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Background

The concept of lattice has begun on 1949 (Birkhoff, 1949)
It has been used in different fields: biology, computer sciences, other
branch of mathematics.
No significant application of lattice in statistical logics
Statistical implication analysis: approach used in data mining to find
relationship of implication between different variables.
In this study, constructing a lattice structure from implicative graph
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Lattice structure

A finite lattice
An ordered set (E , ≤) is a finite lattice if for each pair of elements of E ,
we have an infimum and a supremum. In particular, the infimum of E , if it
exists, is denoted by

∧
x∈E E =⊥. It is the unique minimal element of E .

Similarly, the supremum of E , if it exists, is denoted by
∨

x∈E E = ⊤. It is
the unique maximal element of E .

A semilattice
In the case where (E , ≤) admits only the ⊥ infimum of E , then it is said
to be a lower-semilattice. In the case where (E , ≤) admits only the
supremum ⊤ of E , then it is said to be a upper-semilattice.
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Statistical implication analysis(SIA)

The problem of SIA is to establish a rule in implicative form between
two variables
Notation for "if x then y": x −→ y
A theoretical framework is generated to model the existence of the
relation ship
It is based on measures that take into account the occurences of both
variables
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The widely used measure is the implication intensity( Gras and
Regnier,2009)

φ(x → y) =
{

1 − P
[
Card(X ∩ Y ) ≤ nx∧y

]
if n ̸= ny

0 if n = ny

It can be modeled from the Poisson distribution with parameter:
λ = nx .ny

n and given by the formula:

φ(x → y) = 1 −
nx∧y∑
k=0

λk

k! e−λ

A threshold α is chosen in the interval ]0.5, 1[ to set the existence of
the relationship when φ(x → y) ≥ α.
The retained rule from that measure is called: quasi-implication.
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Implicative graph

An implicative graph can be generated
It gives clearer vizualisation of the relationship between variables
If we have a set of binary variables E , it can be associated with the
quasi-implication relation denoted by → and defined by for x and y in
E , x → y if and only if φ(x → y) ≥ α.
Example
The set of variables is E = a, b, c, d , e, f , g and the binary
relationship is as follows: →=
{(e, c), (e, a), (e, f ), (e, b), (c, a), (c, f ), (b, a), (b, f ), (g , d), (g , f ), (a, f )}
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The implicative graph corresponding to this is:
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Figure: Implicative graph
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This relation is reflexive but it’s not antisymmetric nor transitive.
So, E , associated with the quasi-implication is not an ordered set and
obviously not a lattice. However, we need a transitive relation, so we
admit the following proposition from (Gras and Regnier, 2009).
.
Proposition 1 For any α ∈]0.5; 1[, by convention, if x → y and
y → z, we have a transitive closure x → z if, and only if
φ(x → z) ≥ 0.5. .
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Proposition

For our modeling purposes, we adopt the second proposal below:
.
Proposition 2 For two pairs of binary variables (x , y) and (z , t) of
E 2, if x → z, x → t and y → z, y → t then x → y or y → x.
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The proof of this proposition is proceded by simulation and the result
is shown in the figure below:
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Constructing lattice from implicative graph
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Terminolgy

Let E be a pre-order(reflexive and transitive) set, x and y two elements of
E such that x → y .

Premise: x in the relation x → y is called premise
Consequent: y is called consequent
Set of premises of an element x : Px = {t ∈ E , t → x}
Set of consequences of an element:Gx = {t ∈ E , x → t}
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Properties

We have the following properties:
∀x , y ∈ E Px ⊂ Py ⇔ x −→ y
For any x ∈ E , if there is no element equivalent to x , then
Px ∩ Gx = {x}.
For any x , y ∈ E , if Py = Gx then the set Py = Gx provided with the
quasi-implication relation is a preordered set which admits as
minimum x and as maximum y .
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Generating a lattice structure: lower semi-lattice

Consider E , a set of binary variables associated with the relation
quasi-implication. We define τp as the set of all premises in E union
the empty set. We have

τp = {Px , x ∈ E} ∪ {∅}

. τp associated with the relation inclusion denoted by (τp, ⊂) is an
ordered set and it defines a lower semi-lattice.
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Lower semi-lattice

Proof: Let a, b be two fixed elements of E . Consider the two sets
A = {t ∈ E , t → a} and B = {t ∈ E , t → b} which are elements of
τp. There are three possible cases:

if A ⊂ B then A is the infimum of A and B;
if A and B are not comparable and A ∩ B = ∅ then ∅ is the infimum of
A and B;
if A and B are not comparable and A ∩ B ̸= ∅ then there exists
x ∈ A ∩ B such that x → a and x → b. Now, according to Proposition
2, for all x ∈ A ∩ B, there exists ∨x ∈ A ∩ B such that x → ∨x . Thus,
A ∩ B = {t ∈ E , t → ∨x} ∈ τp is the infimum of A and B. We have
used the notation ∨x to indicate that it is the maximum element of x .

So, in all cases, there exists an infinimum for A and B.
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Upper semi-lattice

In the same way, we define τc as the set of all consequences union E

τc = {Gx , x ∈ E} ∪ {E}

(τc , ⊂) is an ordered set and defines an upper semi-lattice.
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Upper semi-lattice

Proof: Let A, B be two elements of τc . Let’s show that there is an
infinimum and a supremum. We can imagine the following cases:

1 if A ⊂ B then B is supremum;
2 otherwise, we always have A ⊂ E and B ⊂ E , i.e. E is a majorant of A

and B:
1 if there are no other majorants than E , then E is the supremum of A

and B;
2 if there exists a unique C ∈ τc such that C ̸= E , and A ⊂ C and

B ⊂ C , then C is the supremum of A and B;
3 if there exists a family (Ci )i∈I of τc such that for any i ∈ I, Ci contains

both A and B, then we can show that
⋂

i∈I Ci ∈ τc is the supremum of
A and B. Indeed, for any i ∈ I, we have A ⊂ Ci and B ⊂ Ci , hence
A ⊂

⋂
i∈I Ci and B ⊂

⋂
i∈I Ci . The intersection of Ci is the smallest of

the majorants of A and B because for any i ∈ I, we have
⋂

i∈I Ci ⊂ Ci .
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Lattice structure

We define τ as the union of τp and τc :

τ = τp ∪ τc

τ , associated with the relation ⊂ has the structure of lattice. We call
it the lattice corresponding to the implicative graph
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Illustration

To illustrate the construction, we consider a set E = a, b, c, d , e, f , g
with the corresponding implicative graph presented as follows:
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Figure: Implicative graph at threshold 0.6, generated by CHIC software
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Illustration

The set of premises and consequents are:

Table: Sets of premises and consequents of E .

Variables Set of premisses Set of consequents
a {a, b, c, f } {a}
b {b} {a, b, c, f }
c {b, c, f } {a, c}
d {d , e} {d}
e {e} {d , e}
f {b, f } {a, c, f }
g {g} {g}
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The corresponding lattice structure is gibven by:
∅

{a} {b} {g} {d} {e}

{a, c} {b, f } {d , e}

{a, c , f } {b, c , f }

{a, b, c , f }

E

Figure: Lattice corresponding to the implicative graph
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Conclusion

This study established a link between two fields of mathematics and
statistics, namely lattice theory and SIA.
This is to optimize the information extracted by SIA.
A mathematical method supported by a computational method to
construct a lattice from the implicative graph is introduced.
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Future work
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Limitations and future works

We have not taken into account the minority case of implicative
graphs that do not respect proposition 2
A possible new approach is to develop an alternative method for
constructing a lattice from all existing implicative graphs, without this
restriction.
This study did not focus on a concrete application of the resulting
model.
Application of this model in various fields of information extraction
can be explored.
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