A lattice structure in statistical implicative analysis

Authors: Fidy Andrianarivony, Elinambinina Rajaonarifara, Stefana Tabera Tsilefa, Angelo Raherinirina, Jean-Claude Régnier

May 11, 2024

)) (((icar
Interactions
Corpus
Apprentissages
Représentations

Outline

(1) Background
(2) Lattice structure
(3) Statistical implication analysis

4 Constructing lattice from implicative graph
(5) Illustration
(6) Future work

Background

Background

- The concept of lattice has begun on 1949 (Birkhoff, 1949)
- It has been used in different fields: biology, computer sciences, other branch of mathematics.
- No significant application of lattice in statistical logics
- Statistical implication analysis: approach used in data mining to find relationship of implication between different variables.
- In this study, constructing a lattice structure from implicative graph

Lattice structure

Lattice structure

A finite lattice

An ordered set (E, \leq) is a finite lattice if for each pair of elements of E, we have an infimum and a supremum. In particular, the infimum of E, if it exists, is denoted by $\bigwedge_{x \in E} E=\perp$. It is the unique minimal element of E. Similarly, the supremum of E, if it exists, is denoted by $\bigvee_{x \in E} E=T$. It is the unique maximal element of E.

A semilattice

In the case where (E, \leq) admits only the \perp infimum of E, then it is said to be a lower-semilattice. In the case where (E, \leq) admits only the supremum \top of E, then it is said to be a upper-semilattice.

Statistical implication analysis

Statistical implication analysis(SIA)

- The problem of SIA is to establish a rule in implicative form between two variables
- Notation for "if x then y ": $x \longrightarrow y$
- A theoretical framework is generated to model the existence of the relation ship
- It is based on measures that take into account the occurences of both variables
- The widely used measure is the implication intensity (Gras and Regnier,2009)

$$
\varphi(x \rightarrow y)=\left\{\begin{array}{l}
1-\mathbb{P}\left[\operatorname{Card}(X \cap \bar{Y}) \leq n_{x \wedge \bar{y}}\right] \text { if } n \neq n_{y} \\
0 \text { if } n=n_{y}
\end{array}\right.
$$

- It can be modeled from the Poisson distribution with parameter:
$\lambda=\frac{n_{x} \cdot n_{\bar{y}}}{n}$ and given by the formula:

$$
\varphi(x \rightarrow y)=1-\sum_{k=0}^{n_{\times \wedge \bar{y}}} \frac{\lambda^{k}}{k!} e^{-\lambda}
$$

- A threshold α is chosen in the interval $] 0.5,1[$ to set the existence of the relationship when $\varphi(x \rightarrow y) \geq \alpha$.
- The retained rule from that measure is called: quasi-implication.

Implicative graph

- An implicative graph can be generated
- It gives clearer vizualisation of the relationship between variables
- If we have a set of binary variables E, it can be associated with the quasi-implication relation denoted by \rightarrow and defined by for x and y in $E, x \rightarrow y$ if and only if $\varphi(x \rightarrow y) \geq \alpha$.
- Example

The set of variables is $E=a, b, c, d, e, f, g$ and the binary relationship is as follows: $\rightarrow=$ $\{(e, c),(e, a),(e, f),(e, b),(c, a),(c, f),(b, a),(b, f),(g, d),(g, f),(a, f)$

The implicative graph corresponding to this is:

Figure: Implicative graph

- This relation is reflexive but it's not antisymmetric nor transitive.
- So, E, associated with the quasi-implication is not an ordered set and obviously not a lattice. However, we need a transitive relation, so we admit the following proposition from (Gras and Regnier, 2009).

Proposition 1 For any $\alpha \in] 0.5 ; 1[$, by convention, if $x \rightarrow y$ and $y \rightarrow z$, we have a transitive closure $x \rightarrow z$ if, and only if $\varphi(x \rightarrow z) \geq 0.5$.

Proposition

- For our modeling purposes, we adopt the second proposal below:

Proposition 2 For two pairs of binary variables (x, y) and (z, t) of E^{2}, if $x \rightarrow z, x \rightarrow t$ and $y \rightarrow z, y \rightarrow t$ then $x \rightarrow y$ or $y \rightarrow x$.

- The proof of this proposition is proceded by simulation and the result is shown in the figure below:

Constructing lattice from implicative graph

Terminolgy

Let E be a pre-order(reflexive and transitive) set, x and y two elements of E such that $x \rightarrow y$.

- Premise: x in the relation $x \rightarrow y$ is called premise
- Consequent: y is called consequent
- Set of premises of an element $x: P_{x}=\{t \in E, t \rightarrow x\}$
- Set of consequences of an element: $G_{x}=\{t \in E, x \rightarrow t\}$

Properties

We have the following properties:

- $\forall x, y \in E P_{x} \subset P_{y} \Leftrightarrow x \longrightarrow y$
- For any $x \in E$, if there is no element equivalent to x, then $P_{x} \cap G_{x}=\{x\}$.
- For any $x, y \in E$, if $P_{y}=G_{x}$ then the set $P_{y}=G_{x}$ provided with the quasi-implication relation is a preordered set which admits as minimum x and as maximum y.

Generating a lattice structure: lower semi-lattice

- Consider E, a set of binary variables associated with the relation quasi-implication. We define τ_{p} as the set of all premises in E union the empty set. We have

$$
\tau_{p}=\left\{P_{x}, x \in E\right\} \cup\{\emptyset\}
$$

. τ_{p} associated with the relation inclusion denoted by $\left(\tau_{p}, \subset\right)$ is an ordered set and it defines a lower semi-lattice.

Lower semi-lattice

- Proof: Let a, b be two fixed elements of E. Consider the two sets $A=\{t \in E, t \rightarrow a\}$ and $B=\{t \in E, t \rightarrow b\}$ which are elements of τ_{p}. There are three possible cases:
- if $A \subset B$ then A is the infimum of A and B;
- if A and B are not comparable and $A \cap B=\emptyset$ then \emptyset is the infimum of A and B;
- if A and B are not comparable and $A \cap B \neq \emptyset$ then there exists $x \in A \cap B$ such that $x \rightarrow a$ and $x \rightarrow b$. Now, according to Proposition 2 , for all $x \in A \cap B$, there exists $\vee x \in A \cap B$ such that $x \rightarrow \vee x$. Thus, $A \cap B=\{t \in E, t \rightarrow \vee x\} \in \tau_{p}$ is the infimum of A and B. We have used the notation $V x$ to indicate that it is the maximum element of x.
So, in all cases, there exists an infinimum for A and B.

Upper semi-lattice

- In the same way, we define τ_{c} as the set of all consequences union E

$$
\tau_{c}=\left\{G_{x}, x \in E\right\} \cup\{E\}
$$

- $\left(\tau_{c}, \subset\right)$ is an ordered set and defines an upper semi-lattice.

Upper semi-lattice

- Proof: Let A, B be two elements of τ_{c}. Let's show that there is an infinimum and a supremum. We can imagine the following cases:
(1) if $A \subset B$ then B is supremum;
(2) otherwise, we always have $A \subset E$ and $B \subset E$, i.e. E is a majorant of A and B :
(1) if there are no other majorants than E, then E is the supremum of A and B;
(2) if there exists a unique $C \in \tau_{c}$ such that $C \neq E$, and $A \subset C$ and $B \subset C$, then C is the supremum of A and B;
(3) if there exists a family $\left(C_{i}\right)_{i \in I}$ of τ_{c} such that for any $i \in I, C_{i}$ contains both A and B, then we can show that $\bigcap_{i \in 1} C_{i} \in \tau_{c}$ is the supremum of A and B. Indeed, for any $i \in I$, we have $A \subset C_{i}$ and $B \subset C_{i}$, hence $A \subset \bigcap_{i \in I} C_{i}$ and $B \subset \bigcap_{i \in I} C_{i}$. The intersection of C_{i} is the smallest of the majorants of A and B because for any $i \in I$, we have $\bigcap_{i \in I} C_{i} \subset C_{i}$.

Lattice structure

- We define τ as the union of τ_{p} and τ_{c} :

$$
\tau=\tau_{p} \cup \tau_{c}
$$

- τ, associated with the relation \subset has the structure of lattice. We call it the lattice corresponding to the implicative graph

Illustration

Illustration

- To illustrate the construction, we consider a set $E=a, b, c, d, e, f, g$ with the corresponding implicative graph presented as follows:
b

Figure: Implicative graph at threshold 0.6, generated by CHIC software

Illustration

- The set of premises and consequents are:

Table: Sets of premises and consequents of E.

Variables	Set of premisses	Set of consequents
a	$\{a, b, c, f\}$	$\{a\}$
b	$\{b\}$	$\{a, b, c, f\}$
c	$\{b, c, f\}$	$\{a, c\}$
d	$\{d, e\}$	$\{d\}$
e	$\{e\}$	$\{d, e\}$
f	$\{b, f\}$	$\{a, c, f\}$
g	$\{g\}$	$\{g\}$

- The corresponding lattice structure is gibven by:

26

Conclusion

- This study established a link between two fields of mathematics and statistics, namely lattice theory and SIA.
- This is to optimize the information extracted by SIA.
- A mathematical method supported by a computational method to construct a lattice from the implicative graph is introduced.

Future work

Limitations and future works

- We have not taken into account the minority case of implicative graphs that do not respect proposition 2
- A possible new approach is to develop an alternative method for constructing a lattice from all existing implicative graphs, without this restriction.
- This study did not focus on a concrete application of the resulting model.
- Application of this model in various fields of information extraction can be explored.

Aknowledgement

- University of Fianarantsoa, Madagascar
- The LABEX ASLAN (ANR-10-LABX-0081), University of Lyon for the funding in the program: "Investissement d'Avenir" led by the "Agence Nationale de la Recherche (ANR)
- The "Ecole Normale Supérieure"
- The CREM laboratory

