follows

//M Ju(t, z) = v(t, y)| A/ (QT/Q * pa) (z —y) dady

- ///waﬂz@} o) = vt

C
X (95/2*P5($—y+z) —QT/Q*p(s(m—y)—z-VI (95/2*;)5) (x—y)) | d|( ) dz dx dy

[ ult,a) — o(t. )] (950 % s — y + ) — 5o # pslar — ) <L d dardy
R2dx {r<|z|<1} 2]
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cq(1
+ /// lu(t, z) — v(t,y)| (gi/g *ps(x —y+2) — gi/2 x ps (T — y)) d(ng)l dz dx dy
R2x {|2|>1} ||
=1+ I+ 1c.
We consider first the integral I4

L=l u(t,2) — vl )]
R2dx {|z|<r}
! z|2¢cq4(1
X </0 A (g‘i/Q * p(;) (x —y+sz)(1—s) ds) wdzdxdy

< OrTV (wp) ‘

Cr
gi/z\ 105l < =TV (wo).

=1

Then, we focus on Ip and thanks to a change of variable we get

ca(1)
I S/// u(t,r —z) —u(t,x)| (g0 * ps) (x —y dz dz dy
8 ooy 167 =)~ 0] (3% 5) @ = )

< —C'ln(r)TV(wo) ‘

(4.9)

95o| sl = =Cm() TV (wo).
=1

Similar computations, using the classical inequality |u(- —z) —u(-)||.1 < 2||wol|:, lead to
establish an upper bound for /¢

lo < Cllwol|ps -

Finally, we can put all our estimates together to get

d r
It -0) = 0(t))ps o = ) < O | TV (o) (5 = In(r)) + ol ]
Then we integrate with respect to time and apply the inequality in (4.6)) to obtain

Ju(t, ) = v(t, )2 < TV(w0)d + C=¥/2¢ | TV(wo) (5 —n(r) ) + o] -

In order to optimize this estimate we give to r and § the common optimal value te
obtain

3/2 and we

lu(t, ) = v(t, )| < Cte*?|In(e).

4.3. Case a € (0,1/2). We fix r € (0,1) and we split the integral in the right hand side of
(4.4]) into two terms as follows

[t = ot )18 (5 p5) (o = ) oy

— ///RMX“ZG} lu(t, ) — v(t,y)| (g5 * ps) (& —y + 2) — (95 * ps) (x — y)) |§Td(f2)a dz dx dy

Il sy 180 = 000 (G529 (2 =y +2) = (655 00) (2 = ) ‘;;fga dz di dy
- [< + I>.

We estimate I and I~ by computations similar to the ones we did for Ip and I in (4.9).
Then we get

[ a2 = ot )| A (5 p5) 0 = 9) ddy < € (TV o) 4 a2
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We observe that the inequality above does not depend on §. As in analysis of the previous
cases we integrate with respect to time and apply the inequality in (4.6]), then after optimizing
the choice of r, we get the desired estimate

||u(t7 ) - /U(t7 ')HLl < Ct€a+1.

5. PROOF OF THEOREM

In this Section we follow the approach used by Sabac in [8], which requires optimal conver-
gence rates for the case where flux f is linear, to prove Theorem

For this reason in Section we consider the zero convection case and we give examples
in which, as ¢ vanishes, the L' distance between v and w and between u and v approaches
zero at the rates announced respectively in Corollary in for a € (0,2), and in Theorem
for a € (1,2). Please notice that for the reader convenience, the proofs of two lemmas in
this part are postponed to Section [6] as they consists of rather long case by case studies.

Finally, Section [5.2] contains the proof of Theorem

5.1. Examples of optimal convergence rates in the linear case (zero convection).

5.1.1. Vanishing fractional Laplacian approximation of a stationary solution. Define the ini-
tial condition wg = x g, as the characteristic function of the set

J
(5.1) EJ:]L_J(J[<—2j—27—2j—;>U<2j+;,2j+2>]7
and consider the initial value problems
{8tu:63%2u, t>0,zeR, {3,510:0, t>0,z€eR,
u(0,2) = wo(x), z€R, w(0,x) =wp(z), x€R.
We observe that

J —2j—1 2j+32
. 2 . 2 .
F 1 (xg,) ) =/ XE, (r)e™dr = Z / e dy +/ e dy
" =0 \/=%3 245
J o ~2-5 . T
=3 (emierne / G2 DE g | 251 / pila—2j-1)¢ g
=0 ~2j—3 2j+3
J 1
=3 (emiCrrne i) / .
j=0 -3
(5.2) ZJ: ( 0t igne) €2 — e
. = e—z + ez ) _—
=0 i§
J J
4 o 4 4 5
= sin (g) He (jzo Li2i0e | csin <g> se | oit ;ezz]g

2i(J+1 2i(J+1
ez‘f& A (8 ;e e -1
e2i€ — 1 £ 2 el — e~

_4 . & e2i(JHNE _q B 2 . & C L 2i(J+1)
—gsm <2> Re ( 205 () ) = £ sin(€) sin <2> Re (2 — je2iJHl 5)
_2sin(2(J +1)¢) . <§>
e M\2)

2
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We prove the following, which establishes the optimality of the estimate in ([2.7))
Proposition 5.1. We have that

653 ) —wt )
o<te<l,J>1 Jote
where
P/ a € (1,2],
(5.4) or =< rin(l/r), a=1, r > 0.
T, a € (0,1),

It is clear that

wt,a) =xp, (@), ulta) = (F7 () g, ) (@),

and
w(t,z) > u(t, z), x e by,
then, thanks to the Parseval Identity

0< / (w—u)dr = / XE,dx —/ (.7-"_1 (e_at"la) * XEJ> dx
E; E; E;
_ - —1 —et|-|*
v [ ) v
= / XE,dr — / Fl (675”"&) (XE, * XE,) dx
E; R
— [ ww e~ [ e E ()
R R
- 271'/ (F1 (XEJ))2d§—27T/ eI (F 1 (yg,))  de
R

R

— 271'/ (1= e (F 7 (xmy)) " d
R
Therefore, using ([5.2)

B B e S +1)E) 5 (€
(5.5) /EJ(w u)dx = 87r/]R (1 e et ) 25’ (6) sin? 5 d¢.
Lemma 5.1. For any given ¢ € C°(R) there holds
.1 sin?(2(J + 1)¢
(5:6) }1_)120(]/[&90(5) sin?(€) ;ZSO (k).

Proof. Let ¢ € CX(R) be given. Since ¢ has compact support and the function & —
sin? (2(J+1)¢&)
sin®(€)

that

is w-periodic, an argument based on a partition of unity allows us to assume

87 3
47 4

supp(y) C [—
We rewrite the left hand side in (5.6)) as follows

1 sin®(2(J +1)§) . 1 (3 sin?(2(J + 1))
J/R(p( sin?(¢) d = /371’/4 ( sin?(¢)

J de

4J—i—l Sm(J+1)/4 < z )sm (22) (J+>
J S grrya \J+1 22)% gin2 (

)
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Since )
sin?(2z) 1 (Jj—l) 92
T T gy sup YRR
R ZE[‘WvW] sin (J+1)

the Dominated Convergence Theorem allows us to prove (5.6))

2
3m(J+1)/4 .2 == s 2
lim 4J+ 1 ” ( z ) sin (222:) (J+1> ds — 4@(0)/ sin (222)dz _ go(O).
J—o00 J —3r(J+1)/4 J+1 (22:) sin2 (J—ZH) R (22’) 27
O
Define
1 Cgee sin?(2(J +1)€) ., (€
= — eIl 2(S
(5.7) E(r,J) T, /R (1 e ) 25’ (6) sin” | dg,

where o, is defined in (5.4).
Thanks to (5.5) and (5.7), we have

[u(t,-) —w(E, )|l 1 /
> w —u)dxr = 8n&(te, J),
Jote  Joge EJ( ) ( )

then the proof of (5.3 relies on the following lemma.

Lemma 5.2. The following estimate holds

(5.8) E(r,J) > 0.

inf
0<r<1,J>1
The proof (consisting of a long case by case study) is postponed to Section @

5.1.2. On the L' distance between the vanishing fractional Laplacian and vanishing Rosenau
approrimations. Consider the initial value problems

Opu = 58%2% t>0,zeR, O = eR% (v), t>0,r€R,
u(0,2) = wo(z) = xg,(z), zeR, v(0,z) = wo(z), x€R,

which common initial condition wyg is again the characteristic function of the set E; defined
in (5.1). In this section we only consider « in the range (0,1] and our goal is to prove that
the convergence rates in Theorem are optimal by showing the following

Proposition 5.2. For any fixred T > 0 we have that

' 0<t<T, Jto, ’
0<e<i, J>1
where
gatl, a € (0,1/2),
(5.10) 0. = { 3/21n(1/e), a=1/2
g2, ac (1/2,1].

We follow the same argument as in the proof of Lemma In particular we have that

B B et et sin®(2(J + 1)§) ., <5>
(5.11) /EJ(U u)da:—87r/R<e I€] et ) e (©) sin” | 3 dg.

We define

1 e sin*(2(J +1)€) . 5 (€
(5.12) S(t,a,J)—JtUE/R<e €% —e ) e (©) sin” | 5 de,
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where o is defined in (5.10). As for any (¢,x) € Rt xR v(¢,z) > u(t,x) the estimate (5.9) is
a direct consequence of ((5.11)), the definition of £ in (5.12]) and the inequality in the following
lemma, whose proof is postponed to Section [6]

Lemma 5.3. For any given T >0

(5.13) inf  E(t,e,J) > 0.
0<t<T,
0<e<i,J>1
5.2. Optimal convergence rates in the nonlinear, strictly convex case. This section
is devoted to the proof of Theorem To make the computations as readable as possible we
focus on the Burgers’ equation, in which f(£) = ¢2/2, but the proof applies with very minor
modifications to the case of a general strictly convex flux. Consider the initial value problems

uw?) _ a/2 w? _
(5.14) atu+al‘(2)—68m u, t>0,zeR, 8tw+ax(2> 0, t>0,z€R,
U(OwT) = ’lUO(x)? S ]R, w(O,x) = U/O(J?), T € R’

where wp Is a piecewise constant function defined as follows.
Let £ > ¢ > 0 and {J,}nen € N be a monotone increasing diverging sequence. For every
i >1and 1 < j < J; define the intervals I;; by

i—1
inf I;; = (2 <] + Z Jm> — ’L> 0+ (i — 1)27, sup I;; = inf I;; + £.
m=1

oo J;
The initial condition wq takes the form wy = ZZCZ-X[U, where the positive numbers ¢;
i=1 j=1
satisfy
oo
(5.15) ZciJi < 00.
i=1

Being the set I;; pairwise disjoint we have wg € L N L' N BV (R).

We choose ¢ > 0 large enough so that when the dynamics is governed by the inviscid
conservation law the waves associated to the evolution of each of the non-zero components of
wo, ¢iX1;;> do not interact before time T', i.e.,

5.16 ¢>2T || f =2T ;-

(5.10 > 97|/ two)| . = 2T mace
Consider the Cauchy problems given by the linearization of the equationsﬂ about the state ¢;
Ji

and the truncated initial conditions wé = Z X1,
j=1
O0rqi + ¢i0zq; = 58?;,{2% t>0,zeR, Orzi +¢i0z2; =0, t>0,z€eR,
¢ (0, ) = wi(z), x € R, z(0,2) = wi(z), x€R,
and the sets
I, = (inf I;1,sup IiJi) s I,f = I; + ¢;t.

We call u; and w; the solutions of the equations in ([5.14)) corresponding to the initial condition
wy, then we observe that

[ult, ) = w(t, e = ult,-) = w(t, )l pyey
> |luilt,-) = wilt, )l prey = Nults-) = wilt, )l gy ey = fwilt, ) = wts Mgy -

(5.17)

lyf f is a general strictly convex function we have to modify this part, but the only difference would be to
consider f’(c;) as coefficients instead of c;.
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Thanks to we have
[wi(t,-) = w(t, )l pa ey =0, t € (0,7,
moreover, using the results of [I] and the choice of ¢
ot ) = ult, Yl oy

< / (Glet, ) * [u(0, ) — ui(0,)]) (x)de
IE+(=|1f (wo)) || oo |1 f (wo)) || oo )t

< (G(et, ) * [u(0,-) — us(0,-)]) (z)dx
(5.18) /IM%)
Jk
<Y af | EE )i
kAL k>1g=1 I (S9)
Ekj

Therefore, using Lemma in (5.17) we get
[ult,-) —w(t, ) = llult, ) —wt, )HLl 1

> qi(t, ) — zi(t, )| (1t — Z ZCkEkJ

k#i, k>1 j=1
) = Moy = o) = Mo
> CpJiciet — ) ZCkEk] Jui(t, ) = qi(t; )l pr ey = llwilt,-) = zi(t )l pr ey -
k#i,k>1 j=1

For the last two terms, we use the continuous dependence results with respect to the flux (see
[2, Theorem 3.1] for the nonlocal case)

Ji
Hui(t7 ) - Qi(tﬂ )HLl(If) < HUZ‘(O, ) - qi(07 ')HLl +TV Z CiXI;; Hf/ - Ci||Loo(07ci) t < 2Jiczzt'
=0 J=1

Arguing in the same way on |[w;(t,-) — zi(t, )| ;1) We can conclude

(5.19) lut,-) = w(t, )2 > Jict(Cre —4ci) = > chEk]

k#i, k>1 j=1

Let us now estimate Ej; from (5.18))

1 vy

Exi = pi7a Pl-—-)d (y)d
S /R </If+(§7§) <(st)1/°“) x) X1, )y
< / / 1

= (et)t/e Iij I(-£4 1+ lz—y|te

272 (e t)1+1/a
§cat/ /
Iy \/I}+(—

dx | dy

1
—  dx|dy
; ) y’1+o¢ )

|z —
2cet 1 1
<751gn(z — k) / - yavel dy
o Ly \ |y —infI; —cit + 5| |y —supl; — it — §|°

Lt
272
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<

a

2cet | (inf I; — sup I; — 5) 7, 1>k,
(inf Iy; —sup I; — 5)~°, i<k,

1
2
< o o1 “a
<2< > Jm—l—]—1> —|—(k‘—z)(€—€)> , i<k
m=i+1
Hence, using (5.15)),
S Jk
Z Z kB
ki, k=1 j=1
Ji—1 Jit1
cet 1 1
< — | G-t = — + Cit1 =
a ;w—éw ;w—f)a
i—2 Ji o
+ Z — - &
UL 2 Y Tt b e+ Gi—R) (- 0)
m=k+1

+k§2j§1 ((2 kf Jm) Z; (k—@)(?-@)a

m=i+1
2cet maX{Ji_ch‘_l, J,‘+1CZ’+1} > { 1 1 }
< = + Jrcr max = o
« (f — f)a k;ﬁi,jzl, b1 (2Jl_1£) (2Jz+1€)
< cet maX{Jiflfifl’ ivrcisn} + 1 max{ i ) i} )
(£ =0 £ J I
Using (5.19)
4c; i—1Ci—1, Ji+1Ci
Jult, ) = w(t, )0 = Jiste | Op — 26 - ¢ mexthoacin hnci)
€ (0 —0) Jic;
(5.20)

c 1 1
——m
£ ax JiJﬁlci’ JiJﬁch’ ’

that holds for every ¢ € (0,T), i > 2, € € (0,1) and any choice of J;, ¢; and ¢ satisfying (5.15)

and (5.16).
Consider 0. as in (2.7)) and let w in C((0,+00); (0, +00)) be nondecreasing and such that

w(e) = o(oe), as in the statement of Theorem We have to choose the indices ¢ depending
on ¢ in such a way that (2.11) holds. Define

() = i/2 Joew(€)de.

Being w continuous, increasing and positive we have

(5.21) lim ——= = oo,
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Indeed )

~ e

N
Define

©=|\a5] so=tconizicn,

for ¢ > m(l)m1 i(e), where, being € — o, increasing, o +— &, is the inverse of ¢ — o.. Notice
that thafrflis’ t)o (5-21)), S(é) # 0. Moreover, we define
(5.22) ¢; =min {CT,O[ min S(i), Z_w} , Ji = [e; 1],
where C7, will be chosen later. Clearly,
(5.23) i72 < Jie < 2072,
and since 0. € S(i(g)) we have
(5.24) cite) < CraminS(i(e)) < Cr0e.
Clearly, we have that holds. Moreover, thanks to
(5.25) Ti(e)Cie)0= > i(e) 200 = — 2= % —&(e).

The remaining part of the proof consists in the analysis of three cases, depending on the value
of a.
Case o < 1: Using (5.20]) and choosing Cr o = Cr/8

[u(t,-) = w(t, )l

lim inf

e=0 w(e)
> {liminf Ji(e)Ci(e)€ (CT e ¢ max{J(c)—1Ci(e)=1 Ji(e)+1Ci(e)+1}
=0 w(e) € (0 —0) Ji(e)Ci(e)

c 1 1

—— max , )
¢ Jite) i) 16ie) Jie)i{e) 1)

Thanks to (5.25)) in order to prove (2.11]) we have to show that

(CT Ao e max{Jig 1)1 Ji)+1Cie)+1)
e (=0 Ji(e)Ci(e)

lim sup
e—0

(5.26)

 a { ! ! }) 0
—— max , S .
e Jite)Ti{e)-1€ie) Ji(e)Ti(e)+1Cile)

From to (5.22) and (5.23]) we deduce that
L_lci_l < 2| - i i <4,
Jic; B 1—1 -

1 < Ji—lci—l 1 4

<
J J _1Gi JiCZ’ Jilj_laci_l 1 o Ci
ci_1(i—1)2 1—1

and

<defy (i — 120 < 4,

so that
Cor — & _ C max{Ji_lci_l,JiHciH} _ Cmax{ 1 1 }
€ (6 — 1) Jic; £ JiJ& e JiJJX G
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cop_ e _de Ao
e (U—pa L

Since, thanks to (5.22)) 4¢;/e < Cr/2, choosing ¢ and ¢ large enough we have (|5.26|).
Case a > 1: Since oy = tY/%0, = (te)V/* using (5.20) and (5.23) for t < T and e small enough

lu(t,-) — w(t, ')HLl(If) > Ji(g)ci(a)as <CTt1/O‘ _ 4CT,at>

c _
maX{Ji(e)—lci(s)—laJi(e)+lcz’(s)+1}t5 I maX{J (e)— 1»JZ(€ +1}t5

(= 0e
> (te l/och &)Ci(e Cr —4C at%
5on =) ()()(T T,
_ c max{‘]z(e “1Ci(e) 15 Ji(e)+1Ci( s)+1}( 5)%
(0 —0)~ Ji(e)Cie)
maX{st Y S

Z (e)—1" Ti(e)+1 (tg)Tl '

E Jz(a) i(g)
Choosing

C
CTaa = 5—1 )
8T o
we gain
lutt, ) = wt, gy
Ztl/aa}(&.) ﬁ_ _¢ maX{Ji(a)—lci(s)—bJz‘(a)+10i(s)+1}(T6)%1
(5.28) 2 (-0~ Ji(e)Ci(e)
maX{J e o
B Ca (e)—1° Yi(e)+1 (Ts)Tl .
¢ Jz(s)cz(s)
Since
¢ max{J;i_1¢i—1, Ji+1Ciy1} imax{J C{,Jlﬂ} 4c N 4c
(0 —0) Jici e Jici (e O 0

Thanks to (5.25) and (5.28)), we obtain the desired estimate provided that ¢ and ¢ are large
enough.
Case a = 1: Since

ot =teln(l/e) + teln(1/t) = to. — etln(t),
(B-27) sives
Jutt, ) = wt, ey
2 CTtJi(s)Ci(s)UE — 4CT,1tJi(5)Ci(s)o-€ - CT’1€t| ln(t)\JZ(E)cz(s)

c c —
Z_ , max{Ji(E)_lci(E)_l, Ji(5)+1ci(5)+1}ts — Z maX{JZ.(El)i 2(8 1}t5

Cr1|In(t
2 tJi()Ci(e) Oe <CT —4Cry — M
e max{Uio 11 Jigritio ) cmaxtid o Jida )
., In(1/2) 7 n(1/2)
- Cr1|In(t)]
> _ _ LR
= tw(s) (CT 4CT71 ln(l/a)
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i In(1/e) ‘ In(1/e)
thanks to ([5.21]) we have (2.10)).

¢ max{Jie)_1¢ie)-1, i r1Ci 41} emax{ 1’J25+1}>

6. TECHNICAL DETAILS

6.1. Proof of Lemma Let {(rn,Jn)}n C (0,1] x [1,00) be a minimizing sequence,
namely

(6.1) 0<r;rifJ21€(r, J) = 117rln€(rn,Jn).

Passing to a subsequence, we can assume that
Jlimr, = r € [0,1], dlim J,, = J» € [1, 00].
n n

We distinguish eigth cases.
CASE 1. Assume

Too:(), t]oo:OO, Oé<].
We have
1 el sin?(2(J, +1)€) §
— _ o nlé] 2 (5
g(Tny Jn) JnTn / (]. ) 52 sin (f) S 5 dé
// ‘é_’a —sral]® sin ( (J + 1)6) sin2 <€) ds d§
£25in?(€) 2
/ / €| emsrnlel® s (2(n + 1)¢) sin? (§> ds d§
/e E2sin?(¢) 2
1 e sin?(2(J,, + 1 sin
edn J_p71/ sin”(¢)
Thanks to ( ,
1
>7 a—2 - - a—2
th (T, In) Z |km|*™ < sin < > Dy Z 12k +1|“7* >0,
T kez ke
using to (6.1]), we have (5.8]).
CASE 2. Assume
TOO:07 Joo:OO7 a>1.
Since e
1—e™
= inf — >0
“ 26[71'}3,3%/2] 22 =%
and the function s — %%1)8) sin? (%) is 2m— periodic, we have
-2
E(rny Jn) :711 / (1 - e*r”ma) = (22(Jn2+ 1) sin’ <§> dg§
T/ Jr &% sin*(§) 2

1/a -1/«
1 (1 B 67‘Z|a> sin?(2(J, + 1)rp )sin2 (rn z) &
R

22 sm2(7“_1/az)

37 1/a —1/a
1 2 e sin?(2(J, + Drn %2) rn 2
> — || 2
_Jnﬁg <1 e ) T sin 5 dz

22 sin?(ry, / )

>co/327rs1n((<] + 1)rp, Sy )sin2 %2 I
")z sin?(ry, 1/O‘) 2
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71/04

1/« SMrp ~ . 9
_CoT'n 2 sin®(2(Jp + 1)s) . o (f)
JIn /Mn;/a sin?(s) S ds
7T'V‘/"/ /
conll/ +2om 1/a sin?(2(J, + 1)s) . s
> sin? ( ) ds
— ﬁ sin?(s) 2
l/a mry 1/ +2m ;2
_CoTn 1 / 3 sin®(2(Jp, + 1)s) <in? (f) ds
In | opl/e ﬁ sin?(s) 2
007'71/0‘ 1 /2” sin?(2(J,, + 1)s) sin? (f) ds
Jn ot Jo sin?(s) 2/
Thanks to (5.6)),
/o 2m i 2
" 1 2(Jp, +1 .
1i711n E(rn, Jn) 2 liyrln CO; \‘ 1/aJ /0 o (si(nZ(s—; )s) sin? <§> ds = Z—ST > 0.
CASE 3. Assume
Too = 0, Joo = 00, a=1.

We have

_ 1 kel SIP23n + 1)E) (5)
E(T”’J")—Jnrnln(l/rn /(1 ¢ ) €2 sin? (€) sin® ( 5 ) dé

1/rn
ralels SN2 (2(Jn +1)€) 2<5>
J In( 1/rn /l/rn/ \{]sm (&) St 2 ds d§

Y sin?(2(Jn + 1)) . 5 (€
> e // AEGE () “

1 (2k+3)7 5in2 2(Jp +1)8) . 2<§>
>7 d
~neln(1/ra) (m / sty g (3)

1 (2k+3)7 gin? 2(Jp + 1))

P P — d
~ Jpe2In(1/ry) k20, 2k;+ /2k+ Lym ]{\sm &) ¢

1 LT a0+ 1)6)
ka Z N M/( Sin2(§) d§

2k4—%)w

B 1 2 sin?(2(J, + 1)) 1
~ Jpe2In(1/my,) / sin?(€) a Z (2k + 3)m

2 k>0, (2k+35)m< -
Since . .
BT .
n In(1l/r, 3
n(1l/ry) 620, (2 By (2k + 5)m
Thanks to (5.6)),
T .9
. . Cp 2 sin(2(Jp + 1)§) o
1 ny, Jdn) > 1 d§é = — .
171}18(7“ In) o Jn2e /;r sin?(¢) ¢ der 0

CASE 4. Assume
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Since it is not restrictive to assume

ro = inf r, > 0,
neN

we have
1 Cotee sin?(2(J, + 1)€) 3
E(Tn, Jn) > 1 — e~ ol¢l " in?(2)d
(rns Jn) 255 /R< ¢ ) e O \g)%
where
L ita#L
“ /e, ifa=1.
Thanks to (5.6)),
1 — e—Tolkm|* kr 1 — e Tol(2k+1)m|®
li n n ol [ .
m E(rn, J 2773)\ Z sin < 2 ) 27‘(‘3)\ Z P RS
CASE 5. Assume
Too = 0, Joo < 00, a<l1.

We have
, IR e S22 +1)E) L5 (€
héné'(rn,Jn) —hm JnT’n/ (1 e ) £ s (€) sin” { 5 dg

oS (2(Joo +1)€) . 5 (€
/|§| fzsm © sin <2> d¢ > 0.

Too = 0, Joo < 00, a>1.

CASE 6. Assume

Arguing as in CASE 2 we get

1/a 21 102
lim &(ry, J,) >lim €0 [ 1 ] / sin”(2(Jn + 1)s) sin? (f) ds
n 0

n I | gpl/e sin?(s) 2
27 102
o sin®(2(Joo +1)s) . o /s
= —)d .
2Joo/0 sin2(s) sin (2) 5s>0
CASE 7. Assume
oo = 0, Joo < 00, a=1.

Arguing as in CASE 3 we get

co /2 sin?(2(J, + 1)€)
sin?(€) — Juo2e

li nyJn) 2 1i
1715115(7' JIn) l’rILIlJ %%

CASE 8. Assume

Too > 0, Joo < 00.
We have
, 1 o ele Sin?(2(Je + 1)E) 5 (€
— _ 7'00‘5' 0 2 (5
117rln5(rn,l]n) Tt /R<1 e ) £ sm(€) sin” | 2 d¢ > 0.

In this way, thanks to (6.1), (5.8]) is completely proved.

23
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6.2. Proof of Lemma Let {(tn,en, Jn)}n € (0,7] x (0,1] x [1,00) be a minimizing
sequence, namely

(6.2) inf  E(t,e,J) =lmE(ty,en, Jn).
0<t<T, n
0<e<1,J>1
Passing to a subsequence, we can assume that
dlimt, =t € [0,7T], dlime, =es € [0,1], Jlim J,, = J» € [1,00].
n n n

We distinguish eigth cases.

CASE 1. Assume
€s0 = 0, Joo = 00, a<1/2.
We have

1 _ le|* o\ sin?(2(J, + 1
E(tn,en, Jn) = 1+a/ (6 Inen TregTe™ — g~ taenlél > = (2 (J 2+ %) sin” <€> d§
Intnén R &2 sin” (&) 2

1 4 1+ssa|£ra) sin(2(Jn + 1)§) . (5)
=— —_— —tnenl€|® o = ) dsd
// 1+ea£|aexp( T e ) T e M \2) B
2(a—1) . sin?
_// |§| T|£‘ S (2(‘]271 + 1)5) Sin2 § ds df
1+ ]§|O‘ sin®(&) 2
Thanks to ,
. 1 |k.7.(.‘2(04—1) —T‘k |a .92 k’ﬂ'
e W i E i >
ll}Lng(tnaenajn) Z o kez; T+ ] e sin” {

_ 1 T 2k + 1|2~ o~ Tl(2k+1)]”
250 22T 4 [(2k + Dl

using to (6.2)), we have (5.13)).
CASE 2. Assume

>0,

€00 = 0, Joo = 00, 1/2<a<1.
Since
. ]z‘Q a—1) —T\ N

6.3 = inf S TR 5,
( ) 0 zE[7r/2 3r/2) 1+ |Z|a

and the function s — Sm%jﬁ%”‘g) sin? (%) is 2mr—periodic, we have

1 e L o\ sin?(2 1
Eltn, ens Jn) = / (e tnén T _ g—tnenlé] ) S (2 (f]”2+ &) in? (5> d¢

‘5’204 < 1+35a’€‘a> sm2(2(Jn+1)§) . <§>
_ _tn " @ n — d d
Jnen~ 2a// 1+ e2|€|™ xp enlé] 14+ eg|€le £2sin?(€) ) ® .
2(a—1) 1 N sin?(2(J, + 1)ze !
AL e S
T [z]™ 14 |z|« sin®(zey, ") 2¢en
2(a—1) o sin?(2 nt+1 —1
_/ | —T|z\ S ( (‘]2 +_3'Z€n )sin2 <Z> dz
1+ |z|°‘ sin“(ze, ) 2en
2
3T,
>0/ 2 sin ( (J2n +}22€7;1) Sin2 (Z) dz _ CoEn /QEn Sln2(2‘(b£n + 1)5) Sin2 <§> d£
7 sin?(ze;, 1) 2en, Jn S sin“ (&) 2

coen (22 |ot ] sin22( 1+ 1)O) 4 (¢
=5 . et (5)

2en
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CcoEn | 1 2T sin?(2(J, +1)€) . 5 (€
T M/o 2@ " (2) &

Thanks to (5.6)),

. . coen | 1 T sin®(2(Jn + 1)E) 5 (€ co
1 ns Ens JIn) = 1 . P =
171;n€(t &> Jn) C In \ﬂan/o sin?(¢) 2 % 4m

CASE 3. Assume
€00 = 0, Joo = 00, a=1/2.
Computations similar to the ones we used in the cases above give us

g(tm Eny Jn)

1 Ctpen 2 12\ sin?(2(J, +1)€) ., (€
T+y/enlel _ g tnenl€lM n 2 <) d
J tngn (1/€n)/ < ) 52 Sin2(§) Sin 9 5
1 en ' _psin?(2(J, +1)€) 5 (€
zwnha(l/en)/_a,;l T sz () “

1 (2k+3)7 gin2 (2(J, + 1)¢)
- - d
Z 4Tl In(1/e,) Z 1/ €] sin*(€) ¢

k>0,(2k+3 2kt
- 1 3 1 /(2’f+3)7r sin2(2(J,, + 1)€) "
4t In(1/en) k>0, (2k+3 )r<er! (2 +3) 7 J(2k+ L) sin®(¢)
1 2 sin?(2(J, + 1)¢ 1
T 4J,eTIn(1/e,) /_ (si(n2(§) ) )dg Z (2k+3)n
2 k>0,(2k+3)r<er?! 2
Since
(6.4) — lim —— 3 Lo
. 1m ———-——— P w— .
n In(1l/e, 3
O N 1T
Thanks to (5.6)),
T . 9
) o 2 sin“(2(J, + 1)§) o
lim & (tn, n, Jp) > i : ¢ = 0.
W (tn: ) W 4J,eT /_;r sin?(&) 3 8elr ~
CASE 4. Assume
€00 > 0, Joo = 00,

so that it is not restrictive to assume

inf €, =¢¢ > 0.
neN

Since the function € — o, is bounded and increasing on [0, 1] we have

@ )
Elinsen o) = i [ (et o) UG 2 (£ 4
Intnoe, Jr €2 sin%(¢) 9

l+a !€|2(°‘ 1 (_ a1+86?{|€|0‘) sin?(2(J, + 1)€) . o <§>
= 7o) Loo// T+ egele P tnenl€] 1+ co|€e sin2(6) 2 ds d§

1+a 2 O( 1
o [3 —Tle|e sin (2(Jn+ nHé) . o <£>
= Tnlloaloe Ju 1+ €€ a’@  on de.
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Thanks to ([5.6)

l+a 2(a—1)

. € (k) _ o . (km
lim E (b, e, Jn) > i 0 T(km) >
im (tns€ns Jn) 11£n2ﬂ“a*||Loo 1—{—(1{:71')04 sin 5

14+« 2(a—1)
€0 ((2k + 1)m) —T((2k41)m)e
= lim LAY Z T (2k+ Dm)e © > 0.

CASE 5. Assume
€00 = 0, Joo < 00, a<1/2.

We have
a . 2
Hm E(tp, en, Jn) —hml/ <et”€" 1+‘s€%‘llé\o‘ — e_tn€n|§a> sin”(2(Jy + 1)§) sin? <§> d¢
n n Jptpent £2sin?(¢) 2
2(a—1) SI0*( (J +1)§) . o <§> dE > 0
o L O
CASE 6. Assume
€00 =0, Jn < Joo < 00, 1/2<a<1.

Using the same approach as in CASE 2 we have that

lg|* o\ sin? .
Hm E(tp, en, Jn) —hml/ <et”€" THege@ _ o~ tnenlé] ) S (2(t]2+ D¢) sin? <§> d¢
n n Jotnel @ Jr £2sin*(€) 2

. Cogp | 1 T sin?(2(J + 1)€) . o5 (€
_1111111 T {QEnJ/o () sin <2) d§

oo [FTsin?(2(Jee +1)E) | 5 (€
_2Joo/o sm?(§) <2> “=0

where ¢p in the constant defined in (6.3)).
CASE 7. Assume

V

€00 = 0, In < Jso < +00, a=1/2.
Arguing as in CASE 3 we obtain
lm E(tp, en, Jn)
n

e _lEIM/? ‘h2
~ lim 1 / ¢ I T T _ o tnenle /2 | S (22({n2+ DE) ;2 <5> dé
n Jotnes? In(1/ey,) /R §?sin* () 2

o 2 sin?(2(J, + 1)€) < 2 sin?(2(Joo + 1)€)
2 lim 4J, eT/ sin?(¢) d = 4J006T/ sin?(¢)

where ¢y in the constant defined in (6.4)).
CASE 8. Assume

dé >0

En > €0 > 0, In < Joo < +00.
Then we simply have

a 2
lim E(tp, en, Jp) =lim 1 / <et"5”1+e£‘%1|§“ — e_tn€n|€“> sin”(2(Jn + 1)¢) sin? <£> d¢
n n Jptnoe, Iz 52 sin®(¢) 2

A [ g ) s () o
n Jyllowlpe Jr 1+ €] sin2(
8(1)+a |£|2(o¢—1)

_ _11¢je Sin® (2(Joo +18) o (f)
Joollowllne Jr 1—|—|§]ae sin?(&) dc > 0.

The estimates above prove (6.2)), thus (5.13]).
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APPENDIX A. SOME TOOLS OF FRACTIONAL CALCULUS

Most of the material in this section is well known and appears in different research papers,
the interested reader may refer to [5], (15, [20]. For this reason some of the proofs are omitted.

A.1. The fractional Rosenau operator is a Lévy operator.
The function G, € C*®((0,4+00) x RY), given by

Galtyz) = F~ (7117) (@),

is the fundamental solution of the fractional heat equation. This means that for any given
initial condition ¢y € C2°(RY), the unique Cg°(R* x R?) solution of the Cauchy problem

Ohp — A2 =0, (t,z) € RT x RY,
#(0,2) = ¢o(x), r € RY,
is given by ¢(t,z) = G4(t,-) * ¢o(x).
It is easy to show that for any (¢,2) € RT xR, G, (t,2) = tnga(l, tfé:c). Exploiting this
equality, we define P,(x) = G4(1,z) and we immediately have that G(t,x) = tgPa(t_éx).
The function Gy (t,-), hence P,, is radially symmetric, positive and its L'-norm equals 1.

Moreover, by explicit computations one can show that there exists k, > 0 such that for all
t>0,

IVPu|l;2 < kay,  sothat [[VGal(t, )| <t aka.
Finally, we also use the following lemma, whose proof is deferred to Section
Lemma A.1. The following equality holds

(A.1) lim |z]9TP,(2) = cq(a).

|z|—o0

We call g, the function given by

(4.2) i) =7 () @)

L4
We recall that for any given ¢ € C°(R?), the unique C°(R?) solution of
6= Ao =y,

is given by ¢(z) = ga(-) * ¥ ().
Lemma A.2. The following statements hold
(1) The function g, defined in (A.2)) can be expressed in the form

(A.3) o () :/OOO e Gyt ) dt = /OOO e ltap, <i> dt.

tl/a

(2) ga is radially symmetric, strictly positive and ||gqa|| 1 = 1.

(3) We have
(A.4) lim |2|""ga(2) = ca(e), Mo := sup |2]*"ga(2) < sup |2|"T Po(x).
|z| 00 zeRd z€Rd

Proof. (1) The equalities in (A.3]) follow from the definition and properties of G,, and the
Fubini-Tonelli Theorem, as

9] i B 00 L _% i
/0 e Ga(t,x)dt_/o e 't Ga<1,t1/a) dt

/ e ~tIHE) i€ ge gy
R

Il
S—
8

o
N[ =

=
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— (21)d / </Oo e~ tA+[E[Y) dt) pRERS d¢
™ R \JO

1 et 1
‘(%)d/Rmaadf‘f <1+r-|a><”“°)'

(2) The function g, is radially symmetric and takes positive values since so does P,.
Moreover,

laols = [ e NGt at = [~ ear=1.

(3) To prove (A.4)) we remark first that

(A.5) 2|+ g () = /OOo et ‘t%‘dm P, (ﬂ%) dt,

then the equality in (A.1l)) and the dominated convergence theorem allow us to con-
clude.
O

Lemma A.3. For any given ¢ € C°(R?) the fractional Rosenau operator appearing in the
reqularized problem (|1.6))
-1

R@) = -7 (0 79) @)

admits the following integral representation

R%(¢)(z) = /Rd (6(z + 2) — B(2)) 9a2) 4.

EO&

Moreover, RS is a Lévy diffusion operator associated to the measure v(z) = - %¢5/(2) dz,

where
iy Yalz/e) 1
() = — (i) @

Finally, we have that

(A.6) lim RY(¢) = A2, strongly in LY(RY) and a.e. in RY.

e—0
Proof.

-

RO =7 (i F ) @

-2+ w5 (7 () o) @

= o) @)

=20 [+ g i
9a(2)
80{

1
e 5a+d

d
R
- / (b(z +2) — o(z) 2 g,
]Rd
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since ||g5 |1 = 1, see Lemma Due to the radial symmetry of g5 we have that for any
given ¢ € C°(R?) and r > 0

RO = [ 6+ 2) = ot B o

-
(A7) = [ s ) o) ()"0 ()

v (0t - ot - Vota) ) (")d+ o (

Using the estimates in (A.4) we observe that the integrands in (A.7]) are dominated by inte-
grable functions, so that

lim RS (o) () =cq(a) / N (p(x+ 2) — o(x)) |Z’ddia

f) dz
g/ |z|dte’

e—0

T eala) /| (6l +2)—6() = Vo) -2 |CZ+

which gives us the a.e. convergence in ({A.6). The same argument shows that the convergence
holds with respect to the strong topology of L'(R%). O

A.2. Bessel functions. We recall that the Bessel function 7, is the function of C*°(C, C)

defined as
_~_ (=pn z) 2+
j'y(z)_nz:onll“(n—i—’y—i-l) <2> '

We are only interested in the case in which v = d/2 for d € N, and in thi&ﬂ case z € R implies
Jas2 (2) € R. In the following we will make use of some classical properties of 7, in particular

(AS) (Z,yj'y)/ = Zﬂyj’yfl?
and the following Theorem on the Fourier transform of radially symmetric functions
Theorem A.1. Let f € L'(RY) N L*(RY) be a radially symmetric function then
_ 1 d
(A.9) FrH@) = —F—— o Fryr=Ja_y (rlz]) dr.

(2m)2 ] 271

Proof of Lemma[A.1 Since Py(x) = F~'(e”I'"), from Theorem we have

d ||+ o« d
ol Pafe) = L [ e rby Glel)ar
(2m)FjafF 1 Je :
X o =+ 1 _ d
SBR[ e iy lel) @
(2m)z JR* 2
(A.10) — i (tleh B 740120
2
O‘|x|a a—1_—r® d
integrating by parts == ——— r* e (r|x|)2 Ja(r|x|) dr
(2m)2 JR+ 2
change variable s = r|z| = a d/ e_|i|°‘sg+a_1jg(s)ds
(2m)2 JRF 2

2But we also have that T-1/2(2) = (1)1/2 cos(z) € Ris z € R.

Tz
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From a result on Bessel functions of the third kind in [4] Sect. 7.7.3, (27)] we have

lim |z|¢T*P,(z) = lim a / e_psasg"'a_ljd(s) ds

(A1) e P (am)} S 2
a2 1 an d+ o a
:Tmn(—)F I‘(—).
Tl 2 2 2
We use Euler Reflection Formula
T
I'z)IT'(1-2) = f Z
(M0-2)= s, fra¢Z
and we get
20{—1 T d+a
(A.12) lim |z|*OP,(z) = 2o (%52 _ cal@).
|z|—o00 T2 r (1 — %)

O

A.3. Fractional gradient. In this last part of the Appendix we collect some results on the
fractional gradient.

Lemma A.4. For a € (0,1), we define the function & — h(€) = £|€|*7Y, for € € RY, and the
fractional gradient of ¢ € L= (R%) by

(A.13) Ve = F 1 (ih(-)F(9)).

This is a Lévy operator and, for any x in R, the following integral representation holds
o B z

(A.14) Voo(z) = cal@) PV /R (0 +2) = 0(a) i =

Lemma A.5. Fiz a € (0,1]. Then for any 0 < 8 < a <1, Vg, € L'(R9).

Proof. From the explicit formula for V7 in Lemma equation (A.14)), is not difficult to
check that VAP, € L'(R%). Then we have

VA galx) :/ e_tt_%VBPa (i) dt,
0

so that

B
IV galls = [ et @tV Pall = (1= 2 ) 19 Pl < 4oc,

APPENDIX B. ALTERNATIVE PROOFS OF LEMMAS [3.1] AND IN 1-D

This appendix contains alternative proofs of Lemmas and [3.2] which rely on a purely
PDE approach which does not involve Bessel functions but only works in one space dimension.

Proof of Lemma[3.1]. For any x € R™ we have, by definition of P, and basic symmetry prop-
erties

2P, (z) = 2T F! <e*"|a> (x) = xaﬂl /+00 e~ cos(z€) de.
0

™

Integrating by parts we get
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where we use the change of variable 7 = (x£)®. We fix a representation for the logarithm, so
1
to precise the meaning of the function 7 — /e — exp (II(T)>, then we observe that the
e

function 7 s e/ =7/2 s holomorphic on C \ R™. Therefore, we can compute the value of
the integral on the right hand side of (B.1)) by a change of path. Consider # > 0 small enough,
R > 0 fixed and the closed path R 3 s+ v(s) € C given by

s, s € [0, R],

7(s) = { Re's= 1), s € (R,R+0],
(2R + 60 — s)e®, se(R+0,2R+0).

We clearly have that

0 :/eiTl/a_T/xa dr
g

R R+0 . i(s—R) .
:/ eist/@=s/a% g ~|—/ exp (i(ReZ(S_R))l/a - Lelﬂ > iR F) gg
0 R

2R+6 4 e\
(B.2) — / exp [ i((2R + 6 — s)e?)V/* — RR+6 = s)e e ds
R+0 e

R [4 s )
:/ eis'/ s/ g —|—/ exp (i(Reis)l/o‘ — ii) iRe" ds
0 0

0 , seif\
+ / exp <z’(se’9)1/a - a) e ds.
R T

If 0 is sufficiently small we have that
0 .
. Reis ‘
/ exp (i(Re”)l/a - e) iRe"
0

:Eoz
o 1/a s R R
= [ Rexp|—R'/%sin(s/a) — x—acos(s) ds < ORexp o cos(f) |,
0

which clearly converges to zero as R — oo. A similar argument shows that the other two
integrals in (B.2)) are convergent, so that

ds

Foo 1/« a too i\ 1 7-67;9 i0
(B.3) / e/ = / exp <Z’(TeZ e — a) e” dr = F(x),
0 0 L

=f(z7)
and we can rewrite (B.1)) as

F

TP, (2) = Jm < (ac)> .
7r

From now on we fix 6 so small that 6 € (0,7/2) and 6/« € (0, 7).
For any fixed € RT the function 7 +— f(x,7) belongs to L!(R), because

|f(z,7)| = exp (—Tl/“ sin(f/a) — wl“ cos(9)> < exp <—T1/a sin(@/a)) € L'(R),

therefore we can pass to the limit as x — +oco in the right hand side of (B.3]) and call Fi, the
value we obtain.
We have that

ni i () e ()] <2

s s

Im <f(x,7)— lim f(x,7)>‘d7,

T—+00
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Im(f(z,7)) = exp <—7‘1/a sin <Z> - xla cos(9)> sin <—7‘1/a cos <9> - xla sin(0) + 9> )

(0}

=B(z,T)

)
We denote Ao (7) = limyy 400 A(z, 7) and Boo(7) = lim,, 4o B(x,7), and we compute

Jm <f(:1:,7') — lim f(a:,v-)) = |A(z, 7)sin(B(z, 7)) — Ao (7) sin(Bso (7))|

T—+00
< JA(2, 7) = Aco(T)] [sin(B(2, 7))| +|Aoo (T)| [B(2, T) = Boo(7)]
<1

< exp <—Tl/a sin <0>> ‘1 — exp (—L cos(@))‘ + exp <—Tl/°‘ sin <9>> T
« ¢ « e
< 2exp (—Tl/a sin <0)) ’
«o e

Finally
2 C

> _l)a g
|2t Po(2) — c1(a)| = e | Te ™ snl/) g < et
Proof of Lemma[3.3. Let H, be the unique solution of the Cauchy problem
O Hy = %QHQ, (t,x) € RT x R,

1, for x > 0,
Ha(07$) = HeaV(JJ) - {O otherwise

z € R.

We know that N
H(t,z) =/ Gaol(t,y) dy,

so that straightforward computations give us

1 T x
OpHy(t,x) = _at(ua)/apo‘ (tl/a) '

Then from the fractional heat equation we have that

(%)Ha P, (%) = —amo‘anga(t,x).

This equality allows us to show that for any fixed € R, the function
+ (2 ()
R 5t f(t) = (tl/a> Po (7 ) -
is monotone decreasing and satisfies f(0) = ¢1(«). We have that
fA(t) = —ax®0228,Hy (t, ¥) = —ax®d2)? <8%2Ha> (t,x)
= —az®F ! (= |*F (FH (=] [*F(Ha)))) (t,2)
= —az®F 1 (|- |**F(Hy)) (t,2) = az®0%, Ho(t, ).

For every t > 0, the function x — H,(t,x) — 1/2 is odd, non decreasing and concave on RT,
see [3]. Then for any « € (0,1]
d
0% Ho(t,2) = c1(a) lim (Halt,x + 2) — Ho(t, ) — Oy Ha(t, 2)2) —oe <0

T o < |z =

~~

<0
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On the other hand we can compute explicitely

£(0) = — az®0%?Heav(z) = —az®c; (a) PV/ (Heav(x + z) — Heav(x)) ’zdlia = c1(a).
R

_ 1
ar®

The properties of f directly lead to the estimate we are looking for, by a simple application

of the equality in ({A.5]). O
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