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Abstract—In the new area of immersive multimedia envi-
ronments, understanding and manipulating visual attention are
crucial for enhancing user experience. This study introduces an
innovative framework that extends traditional 2D saliency maps
to the analysis of 3D point clouds, a step forward in adapting
saliency prediction to more complex and immersive environ-
ments. Our framework centers on the orthographic projection
of 3D point clouds onto 2D planes, enabling the application of
established 2D saliency models to this novel context. We further
delve into the evaluation of these models on a 3D point cloud
eye-tracking dataset, exploring various projection settings and
thresholding techniques to maintain the integrity of saliency
information in the transition from 2D to 3D. This research not
only bridges a gap in applying visual attention models to 3D
data but also offers insights into the optimization of quality of
experience in immersive multimedia systems.

Index Terms—Visual Saliency, 3D point cloud, Quality of
experience, 3D Projection

I. INTRODUCTION

Immersive multimedia environments, underpinned by ad-
vancements in virtual and augmented reality technologies [1],
[2], are revolutionizing user experiences across a spectrum of
fields [3], [4]. Central to this transformation is the adoption of
three-dimensional (3D) point clouds, which offer unparalleled
precision and detail in capturing real-world scenes [5]. Unlike
traditional 3D data formats, point clouds excel in representing
intricate features and complexities of physical environments
with high fidelity [6]. This capability has positioned point
clouds as a foundational element in developing interactive
3D models for diverse applications, including virtual and
augmented reality [7], [8], robotics [9], and computer-aided
design [10]. A critical aspect of delivering superior immersive
experiences involves accurately modeling the visual attentive
behavior of users toward 3D point clouds within transmission
systems [11]. Human observers inherently prioritize certain ar-
eas within their Field-of-View (FoV), concentrating on regions

of interest while disregarding others [12], [13]. These selective
processes so-called attention mechanisms enable individuals
to efficiently interpret and comprehend complex scenes by
allocating their limited perceptual and cognitive resources
towards the most relevant segments of sensory input [14].
Drawing inspiration from this phenomenon, saliency predic-
tion or modeling seeks to emulate human gaze fixation patterns
across visual content [15]. Culminating in the generation of
saliency maps, each element within these maps quantifies the
likelihood of attracting user attention, providing a quantifiable
measure of visual prominence [16]. Therefore, optimizing vi-
sual attention in 3D point clouds is key to improving Quality of
Experience (QoE) [17], by focusing on regions of interest. This
approach reduces latency and enhances user satisfaction by
efficiently utilizing computational resources, thereby elevating
the immersive experience. Despite significant progress in 2D
Saliency or Visual attention modeling enabled by expansive
datasets, the development of 3D saliency models is constrained
by the limited size of available datasets [18]. Current re-
search primarily focuses on understanding human behavior and
interactivity in immersive environments [19], neglecting the
creation of large-scale datasets for comprehensively modeling
human attention in 3D spaces. This gap impedes direct mod-
eling of visual saliency on 3D data. This research addresses a
critical need in the domain of 3D point cloud visual saliency by
presenting a comprehensive framework specifically engineered
to broaden the utility of 2D visual saliency models for 3D point
clouds. Our primary contributions are:

1) Innovative Framework for 3D Point Cloud Projection
and Reconstruction: We present a novel framework
designed to extend the application of 2D visual saliency
models to 3D point clouds, facilitating the orthographic
projection of 3D data onto 2D planes while preserving



essential information for accurate 3D reconstruction.
This approach enables the effective application of 2D
saliency models to 3D environments, supporting modifi-
cations of associated features in the 2D domain without
compromising the original 3D spatial information. The
framework’s capability to maintain the integrity of ge-
ometrical data while allowing for feature adjustments
highlights its potential for a broad spectrum of appli-
cations, from enhancing visual attention analysis to im-
proving immersive environment design. Our framework
is available on : github.com/mtliba/qomex24

2) Comprehensive Benchmarking and Performance
Evaluation: Alongside the framework, we conduct an
extensive benchmarking study to evaluate the effec-
tiveness of 2D saliency models when applied to 3D
point clouds. Utilizing a specialized 3D point cloud
eye-tracking dataset, our study investigates various pro-
jection and thresholding settings to determine optimal
strategies for preserving saliency information.

The significance of our work lies in its potential to advance the
design and optimization of immersive multimedia systems, by
providing a more nuanced understanding of modeling visual
attention in 3D environments.

II. RELATED WORK
This section reviews the advancements in 2D saliency mod-

eling, discusses the challenges of 3D saliency modeling for
point clouds, and highlights the efforts toward understanding
visual attention in immersive environments.

A. 2D Saliency Modeling

The advent of deep learning, particularly Convolutional
Neural Networks (CNNs) [20], has significantly propelled ad-
vancements in 2D saliency modeling [21]–[23]. These models
leverage extensive datasets to achieve remarkable accuracy in
predicting human attention in 2D images. Noteworthy among
these are the SALICON dataset [21], which is one of the
largest saliency datasets, and the MIT300 benchmark [22],
which has been instrumental in evaluating the performance of
saliency models, over well representative set of metrics. Such
benchmarks have facilitated the development of more sophisti-
cated saliency prediction models, and provide a solid platform
for comparative analysis [22]. Despite these advancements, the
direct application of the same theory behind these 2D models
to 3D point cloud data has remained a challenge, primarily
due to the intrinsic characteristics of 3D spatial data, and the
lack of analogous comprehensive datasets for 3D point clouds.

B. Visual Attention in Immersive Environments

Research on visual attention in immersive environments,
such as VR/AR, has begun to shed light on how users interact
with and perceive 3D spaces [24], [25]. To this end, eye-
tracking experiments are pivotal for understanding human
visual behavior in 3D contexts, showing where the eyes
are looking within the 3D scene. Notable studies include
Sitzmann et al. [26], who analyzed gaze and head orienta-
tion in stereoscopic panoramas, revealing the inadequacy of

existing saliency predictors in VR settings. Nguyen et al. [27].
introduced a significant saliency dataset for 360-degree videos,
employing a methodology grounded in psychology and com-
patible with Head-Mounted Displays (HMDs). Lavoué et al..
presented a dataset capturing eye movements for 3D shapes
under various conditions, while Ding et al. [28] offered a 3D
colored mesh saliency dataset based on an eye-tracking exper-
iment alongside a saliency detection framework focusing on
color and geometric features. Alexiou et al. [29] conducted an
eye-tracking experiment with static point clouds in a 3D scene
allowing 6 Degrees-of-Freedom (DoF), introducing a method
for exploiting gaze measurements to identify areas of fixation
within a point cloud. Zhou et al. [30] proposed a dynamic
point cloud dataset alongside an eye-tracking experiment and
a quality score in 6 DoF. The experiment aimed to evaluate
the perceptual quality of dynamic point clouds under various
distortion levels and to analyze the variation in visual attention
corresponding to the distortion level.

C. Challenges in Current Research

Conventional 2D saliency modeling cannot be directly ap-
plied to 3D point clouds. Furthermore, the lack of large-
scale datasets for training and evaluating 3D saliency models
hampers progress in this field. Hence, there is a pressing need
for a comprehensive framework capable of accurately project-
ing, reconstructing, and empirically comparing 2D saliency
maps onto 3D point clouds. This study introduces such a
framework, aiming to bridge the gap between 2D saliency
modeling and 3D point cloud analysis. By extending the
application of 2D saliency models to 3D point clouds and
devising a method for precise 3D reconstruction from 2D
predictions, our research endeavors to enhance the prediction
and analysis of visual attention in immersive environments.
Our study also establishes an initial benchmark for applying
2D saliency models to 3D point clouds, accounting for certain
critical aspects: viewpoints selection and saliency thresholding,
thereby offering a foundation for future research in enhancing
immersive visual experiences.

III. 3D POINT CLOUD PROJECTION AND SALIENCY
MAPPING FRAMEWORK

In this part, we introduce a comprehensive framework
designed for analyzing 3D point clouds through the lens
of human visual perception. Our framework encompasses a
sequence of operations starting from the preprocessing of the
3D point cloud, applying the projection of 3D points onto a 2D
plane, followed by the application of a computational saliency
model, and culminating in the reconstruction of a 3D saliency
map. The overall workflow of our framework is described in
figur (1).

A. Preprocessing

1) View Selection: To align the input with desired viewing
perspectives, the original point cloud Po undergoes rotations



Fig. 1. A High-Level Overview of Our Proposed Framework: Illustrating the Core Workflow and Key Components

R around the principal axes (x, y, z), adjusting the orientation
in 3D space. This process is mathematically represented as:

P = R(x,y,z)(θ,Φ, ψ)Po,

where P is the rotated point cloud, (θ,Φ, ψ) symbolizes the
combined rotation angles for axes x, y, and z, respectively.

2) Point Cloud Centering and Normalization: This phase
involves normalizing the point cloud to fit within a predefined
view volume, facilitating a more coherent and effective visu-
alization and analysis. The step is mathematically represented
as:

Pnorm =
P − µ(P )

max(P )−min(P )

where Pnorm is the normalized point cloud, and µ(P ) denotes
the mean position of the point cloud.

B. 3D-to-2D Projection

1) Point-Wise Orthographic Projection: The first stage in-
volves transforming 3D point cloud data into a 2D represen-
tation. Our approach builds upon the foundational principles
of orthographic projection [31] but extends it significantly to
cater to the demands of 3D point cloud analysis. Orthographic
projection traditionally involves mapping the points from a 3D
space onto a 2D plane without considering perspective effects,
thus maintaining uniform scale irrespective of depth. To do so
we applied a point-wise orthographic projection while keeping
into account the perspective parameters.

Given the preprocessed point cloud Pnorm with points
pi = (xi, yi, zi), accompanied with a set of camera parameters
as follows: (′left′:l, ′right′: r, ′top′: t, ′bottom′:b). These
parameters ensure the accurate 2D mapping of 3D point
within the same specified projection volume, where ′left′,
′right′, ′top′, and ′bottom′ outline the viewport’s horizontal
and vertical bounds. Finally, the projection onto a 2D plane
is defined as pi = (xi, yi). This step ignores the z dimension,
focusing on x and y coordinates.

2) scaling and translation: This step is applied to adjust
the projected points to fit the image dimensions based on the
camera parameters, using:

scale =

[
image height

r−l
image width

t−b

]
, offset =

[
image height/2
image width/2

]

pi,scaled = pi × scale + offset

3) Z-Buffering: To achieve the realistic projection of 3D
data onto a 2D plane, we employ z-buffering. This technique
evaluates the visibility of each point by its depth, enabling
the rendering of 2D images that precisely reflect the spatial
relationships and occlusions present in the 3D scene. The core
of this technique is the z-buffer (Z), which stores the depth
information of the nearest point to the viewer at each pixel.

For each projected point pi,scaled with a depth zi, the z-buffer
at a specific pixel location (xi, yi) is updated as follows:

Z(x, y) =

{
zi if zi < Z(xi, yi),

Z(xi, yi) otherwise.
(1)

This ensures that, for any given pixel, the z-buffer retains the
depth of the closest point, thus enabling the accurate rendering
of overlapping objects.

To formalize this process, consider the set of all points
Pscaled = {p1,scaled, p2,scaled, ..., pn,scaled}. The subset of Pscaled,
denoted as P ′, comprises points that satisfy the Z-buffer
criterion. Mathematically, this can be expressed as:

P ′ = {p′i,scaled ∈ P |Z(pi,scaled) is defined in the Z-buffer}
(2)

In this manner, P ′ includes only those points whose depth
values (zi) are recorded in the Z-buffer, ensuring that only the
closest point to the viewer’s perspective is visible at any pixel
location, effectively managing the rendering of overlapping
objects.

4) Correspondence Mapping: A distinctive feature of our
framework is the maintenance of a correspondence map (C),
which records the original 3D coordinates index of each point
projected onto the 2D plane. This mapping facilitates the
bidirectional transfer of information between the 2D projection
and the 3D data, enabling the accurate reconstruction of
modified associated features to the 3D spatial data from its
2D representation. Furthermore, our framework enhances re-
construction speed by integrating a Mask map for identifying
active regions and an Index map for tracking efficiently
correspondence point from (C), enabling efficient 2D-to-3D
mapping.



C. 2D Saliency Prediction and 3D mapping

Upon obtaining the 2D projection, a saliency prediction
model is applied. This model, denoted as S, processes the
2D image I and outputs a saliency map S(I), highlighting
regions that are likely to attract human attention. The saliency
model is based on visual attention mechanisms and can be
represented as:

S(I) = fSaliency(I)

where fSaliency represents the computational process of the
saliency detection algorithm.

1) 3D Saliency Map Reconstruction: The final phase in-
volves mapping the 2D saliency information back onto the
3D point cloud. This is achieved using the correspondence
map C obtained during the projection. The reconstructed 3D
saliency map M for point pi is derived as follows:

M(p′i) = S(I)(C(p′i))

This equation ensures that the saliency value assigned to each
3D point corresponds to the saliency value of its 2D projection.

D. Extended Applications

While the primary focus of our framework has been on
saliency projection in 3D point clouds, its underlying method-
ologies present opportunities for extension to a variety of other
applications, particularly those requiring detailed point-level
analysis and generation. These include but are not limited to,
part segmentation [32], style transfer [33] in 3D point clouds.
Furthermore, the correlation between 2D projections and their
corresponding 3D points enriches multi-modal deep learning
strategies eg: (Quality Assessment Deep-based Metrics) [17],
bridging 3D point cloud analysis with 2D visual data process-
ing.

IV. STUDY ON THE EVALUATION OF 2D SALIENCY
MODELS FOR 3D POINT CLOUDS

In this section, we delve into the comprehensive benchmark-
ing and performance evaluation that accompanies our frame-
work. Our investigation is aimed at assessing the effectiveness
of 2D saliency models when applied to the context of 3D point
clouds.

A. Dataset

The dataset we used originates from the EPFL study [29],
comprising 12-point clouds carefully selected to represent
a wide range of visual characteristics, split evenly between
objects and human figures. It was assembled from eye-tracking
data from 21 participants within a VR environment. The visual
attention data was thoroughly processed to produce high-
quality fixation density maps, reflecting the average intersec-
tion of user gaze and head movements with the rendered points
in a 3D VR viewport. This dataset is openly accessible for
further research and benchmarking in the domain.

B. 2D-Saliency Models

For our study, we selected SalGAN [34], SATSal [23], and
DeepGaze IIE [35] due to their exceptional performance in 2D
saliency prediction, each underpinned by distinct theoretical
foundations. SalGAN is noted for its use of adversarial train-
ing, SATSal for its innovative use of a multilevel self-attention
mechanism, and DeepGaze IIE advances the capabilities of
deep learning in saliency modeling by integrating contextual
information and human visual bias. Notably, these models have
demonstrated top-tier results on the MIT300 leaderboard [22],
showcasing their effectiveness.

C. Evaluation Metrics

For evaluating the generated 3D saliency maps obtained
from the application of the aforementioned 2D saliency models
within our framework, we selected metrics including Simi-
larity Metric (SIM) [36], Correlation Coefficient (CC) [36],
and Kullback-Leibler Divergence (KLD) [36] due to their
relevance in measuring prediction accuracy and distribution
similarity. Unlike traditional 2D saliency analyses, metrics like
NSS [37] and AUC [36] were not employed, as the ground
truth data derived from VR experiments provide density maps
rather than discrete fixation points. This approach reflects to
how gaze data has been collected in VR conditions, where the
nature of visual attention convergence within the 3D rendered
scenes does not necessitate the intersection of eye-movement
orientation ray with a one point. But rather the distribution of
neighboring points is considered. This necessitating metrics
that effectively capture the essence of spatial saliency distri-
bution as estimated by user engagement with the 3D point
sets.

D. View Selection Strategy

Central to our investigation is the exploration of how the
quantity and distribution of selected views impact the fidelity
of saliency maps when applying 2D saliency models to 3D
point clouds. To this end, we devised a systematic view sam-
pling strategy, distributing viewpoints across varied number
of orbits around the point cloud, starting from a single one
to five distinct orbits. This configuration includes one orbit
along the equator and two additional orbits on either side,
each separated by a 30-degree angular distance. From each
orbit, views are sampled at intervals of 90 degrees for a set
of four views and 45 degrees for a set of eight views, this
results either to have a total of four or eight views per each
orbit. This approach ensures a dense coverage and significant
overlap between views, mirroring potential viewer positions
within an immersive experience.

E. Rationale and Objectives

The rationale behind our multi-orbit, multi-view sampling
strategy is twofold. First, it aims to simulate a wide range
of possible viewer orientations, thereby capturing the saliency
information from various perspectives. Second, by providing a
high degree of view overlap, our method enhances the compre-
hensiveness of the resultant saliency maps. This overlapping



is critical for ensuring that any potential viewer perspective
during the immersive experience is adequately represented.

F. Saliency Prediction and 3D Reconstruction

By applying 2D saliency models to strategically selected
views, we assess their capacity to identify salient features
across diverse perspectives. Our framework then synthesizes
these 2D predictions into unified 3D saliency maps. A key
step in this process involves normalizing each reconstructed
saliency view independently before implementing thresholding
levels T0, T1, and T2. These thresholds are critical for
determining the extent to which saliency information from 2D
predictions is retained in the 3D reconstruction. Specifically,
T0 includes all saliency data from 2D views, whereas T1
and T2 progressively filter this information, retaining only the
top 10% and 5% of salient data, respectively. For regions
where saliency predictions overlap, we calculate the mean
saliency value, ensuring a balanced representation. The entire
reconstructed 3D saliency map undergoes a final normalization
to accurately represent visual attention as it would occur in an
immersive setting. This approach aims to craft a 3D saliency
map that not only aggregates but also preserves the integrity
of saliency cues across various viewer orientations, enhancing
the understanding of how salient features are distributed within
the point cloud.

TABLE I
MODELS COMPARISON - ONE ORBIT (4 VIEWS AND 8 VIEWS)

Model 4 Views 8 Views
SSIM ↑ CC ↑ KLD↓ SSIM↑ CC↑ KLD ↓

Satsal-T0 0.160 0.062 18.287 0.215 0.076 16.596
Salgan-T0 0.164 0.025 18.247 0.223 0.038 16.536

DeepGaze-T0 0.173 0.023 18.211 0.235 0.031 16.495
Satsal-T1 0.116 0.061 19.824 0.171 0.079 18.113
Salgan-T1 0.118 0.040 19.901 0.170 0.054 18.151

DeepGaze-T1 0.132 0.083 19.725 0.192 0.103 17.952
Satsal-T2 0.077 0.069 21.093 0.121 0.089 19.810
Salgan-T2 0.074 0.043 21.163 0.111 0.060 19.999

DeepGaze-T2 0.088 0.107 20.892 0.130 0.131 19.679

TABLE II
MODELS COMPARISON - THREE ORBIT (12 VIEWS AND 24 VIEWS)

Model 12 Views 24 Views
SSIM↑ CC↑ KLD↓ SSIM ↑ CC↑ KLD↓

Satsal-T0 0.286 0.095 14.071 0.357 0.118 11.125
Salgan-T0 0.289 0.027 14.026 0.360 0.039 11.081

Deepgaze-T0 0.313 0.030 13.960 0.388 0.041 11.003
Satsal-T1 0.229 0.100 16.011 0.307 0.128 12.908
Salgan-T1 0.218 0.048 16.338 0.288 0.064 13.288

DeepGaze-T1 0.253 0.121 16.019 0.334 0.158 12.841
Satsal-T2 0.164 0.107 18.396 0.237 0.134 15.729
Salgan-T2 0.143 0.0521 18.917 0.202 0.068 16.596

DeepGaze-T2 0.176 0.146 18.347 0.246 0.186 15.881

G. Quantitative, and Qualitative Analysis

Our experiments systematically explored the performance
of the aforementioned saliency models under various saliency

TABLE III
MODELS COMPARISON - FIVE ORBIT (20 VIEWS AND 40 VIEWS)

Model 20 Views 40 Views
SSIM↑ CC ↑ KLD↓ SSIM↑ CC↑ KLD↓

Satsal-T0 0.322 0.088 12.480 0.388 0.111 9.562
Salgan-T0 0.326 0.023 12.438 0.389 0.032 9.526

DeepGaze-T0 0.353 0.023 12.364 0.418 0.032 9.447
Satsal-T1 0.276 0.096 14.046 0.348 0.122 11.312
Salgan-T1 0.262 0.044 14.177 0.327 0.057 11.311

DeepGaze-T1 0.299 0.044 14.177 0.373 0.057 10.881
Satsal-T2 0.208 0.105 16.735 0.281 0.138 13.801
Salgan-T2 0.180 0.050 17.419 0.242 0.066 14.738

DeepGaze-T2 0.221 0.138 16.804 0.294 0.171 13.801

thresholding levels (T0, T1, and T2) across different view con-
figurations. The outcomes, delineated in Table I, encompass
the analysis of models applied to 4 and 8 views derived from
a singular equatorial orbit where θ = 0, offering a baseline
for comparison. we observe an increase in model performance
metrics (SSIM, CC, KLD) as the number of views increases.
This increment suggests a positive correlation between the
comprehensiveness of view sampling and the accuracy of
saliency predictions.

Further extending our analysis, Table II also details the
results obtained from a broader sampling, incorporating 12
and 24 views across three orbits with θ = 0, θ = −π/6, and
θ = π/6. Notably, models exhibit enhanced performance, over
all metrics, highlighting the benefit of capturing varied range
of viewer perspectives. for a richer saliency mapping.

To deepen our insights, Table III presents findings from
an even more extensive view sampling approach, involving
20 and 40 views across five orbits. This includes the previ-
ously mentioned orbits and introduces two additional orbits
at θ = −π/3 and θ = π/3. This setting presents the most
significant performance improvements. This comprehensive
view approach optimizes the results of the 3D reconstructed
saliency from 2D across all models but also demonstrates the
critical role of extensive view overlap in mirroring potential
viewer perspective. Our analysis, employing thresholds T0,
T1, and T2, highlighted the balance between the breadth of
view sampling and the quantity of saliency information. The
T0 threshold consistently outperformed, yet the performance
gap between from T0 to T1 and T2 was minimal on each
independent setting. Crucially, extensive view sampling even
with (T2) proved more vital than the complete quantity of
saliency data, while with just T2 (5%) of saliency data in
multiple-orbit, multiple-view scenarios outperformed denser
saliency mappings in (T0 and T1) in settings with fewer
views and orbits. This reveals that diversity in views is key
to effective 3D saliency reconstruction, rather than relying on
larger quantities of saliency information from 2D models with
limited viewing perspective.

Figure 2 illustrates the qualitative performance of predicted
3D saliency maps for three methods within our framework
using the 40 views setting, the results closely matching the
ground truth Fixation Density PCs. DeepGaze IIE’s predictions
are notably overestimated than those of SATSal and SalGAN



Fig. 2. Qualitative Assessment of 3D Saliency Mapping: Extending 2D Saliency Predictions to 3D Point Clouds Using Our Framework with a 40-View Setting.
On the left, the SatSal, SalGAN, and DeepGaze IIE models are illustrated with full saliency integration (T0, 100%). On the right, we display DeepGaze IIE
outcomes applying reduced saliency thresholds T1 (10%) and T2 (5%). Fixation Density PCs refers to the ground truth obtained from VR experiments [29]

within T0. Yet, the thresholding refines these predictions, ef-
fectively highlighting the method capacity in capturing salient
features more accurately.

Our study within the use of our proposed framework, en-
capsulating both quantitative and qualitative analyses, demon-
strates the potential to create representative saliency maps in
3D point clouds, providing a baseline for future improve-
ments of 2D saliency models in 3D environments. Despite
a noticeable drop in quantitative performance relative to 2D
benchmarks [21], [22], this is attributed to the complexity of
point clouds, as the case of high dimensional 360 images [38].
Our approach marks a significant step towards adapting 2D
saliency predictions for 3D applications. This initial endeavor
highlights the framework’s effectiveness in navigating the
challenges of high-dimensional saliency modeling.

V. DISCUSSION

As a discussion, we reflect on the broader implications of
our study for immersive experiences. Our analysis confirms
the critical role of the quantity and arrangement of views in
identifying salient areas for 3D data. By exploring a range
of viewpoints and their influence on 2D saliency predictions,
we not only validate the capability of 2D models prediction
to be adapted to 3D contexts but also enable the synthesis
of robust 3D saliency maps. Moreover, our framework opens
avenues for developing deep learning methods that leverage
projected saliency data, advocating for advanced techniques
like domain adaptation [39], [40] to bridge the gap between
2D and 3D saliency predictions further. These efforts aim to
refine saliency prediction tools for immersive environments,

ensuring that salient features stand out, enhancing the user’s
visual experience.

VI. CONCLUSION

Our research presents a pioneering framework designed
to extend the application of 2D saliency prediction models
to the realm of 3D point clouds, aiming to enhance the
quality of experience in immersive environments. Through
detailed analysis across diverse settings, we’ve showcased
the framework’s proficiency in producing meaningful saliency
maps and emphasized the crucial role of strategic view se-
lection for accurate salient feature identification. This work
lays the groundwork for future advancements in 3D saliency
modeling, promising to significantly improve user engagement
and immersion by ensuring that salient elements within a scene
are consistently and accurately highlighted.
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