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VANISHING VISCOSITY VERSUS ROSENAU APPROXIMATION FOR

SCALAR CONSERVATION LAWS: THE FRACTIONAL CASE

N. ALIBAUD, G. M. COCLITE, M. DALERY, AND C. DONADELLO

Abstract. We consider approximations of scalar conservation laws obtained by adding non-
local diffusive operators. In particular, we compare solutions associated to fractional Lapla-
cian and fractional Rosenau perturbations and show that for any t > 0 the mutual L1-distance
of their profiles is lower than their common distance to the underlying inviscid entropy so-
lution. We provide explicit examples showing that our rates are optimal in the subcritical
case, in one space dimension and for convex fluxes.

1. Introduction

The classical approach in the analysis of the Cauchy problem for multi-dimensional scalar
conservation law,

(1.1)

{
∂tw + div f(w) = 0, t ∈ R+, x ∈ Rd,

w(0, x) = w0(x), x ∈ Rd,

where the flux f is in W 1,∞
loc (R,Rd) and the initial condition w0 is in L∞ ∩ BV(Rd), relies on

singular approximations as the vanishing viscosity and the relaxation methods, see [9] and
references therein.

The well-posedness of (1.1) was established in [18] in the framework of entropy solutions,
that are weak solutions which satisfy additional selection criteria called entropy inequalities.
The unique entropy solution coincides with the strong Lp-limit as ε→ 0 of vanishing viscosity
regularized solutions, which solve

(1.2)

{
∂twε + div f(wε) = ε∆wε, t ∈ R+, x ∈ Rd,

w(0, x) = w0(x), x ∈ Rd.

This regularization procedure is the most classical, but other ones have been considered. In
[22], Rosenau proposed a regularized version of the Chapman-Enskog expansion of hydrody-
namics, which can be rewritten as the following nonlocal perturbation of (1.1)

(1.3) ∂tvε + div f(vε) = −εF−1

(
| · |2

1 + ε2| · |2
F(vε)

)
.

Here and throughout,

F(ϕ)(ξ) =

ˆ
Rd

ϕ(x)e−ix·ξ dx and F−1(ϕ)(x) =
1

(2π)d

ˆ
Rd

ϕ(ξ)eix·ξ dξ,

stand for the Fourier transform and its inverse, respectively. Since the diffusion in (1.2) can
be rewritten as

∆ϕ = −F−1
(
| · |2F(ϕ)

)
,

the right-hand side of (1.3) resembles the one in (1.2) at low wave numbers ξ, but is intended
to model a bounded approximation of a linearized collision operator for higher ξ. As explained
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in [22, 24], this avoids artificial instabilities occurring when the Chapman-Enskog expansion
for such an operator is truncated after a finite number of terms. The model retains the
essential properties of the usual viscosity approximation, e.g., existence of travelling waves,
monotonicity, upper-Lipschitz continuity, etc., and it sharpens the standard viscous shock
layers. However, vϵ may remain discontinuous. Schochet and Tadmor, in [24] proved, in one
space dimension, that this regularization converges to the underlying inviscid entropy solution
as ε goes to zero, and estimated the convergence rate in all Lp spaces for 1 ≤ p < ∞. In
particular, the convergence rate in L1 coincides with the convergence rate of the vanishing
viscosity approximation (1.2) established in [19]. The extension to several space dimensions
(with the same convergence rates) is due to Katsoulakis and Tzavaras in [17]. For any T > 0,
we have

(1.4) ∥wε − w∥C([0,T ],L1), ∥vε − w∥C([0,T ],L1) = O(
√
εT ).

The rates in (1.4) are expected to be optimal even for nonlinear equations as suggested by
the analysis of [8] for numerical schemes, see also Theorem 2.5 for a proof in our setting for
both (1.2) and (1.3). It is thus remarkable that wε −w and vϵ −w converge to 0 at the same
speed, since discontinuities from w may persist in vϵ whereas wε is smooth.

Formally, however, the solutions to the Rosenau approximate problem should be closer to
the viscous approximations than to the inviscid limit. In the literature we did not find a
rigorous proof of this fact, and this is the motivation of our interest in the problem. In this
paper we focus our attention to the comparison between the fractional Laplacian and their
corresponding Rosenau approximations as defined in [14], see respectively (1.5) and (1.6)
below, for the whole range α ∈ (0, 2]. Unfortunately, our results are not optimal in the case
α ∈ (1, 2], which includes the classical approximations (1.2) and (1.3).

Let us now introduce the fractional vanishing viscosity and Rosenau approximations of
(1.1). Throughout, α ∈ (0, 2] is fixed, ε > 0 is the perturbation parameter and we consider
the following Cauchy problems

(1.5)

{
∂tu+ div f(u) = ε∆α/2u, t ∈ R+, x ∈ Rd,

u(0, x) = w0(x), x ∈ Rd,

and

(1.6)

{
∂tv + div f(v) = εRα

ε (v), t ∈ R+, x ∈ Rd,

v(0, x) = w0(x), x ∈ Rd,

with the fractional Laplacian

(1.7) ∆α/2ϕ = −F−1 (| · |αF(ϕ)) ,

and its corresponding Rosenau approximation

(1.8) Rα
ε (ϕ) = −F−1

(
| · |α

1 + εα| · |α
F(ϕ)

)
.

We notably recover (1.2) and (1.3) if α = 2. Equation (1.5) is respectively said to be

• subcritical if α > 1,
• critical if α = 1,
• supercritical if α < 1,

in reference to the cases where the diffusion’s order is less or above the nonlinear convection’s
order. Such fractional conservation laws appear, of course, in radiation hydrodynamics [21,
22, 23, 24], but also in the description of over-driven gas detonations [7], anomalous diffusion
in semiconductor growth [25], flow in porous media [10, 11]. Problem (1.5) admits a unique
smooth solution in the subcritical and critical cases [13], and a unique possibly discontinuous
entropy solution in the supercritical one [1]. Equation (1.6) is a very natural counterpart to
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(1.3) for fractional diffusions, see [14] and references therein. As concerning well-posedness,
the notion of entropy solutions from [1] has been extended in [6] to scalar conservation laws
with general Lévy diffusions, whose fractional Laplacian is a prototype. This theory applies
in particular to (1.6), and actually also to (1.3), see Section 2 for details. Now considering
the limits as ε → 0+, we recover the unique entropy solution w of (1.1) from both (1.5) and
(1.6). Moreover, for all α ∈ (0, 2], the solutions of (1.5) and (1.6) converge to the inviscid
limit w with the same rate

(1.9) ∥u− w∥C([0,T ],L1), ∥v − w∥C([0,T ],L1) =


O(ε1/α), α ∈ (1, 2],

O(ε ln(1/ε)), α = 1,

O(ε), α ∈ (0, 1).

This result is due to [1, 12] for (1.5). It also follows from general continuous dependence
estimates for scalar conservation laws with Lévy diffusions, see [2], which apply to both (1.5)
and (1.6).

In this paper we identify the optimal rates of decay of the distance between u and v in the
supercritical and critical cases, and we prove non optimal but explicit rates in the subcritical
case. More precisely, for α ∈ (0, 1), we establish in Theorem 2.4 that

(1.10) ∥u− v∥C([0,T ],L1) =


O(ε2−α), α ∈ (1/2, 1],

O(ε3/2 ln(1/ε)), α = 1/2,

O(εα+1), α ∈ (0, 1/2),

and we exhibit optimal examples for (1.9) and (1.10) in Theorem 2.5. These examples, given
for simplicity in one space dimension, are inspired from the approach used in [8] combined
with Fourier arguments, and they work for nonlinear strictly convex fluxes f . As concerning
subcritical equations, see Theorem 2.3, we get that

(1.11) ∥u− v∥C([0,T ],L1) = O
(
ε

3−α
2

)
, α ∈ (1, 2].

This suffices to show that u − v vanishes faster than u − w and v − w, but these rates are
probably not optimal. Indeed, as we show in Proposition 5.1, in the zero convection case (1.9)
and (1.10) are optimal, while the optimal rates for subcritical equations turn out to be

(1.12) ∥u− v∥C([0,T ],L1) = O(ε−α), α > 1 and f ′ ≡ 0.

Hence, we conjecture that (1.12) hold for nonlinear f as well, and this would be the best
possible rates in the subcritical case, including for the classical one α = 2.

As concerning the proofs, Theorems 2.3, 2.4 and 2.5 and are based on the Kuznetsov’s
method [19], nonlocal arguments from [2], and fine estimates on the fractional heat and Rose-
nau kernels. The general estimates from [2] compare solutions of different scalar conservation
laws with Lévy diffusions, as we have. To get Corollary 2.1, we combine these now stan-
dard results with a fine estimate on the asymptotic behavior of the kernels for large |x|, see
Lemma 3.1. But for the optimal estimates (1.10), we roughly speaking need to restart the
Kuznetsov’s argumentation, while essentially taking advantage of a key monotonicity result
on the difference operator ∆α/2−Rα

ε . The latter estimate on the kernels is even more precise,
see Lemma 3.2.

The rest of this paper is organized as follows. In Section 2 we recall the representation of the
fractional Laplacian and the Rosenau operators as Lévy operators, together with the definition
of entropy solution for fractal conservation laws, and a result on their continuous dependence.
We conclude the section stating our main results. Section 3 contains the proof of preliminary
technical lemmas. We establish our convergence rates in Section 4, while their optimality in
the topic of Section 5. Two lemmas in the latter have rather long proofs, postponed to Section
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6. Some classical results in fractional calculus are collected in the Appendix A. Finally, in
Appendix B we present alternative proofs in one space dimension for two technical lemmas.

2. Preliminaries and main results

In this section we first recall known facts on the well-posedness of (1.5) and (1.6), and then
state our main results.

2.1. Lévy diffusion operators. Given a Borel measure µ on Rd such that

(2.1) µ ≥ 0, µ(z) = µ(−z) and

ˆ
Rd

min
{
|z|2, 1

}
dµ(z) <∞,

we define the (symmetric) Lévy diffusion operator Lµ associated to the Lévy measure µ as

(2.2) Lµ[ϕ](x) =

ˆ
Rd

(ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z) dµ(z).

Any Lévy diffusion operator can be written as the sum of two operators associated respectively
to µ|{|z|≤r} and µ|{|z|>r}, for any r > 0

Lµ = Lµ|{|z|≤r}
+ Lµ|{|z|>r} .

Note that Lµ|{|z|>r} (ϕ) ∈ L∞(Rd) when ϕ ∈ L∞(Rd), since the measure µ|{|z|>r} is finite on

Rd. Following the classical results in [13, 16] the fractional Laplacian, defined in (1.7), is a
Lévy diffusion operator associated to the measure

(2.3) µ(z) =
cd(α)

|z|d+α
dz, where cd(α) :=

α2α−1Γ
(
d+α
2

)
π

d
2Γ
(
2−α
2

) > 0,

and Γ is the usual Gamma function. Therefore, the fractional Laplacian admits at each point
x ∈ Rd the following integral representation for α ∈ (0, 2), ϕ ∈ C∞

c (Rd), r > 0,

(2.4)

∆α/2ϕ(x) =cd(α)

ˆ
|z|<r

(ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z) dz

|z|d+α

+ cd(α)

ˆ
|z|>r

(ϕ(x+ z)− ϕ(x))
dz

|z|d+α

=Lα,r[ϕ](x) + Lα,r[ϕ](x).

For shortness, in the next Sections we will also use the following notation

∆α/2ϕ(x) = cd(α)PV

ˆ
(ϕ(x+ z)− ϕ(x))

dz

|z|d+α
.

The fractional Rosenau operator defined in (1.8) is also a Lévy diffusion operator for any
α ∈ (0, 2) and ε > 0, associated to the measure

(2.5) ν(z) =
gα(z/ε)

εd+α
dz, where gα := F−1

(
1

1 + | · |α

)
.

A detailed proof of this (known) fact is deferred to the Appendix A.

2.2. Entropy solutions for fractal conservation laws with Lévy diffusion. Let us
consider a general Cauchy problem of the form

(2.6)

{
∂tw

µ + div f(wµ) = Lµ(wµ), t ∈ R+, x ∈ Rd,

wµ(t = 0, x) = w0(x), x ∈ Rd,

where f ∈ W 1,∞
loc (R,Rd), w0 ∈ L∞ ∩ BV(Rd) and Lµ is a symmetric Lévy diffusion operator.

This problem is well-posed in L∞ within the class of entropy solutions.
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Definition 2.1. In the setting above, we say that wµ ∈ L∞(R+ × Rd) is an entropy solution
of (2.6) if and only if for all r > 0, for all non-negative ϕ ∈ C∞

c ([0,∞) × Rd) and for every
convex entropy η ∈ C∞(R) and entropy flux q ∈ C∞(R,Rd) such that q′i(ξ) = η′(ξ)f ′i(ξ), for
any ξ ∈ R and i = 1, . . . , d,ˆ ∞

0

ˆ
Rd

(
η(wµ)∂tϕ+ q(wµ) · ∇ϕ+ η(wµ)Lµ|{|z|≤r}

(ϕ)− η′(wµ)Lµ|{|z|>r} (u)ϕ
)
dx dt

+

ˆ
Rd

η(wµ(0, x))ϕ(0, x) dx ≥ 0.

An important ingredient in our analysis are the general continuous dependence estimates
of [2]. They mesure the distance between two entropy solutions in terms of their respective
data. Here we are only interested in the dependence with respect to the Lévy measure.
We summarize in the next theorem the well-posedness results from [1, 2, 13] needed for our
analysis

Theorem 2.1. In the hypothesis above, the Cauchy problem (2.6) admits a unique entropy
solution wµ ∈ L∞(R+ × Rd). Additionally, wµ ∈ C([0,∞);L1

loc) with w
µ(t = 0, ·) = w0(·).

If in addition w0 ∈ L1 ∩L∞ ∩BV (Rd), µ and ν are two measures satisfying (2.1), and wµ

and wν are the respective corresponding entropy solutions of (2.6). Then for all T > 0 and
r > 0,

∥wµ − wν∥C([0,T ];L1) ≤T 1/2 2d√
d+ 1

TV(w0)

(ˆ
|z|≤r

|z|2d|µ− ν|(z)

)1/2

+ T

ˆ
|z|>r

∥w0(·+ z)− w0(·)∥L1d|µ− ν|(z).

If ν ≡ 0 and µ is successively taken as the Lévy measures of ε∆α/2 and εRα
ε , then we

recover existence for the respective corresponding fractional approximations (1.5) and (1.6)
of the scalar conservation law (1.1) and the known rates of convergence.

Corollary 2.1. Assume f ∈ W 1,∞
loc (R,Rd), α ∈ (0, 2), w0 ∈ L1 ∩ L∞ ∩ BV (Rd), and T > 0.

There then exists CT > 0 such that for any ε ∈ (0, 1/2),

∥u− w∥C([0,T ],L1), ∥v − w∥C([0,T ],L1) ≤ CTσε,

where w, u and v respectively solve (1.1), (1.5) and (1.6), and

(2.7) σε :=


ε1/α, α > 1,

ε ln(1/ε), α = 1,

ε, α < 1.

The convergence rates of Corollary 2.1 are optimal for zero convection PDEs (f ′ ≡ 0); see
the discussion in [8] and Proposition 5.1. We will also give optimal examples for nonlinear
strictly convex f in Theorem 2.5.

We refer to [1, 12] for the original proofs of Corollary 2.1 and to [2] for alternative proofs
using Theorem 2.1.

2.3. Main results. We are ready to state our main results. The proofs are given in the next
sections. Our first contribution is the following

Theorem 2.2. Assume f ∈ W 1,∞
loc (R,Rd), α ∈ (0, 2), w0 ∈ L1 ∩ L∞ ∩ BV (Rd), and T > 0.

Then

lim
ε→0+

∥u− v∥C([0,T ];L1)

σε
= 0,

where u and v respectively solve (1.5) and (1.6), and σε is defined as in Corollary 2.1.
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Let us now provide sharp estimates of the decay rate of the distance between u and v.

Theorem 2.3 (Explicit rates for subcritical PDEs). Let α ∈ (1, 2], f ∈ W 1,∞
loc (R,Rd), w0 ∈

L1 ∩ L∞ ∩BV (Rd), and T > 0. There then exists CT > 0 such that for any ε ∈ (0, 1/2),

∥u− v∥C([0,T ],L1) ≤ CT ε
3−α
2 ,

where u and v respectively solve (1.5) and (1.6).

As concerning α ∈ (0, 1], we have optimal estimates given by the next result.

Theorem 2.4 (Optimal rates for critical and supercritical PDEs). Let now α ∈ (0, 1], f ∈
W 1,∞

loc (R,Rd), w0 ∈ L1 ∩ L∞ ∩ BV (Rd), and T > 0. There then exists CT > 0 such that for
any ε ∈ (0, 1/2),

(2.8) ∥u− v∥C([0,T ],L1) ≤ CT sε,

where u and v respectively solve (1.5) and (1.6), and

sε :=


ε2−α, 1/2 < α ≤ 1,

ε
3
2 ln(1/ε), α = 1/2,

εα+1, α < 1/2.

Remark 2.1. The constants CT appearing in the statements of Corollary 2.1 and Theorems
2.3 and 2.4 only depend on T , d, α, ∥w0∥L∞, TV (w0) and, if α ≤ 1, on ∥w0∥L1.

Let us now give optimal examples for Corollary 2.1 and Theorem 2.4. For simplicity we
consider one-dimensional PDEs, but we allow for nonlinear f . We say that ω : (0,∞) → (0,∞)
is a modulus if it is nondecreasing and lim

ε→0
ω(ε) = 0.

Theorem 2.5 (Optimal examples). Let d = 1, f ∈W 1,∞
loc (R) be strictly convex, and T > 0.

(i) Assume that α ∈ (0, 2) and define σε as in Corollary 2.1 for any ε > 0. Then for any
modulus ω such that

(2.9) lim
ε→0

ω(ε)

σε
= 0,

there is w0 ∈ L1∩L∞∩BV (R) whose corresponding solutions of (1.1), (1.5) and (1.6)
satisfy

lim
ε→0

∥u(t, ·)− w(t, ·)∥L1

ω(ε)
= lim

ε→0

∥v(t, ·)− w(t, ·)∥L1

ω(ε)
= ∞, ∀t ∈ (0, T ].

(ii) Assume that α ∈ (0, 1]and define sε as in Theorem 2.4. Then for any modulus ω such
that

(2.10) lim
ε→0

ω(ε)

sε
= 0,

there is w0 ∈ L1 ∩ L∞ ∩ BV (R) whose corresponding solutions of (1.5) and (1.6)
satisfy

(2.11) lim
ε→0

∥u(t, ·)− v(t, ·)∥L1

ω(ε)
= ∞, ∀t ∈ (0, T ].

Remark 2.2. If (2.9) and (2.10) simultaneously hold, there is a common w0 which works
for both (i) and (ii).
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3. Preliminary estimates on |x|d+αgα(x)

The two following lemmas are crucial ingredients in our estimates of convergence rates.

Lemma 3.1. There exists Nα > 0 such that for any x ∈ Rd,∣∣∣|x|d+αgα(x)− cd(α)
∣∣∣ ≤ Nα

|x|α
,

where gα and cd(α) are respectively defined in (2.5) and (2.3).

Proof. Thanks to (A.12) the function x 7→ |x|d+αPα(x) admits the limit value cd(α) as |x| →
∞. Using the identity (see the proof of Lemma A.1)

(3.1) |x|d+αPα(x) =
α

(2π)
d
2

ˆ
R+

e
− sα

|x|α s
d
2
+α−1J d

2
(s) ds,

it is also clear that

lim
|x|→0+

|x|d+αPα(x) = 0.

Since the function is radially symmetric and its derivative with respect to the norm of x, that
is

(3.2)
α2

(2π)
d
2

ˆ
R+

e
− sα

|x|α
s

d
2
+2α−1

|x|α+1
J d

2
(s) ds,

is bounded as |x| → ∞. Then x 7→ |x|d+αPα(x) is bounded on Rd and there exist Nα/2 > 0
such that

(3.3) − Nα

2|x|α
+ cd(α) ≤ |x|d+αPα(x) ≤

Nα

2|x|α
+ cd(α).

From the equation (A.5) we have

(3.4) |x|d+αgα(x) =

ˆ ∞

0
e−tt

∣∣∣ x
t1/α

∣∣∣d+α
Pα

( x

t1/α

)
dt,

so that (3.3) gives us

− Nα

|x|α
+ cd(α) ≤ |x|d+αgα(x) ≤

Nα

|x|α
+ cd(α).

□

The following lemma improves the estimate above for α ∈ (0, 1]. The convergence rates we
obtain for this range are optimal, see Section 5.

Lemma 3.2. Assume α ∈ (0, 1], then for any x ∈ Rd \ {0},

(3.5) |x|1+αgα(x) ≤ cd(α).
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Proof. It is enough to show that the function x 7→ |x|d+αPα(x) is radially monotone increasing.
Its derivative with respect to the norm of x is

(3.6)

α2

(2π)
d
2

ˆ
R+

e
− sα

|x|α
s

d
2
+2α−1

|x|α+1
J d

2
(s) ds

=
α2

(2π)
d
2

ˆ
R+

e
− sα

|x|α
s2α−2

|x|α+1
s

d
2
+1J d

2
(s) ds

Change variable to r|y| = s, y ∈ Rd+2 =
α2|y|

d
2
+α−1

(2π)
d
2

ˆ
R+

e−rαr2α−2r
d
2
+1J d

2
(r|y|) dr

By Th. A.1 = 2πα2|y|d+α−1F−1
(
e−|·|α | · |2α−2

)
(y)

= 2πα2|y|d+α−1
(
Pα ∗ F−1

(
| · |2α−2

))
(y).

If α ∈ (0, 1) then

α2

(2π)
d
2

ˆ
R+

e
− sα

|x|α
s

d
2
+2α−1

|x|α+1
J d

2
(s) ds = α2|y|d+α−1 2

α−1Γ
(
d
2 + α

)
π

d
2Γ(1− α)

(
Pα ∗ | · |−d−2α

)
(y) ≥ 0.

Otherwise, if α = 1,

1

(2π)
d
2

ˆ
R+

e
− s

|x|
s

d
2
+1

|x|2
J d

2
(s) ds = 2π|y|dP1(y) ≥ 0.

□

4. Proof of Theorems 2.3 and 2.4

As recalled in the Introduction, the Lévy operators ∆α/2 and Rα
ε are associated respectively

to the measures µ and ν

µ(z) =
cd(α)

|z|d+α
dz, ν(z) =

1

εd+α
gα

(z
ε

)
dz =

1

εα
gεα (z) dz.

The following preliminary lemma is essential in the proof of our main results.

Lemma 4.1. For any ϕ ∈ C∞
c (Rd) and α ∈ (0, 1], we have

∆α/2ϕ−Rα
ε (ϕ) = εαgεα ∗∆α(ϕ).

Proof. We can verify the equality by a direct computation

∆α/2ϕ−Rα
ε (ϕ) =F−1

((
| · |α − | · |α

1 + εα| · |α

)
F(ϕ)

)
=F−1

(
εα| · |2α

1 + εα| · |α
F(ϕ)

)
=εαF−1

(
1

1 + εα| · |α

)
︸ ︷︷ ︸

=gεα

∗F−1
(
| · |2αF(ϕ)

)
.

□



FROM VANISHING VISCOSITY TO ROSENAU APPROXIMATION 9

Let u and v be the solutions of (1.5) and (1.6). For any r > 0, Theorem 2.1 implies

(4.1)

∥v − u∥C([0,T ];L1) ≤C (εT )1/2TV(w0)

(ˆ
|z|<r

|z|2
∣∣∣∣ 1

εd+α
gα

(z
ε

)
− cd(α)

|z|d+α

∣∣∣∣ dz
)1/2

+ εT

ˆ
|z|>r

∥w0(· − z)− w0(·)∥L1

∣∣∣∣ 1

εd+α
gα

(z
ε

)
− cd(α)

|z|d+α

∣∣∣∣ dz.
The estimate in Lemma 3.1 together with (A.4) allows us to write∣∣∣∣ 1

εd+α
gα

(z
ε

)
− cd(α)

|z|d+α

∣∣∣∣ ≤ max {Mα + cd(α), Nα} ·

{
1

|z|d+α , if |z| ≤ ε,
εα

|z|d+2α , if |z| > ε.

If α ∈ (1, 2), we consider r = +∞ in (4.1) and we obtain

∥v − u∥C([0,T ];L1) ≤ CT ε
1
2

(ˆ
|z|<ε

|z|2 dz

|z|d+α
+ εα

ˆ
|z|≥ε

|z|2 dz

|z|d+2α

)1/2

≤ CT ε
3−α
2 ,

where CT = CT (T, α,TV(w0)).

If α ∈ (0, 1], we apply the same argument as in the proof of Theorem 2.1 as it appears in

[2] to get a more precise result. The argument relies on a doubling of variables, then in the
following (t, x) ∈ R+ × Rd are the variables of u and (t, y) ∈ R+ × Rd the ones of v. For any
given t > 0 we have

(4.2)
∂t|u(t, x)− v(t, y)|+ (divx + divy) [sign(u(t, x)− v(t, y))(f(u(t, x))− f(v(t, y)))]

= ε sign(u(t, x)− v(t, y))
(
∆α/2u(t, x)−Rα

ε v(t, y)
)
,

and we can use the measures µ and ν to rewrite the right hand side as follows

sign(u(t, x)− v(t, y))
(
∆α/2u(t, x)−Rα

ε v(t, y)
)

= sign(u− v)

(ˆ
E+

u(t, x+ z)− u(t, x) dµ(z)−
ˆ
E+

v(t, y + z)− v(t, y) dν(z)

)
+ sign(u− v)

(ˆ
E−

u(t, x+ z)− u(t, x) dµ(z)−
ˆ
E−

v(t, y + z)− v(t, y) dν(z)

)
= I1 + I2,

where E+ = {z ∈ Rd|(ν − µ)(z) ≥ 0} and E− = {z ∈ Rd|(ν − µ)(z) < 0}. We have

I1 =sign(u− v)

(ˆ
E+

u(t, x+ z)− u(t, x)− v(t, y + z) + v(t, y) dµ(z)

−
ˆ
E+

v(t, y + z)− v(t, y) + u(t, x)− u(t, x) d(ν − µ)(z)

)
≤
ˆ
E+

|u(t, x+ z)− v(t, y + z)| − |u(t, x)− v(t, y)| dµ(z)

+

ˆ
E+

|v(t, y + z)− u(t, x)| − |v(t, y)− u(t, x)| d(ν − µ)(z).

A similar computation gives us

I2 ≤
ˆ
E−

|u(t, x+ z)− v(t, y + z)| − |u(t, x)− v(t, y)| dν(z)

+

ˆ
E−

|u(t, x+ z)− v(t, y)| − |u(t, x)− v(t, y)| d(µ− ν)(z).
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Let ξ 7→ ρδ(ξ), for ξ ∈ Rd, be defined by

ρδ(ξ) =
1

δ
ρ

(
|ξ|
δ

)
, ρ ∈ C∞

b ∩ L1(R), ρ > 0,

ˆ
R
ρ(ξ) dξ = 1.

We multiply the two sides of the equation (4.2) by ρδ(x−y), then we integrate with respect
to both variables x and y. To shorten our notation, in the following we call γ the Borel
measure γ = µ|E+ + ν|E− .

(4.3)

1

ε

d

dt
∥(u(t, ·x)− v(t, ·y))ρδ(·x − ·y)∥L1

≤
˚

R3d

(|u(t, x+ z)− v(t, y + z)| − |u(t, x)− v(t, y)|) ρδ(x− y) dγ(z) dx dy

+

˚
R2d×E+

(|v(t, y + z)− u(t, x)| − |v(t, y)− u(t, x)|) ρδ(x− y) d(ν − µ)(z) dx dy

+

˚
R2d×E−

(|u(t, x+ z)− v(t, y)| − |u(t, x)− v(t, y)|) ρδ(x− y) d(µ− ν)(z) dx dy

=

˚
R3d

|u(t, x)− v(t, y)| (ρδ((x− z)− (y − z))− ρδ(x− y))︸ ︷︷ ︸
=0

dγ(z) dx dy

+

˚
R2d×E+

|v(t, y)− u(t, x)| (ρδ(x− y + z)− ρδ(x− y)) d(ν − µ)(z)︸ ︷︷ ︸
L(ν−µ)+ (ρδ)(x−y)

dx dy

+

˚
R2d×E−

|u(t, x)− v(t, y)| (ρδ(x− y − z)− ρδ(x− y)) d(µ− ν)(z)︸ ︷︷ ︸
L(µ−ν)+ (ρδ)(x−y)

dx dy

=

¨
R2d

|u(t, x)− v(t, y)|L|µ−ν|(ρδ)(x− y) dx dy.

Under the assumption α ∈ (0, 1], Lemma 3.2 implies that

(µ− ν)(z) =

(
cd(α)

|z|d+α
− 1

εd+α
gα

(z
ε

))
=

1

εd+α

(
cd(α)

|z/ε|d+α
− gα

(z
ε

))
≥ 0.

Hence

L|µ−ν| = L(µ−ν) =
(
∆α/2 −Rα

ε

)
,

and, by Lemma 4.1, the inequality in (4.3) becomes

(4.4)

d

dt
∥(u(t, ·x)− v(t, ·y))ρδ(·x − ·y)∥L1

≤ εα+1

¨
R2d

|u(t, x)− v(t, y)| (gεα ∗∆αρδ) (x− y) dx dy.

In the remaining of the proof we consider separately the three cases α ∈ (1/2, 1], α = 1/2 and
α ∈ (0, 1/2).

4.1. Case α ∈ (1/2, 1]. For any fixed y ∈ Rd we haveˆ
Rd

|u(t, x)− v(t, y)| (gεα ∗∆αρδ) (x− y) dx

=

ˆ
Rd

|u(t, x)− v(t, y)|∆α (gεα ∗ ρδ) (x− y) dx

=

ˆ
Rd

|ξ|2αF (|u(t, ·)− v(t, y)|) ∗ F (gεα ∗ ρδ(· − y)) (ξ) dξ
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=

ˆ
Rd

F−1 (−iξF (|u(t, ·)− v(t, y)|))F−1
(
iξ|ξ|2α−2F (gεα ∗ ρδ(· − y))

)
dx

= −
ˆ
Rd

sign(u(t, x)− v(t, y))∇xu(x)∇2α−1
x (gεα ∗ ρδ) (x− y) dx,

where the operator ∇2α−1
x is defined as in (A.13) and we use that

F (gεα ∗ ρδ(· − y)) (ξ) =

ˆ
Rd

e−ix·ξ (gεα ∗ ρδ(x− y)) dx

=e−iy·ξ
ˆ
Rd

e−i(x−y)·ξ (gεα ∗ ρδ(x− y)) dx = e−iy·ξF (gεα ∗ ρδ) (ξ),

which means

∇2α−1
x ((gεα ∗ ρδ) (· − y)) (x) =

1

(2π)d

ˆ
Rd

iξ|ξ|2α−2eix·ξe−iy·ξF (gεα ∗ ρδ(·)) (ξ) dξ

=∇2α−1
x (gεα ∗ ρδ) (x− y).

Finally, using Lemma A.5, the estimate (4.4) becomes

(4.5)

d

dt
∥(u(t, ·x)− v(t, ·y))ρδ(·x − ·y)∥L1

≤ εα+1

¨
R2d

|u(t, x)− v(t, y)| (gεα ∗∆αρδ) (x− y) dx dy

= −εα+1

¨
R2d

sign(u(t, x)− v(t, y))∇xu(x)∇2α−1
x (gεα ∗ ρδ) (x− y) dx dy

≤ εα+1TV(w0)
∥∥∇2α−1

x (gεα ∗ ρδ)
∥∥
L1 ≤ εα+1TV(w0)

∥∥∇2α−1
x gεα

∥∥
L1 ∥ρδ∥L1︸ ︷︷ ︸

=1

= εα+1TV(w0)
1

ε2α−1

∥∥∇2α−1
x gα

∥∥
L1 = Cε2−αTV(w0),

for a constant C depending on α. We notice that

∥u(t, ·x)− v(t, ·x)∥L1 =

ˆ
Rd

|u(t, x)− v(t, x)| dx

≤∥(u(t, ·x)− v(t, ·y))ρδ(·x − ·y)∥L1 + δTV(w0).

(4.6)

Then integrating with respect to time the inequality (4.5) we get

(4.7) ∥u(t, ·x)− v(t, ·x)∥L1 ≤
(
δ + Ctε2−α

)
TV(w0).

Then we conclude

(4.8) ∥u(t, ·x)− v(t, ·x)∥L1 ≤ CTV(w0)tε
2−α.

4.2. Case α = 1/2. We fix r ∈ (0, 1) and we split the integral in the right hand side of (4.4)
into three terms as follows¨

R2d

|u(t, x)− v(t, y)|∆1/2
(
gε1/2 ∗ ρδ

)
(x− y) dx dy

=

˚
R2d×{|z|<r}

|u(t, x)− v(t, y)|×

×
(
gε1/2 ∗ ρδ(x− y + z)− gε1/2 ∗ ρδ(x− y)− z · ∇x

(
gε1/2 ∗ ρδ

)
(x− y)

) cd(1)

|z|d+1
dz dx dy

+

˚
R2d×{r<|z|<1}

|u(t, x)− v(t, y)|
(
gε1/2 ∗ ρδ(x− y + z)− gε1/2 ∗ ρδ(x− y)

) cd(1)

|z|d+1
dz dx dy
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+

˚
R2d×{|z|>1}

|u(t, x)− v(t, y)|
(
gε1/2 ∗ ρδ(x− y + z)− gε1/2 ∗ ρδ(x− y)

) cd(1)

|z|d+1
dz dx dy

= IA + IB + IC .

We consider first the integral IA

IA =

˚
R2d×{|z|<r}

|u(t, x)− v(t, y)|×

×
(ˆ 1

0
∆
(
gε1/2 ∗ ρδ

)
(x− y + sz)(1− s) ds

)
|z|2cd(1)
|z|d+1

dz dx dy

≤ CrTV(w0)
∥∥∥gε1/2∥∥∥

L1︸ ︷︷ ︸
=1

∥∂xρδ∥L1 ≤ Cr

δ
TV(w0).

Then, we focus on IB and thanks to a change of variable we get

(4.9)

IB ≤
˚

R2d×{r<|z|<1}
|u(t, x− z)− u(t, x)|

(
gε1/2 ∗ ρδ

)
(x− y)

cd(1)

|z|d+1
dz dx dy

≤ −C ln(r)TV(w0)
∥∥∥gε1/2∥∥∥

L1
∥ρδ∥L1︸ ︷︷ ︸

=1

= −C ln(r)TV(w0).

Similar computations, using the classical inequality ∥u(· − z)− u(·)∥L1 ≤ 2 ∥w0∥L1 , lead to
establish an upper bound for IC

IC ≤ C ∥w0∥L1 .

Finally, we can put all our estimates together to get

d

dt
∥(u(t, ·x)− v(t, ·y))ρδ(·x − ·y)∥L1 ≤ Cε3/2

[
TV(w0)

(r
δ
− ln(r)

)
+ ∥w0∥L1

]
.

Then we integrate with respect to time and apply the inequality in (4.6) to obtain

∥u(t, ·)− v(t, ·)∥L1 ≤ TV(w0)δ + Cε3/2t
[
TV(w0)

(r
δ
− ln(r)

)
+ ∥w0∥L1

]
.

In order to optimize this estimate we give to r and δ the common optimal value tε3/2, and we
obtain

∥u(t, ·)− v(t, ·)∥L1 ≤ Ctε3/2| ln(ε)|.

4.3. Case α ∈ (0, 1/2). We fix r ∈ (0, 1) and we split the integral in the right hand side of
(4.4) into two terms as follows¨

R2d

|u(t, x)− v(t, y)|∆α (gεα ∗ ρδ) (x− y) dx dy

=

˚
R2d×{|z|<r}

|u(t, x)− v(t, y)| ((gεα ∗ ρδ) (x− y + z)− (gεα ∗ ρδ) (x− y))
cd(α)

|z|d+2α
dz dx dy

+

˚
R2d×{|z|>r}

|u(t, x)− v(t, y)| ((gεα ∗ ρδ) (x− y + z)− (gεα ∗ ρδ) (x− y))
cd(α)

|z|d+2α
dz dx dy

= I< + I>.

We estimate I< and I> by computations similar to the ones we did for IB and IC in (4.9).
Then we get¨

R2d

|u(t, x)− v(t, y)|∆α (gεα ∗ ρδ) (x− y) dx dy ≤ C
(
TV(w0)r

1−2α + ∥w0∥L1 r
−2α
)
.
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We observe that the inequality above does not depend on δ. As in analysis of the previous
cases we integrate with respect to time and apply the inequality in (4.6), then after optimizing
the choice of r, we get the desired estimate

∥u(t, ·)− v(t, ·)∥L1 ≤ Ctεα+1.

5. Proof of Theorem 2.5

In this Section we follow the approach used by Şabac in [8], which requires optimal conver-
gence rates for the case where flux f is linear, to prove Theorem 2.5.

For this reason in Section 5.1 we consider the zero convection case and we give examples
in which, as ε vanishes, the L1 distance between u and w and between u and v approaches
zero at the rates announced respectively in Corollary 2.1 in for α ∈ (0, 2), and in Theorem
2.3 for α ∈ (1, 2). Please notice that for the reader convenience, the proofs of two lemmas in
this part are postponed to Section 6 as they consists of rather long case by case studies.

Finally, Section 5.2 contains the proof of Theorem 2.5.

5.1. Examples of optimal convergence rates in the linear case (zero convection).

5.1.1. Vanishing fractional Laplacian approximation of a stationary solution. Define the ini-
tial condition w0 = χEJ

as the characteristic function of the set

(5.1) EJ =

J⋃
j=0

[(
−2j − 3

2
,−2j − 1

2

)
∪
(
2j +

1

2
, 2j +

3

2

)]
,

and consider the initial value problems{
∂tu = ε∂

α/2
xx u, t > 0, x ∈ R,

u(0, x) = w0(x), x ∈ R,

{
∂tw = 0, t > 0, x ∈ R,
w(0, x) = w0(x), x ∈ R.

We observe that

F−1 (χEJ
) (ξ) =

ˆ
R
χEJ

(x)eixξdx =
J∑

j=0

(ˆ −2j− 1
2

−2j− 3
2

eixξdx+

ˆ 2j+ 3
2

2j+ 1
2

eixξdx

)

=
J∑

j=0

(
e−i(2j+1)ξ

ˆ −2j− 1
2

−2j− 3
2

ei(x+2j+1)ξdx+ ei(2j+1)ξ

ˆ 2j+ 3
2

2j+ 1
2

ei(x−2j−1)ξdx

)

=

J∑
j=0

(
e−i(2j+1)ξ + ei(2j+1)ξ

)ˆ 1
2

− 1
2

eixξdx

=
J∑

j=0

(
e−i(2j+1)ξ + ei(2j+1)ξ

) eiξ/2 − e−iξ/2

iξ
(5.2)

=
4

ξ
sin

(
ξ

2

)
Re

 J∑
j=0

ei(2j+1)ξ

 =
4

ξ
sin

(
ξ

2

)
Re

eiξ J∑
j=0

e2ijξ


=
4

ξ
sin

(
ξ

2

)
Re

(
eiξ
e2i(J+1)ξ − 1

e2iξ − 1

)
=

4

ξ
sin

(
ξ

2

)
Re

(
e2i(J+1)ξ − 1

eiξ − e−iξ

)

=
4

ξ
sin

(
ξ

2

)
Re

(
e2i(J+1)ξ − 1

2i sin(ξ)

)
=

2

ξ sin(ξ)
sin

(
ξ

2

)
Re
(
i− ie2i(J+1)ξ

)
=
2 sin(2(J + 1)ξ)

ξ sin(ξ)
sin

(
ξ

2

)
.
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We prove the following, which establishes the optimality of the estimate in (2.7)

Proposition 5.1. We have that

(5.3) inf
0<tε≤1, J≥1

∥u(t, ·)− w(t, ·)∥L1

Jσtε
> 0,

where

(5.4) σr =


r1/α, α ∈ (1, 2],

r ln(1/r), α = 1,

r, α ∈ (0, 1),

r ≥ 0.

It is clear that

w(t, x) = χEJ
(x), u(t, x) =

(
F−1

(
e−εt|·|α

)
∗ χEJ

)
(x),

and
w(t, x) ≥ u(t, x), x ∈ EJ ,

then, thanks to the Parseval Identity

0 ≤
ˆ
EJ

(w − u)dx =

ˆ
EJ

χEJ
dx−

ˆ
EJ

(
F−1

(
e−εt|·|α

)
∗ χEJ

)
dx

=

ˆ
EJ

χEJ
dx−

ˆ
R

(
F−1

(
e−εt|·|α

)
∗ χEJ

)
χEJ

dx

=

ˆ
EJ

χEJ
dx−

ˆ
R
F−1

(
e−εt|·|α

)
(χEJ

∗ χEJ
) dx

=

ˆ
R
(χEJ

)2 dx−
ˆ
R
e−εt|ξ|αF−1 (χEJ

∗ χEJ
) dξ

= 2π

ˆ
R

(
F−1 (χEJ

)
)2
dξ − 2π

ˆ
R
e−εt|ξ|α (F−1 (χEJ

)
)2
dξ

= 2π

ˆ
R

(
1− e−εt|ξ|α

) (
F−1 (χEJ

)
)2
dξ.

Therefore, using (5.2)

(5.5)

ˆ
EJ

(w − u)dx = 8π

ˆ
R

(
1− e−εt|ξ|α

) sin2(2(J + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ.

Lemma 5.1. For any given φ ∈ C∞
c (R) there holds

(5.6) lim
J→∞

1

J

ˆ
R
φ(ξ)

sin2(2(J + 1)ξ)

sin2(ξ)
dξ =

1

2π

∑
k∈Z

φ(kπ).

Proof. Let φ ∈ C∞
c (R) be given. Since φ has compact support and the function ξ 7→

sin2(2(J+1)ξ)

sin2(ξ)
is π-periodic, an argument based on a partition of unity allows us to assume

that

supp(φ) ⊂
[
−3π

4
,
3π

4

]
.

We rewrite the left hand side in (5.6) as follows

1

J

ˆ
R
φ(ξ)

sin2(2(J + 1)ξ)

sin2(ξ)
dξ =

1

J

ˆ 3π/4

−3π/4
φ(ξ)

sin2(2(J + 1)ξ)

sin2(ξ)
dξ

=4
J + 1

J

ˆ 3π(J+1)/4

−3π(J+1)/4
φ

(
z

J + 1

)
sin2(2z)

(2z)2

(
z

J+1

)2
sin2

(
z

J+1

)dz.
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Since
ˆ
R

sin2(2z)

(2z)2
dz =

1

8π
, and sup

z∈
[
− 3π(J+1)

4
,
3π(J+1)

4

]
(

z
J+1

)2
sin2

(
z

J+1

) =
9π2

8
,

the Dominated Convergence Theorem allows us to prove (5.6)

lim
J→∞

4
J + 1

J

ˆ 3π(J+1)/4

−3π(J+1)/4
φ

(
z

J + 1

)
sin2(2z)

(2z)2

(
z

J+1

)2
sin2

(
z

J+1

)dz = 4φ(0)

ˆ
R

sin2(2z)

(2z)2
dz =

φ(0)

2π
.

□

Define

(5.7) E(r, J) = 1

Jσr

ˆ
R

(
1− e−r|ξ|α

) sin2(2(J + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ,

where σr is defined in (5.4).
Thanks to (5.5) and (5.7), we have

∥u(t, ·)− w(t, ·)∥L1

Jσtε
≥ 1

Jσtε

ˆ
EJ

(w − u)dx = 8πE(tε, J),

then the proof of (5.3) relies on the following lemma.

Lemma 5.2. The following estimate holds

(5.8) inf
0<r≤1, J≥1

E(r, J) > 0.

The proof (consisting of a long case by case study) is postponed to Section 6.

5.1.2. On the L1 distance between the vanishing fractional Laplacian and vanishing Rosenau
approximations. Consider the initial value problems{

∂tu = ε∂
α/2
xx u, t > 0, x ∈ R,

u(0, x) = w0(x) = χEJ
(x), x ∈ R,

{
∂tv = εRα

ε (v), t > 0, x ∈ R,
v(0, x) = w0(x), x ∈ R,

which common initial condition w0 is again the characteristic function of the set EJ defined
in (5.1). In this section we only consider α in the range (0, 1] and our goal is to prove that
the convergence rates in Theorem 2.4 are optimal by showing the following

Proposition 5.2. For any fixed T > 0 we have that

(5.9) inf
0<t≤T,

0<ε≤1, J≥1

∥u(t, ·)− v(t, ·)∥L1

Jtσε
> 0,

where

(5.10) σε =


εα+1, α ∈ (0, 1/2),

ε3/2 ln(1/ε), α = 1/2,

ε2−α, α ∈ (1/2, 1].

We follow the same argument as in the proof of Lemma 5.1. In particular we have that

(5.11)

ˆ
EJ

(v − u)dx = 8π

ˆ
R

(
e
−εt

|ξ|α
1+εα|ξ|α − e−εt|ξ|α

)
sin2(2(J + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ.

We define

(5.12) E(t, ε, J) = 1

Jtσε

ˆ
R

(
e
−εt

|ξ|α
1+εα|ξ|α − e−tε|ξ|α

)
sin2(2(J + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ,
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where σε is defined in (5.10). As for any (t, x) ∈ R+ ×R v(t, x) ≥ u(t, x) the estimate (5.9) is
a direct consequence of (5.11), the definition of E in (5.12) and the inequality in the following
lemma, whose proof is postponed to Section 6.

Lemma 5.3. For any given T > 0

(5.13) inf
0<t≤T,

0<ε≤1, J≥1

E(t, ε, J) > 0.

5.2. Optimal convergence rates in the nonlinear, strictly convex case. This section
is devoted to the proof of Theorem 2.5. To make the computations as readable as possible we
focus on the Burgers’ equation, in which f(ξ) = ξ2/2, but the proof applies with very minor
modifications to the case of a general strictly convex flux. Consider the initial value problems{

∂tu+ ∂x

(
u2

2

)
= ε∂

α/2
xx u, t > 0, x ∈ R,

u(0, x) = w0(x), x ∈ R,

{
∂tw + ∂x

(
w2

2

)
= 0, t > 0, x ∈ R,

w(0, x) = w0(x), x ∈ R,
(5.14)

where w0 is a piecewise constant function defined as follows.

Let ℓ̃ > ℓ > 0 and {Jn}n∈N ⊂ N be a monotone increasing diverging sequence. For every
i ≥ 1 and 1 ≤ j ≤ Ji define the intervals Iij by

inf Iij =

(
2

(
j +

i−1∑
m=1

Jm

)
− i

)
ℓ+ (i− 1)ℓ̃, sup Iij = inf Iij + ℓ.

The initial condition w0 takes the form w0 =

∞∑
i=1

Ji∑
j=1

ciχIij , where the positive numbers ci

satisfy

(5.15)

∞∑
i=1

ciJi <∞.

Being the set Iij pairwise disjoint we have w0 ∈ L∞ ∩ L1 ∩BV (R).
We choose ℓ > 0 large enough so that when the dynamics is governed by the inviscid

conservation law the waves associated to the evolution of each of the non-zero components of
w0, ciχIij , do not interact before time T , i.e.,

(5.16) ℓ ≥ 2T
∥∥f ′(w0)

∥∥
L∞ = 2T max

i≥1
ci.

Consider the Cauchy problems given by the linearization of the equations1 about the state ci

and the truncated initial conditions wi
0 = ci

Ji∑
j=1

χIij{
∂tqi + ci∂xqi = ε∂

α/2
xx qi, t > 0, x ∈ R,

qi(0, x) = wi
0(x), x ∈ R,

{
∂tzi + ci∂xzi = 0, t > 0, x ∈ R,
zi(0, x) = wi

0(x), x ∈ R,

and the sets
Ii = (inf Ii1, sup IiJi) , Iti = Ii + cit.

We call ui and wi the solutions of the equations in (5.14) corresponding to the initial condition
wi
0, then we observe that

∥u(t, ·)− w(t, ·)∥L1 ≥ ∥u(t, ·)− w(t, ·)∥L1(Iti )

≥ ∥ui(t, ·)− wi(t, ·)∥L1(Iti )
− ∥u(t, ·)− ui(t, ·)∥L1(Iti )

− ∥wi(t, ·)− w(t, ·)∥L1(Iti )
.

(5.17)

1If f is a general strictly convex function we have to modify this part, but the only difference would be to
consider f ′(ci) as coefficients instead of ci.
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Thanks to (5.16) we have

∥wi(t, ·)− w(t, ·)∥L1(Iti )
= 0, t ∈ (0, T ],

moreover, using the results of [1] and the choice of ℓ

∥ui(t, ·)− u(t, ·)∥L1(Iti )

≤
ˆ
Iti+(−∥f ′(w0))∥L∞ ,∥f ′(w0))∥L∞ )t

(G(εt, ·) ∗ |u(0, ·)− ui(0, ·)|)(x)dx

≤
ˆ
Iti+(− ℓ

2
, ℓ
2
)
(G(εt, ·) ∗ |u(0, ·)− ui(0, ·)|)(x)dx

≤
∑

k ̸=i, k≥1

Jk∑
j=1

ck

ˆ
Iti+(− ℓ

2
, ℓ
2
)
(G(εt, ·) ∗ χIkj )(x)dx︸ ︷︷ ︸

Ekj

.

(5.18)

Therefore, using Lemma 5.1 in (5.17) we get

∥u(t, ·)− w(t, ·)∥L1 ≥ ∥u(t, ·)− w(t, ·)∥L1(Iti )

≥ ∥qi(t, ·)− zi(t, ·)∥L1(Iti )
−

∑
k ̸=i, k≥1

Jk∑
j=1

ckEkj

− ∥ui(t, ·)− qi(t, ·)∥L1(Iti )
− ∥wi(t, ·)− zi(t, ·)∥L1(Iti )

≥ CTJiciεt−
∑

k ̸=i, k≥1

Jk∑
j=1

ckEkj − ∥ui(t, ·)− qi(t, ·)∥L1(Iti )
− ∥wi(t, ·)− zi(t, ·)∥L1(Iti )

.

For the last two terms, we use the continuous dependence results with respect to the flux (see
[2, Theorem 3.1] for the nonlocal case)

∥ui(t, ·)− qi(t, ·)∥L1(Iti )
≤∥ui(0, ·)− qi(0, ·)∥L1︸ ︷︷ ︸

=0

+TV

 Ji∑
j=1

ciχIij

∥∥f ′ − ci
∥∥
L∞(0,ci)

t ≤ 2Jic
2
i t.

Arguing in the same way on ∥wi(t, ·)− zi(t, ·)∥L1(Iti )
we can conclude

(5.19) ∥u(t, ·)− w(t, ·)∥L1 ≥ Jicit(CT ε− 4ci)−
∑

k ̸=i, k≥1

Jk∑
j=1

ckEkj .

Let us now estimate Ekj from (5.18)

Ekj =
1

(εt)1/α

ˆ
R

(ˆ
Iti+(− ℓ

2
, ℓ
2
)
P

(
x− y

(εt)1/α

)
dx

)
χIkj (y)dy

≤ c

(εt)1/α

ˆ
Ikj

ˆ
Iti+(− ℓ

2
, ℓ
2
)

1

1 + |x−y|1+α

(εt)1+1/α

dx

 dy

≤cεt
ˆ
Ikj

(ˆ
Iti+(− ℓ

2
, ℓ
2
)

1

|x− y|1+α
dx

)
dy

≤2cεt

α
sign(i− k)

ˆ
Ikj

(
1

|y − inf Ii − cit+
ℓ
2 |α

− 1

|y − sup Ii − cit− ℓ
2 |α

)
dy
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≤2cεt

α

{
(inf Ii − sup Ikj − ℓ

2)
−α, i > k,

(inf Ikj − sup Ii − ℓ
2)

−α, i < k,

≤2cεt

α


((

2

(
i−1∑
m=k

Jm − j

)
+ 1

2

)
ℓ+ (i− k)(ℓ̃− ℓ)

)−α

, i > k,(
2

(
k−1∑

m=i+1
Jm + j − 1

)
ℓ+ (k − i)(ℓ̃− ℓ)

)−α

, i < k.

Hence, using (5.15),

∞∑
k ̸=i, k=1

Jk∑
j=1

ckEkj

≤ 2cεt

α

ci−1

Ji−1∑
j=1

1

(ℓ̃− ℓ
2)

α
+ ci+1

Ji+1∑
j=1

1

(ℓ̃− ℓ)α

+
i−2∑
k=1

Jk∑
j=1

ck((
2

i−1∑
m=k+1

Jm + 1
2

)
ℓ+ (i− k)(ℓ̃− ℓ)

)α

+

∞∑
k=i+2

Jk∑
j=1

ck((
2

k−1∑
m=i+1

Jm

)
ℓ+ (k − i)(ℓ̃− ℓ)

)α


≤ 2cεt

α

max{Ji−1ci−1, Ji+1ci+1}
(ℓ̃− ℓ)α

+
∞∑

k ̸=i, j−1, k=1

Jkck max

{
1

(2Ji−1ℓ)α
,

1

(2Ji+1ℓ)α

}
≤ cεt

(
max{Ji−1ci−1, Ji+1ci+1}

(ℓ̃− ℓ)α
+

1

ℓα
max

{
1

Jα
i−1

,
1

Jα
i+1

})
.

Using (5.19)

∥u(t, ·)− w(t, ·)∥L1 ≥ Jicitε

(
CT − 4ci

ε
− c

(ℓ̃− ℓ)α

max{Ji−1ci−1, Ji+1ci+1}
Jici

− c

ℓα
max

{
1

JiJα
i−1ci

,
1

JiJα
i+1ci

})
,

(5.20)

that holds for every t ∈ (0, T ), i ≥ 2, ε ∈ (0, 1) and any choice of Ji, ci and ℓ̃ satisfying (5.15)
and (5.16).

Consider σε as in (2.7) and let ω in C((0,+∞); (0,+∞)) be nondecreasing and such that
ω(ε) = o(σε), as in the statement of Theorem 2.5. We have to choose the indices i depending
on ε in such a way that (2.11) holds. Define

ω̃(ε) =
1

ε

ˆ 2ε

ε

√
σξω(ξ)dξ.

Being ω̃ continuous, increasing and positive we have

(5.21) lim
ε→0

ω̃(ε)

ω(ε)
= ∞, lim

ε→0

ω̃(ε)

σε
= 0.
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Indeed

ω̃(ε)

ω(ε)
≥
√
σεω(ε)

ω(ε)
=

√
σε
ω(ε)

,
ω̃(ε)

σε
=

1

ε

ˆ 2ε

ε

σξ
σε

√
ω(ξ)

σξ
dξ.

Define

i(ε) =

⌊√
σε
ω̃(ε)

⌋
, S(i) = {ε ∈ (0, 1); i = i(εσ)},

for i ≥ min
ε∈(0,1)

i(ε), where, being ε 7→ σε increasing, σ 7→ εσ is the inverse of ε 7→ σε. Notice

that thanks to (5.21), S(i) ̸= ∅. Moreover, we define

ci =min
{
CT,αminS(i), i−

2(1+α)
α

}
, Ji = ⌈c−1

i i−2⌉,(5.22)

where CT,α will be chosen later. Clearly,

(5.23) i−2 ≤ Jici ≤ 2i−2,

and since σε ∈ S(i(ε)) we have

(5.24) ci(ε) ≤ CT,αminS(i(ε)) ≤ CT,ασε.

Clearly, we have that (5.15) holds. Moreover, thanks to (5.21)

(5.25) Ji(ε)ci(ε)σε ≥ i(ε)−2σε =
σε⌊√
σε
ω̃(ε)

⌋2 ≥ σε
σε
ω̃(ε)

= ω̃(ε).

The remaining part of the proof consists in the analysis of three cases, depending on the value
of α.
Case α < 1: Using (5.20) and choosing CT,α = CT /8

lim inf
ε→0

∥u(t, ·)− w(t, ·)∥L1

ω(ε)

≥ t lim inf
ε→0

Ji(ε)ci(ε)ε

ω(ε)

(
CT −

4ci(ε)

ε
− c

(ℓ̃− ℓ)α

max{Ji(ε)−1ci(ε)−1, Ji(ε)+1ci(ε)+1}
Ji(ε)ci(ε)

− c

ℓα
max

{
1

Ji(ε)J
α
i(ε)−1ci(ε)

,
1

Ji(ε)J
α
i(ε)+1ci(ε)

})
.

Thanks to (5.25) in order to prove (2.11) we have to show that

lim sup
ε→0

(
CT −

4ci(ε)

ε
− c

(ℓ̃− ℓ)α

max{Ji(ε)−1ci(ε)−1, Ji(ε)+1ci(ε)+1}
Ji(ε)ci(ε)

− c

ℓα
max

{
1

Ji(ε)J
α
i(ε)−1ci(ε)

,
1

Ji(ε)J
α
i(ε)+1ci(ε)

})
> 0.

(5.26)

From to (5.22) and (5.23) we deduce that

Ji−1ci−1

Jici
≤ 2

(
i

i− 1

)2

≤ 4,

and
1

JiJα
i−1ci

≤ Ji−1ci−1

Jici

1

J1+α
i−1 ci−1

≤ 4(
1

ci−1(i−1)2

)1+α
ci−1

≤ 4cαi−1(i− 1)2(1+α) ≤ 4,

so that

CT − 4ci
ε

− c

(ℓ̃− ℓ)α

max{Ji−1ci−1, Ji+1ci+1}
Jici

− c

ℓα
max

{
1

JiJα
i−1ci

,
1

JiJα
i+1ci

}
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≤CT − 4ci
ε

− 4c

(ℓ̃− ℓ)α
− 4c

ℓα
.

Since, thanks to (5.22) 4ci/ε ≤ CT /2, choosing ℓ̃ and ℓ large enough we have (5.26).

Case α > 1: Since σtε = t1/ασε = (tε)1/α using (5.20) and (5.23) for t ≤ T and ε small enough

∥u(t, ·)− w(t, ·)∥L1(Iti )
≥ Ji(ε)ci(ε)σε

(
CT t

1/α − 4CT,αt
)

− c

(ℓ̃− ℓ)α
max{Ji(ε)−1ci(ε)−1, Ji(ε)+1ci(ε)+1}tε−

c

ℓα
max{J−α

i(ε)−1, J
−α
i(ε)+1}tε

≥ (tε)1/αJi(ε)ci(ε)

(
CT − 4CT,αt

α−1
α

− c

(ℓ̃− ℓ)α

max{Ji(ε)−1ci(ε)−1, Ji(ε)+1ci(ε)+1}
Ji(ε)ci(ε)

(tε)
α−1
α

− c

ℓα

max{J−α
i(ε)−1, J

−α
i(ε)+1}

Ji(ε)ci(ε)
(tε)

α−1
α

)
.

(5.27)

Choosing

CT,α =
CT

8T
α−1
α

,

we gain

∥u(t, ·)− w(t, ·)∥L1(Iti )

≥ t1/αω̃(ε)

(
CT

2
− c

(ℓ̃− ℓ)α

max{Ji(ε)−1ci(ε)−1, Ji(ε)+1ci(ε)+1}
Ji(ε)ci(ε)

(Tε)
α−1
α

− c

ℓα

max{J−α
i(ε)−1, J

−α
i(ε)+1}

Ji(ε)ci(ε)
(Tε)

α−1
α

)
.

(5.28)

Since

c

(ℓ̃− ℓ)α

max{Ji−1ci−1, Ji+1ci+1}
Jici

+
c

ℓα
max{J−α

i−1, J
−α
i+1}

Jici
≤ 4c

(ℓ̃− ℓ)α
+

4c

ℓα
.

Thanks to (5.25) and (5.28), we obtain the desired estimate provided that ℓ̃ and ℓ are large
enough.
Case α = 1: Since

σtε = tε ln(1/ε) + tε ln(1/t) = tσε − εt ln(t),

(5.27) gives

∥u(t, ·)− w(t, ·)∥L1(Iti )

≥ CT tJi(ε)ci(ε)σε − 4CT,1tJi(ε)ci(ε)σε − CT,1εt| ln(t)|Ji(ε)ci(ε)
− c

ℓ̃− ℓ
max{Ji(ε)−1ci(ε)−1, Ji(ε)+1ci(ε)+1}tε−

c

ℓ
max{J−1

i(ε)−1, J
−1
i(ε)+1}tε

≥ tJi(ε)ci(ε)σε

(
CT − 4CT,1 −

CT,1| ln(t)|
ln(1/ε)

− c

ℓ̃− ℓ

max{Ji(ε)−1ci(ε)−1, Ji(ε)+1ci(ε)+1}
ln(1/ε)

−c
ℓ

max{J−α
i(ε)−1, J

−α
i(ε)+1}

ln(1/ε)

)

≥ tω̃(ε)

(
CT − 4CT,1 −

CT,1| ln(t)|
ln(1/ε)
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− c

ℓ̃− ℓ

max{Ji(ε)−1ci(ε)−1, Ji(ε)+1ci(ε)+1}
ln(1/ε)

−c
ℓ

max{J−α
i(ε)−1, J

−α
i(ε)+1}

ln(1/ε)

)
,

thanks to (5.21) we have (2.10).

6. Technical details

6.1. Proof of Lemma 5.2. Let {(rn, Jn)}n ⊂ (0, 1] × [1,∞) be a minimizing sequence,
namely

(6.1) inf
0<r≤1, J≥1

E(r, J) = lim
n

E(rn, Jn).

Passing to a subsequence, we can assume that

∃ lim
n
rn = r∞ ∈ [0, 1], ∃ lim

n
Jn = J∞ ∈ [1,∞].

We distinguish eigth cases.

CASE 1. Assume
r∞ = 0, J∞ = ∞, α < 1.

We have

E(rn, Jn) =
1

Jnrn

ˆ
R

(
1− e−rn|ξ|α

) sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

=
1

Jn

ˆ
R

ˆ 1

0
|ξ|αe−srn|ξ|α sin

2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
ds dξ

≥ 1

Jn

ˆ r
−1/α
n

−r
−1/α
n

ˆ 1

0
|ξ|αe−srn|ξ|α sin

2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
ds dξ

≥ 1

eJn

ˆ r
−1/α
n

−r
−1/α
n

|ξ|α−2 sin
2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ.

Thanks to (5.6),

lim
n

E(rn, Jn) ≥
1

2eπ

∑
k∈Z

|kπ|α−2 sin2
(
kπ

2

)
=

1

2eπ3−α

∑
k∈Z

|2k + 1|α−2 > 0,

using to (6.1), we have (5.8).
CASE 2. Assume

r∞ = 0, J∞ = ∞, α > 1.

Since

c0 = inf
z∈[π/2,3π/2]

1− e−|z|α

z2
> 0,

and the function s 7→ sin2(2(Jn+1)s)

sin2(s)
sin2

(
s
2

)
is 2π− periodic, we have

E(rn, Jn) =
1

Jnr
1/α
n

ˆ
R

(
1− e−rn|ξ|α

) sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

=
1

Jn

ˆ
R

(
1− e−|z|α

) sin2(2(Jn + 1)r
−1/α
n z)

z2 sin2(r
−1/α
n z)

sin2

(
r
−1/α
n z

2

)
dz

≥ 1

Jn

ˆ 3π
2

π
2

(
1− e−|z|α

) sin2(2(Jn + 1)r
−1/α
n z)

z2 sin2(r
−1/α
n z)

sin2

(
r
−1/α
n z

2

)
dz

≥ c0
Jn

ˆ 3π
2

π
2

sin2(2(Jn + 1)r
−1/α
n z)

sin2(r
−1/α
n z)

sin2

(
r
−1/α
n z

2

)
dz
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=
c0r

1/α
n

Jn

ˆ 3πr
−1/α
n
2

πr
−1/α
n
2

sin2(2(Jn + 1)s)

sin2(s)
sin2

(s
2

)
ds

≥c0r
1/α
n

Jn

ˆ πr
−1/α
n
2

+2π

⌊
1

2r
1/α
n

⌋
πr

−1/α
n
2

sin2(2(Jn + 1)s)

sin2(s)
sin2

(s
2

)
ds

=
c0r

1/α
n

Jn

⌊
1

2r
1/α
n

⌋ˆ πr
−1/α
n
2

+2π

πr
−1/α
n
2

sin2(2(Jn + 1)s)

sin2(s)
sin2

(s
2

)
ds

=
c0r

1/α
n

Jn

⌊
1

2r
1/α
n

⌋ˆ 2π

0

sin2(2(Jn + 1)s)

sin2(s)
sin2

(s
2

)
ds.

Thanks to (5.6),

lim
n

E(rn, Jn) ≥ lim
n

c0r
1/α
n

Jn

⌊
1

2r
1/α
n

⌋ˆ 2π

0

sin2(2(Jn + 1)s)

sin2(s)
sin2

(s
2

)
ds =

c0
4π

> 0.

CASE 3. Assume

r∞ = 0, J∞ = ∞, α = 1.

We have

E(rn, Jn) =
1

Jnrn ln(1/rn)

ˆ
R

(
1− e−rn|ξ|

) sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ 1

Jn ln(1/rn)

ˆ 1/rn

−1/rn

ˆ 1

0
e−rn|ξ|s sin

2(2(Jn + 1)ξ)

|ξ| sin2(ξ)
sin2

(
ξ

2

)
ds dξ

≥ 1

Jne ln(1/rn)

ˆ 1/rn

−1/rn

sin2(2(Jn + 1)ξ)

|ξ| sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ 1

Jne ln(1/rn)

∑
k≥0, (2k+ 3

2
)π≤ 1

rn

ˆ (2k+ 3
2
)π

(2k+ 1
2
)π

sin2(2(Jn + 1)ξ)

|ξ| sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ 1

Jne2 ln(1/rn)

∑
k≥0, (2k+ 3

2
)π≤ 1

rn

ˆ (2k+ 3
2
)π

(2k+ 1
2
)π

sin2(2(Jn + 1)ξ)

|ξ| sin2(ξ)
dξ

≥ 1

Jne2 ln(1/rn)

∑
k≥0, (2k+ 3

2
)π≤ 1

rn

1

(2k + 3
2)π

ˆ (2k+ 3
2
)π

(2k+ 1
2
)π

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ

=
1

Jne2 ln(1/rn)

ˆ π
2

−π
2

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ

∑
k≥0, (2k+ 3

2
)π≤ 1

rn

1

(2k + 3
2)π

.

Since

c0 = lim
n

1

ln(1/rn)

∑
k≥0, (2k+ 3

2
)π≤ 1

rn

1

(2k + 3
2)π

> 0.

Thanks to (5.6),

lim
n

E(rn, Jn) ≥ lim
n

c0
Jn2e

ˆ π
2

−π
2

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ =

c0
4eπ

> 0.

CASE 4. Assume

r∞ > 0, J∞ = ∞.
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Since it is not restrictive to assume

r0 = inf
n∈N

rn > 0,

we have

E(rn, Jn) ≥
1

Jnλα

ˆ
R

(
1− e−r0|ξ|α

) sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ,

where

λα =

{
1, if α ̸= 1,

1/e, if α = 1.

Thanks to (5.6),

lim
n

E(rn, Jn) ≥
1

2π3λα

∑
k∈Z

1− e−r0|kπ|α

k2
sin2

(
kπ

2

)
=

1

2π3λα

∑
k∈Z

1− e−r0|(2k+1)π|α

(2k + 1)2
> 0.

CASE 5. Assume

r∞ = 0, J∞ <∞, α < 1.

We have

lim
n

E(rn, Jn) = lim
n

1

Jnrn

ˆ
R

(
1− e−rn|ξ|α

) sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

=
1

J∞

ˆ
R
|ξ|α sin

2(2(J∞ + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ > 0.

CASE 6. Assume

r∞ = 0, J∞ <∞, α > 1.

Arguing as in CASE 2 we get

lim
n

E(rn, Jn) ≥ lim
n

c0r
1/α
n

Jn

[
1

2r
1/α
n

] ˆ 2π

0

sin2(2(Jn + 1)s)

sin2(s)
sin2

(s
2

)
ds

=
c0

2J∞

ˆ 2π

0

sin2(2(J∞ + 1)s)

sin2(s)
sin2

(s
2

)
ds > 0.

CASE 7. Assume

r∞ = 0, J∞ <∞, α = 1.

Arguing as in CASE 3 we get

lim
n

E(rn, Jn) ≥ lim
n

c0
Jn2e

ˆ π
2

−π
2

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ =

c0
J∞2e

ˆ π
2

−π
2

sin2(2(J∞ + 1)ξ)

sin2(ξ)
dξ > 0.

CASE 8. Assume

r∞ > 0, J∞ <∞.

We have

lim
n

E(rn, Jn) =
1

J∞σr∞

ˆ
R

(
1− e−r∞|ξ|α

) sin2(2(J∞ + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ > 0.

In this way, thanks to (6.1), (5.8) is completely proved.
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6.2. Proof of Lemma 5.3. Let {(tn, εn, Jn)}n ⊂ (0, T ] × (0, 1] × [1,∞) be a minimizing
sequence, namely

(6.2) inf
0<t≤T,

0<ε≤1, J≥1

E(t, ε, J) = lim
n

E(tn, εn, Jn).

Passing to a subsequence, we can assume that

∃ lim
n
tn = t∞ ∈ [0, T ], ∃ lim

n
εn = ε∞ ∈ [0, 1], ∃ lim

n
Jn = J∞ ∈ [1,∞].

We distinguish eigth cases.

CASE 1. Assume
ε∞ = 0, J∞ = ∞, α < 1/2.

We have

E(tn, εn, Jn) =
1

Jntnε
1+α
n

ˆ
R

(
e
−tnεn

|ξ|α
1+εαn |ξ|α − e−tnεn|ξ|α

)
sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

=
1

Jn

ˆ
R

ˆ 1

0

|ξ|2α

1 + εαn|ξ|α
exp

(
−tnεn|ξ|α

1 + sεαn|ξ|α

1 + εαn|ξ|α

)
sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
ds dξ

≥ 1

Jn

ˆ
R

ˆ 1

0

|ξ|2(α−1)

1 + |ξ|α
e−T |ξ|α sin

2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
ds dξ.

Thanks to (5.6),

lim
n

E(tn, εn, Jn) ≥
1

2π

∑
k∈Z

|kπ|2(α−1)

1 + |kπ|α
e−T |kπ|α sin2

(
kπ

2

)

=
1

2π3−α

∑
k∈Z

|2k + 1|2(α−1)

1 + |(2k + 1)π|α
e−T |(2k+1)π|α > 0,

using to (6.2), we have (5.13).
CASE 2. Assume

ε∞ = 0, J∞ = ∞, 1/2 < α ≤ 1.

Since

(6.3) c0 = inf
z∈[π/2,3π/2]

|z|2(α−1)

1 + |z|α
e−T |z|α > 0,

and the function s 7→ sin2(2(Jn+1)s)

sin2(s)
sin2

(
s
2

)
is 2π−periodic, we have

E(tn, εn, Jn) =
1

Jntnε
2−α
n

ˆ
R

(
e
−tnεn

|ξ|α
1+εαn |ξ|α − e−tnεn|ξ|α

)
sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

=
1

Jnε
1−2α
n

ˆ
R

ˆ 1

0

|ξ|2α

1 + εαn|ξ|α
exp

(
−tnεn|ξ|α

1 + sεαn|ξ|α

1 + εαn|ξ|α

)
sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
ds dξ

=
1

Jn

ˆ
R

ˆ 1

0

|z|2(α−1)

1 + |z|α
exp

(
−tnε1−α

n |z|α 1 + s|z|α

1 + |z|α

)
sin2(2(Jn + 1)zε−1

n )

sin2(zε−1
n )

sin2
(

z

2εn

)
ds dz

≥ 1

Jn

ˆ 3π
2

π
2

|z|2(α−1)

1 + |z|α
e−T |z|α sin

2(2(Jn + 1)zε−1
n )

sin2(zε−1
n )

sin2
(

z

2εn

)
dz

≥ c0
Jn

ˆ 3π
2

π
2

sin2(2(Jn + 1)zε−1
n )

sin2(zε−1
n )

sin2
(

z

2εn

)
dz =

c0εn
Jn

ˆ 3π
2εn

π
2εn

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ

≥c0εn
Jn

ˆ π
2εn

+2π
⌊

1
2εn

⌋
π

2εn

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ
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=
c0εn
Jn

⌊
1

2εn

⌋ ˆ 2π

0

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ.

Thanks to (5.6),

lim
n

E(tn, εn, Jn) ≥ lim
n

c0εn
Jn

⌊
1

2εn

⌋ ˆ 2π

0

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ =

c0
4π

> 0.

CASE 3. Assume

ε∞ = 0, J∞ = ∞, α = 1/2.

Computations similar to the ones we used in the cases above give us

E(tn, εn, Jn)

=
1

Jntnε
3/2
n ln(1/εn)

ˆ
R

(
e
−tnεn

|ξ|1/2

1+
√

εn|ξ| − e−tnεn|ξ|1/2
)

sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ 1

2Jn ln(1/εn)

ˆ ε−1
n

−ε−1
n

e−T sin2(2(Jn + 1)ξ)

|ξ| sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ 1

4JneT ln(1/εn)

∑
k≥0,(2k+ 3

2)π≤ε−1
n

ˆ (2k+ 3
2)π

(2k+ 1
2)π

sin2(2(Jn + 1)ξ)

|ξ| sin2(ξ)
dξ

≥ 1

4JneT ln(1/εn)

∑
k≥0,(2k+ 3

2)π≤ε−1
n

1(
2k + 3

2

)
π

ˆ (2k+ 3
2)π

(2k+ 1
2)π

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ

=
1

4JneT ln(1/εn)

ˆ π
2

−π
2

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ

∑
k≥0,(2k+ 3

2)π≤ε−1
n

1(
2k + 3

2

)
π
.

Since

(6.4) c0 = lim
n

1

ln(1/εn)

∑
k≥0, (2k+ 3

2
)π≤ε−1

n

1

(2k + 3
2)π

> 0.

Thanks to (5.6),

lim
n

E(tn, εn, Jn) ≥ lim
n

c0
4JneT

ˆ π
2

−π
2

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ =

c0
8eTπ

> 0.

CASE 4. Assume

ε∞ > 0, J∞ = ∞,

so that it is not restrictive to assume

inf
n∈N

εn = ε0 > 0.

Since the function ε 7→ σε is bounded and increasing on [0, 1] we have

E(tn, εn, Jn) =
1

Jntnσεn

ˆ
R

(
e
−tnεn

|ξ|α
1+εαn |ξ|α − e−tnεn|ξ|α

)
sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ 1

Jn∥σ∗∥L∞

ˆ
R

ˆ 1

0
ε1+α
n

|ξ|2(α−1)

1 + εαn|ξ|α
exp

(
−tnεn|ξ|α

1 + sεαn|ξ|α

1 + εαn|ξ|α

)
sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
ds dξ

≥ ε1+α
0

Jn∥σ∗∥L∞

ˆ
R

|ξ|2(α−1)

1 + |ξ|α
e−T |ξ|α sin

2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ.
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Thanks to (5.6)

lim
n

E(tn, εn, Jn) ≥ lim
n

ε1+α
0

2π∥σ∗∥L∞

∑
k∈Z

(kπ)2(α−1)

1 + (kπ)α
e−T (kπ)α sin

(
kπ

2

)

= lim
n

ε1+α
0

2π∥σ∗∥L∞

∑
k∈Z

((2k + 1)π)2(α−1)

1 + ((2k + 1)π)α
e−T ((2k+1)π)α > 0.

CASE 5. Assume

ε∞ = 0, J∞ < +∞, α < 1/2.

We have

lim
n

E(tn, εn, Jn) = lim
n

1

Jntnε
1+α
n

ˆ
R

(
e
−tnεn

|ξ|α
1+εαn |ξ|α − e−tnεn|ξ|α

)
sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

=
1

J∞

ˆ
R
|ξ|2(α−1) sin

2(2(J∞ + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ > 0.

CASE 6. Assume

ε∞ = 0, Jn ≤ J∞ < +∞, 1/2 < α ≤ 1.

Using the same approach as in CASE 2 we have that

lim
n

E(tn, εn, Jn) = lim
n

1

Jntnε
2−α
n

ˆ
R

(
e
−tnεn

|ξ|α
1+εαn |ξ|α − e−tnεn|ξ|α

)
sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ lim
n

c0εn
Jn

⌊
1

2εn

⌋ ˆ 2π

0

sin2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ

=
c0

2J∞

ˆ 2π

0

sin2(2(J∞ + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ > 0,

where c0 in the constant defined in (6.3).
CASE 7. Assume

ε∞ = 0, Jn ≤ J∞ < +∞, α = 1/2.

Arguing as in CASE 3 we obtain

lim
n

E(tn, εn, Jn)

= lim
n

1

Jntnε
3/2
n ln(1/εn)

ˆ
R

(
e
−tnεn

|ξ|1/2

1+
√

εn|ξ| − e−tnεn|ξ|1/2
)

sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ lim
n

c0
4JneT

ˆ π
2

−π
2

sin2(2(Jn + 1)ξ)

sin2(ξ)
dξ =

c0
4J∞eT

ˆ π
2

−π
2

sin2(2(J∞ + 1)ξ)

sin2(ξ)
dξ > 0,

where c0 in the constant defined in (6.4).
CASE 8. Assume

εn ≥ ε0 > 0, Jn ≤ J∞ < +∞.

Then we simply have

lim
n

E(tn, εn, Jn) = lim
n

1

Jntnσεn

ˆ
R

(
e
−tnεn

|ξ|α
1+εαn |ξ|α − e−tnεn|ξ|α

)
sin2(2(Jn + 1)ξ)

ξ2 sin2(ξ)
sin2

(
ξ

2

)
dξ

≥ lim
n

ε1+α
0

Jn∥σ∗∥L∞

ˆ
R

|ξ|2(α−1)

1 + |ξ|α
e−T |ξ|α sin

2(2(Jn + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ

=
ε1+α
0

J∞∥σ∗∥L∞

ˆ
R

|ξ|2(α−1)

1 + |ξ|α
e−T |ξ|α sin

2(2(J∞ + 1)ξ)

sin2(ξ)
sin2

(
ξ

2

)
dξ > 0.

The estimates above prove (6.2), thus (5.13).
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Appendix A. Some tools of fractional calculus

Most of the material in this section is well known and appears in different research papers,
the interested reader may refer to [5, 15, 20]. For this reason some of the proofs are omitted.

A.1. The fractional Rosenau operator is a Lévy operator.
The function Gα ∈ C∞((0,+∞)× Rd), given by

Gα(t, x) = F−1
(
e−t|·|α

)
(x),

is the fundamental solution of the fractional heat equation. This means that for any given
initial condition ϕ0 ∈ C∞

c (Rd), the unique C∞
b (R+ × Rd) solution of the Cauchy problem{

∂tϕ−∆α/2ϕ = 0, (t, x) ∈ R+ × Rd,

ϕ(0, x) = ϕ0(x), x ∈ Rd,

is given by ϕ(t, x) = Gα(t, ·) ∗ ϕ0(x).
It is easy to show that for any (t, x) ∈ R+×Rd, Gα(t, x) = t−

d
αGα(1, t

− 1
αx). Exploiting this

equality, we define Pα(x) = Gα(1, x) and we immediately have that G(t, x) = t
d
αPα(t

− 1
αx).

The function Gα(t, ·), hence Pα, is radially symmetric, positive and its L1-norm equals 1.
Moreover, by explicit computations one can show that there exists kα > 0 such that for all

t > 0,

∥∇Pα∥L1 ≤ kα, so that ∥∇Gα(t, ·)∥L1 ≤ t−
1
αkα.

Finally, we also use the following lemma, whose proof is deferred to Section A.2.

Lemma A.1. The following equality holds

(A.1) lim
|x|→∞

|x|d+αPα(x) = cd(α).

We call gα the function given by

(A.2) gα(x) = F−1

(
1

1 + | · |α

)
(x).

We recall that for any given ψ ∈ C∞
b (Rd), the unique C∞

b (Rd) solution of

ϕ−∆α/2ϕ = ψ,

is given by ϕ(x) = gα(·) ∗ ψ(x).

Lemma A.2. The following statements hold

(1) The function gα defined in (A.2) can be expressed in the form

(A.3) gα(x) =

ˆ ∞

0
e−tGα(t, x) dt =

ˆ ∞

0
e−tt−

d
αPα

( x

t1/α

)
dt.

(2) gα is radially symmetric, strictly positive and ∥gα∥L1 = 1.
(3) We have

(A.4) lim
|x|→∞

|x|d+αgα(x) = cd(α), Mα := sup
x∈Rd

|x|d+αgα(x) ≤ sup
x∈Rd

|x|d+αPα(x).

Proof. (1) The equalities in (A.3) follow from the definition and properties of Gα and the
Fubini-Tonelli Theorem, asˆ ∞

0
e−tGα(t, x) dt =

ˆ ∞

0
e−tt−

d
αGα

(
1,

x

t1/α

)
dt

=

ˆ ∞

0

1

(2π)d

ˆ
R
e−t(1+|ξ|α)eix·ξ dξ dt
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=
1

(2π)d

ˆ
R

(ˆ ∞

0
e−t(1+|ξ|α) dt

)
eix·ξ dξ

=
1

(2π)d

ˆ
R

eix·ξ

1 + |ξ|α
dξ = F−1

(
1

1 + | · |α

)
(x).

(2) The function gα is radially symmetric and takes positive values since so does Pα.
Moreover,

∥gα∥L1 =

ˆ ∞

0
e−t∥Gα(t, ·)∥L1 dt =

ˆ ∞

0
e−t dt = 1.

(3) To prove (A.4) we remark first that

(A.5) |x|d+αgα(x) =

ˆ ∞

0
e−tt

∣∣∣ x
t1/α

∣∣∣d+α
Pα

( x

t1/α

)
dt,

then the equality in (A.1) and the dominated convergence theorem allow us to con-
clude.

□

Lemma A.3. For any given ϕ ∈ C∞
c (Rd) the fractional Rosenau operator appearing in the

regularized problem (1.6)

Rα
ε (ϕ)(x) = −F−1

(
| · |α

1 + εα| · |α
F(ϕ)

)
(x),

admits the following integral representation

Rα
ε (ϕ)(x) =

ˆ
Rd

(ϕ(x+ z)− ϕ(x))
gεα(z)

εα
dz.

Moreover, Rα
ε is a Lévy diffusion operator associated to the measure ν(z) = ε−αgεα(z) dz,

where

gεα(x) =
gα(x/ε)

εd
= F−1

(
1

1 + εα| · |α

)
(x).

Finally, we have that

(A.6) lim
ε→0

Rα
ε (ϕ) = ∆α/2ϕ, strongly in L1(Rd) and a.e. in Rd.

Proof.

Rα
ε (ϕ)(x) = −F−1

(
| · |α

1 + εα| · |α
F(ϕ)

)
(x)

= −ϕ(x)
εα

+
1

εα

(
F−1

(
1

1 + εα| · |α

)
∗ ϕ
)
(x)

= −ϕ(x)
εα

+
1

εα+d
(gεα ∗ ϕ) (x)

= −ϕ(x)
εα

+
1

εα+d

ˆ d

R
ϕ(x+ z)gεα(z) dz

=

ˆ
Rd

(ϕ(x+ z)− ϕ(x))
gεα(z)

εα
dz,



FROM VANISHING VISCOSITY TO ROSENAU APPROXIMATION 29

since ∥gεα∥L1 = 1, see Lemma A.2. Due to the radial symmetry of gεα we have that for any
given ϕ ∈ C∞

c (Rd) and r > 0

(A.7)

Rα
ε (ϕ)(x) =

ˆ
Rd

(ϕ(x+ z)− ϕ(x))
gεα(z)

εα
dz

=

ˆ
|z|>r

(ϕ(x+ z)− ϕ(x))

(
|z|
ε

)d+α

gα

(z
ε

) dz

|z|d+α

+

ˆ
|z|<r

(ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z)
(
|z|
ε

)d+α

gα

(z
ε

) dz

|z|d+α
.

Using the estimates in (A.4) we observe that the integrands in (A.7) are dominated by inte-
grable functions, so that

lim
ε→0

Rα
ε (ϕ)(x) =cd(α)

ˆ
|z|>r

(ϕ(x+ z)− ϕ(x))
dz

|z|d+α

+ cd(α)

ˆ
|z|<r

(ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z) dz

|z|d+α
,

which gives us the a.e. convergence in (A.6). The same argument shows that the convergence
holds with respect to the strong topology of L1(Rd). □

A.2. Bessel functions. We recall that the Bessel function Jγ , is the function of C∞(C,C)
defined as

Jγ(z) =

∞∑
n=0

(−1)n

n! Γ(n+ γ + 1)

(z
2

)2n+γ
.

We are only interested in the case in which γ = d/2 for d ∈ N, and in this2 case z ∈ R implies
Jd/2(z) ∈ R. In the following we will make use of some classical properties of Jγ , in particular

(A.8) (zγJγ)
′ = zγJγ−1,

and the following Theorem on the Fourier transform of radially symmetric functions

Theorem A.1. Let f ∈ L1(Rd) ∩ L2(Rd) be a radially symmetric function then

(A.9) F−1(f)(x) =
1

(2π)
d
2 |x|

d
2
−1

ˆ
R+

f(r)r
d
2J d

2
−1(r|x|) dr.

Proof of Lemma A.1. Since Pα(x) = F−1(e−|·|α), from Theorem A.1, we have

(A.10)

|x|d+αPα(x) =
|x|d+α

(2π)
d
2 |x|

d
2
−1

ˆ
R+

e−rαr
d
2J d

2
−1(r|x|) dr

=
|x|α + 1

(2π)
d
2

ˆ
R+

e−rα (r|x|)
d
2J d

2
−1(r|x|)︸ ︷︷ ︸

= 1
|x|

(
(r|x|)

d
2 J d

2
(r|x|)

)′

dr

integrating by parts =
α|x|α

(2π)
d
2

ˆ
R+

rα−1e−rα(r|x|)
d
2J d

2
(r|x|) dr

change variable s = r|x| =
α

(2π)
d
2

ˆ
R+

e
− sα

|x|α s
d
2
+α−1J d

2
(s) ds

2But we also have that J−1/2(z) =
(

2
πz

)1/2
cos(z) ∈ R is z ∈ R.
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From a result on Bessel functions of the third kind in [4, Sect. 7.7.3, (27)] we have

(A.11)

lim
|x|→∞

|x|d+αPα(x) = lim
p→0+

α

(2π)
d
2

ˆ
R+

e−psαs
d
2
+α−1J d

2
(s) ds

=
α2α−1

π
d
2
+1

sin
(απ

2

)
Γ

(
d+ α

2

)
Γ
(α
2

)
.

We use Euler Reflection Formula

Γ(z)Γ(1− z) =
π

sin(πz)
, for z /∈ Z,

and we get

(A.12) lim
|x|→∞

|x|d+αPα(x) =
α2α−1

π
d
2

Γ
(
d+α
2

)
Γ
(
1− α

2

) = cd(α).

□

A.3. Fractional gradient. In this last part of the Appendix we collect some results on the
fractional gradient.

Lemma A.4. For α ∈ (0, 1), we define the function ξ 7→ h(ξ) = ξ|ξ|α−1, for ξ ∈ Rd, and the
fractional gradient of ϕ ∈ L∞(Rd) by

(A.13) ∇αϕ = F−1 (ih(·)F(ϕ)) .

This is a Lévy operator and, for any x in Rd, the following integral representation holds

(A.14) ∇αϕ(x) = cd(α)PV

ˆ
Rd

(ϕ(x+ z)− ϕ(x))
z

|z|d+α+1
dz.

Lemma A.5. Fix α ∈ (0, 1]. Then for any 0 < β < α < 1, ∇βgα ∈ L1(Rd).

Proof. From the explicit formula for ∇β in Lemma A.4, equation (A.14), is not difficult to
check that ∇βPα ∈ L1(Rd). Then we have

∇βgα(x) =

ˆ ∞

0
e−tt−

1+β
α ∇βPα

( x

t1/α

)
dt,

so that

∥∇βgα∥L1 =

ˆ ∞

0
e−tt−

β
α dt∥∇βPα∥L1 = Γ

(
1− β

α

)
∥∇βPα∥L1 < +∞.

□

Appendix B. Alternative proofs of Lemmas 3.1 and 3.2 in 1-D

This appendix contains alternative proofs of Lemmas 3.1 and 3.2 which rely on a purely
PDE approach which does not involve Bessel functions but only works in one space dimension.

Proof of Lemma 3.1. For any x ∈ R+ we have, by definition of Pα and basic symmetry prop-
erties

xα+1Pα(x) = xα+1F−1
(
e−|·|α

)
(x) = xα+1 1

π

ˆ +∞

0
e−ξα cos(xξ) dξ.

Integrating by parts we get

(B.1)

xα+1Pα(x) =
1

π
xα
ˆ +∞

0
αξα−1e−ξα sin(xξ) dξ

= (xξ)α) =
1

π

ˆ +∞

0
e−τ/xα

sin(τ1/α) dτ = Im

(
1

π

ˆ +∞

0
eiτ

1/α−τ/xα
dτ

)
,
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where we use the change of variable τ = (xξ)α. We fix a representation for the logarithm, so

to precise the meaning of the function τ 7→ τ1/α = exp

(
ln(τ)

α

)
, then we observe that the

function τ 7→ eiτ
1/α−τ/xα

is holomorphic on C \ R−. Therefore, we can compute the value of
the integral on the right hand side of (B.1) by a change of path. Consider θ > 0 small enough,
R > 0 fixed and the closed path R ∋ s 7→ γ(s) ∈ C given by

γ(s) =


s, s ∈ [0, R],

Rei(s−R), s ∈ (R,R+ θ],

(2R+ θ − s)eiθ, s ∈ (R+ θ, 2R+ θ].

We clearly have that

(B.2)

0 =

ˆ
γ
eiτ

1/α−τ/xα
dτ

=

ˆ R

0
eis

1/α−s/xα
ds+

ˆ R+θ

R
exp

(
i(Rei(s−R))1/α − Rei(s−R)

xα

)
iRei(s−R) ds

−
ˆ 2R+θ

R+θ
exp

(
i((2R+ θ − s)eiθ)1/α − (2R+ θ − s)eiθ

xα

)
eiθ ds

=

ˆ R

0
eis

1/α−s/xα
ds+

ˆ θ

0
exp

(
i(Reis)1/α − Reis

xα

)
iReis ds

+

ˆ 0

R
exp

(
i(seiθ)1/α − seiθ

xα

)
eiθ ds.

If θ is sufficiently small we have that
ˆ θ

0

∣∣∣∣exp(i(Reis)1/α − Reis

xα

)
iReis

∣∣∣∣ ds
=

ˆ θ

0
R exp

(
−R1/α sin(s/α)− R

xα
cos(s)

)
ds ≤ θR exp

(
− R

xα
cos(θ)

)
,

which clearly converges to zero as R → ∞. A similar argument shows that the other two
integrals in (B.2) are convergent, so that

(B.3)

ˆ +∞

0
eiτ

1/α−τ/xα
dτ =

ˆ +∞

0
exp

(
i(τeiθ)1/α − τeiθ

xα

)
eiθ︸ ︷︷ ︸

=f(x,τ)

dτ = F (x),

and we can rewrite (B.1) as

xα+1Pα(x) = Im

(
F (x)

π

)
.

From now on we fix θ so small that θ ∈ (0, π/2) and θ/α ∈ (0, π).
For any fixed x ∈ R+ the function τ 7→ f(x, τ) belongs to L1(R), because

|f(x, τ)| = exp
(
−τ1/α sin(θ/α)− τ

xα
cos(θ)

)
≤ exp

(
−τ1/α sin(θ/α)

)
∈ L1(R),

therefore we can pass to the limit as x→ +∞ in the right hand side of (B.3) and call F∞ the
value we obtain.

We have that∣∣xα+1Pα(x)− c1(α)
∣∣ = ∣∣∣∣Im(F (x)π

)
− Im

(
F∞
π

)∣∣∣∣ ≤ 1

π

ˆ +∞

0

∣∣∣∣Im(f(x, τ)− lim
x→+∞

f(x, τ)

)∣∣∣∣ dτ,
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and

Im (f(x, τ)) = exp

(
−τ1/α sin

(
θ

α

)
− τ

xα
cos(θ)

)
︸ ︷︷ ︸

=A(x,τ)

sin

(
−τ1/α cos

(
θ

α

)
− τ

xα
sin(θ) + θ

)
︸ ︷︷ ︸

=B(x,τ)

.

We denote A∞(τ) = limx→+∞A(x, τ) and B∞(τ) = limx→+∞B(x, τ), and we compute∣∣∣∣Im(f(x, τ)− lim
x→+∞

f(x, τ)

)∣∣∣∣ = |A(x, τ) sin(B(x, τ))−A∞(τ) sin(B∞(τ))|

≤ |A(x, τ)−A∞(τ)| | sin(B(x, τ))|︸ ︷︷ ︸
≤1

+|A∞(τ)| |B(x, τ)−B∞(τ)|

≤ exp

(
−τ1/α sin

(
θ

α

)) ∣∣∣1− exp
(
− τ

xα
cos(θ)

)∣∣∣+ exp

(
−τ1/α sin

(
θ

α

))
τ

xα

≤ 2 exp

(
−τ1/α sin

(
θ

α

))
τ

xα
.

Finally ∣∣xα+1Pα(x)− c1(α)
∣∣ = 2

πxα

ˆ ∞

0
τe−τ1/α sin(θ/α) dτ ≤ C

xα
.

□

Proof of Lemma 3.2. Let Hα be the unique solution of the Cauchy problem
∂tHα = ∂

α/2
xx Hα, (t, x) ∈ R+ × R,

Hα(0, x) = Heav(x) =

{
1, for x > 0,

0, otherwise,
x ∈ R.

We know that

Hα(t, x) =

ˆ x

−∞
Gα(t, y) dy,

so that straightforward computations give us

∂tHα(t, x) = − 1

α

x

t(1+α)/α
Pα

( x

t1/α

)
.

Then from the fractional heat equation we have that( x

t1/α

)1+α
Pα

( x

t1/α

)
= −αxα∂α/2xx Hα(t, x).

This equality allows us to show that for any fixed x ∈ R, the function

R+ ∋ t 7→ f(t) =
( x

t1/α

)1+α
Pα

( x

t1/α

)
,

is monotone decreasing and satisfies f(0) = c1(α). We have that

f ′α(t) = −αxα∂α/2xx ∂tHα(t, x) = −αxα∂α/2xx

(
∂α/2xx Hα

)
(t, x)

= −αxαF−1
(
−| · |αF

(
F−1 (−| · |αF(Hα))

))
(t, x)

= −αxαF−1
(
| · |2αF(Hα)

)
(t, x) = αxα∂αxxHα(t, x).

For every t > 0, the function x 7→ Hα(t, x)− 1/2 is odd, non decreasing and concave on R+,
see [3]. Then for any α ∈ (0, 1]

∂αxxHα(t, x) = c1(α) lim
r→+∞

ˆ
|z|<r

(Hα(t, x+ z)−Hα(t, x)− ∂xHα(t, x)z)
dz

|z|1+α︸ ︷︷ ︸
≤0

≤ 0.
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On the other hand we can compute explicitely

f(0) =− αxα∂α/2xx Heav(x) = −αxαc1(α) PV
ˆ
R
(Heav(x+ z)−Heav(x))

dz

|z|1+α︸ ︷︷ ︸
=− 1

αxα

= c1(α).

The properties of f directly lead to the estimate we are looking for, by a simple application
of the equality in (A.5). □
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Email address: maxime.dalery@univ-fcomte.fr
URL: https://lmb.univ-fcomte.fr/Dalery-Maxime-1783

(Carlotta Donadello)
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