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Fast Mode and CU Splitting Decision for Intra
Prediction in VVC SCC

Dayong Wang, Junyi Yu, Xin Lu, Frederic Dufaux, Fellow, IEEE, Bo Hang, Hui Guo, Ce Zhu, Fellow, IEEE

Abstract—Currently, screen content video applications are
increasingly widespread in our daily lives. The latest Screen
Content Coding (SCC) standard, known as Versatile Video
Coding (VVC) SCC, employs a quad-tree plus multi-type tree
(QTMT) coding structure for Coding Unit (CU) partitioning
and screen content Coding Modes (CMs) selection. While VVC
SCC achieves high coding efficiency, its coding complexity poses
a significant obstacle to the further widespread adoption of
screen content video. Hence, it is crucial to enhance the coding
speed of VVC SCC. In this paper, we propose a fast mode and
splitting decision for Intra prediction in VVC SCC. Specifically,
we initially exploit deep learning techniques to predict content
types for all CUs. Subsequently, we examine CM distributions
of different content types to predict candidate CMs for CUs.
We then introduce early skip and early terminate CM deci-
sions for different content types of CUs to further eliminate
unlikely CMs. Finally, we develop Block-based Differential Pulse-
Code Modulation (BDPCM) early termination and CU splitting
early termination to improve coding speed. Experimental results
demonstrate that the proposed algorithm improves coding speed
on average by 41.14%, with the BDBR increasing by 1.17%.

Index Terms—VVC SCC, content type, fast coding mode
decision, BDPCM, fast splitting decision.

I. INTRODUCTION

SCREEN content video refers to recordings captured di-
rectly from the display screen of an electronic device. The

surge in popularity of computer screen-sharing applications
can be attributed to rapid advancements in networking and
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portable devices in recent times. Such applications, including
remote desktop access and video conferencing, are often com-
plemented by document and slideshow sharing. These mul-
timedia communication sessions typically comprise a blend
of Camera-captured Content (CC) and Screen Content (SC).
Additionally, numerous television programs and online videos
also integrate both CC and SC elements. It is foreseeable
that the future will witness the emergence of cloud services
utilizing screen-sharing technologies [1]. Consequently, there
is a growing demand for the efficient compression of SC.
In response to this demand, a Call for Proposal (CfP) was
issued in January 2014 [2] for the development of Screen
Content Coding (SCC) [3] as an extension of the High
Efficiency Video Coding (HEVC) standard [4]. This initiative
has been undertaken by the Joint Collaborative Team on
Video Coding (JCT-VC). The SCC extension introduced two
major Coding Modes (CMs): Intra Block Copy (IBC) [5] and
Palette (PLT) [6] modes, aimed at improving coding efficiency.
In recent times, the Joint Video Experts Team (JVET) has
spearheaded the development of the next-generation video
coding standard, Versatile Video Coding (VVC) [7]. Early in
its development, VVC incorporated IBC, and later, PLT was
added in subsequent phases. It is anticipated that a wide range
of SC applications utilizing VVC, with the integration of IBC
and PLT capabilities, will emerge in the future. However, the
coding process of VVC is extremely complex, primarily due
to the introduction of novel coding tools in VVC SCC, such
as the quad-tree plus multi-type tree (QTMT) coding structure
for the Split Mode (SM) selection. Specifically, a Coding Tree
Unit (CTU) undergoes an initial partition through a quadtree
(QT) approach. Following this, the leaf nodes of the quadtree
can undergo further partitioning using a multi-type tree (MT)
structure. The multi-type tree structure comprises four SM
types: vertical binary tree splitting (VB), horizontal binary
tree splitting (HB), vertical ternary tree splitting (VT), and
horizontal ternary tree splitting (HT). It’s worth noting that,
for the sake of simplifying the CTU partitioning process, once
a Coding Unit (CU) undergoes partitioning through MT, the
use of QT is no longer applicable in subsequent partitioning
steps. The integration of MT significantly complicates the
process of obtaining the best CTU structure. Furthermore, the
introduction of IBC and PLT modes further intensifies the
computational complexity. Consequently, the development of
fast algorithms to mitigate the coding complexity of VVC SCC
is highly desirable.

This paper introduces a fast Intra prediction algorithm aimed
at enhancing the coding speed of VVC SCC. Our approach
first leverages the deep learning techniques to categorize CUs
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into distinct types, namely Animation (A) CUs, Camera-
captured Content (CC) CUs, Text and Graphics with Motion
(TGM) CUs, and Mixed content (Mixed) CUs. Based on this
categorization, we predict candidate CMs and subsequently
implement Block-based Differential Pulse-Code Modulation
(BDPCM) early termination and CU splitting early termination
to improve the coding speed. The main contributions of this
paper are outlined as follows:

(1) A U-Net based network is developed for the categoriza-
tion of CUs into four distinct types: A, CC, TGM, or Mixed.

(2) A strategy for CU early skip and early termination is
introduced, based on content types and features. We begin
with investigating CM distributions of different content types
and predicting candidate CMs based on the these distributions.
Subsequently, we propose a strategy to early skip and termi-
nate the CM decision process for CUs of various content types
to further exclude unlikely CMs.

(3) An early termination approach for BDPCM is presented,
based on content types and residual coefficients. This approach
aims to exclude subsequent RDO processes for the Intra mode.

(4) An early termination approach for CU splitting is
proposed, based on content types and features. This approach
aims to determine whether the current CU needs further
splitting, allowing for the early skipping of additional SMs
examinations.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III presents an overview
of the proposed algorithm. Section IV is dedicated to the
categorization methods for CU contents. Section V describes
the CM prediction methods. Section VI discusses the early
termination approach for BDPCM. The early termination
strategy for CU splitting is presented in Section VII. Exper-
imental results and conclusions are given in Sections VIII
and IX, respectively. The source code is publicly available
at https://github.com/yujy95/FMS-SCC-TBC2024.

II. RELATED WORK

In order to accelerate the encoding process, several fast
approaches have been proposed. Xu et al. [8], [9] reduced the
encoding time by optimizing the quantization of HEVC. Wang
et al. [10]–[12] employed inter-layer and spatial correlations to
predict candidate modes and depths to improve coding speed
of Quality Scalable High Efficiency Video Coding. Yang et
al. [13] used a decision tree to predict candidate SMs, followed
by the utilization of a gradient descent search method to
predict likely directional modes. Li et al. [14] proposed a deep
learning-based approach to predict candidate SMs, leading to a
substantial reduction in encoding complexity of Intra mode in
VVC. While these methods effectively reduce computational
complexity of the VVC encoders, it is essential to note that
they are specifically tailored for natural video contents. Given
the significant distinctions between natural video content and
screen video content, these methods are not suitable for VVC
SCC.

Considering the scarcity of strategies available for acceler-
ating the encoding process of VVC SCC and the existence of
numerous fast SCC approaches for HEVC SCC, our primary

emphasis is on the discussion of fast algorithms for HEVC
SCC. These algorithms can be broadly categorized into two
groups: coding mode prediction and CU splitting prediction.

A. Coding mode prediction

In general, CM prediction can be broadly categorized into
two groups: content classification-based methods and feature
classification-based methods. A detailed review of these meth-
ods is presented below.

Content classification-based methods: Due to the relation-
ship between image content and CMs, candidate CMs can be
derived based on their content. In [15], statistical features were
selected and fed into a decision tree to effectively classify
CUs into two categories: natural content CUs and screen
content CUs, aiming to predict candidate CMs. In [16], factors
such as color number and gradient were utilized to predict
content types of CUs, thereby predicting candidate CMs. Gao
et al. [17] employed a CNN to classify CUs into natural,
text, image, and color content blocks. They then integrated
CU content type, CU size, mode complexity, and spatial
correlations between neighboring CUs and the current CU
to predict candidate CMs. These methods predict candidate
CMs based on content types. However, since the correlations
between content types and CMs are not consistently robust,
relying on content to predict candidate CMs may not always
yield optimal performance.

Feature classification-based methods: Pan et al. [18] sug-
gested early termination of the MERGE mode decision in
HEVC to decrease computational complexity. Tsang et al. [19]
predicted CU sizes by considering the RD costs and early
skipped the IBC mode based on the hash value of each block.
Kuang et al. [20] employed an online learning Bayesian deci-
sion rule to skip unlikely CMs early. Additionally, Kuang et
al. [21] first designed various features as eigenvalues and then
employed a decision tree to sequentially determine whether to
examine Intra mode, IBC Merge mode, IBC search mode, and
PLT mode. Tsang et al. [22] selected a more extensive set of
statistical features to construct a random forest to determine
whether to examine Intra mode, IBC Merge mode, IBC Search
mode, and PLT mode. Kuang et al. [23] first chose statistical
features and then used an online-learning-based Bayesian
decision rule to determine whether to early skip unlikely CMs.
Subsequently, they utilized the mode information from neigh-
boring CUs to further eliminate unlikely CMs for the current
CU. Kuang et al. [24] developed a fast prediction network
based on deep learning to obtain probabilities for all CMs
and to early skip CMs of low probabilities, thus improving
coding speed. Tsang et al. [25] used a CNN-based classifier
to predict candidate CMs for all 4×4 CUs and then determined
the CMs based on the counterparts of their 4×4 sub-CUs.
Wang et al. [26]–[28] developed early terminations for the
Inter-layer mode to enhance coding speed. The aforementioned
methods predict candidate CMs based on features. However, as
the correlations between features and CMs are not consistently
robust, utilizing features for predicting candidate CMs may not
always yield optimal performance.
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B. CU Splitting Prediction

In general, the prediction of CU splitting is commonly used
to improve coding speed. Studies in [29] and [30] emphasize
the crucial importance of a fast CU partitioning decision in
video encoding processes. Tsang et al. [19] utilized charac-
teristics with pixel exactness in both horizontal and vertical
directions, along with the rate-distortion costs, to facilitate
early CU splitting and pruning. Kuang et al. [23] used an
online-learning-based Bayesian decision rule to predict likely
CU splitting and terminate unlikely CU splitting. Furthermore,
Kuang et al. [31] investigated the statistical relationship be-
tween coding cost and CU partition, thus achieving an early
termination of CU splitting.

As previously mentioned, both content classification-based
methods and feature classification-based methods exhibit
drawbacks. In addition, SMs in VVC are significantly more
complex than those in HEVC. To address these issues, we
employ a combined approach that utilizes both methods to
predict candidate CMs. Specifically, we employ deep learning
techniques to classify CUs into one of four content types.
Subsequently, we analyze CM distributions for different con-
tent types to predict candidate CMs. We then introduce early
skipping and early termination mechanisms for CM selection
to exclude unlikely CMs. Furthermore, we develop a BDPCM
early termination strategy based on content types and residual
coefficients to bypass subsequent RDO processes for Intra
mode. Lastly, we propose an early termination approach for
CU splitting based on content types and features to exclude
unlikely CU splitting, thereby improving coding speed.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

In order to enhance the coding speed of Intra prediction in
VVC SCC, we propose a fast CM and CU splitting decision al-
gorithm primarily consisting of four strategies: Deep Learning-
Based Content Classification (DLBCC), Content and Feature-
Based CM Prediction (CFBCMP), Content and Residual
Coefficient-Based BDPCM Early Termination (CRCBBET),
and Feature-Based CU Splitting Early Termination (FBCSET).

Start

Predict content types of all 
CUs

Predict candidate CMs

Determine 
whether BDPCM is 

the best mode

Checking subsequent RDO process

Determine 
whether the SM is the 

best one

Stop

DLBCC :  have developed Sub-CUNet obtain one of the four 
content types of all CUs.

CFBCMP :  first explores the CM distributions for CUs of 
various content types to predict candidate CMs, and then use 
decision trees to early skip and terminate of CM decisions to 
exclude unlikely CMs.

CRCBBET: first investigate BDPCM distributions for CUs of 
various content types, and then use a decision tree to determine 
whether it is the best mode, so as to early terminate the 
subsequent RDO evaluations.

FBCSET: use a decision tree to determine whether it needs to 
be split further.

Yes

No

No

Yes

Fig. 1. Overall structure of the proposed algorithm.

In particular, DLBCC incorporates Sub-CUNet to categorize
CUs into four content types. CFBCMP first analyzes CM

distributions across various content types to predict candidate
CMs, and subsequently uses decision trees for early exclusion
of unlikely CMs. CRCBBET investigates BDPCM distribu-
tions for CUs of various content types, and then uses a decision
tree to determine whether it is the best mode, thus early
terminating the subsequent RDO evaluations. After examining
the current CU, FBCSET uses a decision tree to determine
whether it needs to be split further.

The overall structure of the proposed algorithm is illustrated
in Fig. 1, with the four strategies presented on the left-hand
side.

IV. DEEP LEARNING-BASED CONTENT CLASSIFICATION
(DLBCC)

SCC sequences comprise four types of content: A, CC,
TGM, and Mixed. Typically, each content type exhibits a
strong correlation with specific CMs and CU splitting that
are most likely to be selected for coding. Consequently, the
first step of the proposed algorithm involves categorizing CU
contents, followed by predicting candidate CMs and CU split-
ting based on their corresponding CU contents. To categorize
CU contents, we designed a neural network and subsequently
trained its associated model.

A. Design of the Neural Network

In VVC, a CTU has a default size of 128×128 and can be
flexibly partitioned into blocks with a minimum size of 4×4.
The coding structure of QTMT allows the partitioning of a
CTU into CUs of up to 17 different sizes [14]. Employing deep
learning techniques directly to predict candidate CMs for all
CUs makes the computational process unbearably complex.
Given that the minimum size of CUs is 4×4, we can first
determine the content types of 4×4 CUs and subsequently
predict the content type of each CU based on its 4×4 sub-CUs
in the lower partition layer. If all 4×4 sub-CUs within a CU
exhibit the same type, the CU is categorized as that specific
type. Conversely, if the 4×4 sub-CUs within a CU differ in
type, the CU is classified as a Mixed type. Determining the
type of each 4×4 CU is a challenging task.

Deep learning has demonstrated the capability to automat-
ically extract extensive features, yielding exceptional perfor-
mance across various applications. The Fully Convolutional
Network (FCN) has proven to be highly effective, particularly
for various pixel-wise segmentation tasks such as semantic
segmentation, instance segmentation, and biomedical image
segmentation. Among these FCNs, the U-Net stands out
as a well-known choice for biomedical image segmenta-
tion [24] [25]. Inspired by U-Net, we have developed our own
4×4 sub-CU segmentation net, denoted as Sub-CUNet. Unlike
traditional pixel-wise segmentation, our Sub-CUNet produces
only 4×4 sub-CU-wise labels, as illustrated in Fig. 2Structure
of Sub-CUNetfigure.2.

The luminance component of a 128×128 CTU serves as the
input to Sub-CUNet. Sub-CUNet generates 1024 labels corre-
sponding to 1024 4×4 sub-CUs, with each label representing
the content most likely to be chosen. Sub-CUNet is composed
of seven convolutional layers (CLs), five deconvolutional
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C C C C C

Output: 
Content labels for 4 × 4 CUs

Input: 
1 × 128 × 128

Convolutional Layer (CL),
2 × 2 with a stride of 2

Deconvolutional Layer (DL),
2 × 2 with a stride of 2

Channel Compressing Layer (CCL),
1 × 1 with a stride of 1 C Concatenation Layer 

32 × 32 × 32 128 × 8 × 8 (512 + 512) × 2 × 2 (32 + 32) × 32 × 32

Feature maps:

512 × 2 × 2 (128 + 128) × 8 × 8

Fig. 2. Structure of Sub-CUNet.

layers (DLs), a channel compressing layer (CCL), and five
concatenation layers. Following each CL or DL, a Rectified
Linear Unit (ReLU) activation function is applied. However, in
the case of CCL, the softmax activation function is employed
to generate the output labels. The specific characteristics of
these layers are detailed as follows.

Convolutional Layers: The luminance component of a CTU
is processed by seven CLs to generate the corresponding fea-
ture maps. As shown in Fig. 2Structure of Sub-CUNetfigure.2,
all CLs use a 2×2 kernel size with a stride of 2. The
strides for all CLs are consistently set to the width of the
kernel sizes for non-overlapping convolutions. This design
ensures that the receptive field of each node within a feature
map consistently corresponds to the size of each square CU.
Consequently, feature maps generated by all CLs capture the
local characteristics of CUs with sizes ranging from 4×4 to
128×128, respectively. With each convolutional step, the size
of feature maps is halved, and the number of dimensions in
the feature maps is doubled. After concatenating the feature
maps from both the CLs and DLs, the CCL, which employs a
kernel size of 1×1 with a stride of 1, integrates these feature
maps to generate the final set of feature maps. Ultimately, the
softmax function is applied to these feature maps to generate
labels for the 4×4 CUs.

Deconvolutional Layers: In contrast to their convolutional
counterparts, which double the dimensions and halve the sizes
of feature maps, DLs are used to halve the dimensions and
double the sizes of feature maps. After producing 1024 feature
maps from the last CL, we employ five DLs, with a 2×2
kernel size and a stride of 2, to enlarge the feature maps.
Given that the receptive field of every node in the feature
maps of the last CL is the entire CTU, the receptive field
of each node in the feature maps of all DLs captures global
features for CUs of sizes spanning from 64×64 down to 4×4.
These global features offer a substantial boost to prediction
accuracy by leveraging the inherent spatial content correlation
within a CTU. At each stage of enlarging the feature maps,
we deliberately reduce the number of dimensions by half.
Ultimately, this meticulous process ensures that both global
and local feature maps maintain consistent dimensions for each
CU size, thereby enhancing the overall performance of the
system.

Through the Sub-CUNet, a 128×128 CTU generates 1024
labels, each corresponding to a 4×4 sub-block. Each 4×4
sub-block is categorized into one of the four content types
according to the probability. If all 4×4 sub-blocks within a
CU share the same content type, the CU is classified as that
specific content type. Otherwise, the current CU is classified
as Mixed.

B. Training of the Neural Network

To avoid any overlap between the training set and the test
set, we selected training sequences that are not included in the
Common Test Conditions (CTC) [32] to generate training sam-
ples. These sequences cover A, CC, and TGM content, specifi-
cally including ClearTypeSpreadsheet, KristenAndSaraScreen,
MissionControlClip1, ParkScene, PcbLayout, PeopleInVehi-
cle, PptDocXls, RealTimeData, Seeking, VideoConferenc-
ingDocSharing, WordEditing, DOTA2, CSGO, WITCHER3,
GTAV, and Hearthstone. In addition to those sequences recom-
mended in [33] [34], we also obtained some sequences from
the internet.

To fully leverage computing resources, the batch size is set
to 4096. Sequences are randomly allocated at a ratio of 8:2 to
the training set and the validation set. After loading the dataset,
pixel values are normalized. In the training stage, PyTorch is
utilized on an RTX3090 GPU. The cross-entropy loss function
is selected, and the optimizer used is Adam, with default
values of 0.9 for momentum 1 and 0.999 for momentum 2.
The learning rate is set to 0.0001, and the epoch is set to 1000.
The loss during the training process is illustrated in Fig. 3Loss
during the training process of the content classifierfigure.3, and
the best model is determined based on the decreasing trend of
the loss value during training.

From Fig. 3Loss during the training process of the content
classifierfigure.3, it is evident that as the number of epochs
increases, both training and validation loss values gradually
decrease and converge to similar values. When the number
of epochs is greater than or equal to 800, both loss values
reach a minimum and maintain stability with some slight
fluctuations. This observation indicates that the networks are
not experiencing overfitting problems, which typically occur
when training losses are very small but validation losses are
very high.
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Fig. 3. Loss during the training process of the content classifier.

V. CONTENT AND FEATURE-BASED CM PREDICTION
(CFBCMP)

Through DLBCC, we can obtain information about the types
of CUs. Subsequently, we examine CM distributions for CUs
of various types and then identify likely CMs while excluding
unlikely ones based on the obtained distributions.

To obtain the CM distribution for CUs of various types,
extensive experiments were conducted. In our experiments,
one sequence from each type was selected to cover different
types. Specifically, the test sequences outlined in [24] were
utilized. According to the CTC, all sequences were encoded
using QP values of 22, 27, 32, and 37 under the All_Intra
configuration. All the training and testing sequences use a
color format of YUV 444 with an 8-bits color depth. The
corresponding CM distribution for CUs of various types is
detailed in Table ICM distributions for CUs of various content
typestable.1.

TABLE I
CM DISTRIBUTIONS FOR CUS OF VARIOUS CONTENT TYPES

Categories Intra (%) PLT (%) IBC (%) Proportion(%)
A 93.14 1.51 5.34 22.32

CC 98.24 0.15 1.61 13.19
Mixed 59.1 12.6 28.3 1.38
TGM 33.38 26.37 40.26 63.11

In Table ICM distributions for CUs of various content
typestable.1, Intra, PLT, and IBC refer to their corresponding
proportions in A, CC, Mixed, and TGM CUs, Proportion
refers to the proportions of A, CC, Mixed, and TGM CUs.
From Table ICM distributions for CUs of various content
typestable.1, it is evident that the CM distribution for CUs
of various types exhibits significant differences. Accordingly,
we propose separate mode selection schemes as follows:

(1) Considering that 98.24% of CC CUs employ the Intra
mode, CUs in CC predominantly utilize the Intra mode.
Consequently, CUs in CC exclusively examine the Intra mode.

(2) Since the proportion of Mixed CUs is only 1.38%, given
such a small proportion, we directly examine all three CMs
for Mixed CUs.

(3) Since 93.14% of A CUs employ the Intra mode, the pro-
portions of the other two CMs are not considered negligible.
We first examine the Intra mode and determine whether it is

the best. If affirmative, there is no need to examine the other
two CMs; otherwise, further evaluation of the other two CMs
is necessary.

(4) Since the proportional differences of TGM CUs among
all three CMs are not substantial, it is not feasible to directly
predict the candidate CMs based on their CM distributions.
Instead, we use features to predict the candidate CMs. Specif-
ically, for each CM, we first determine whether the mode can
be skipped early. If affirmative, it is not needed to check the
mode; otherwise, we use the mode to check and determine
whether it is the best CM, thus allowing early termination of
subsequent CM evaluations.

Currently, deep learning is extensively employed in video
coding. Nevertheless, it often fails to leverage certain Features
Obtained During Encoding (FODE), such as residual coeffi-
cients and RD costs, which are only accessible during the
encoding process. These FODE may have a significant impact
on CM selection. Consequently, utilizing deep learning may
not always yield optimal performance. Conversely, machine
learning classifiers can effectively utilize these FODE and
achieve excellent performance. Therefore, we employ machine
learning to predict candidate CMs.

In our experimental setup, we considered a range of machine
learning classifiers, such as the Naive Bayes Classifier (NBC),
Decision Tree (DT), and Support Vector Machine (SVM).
NBC is a probabilistic machine learning model based on
Bayes’ theorem, which assumes conditional independence
between features. NBC requires the statistical estimation of the
probability of each feature first, which can be quite burden-
some. SVM is primarily used for classification and regression
analysis. In classification problems, SVM aims to find a
hyperplane to maximize the spacing between different cate-
gories, which usually leads to complex training and prediction
processes. DT is a widely used binary classification approach
known for its comprehensible flow-chart-like structure. Each
non-leaf node performs a test on a specific attribute, with
branches indicating the test outcomes and leaf nodes holding
class labels. Due to its simple prediction process and high
prediction accuracy, we have chosen DT as the classifier in
this paper. The decision tree is constructed using "Scikit-learn"
in Python with offline training. The aforementioned sequences
used for DLBCC are selected as training sequences.

As mentioned above, we only need to predict candidate CMs
for CUs in A and TGM. As shown in Table ICM distributions
for CUs of various content typestable.1, for CUs in both A and
TGM, the Intra mode is frequently used. Moreover, these CMs
are strongly related to textural features and can be directly
predicted based on them. Therefore, it is advisable to first
check the Intra mode. Since the coding process of the PLT
mode is significantly simpler than that of the IBC mode, which
involves IBC merge and IBC search, we next check the PLT
mode and finally the IBC mode.

For the convenience of subsequent descriptions, features
obtained directly before encoding are denoted as Direct Fea-
tures (DFs), and features obtained during encoding are denoted
as Coding Features (CFs). To enhance coding speed, before
examining a CM, we can use some DFs to determine whether
the CM can be skipped early. If affirmative, the CM can
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be directly skipped. Otherwise, we examine it and combine
DFs with CFs to determine whether the CM is the best
one, thus early terminating the CM selection. We denote the
aforementioned two processes as (a) Mode Early Skipping
based on DFs and (b) Early Termination Based on DFs and
CFs. The details are as follows:

A. Mode Early Skipping based on DFs

Before examining a CM, certain DFs can be acquired.
We input these DFs into a decision tree to determine the
confidence level of utilizing the CM. To accurately obtain the
confidence level, the DFs are selected as follows.

A CTU can be partitioned into CUs of up to 17 different
sizes using the QTMT structure. By applying the same ex-
perimental conditions as outlined at the beginning of Section
V, we derived their CM distributions, which are presented in
Table IICM distributions for CUs of various sizestable.2.

TABLE II
CM DISTRIBUTIONS FOR CUS OF VARIOUS SIZES

CU sizes Intra (%) PLT (%) IBC (%)
64×64 37.32 61.77 0.92
32×32 49.6 37.96 12.44
32×16 61 22.3 16.7
32×8 51.53 18.07 30.4
32×4 48.07 13.19 38.74

From Table IICM distributions for CUs of various
sizestable.2, we can observe that the CM distribution for CUs
of different sizes is significantly different. Notably, substantial
variations in CM distributions are also observed for CU sizes
not included in Table IICM distributions for CUs of various
sizestable.2. Clearly, the choice of the best CM is closely tied
to the size of a CU. As a result, the size of CUs is chosen as
a feature.

In general, the texture of a CU plays a significant role
in the decision-making process for CM selection. Pixel vari-
ances are evidently crucial textural features in this context.
Consequently, we utilize overall variances (OVP), as well as
horizontal (HVP) and vertical (VVP) variances of pixels within
a CU as features. These features can be calculated as follows:

𝑂𝑉𝑃 =

∑𝑊
𝑖=0

∑𝐻
𝑗=0

(
𝑝𝑖 𝑗 − 𝑝

)2
𝑊 × 𝐻

, (1)

𝐻𝑉𝑃 =

∑𝑊
𝑖=0

∑𝐻
𝑗=0

(
𝑝𝑖 𝑗 − 𝑝𝑖

)2
𝑊 × 𝐻

, (2)

𝑉𝑉𝑃 =

∑𝑊
𝑖=0

∑𝐻
𝑗=0

(
𝑝 𝑗𝑖 − 𝑝 𝑗

)2
𝑊 × 𝐻

, (3)

where W and H represent the width and height of a CU,
respectively, 𝑝𝑖 𝑗 denotes the pixel value at the position (i,
j) in the CU, 𝑝 is the average pixel value of the CU, 𝑝𝑖 is
the average pixel value of the 𝑖 th row in the CU, and 𝑝 𝑗

represents the average pixel value of the 𝑗 th column of the
CU.

The Number of Background Color (NBC) is a metric
representing the quantity of pixels that share the same color,

with the highest frequency of occurrence within a given CU.
The Number of Distinct Color (NDC) measures the pixels
in a CU with unique pixel values, essentially pixels with
colors distinct from others. Studies in [21], [22] and [35]
demonstrate that the CM selection of PLT is strongly related
to the count of colors. This is caused by the fact that the count
determines the number of palette items that must be encoded
by PLT following clustering. After clustering, the pixel values
of the block are represented as indices in the palette, and
these indices are encoded using Run-Length Coding. Only
one item is required for consecutive identical colors, referred
to as a color segment in this context. Consequently, the
minimum Number of Color Segments (NCS) observed along
both horizontal and vertical scanning paths directly influences
the number of index items that PLT needs to encode and
significantly impacts the resulting PLT bit rate. Among these
features, CU sizes, OVP, HVP, VVP, and NCS have been
proposed as novel features.

Table IIIFeatures and their respective IGAE values for
mode early skippingtable.3 presents the aforementioned fea-
tures along with their respective Information Gain Attribute
Evaluation (IGAE) values for CUs in A and TGM categories.
The Information Gain is calculated by assessing the entropy
difference before and after classification [36].

TABLE III
FEATURES AND THEIR RESPECTIVE IGAE VALUES FOR MODE EARLY

SKIPPING

Categories CMs
IGAE

Size OVP HVP VVP NDC NDC NCS

A
Intra 0.88 2.39 6.61 55.56 22.66 11.89
PLT 2.40 57.44 2.45 32.54 5.18
IBC 6.11 65.11 21.57 7.11

TGM
Intra 1.82 2.99 13.30 43.60 24.09 14.19
PLT 4.63 35.43 1.82 43.64 14.50
IBC 28.72 42.33 21.14 7.71

In Table IIIFeatures and their respective IGAE values for
mode early skippingtable.3, some features have little relevance
to the likelihood of choosing specific CMs. As a result, these
features are not used and are labeled as "\".

Feeding the features of a CM-to-examine into a decision
tree enables us to derive a confidence level for this CM. If the
confidence level is less than or equal to a specified threshold,
we can terminate CM selection early. To determine the optimal
threshold, we used VTM-17.0 [37] for testing on a server
equipped with an Intel Xeon Gold 5122 CPU and 64GB of
memory. The aforementioned training sequences are encoded
under the All_Intra configuration using QP values of 22, 27,
32, and 37. Coding efficiency is measured using BDBR [38].
The confidence levels and their respective BDBRs for early
skipping of all three CMs in the TGM category are illustrated
in Fig. 4Confidence level and the respective BDBR for CUs
in the TGM categoryfigure.4.

From Fig. 4Confidence level and the respective BDBR for
CUs in the TGM categoryfigure.4, it is evident that when the
confidence levels of both Intra mode and IBC mode are less
than or equal to 0.2, the corresponding BDBR remains nearly
the same. However, when the confidence levels of both these
two CMs exceed 0.2, the corresponding BDBR dramatically
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Fig. 4. Confidence level and the respective BDBR for CUs in the TGM
category.

increases. Clearly, there is a turning point at a confidence
level of 0.2. Therefore, we set the threshold as 0.2 for both
Intra mode and IBC mode. As for the PLT mode, when its
confidence level is greater than 0.1, the corresponding BDBR
continuously increases. Consequently, we set the threshold
as 0.1 for this CM. Employing a similar approach, we can
determine thresholds for all CMs for CUs in the A category.
Through the aforementioned process, we derive the thresholds
for all CMs for CUs in the TGM and A categories, which are
listed in Table IVThresholds for all CMs for CUs in the TGM
and A categoriestable.4 as follows:

TABLE IV
THRESHOLDS FOR ALL CMS FOR CUS IN THE TGM AND A CATEGORIES

Categories CMs Thresholds

TGM
Intra 0.2
PLT 0.1
IBC 0.2

A
Intra 0.2
PLT 0.5
IBC 0.2

When the confidence level of a CM for CUs in the TGM
and A categories is less than or equal to the corresponding
threshold in Table IVThresholds for all CMs for CUs in the
TGM and A categoriestable.4, this CM can be skipped directly,
thereby improving the coding speed.

B. Early Termination Based on DFs and CFs

As mentioned earlier, if the confidence level of a CM
exceeds the corresponding threshold in Table IVThresholds
for all CMs for CUs in the TGM and A categoriestable.4,
further examination of the CM becomes necessary. After
examining the CM, specific coding information, including
residual coefficients and RD costs, is obtained. This coding
information plays a crucial role in the CM early termination.
If the residual coefficients and RD costs are effectively in-
significant, it is highly likely that the corresponding CM is
the best one. Consequently, CM selection can be terminated
early. Therefore, considering both textural features and coding
information, we can determine whether the mode-to-examine
is the best one, thus early terminating the CM selection.

After examining a CM, the acquired textual features and
coding information are inputted into a decision tree to de-

termine the corresponding confidence level. To achieve the
optimal confidence level for early termination of the CM, we
apply the aforementioned experimental conditions during test-
ing. The experiments demonstrate that, for all three CMs, as
the confidence level increases, BDBR significantly decreases.
When the confidence level is greater than or equal to 0.9,
BDBR remains nearly constant. Clearly, there is a turning
point when the confidence level equals 0.9. Therefore, we set
the threshold as 0.9 for the early termination of all three CMs.

VI. CONTENT AND RESIDUAL COEFFICIENT-BASED
BDPCM EARLY TERMINATION (CRCBBET)

In VVC, the Intra prediction process primarily in-
volves three steps: Rough Mode Decision (RMD), BDPCM,
and Rate-Distortion Optimization (RDO). RMD uses the
Hadamard transform to establish a Rate-Distortion Mode List
(RDL). BDPCM employs only horizontal and vertical modes
for prediction, directly quantifying their residual coefficients
without using a transformation. Subsequently, the RDO pro-
cess uses the DCT transform to examine the RDL, Matrix
Weighted Intra Prediction (MIP), and Intra Sub-Partition (ISP)
to determine the best mode. Given the nature of BDPCM, as
mentioned above, its coding complexity is clearly insignificant.
Once BDPCM has been examined, if it is identified as the best
mode, subsequent coding processes can be early terminated,
thereby significantly improving coding speed. To determine
whether BDPCM is the best mode, we examine both the
percentage of cases in which BDPCM is selected as the best
mode and the percentage of cases in which RDO determines
the best mode for CUs in the TGM and A categories under
the aforementioned experimental conditions. The results are
shown in Table VComparison of BDPCM and RDO for CUs
in TGM and A categoriestable.5.

TABLE V
COMPARISON OF BDPCM AND RDO FOR CUS IN TGM AND A

CATEGORIES

Categories BDPCM(%) RDO (%)
A 2.50 97.50

TGM 38.85 61.15

Table VComparison of BDPCM and RDO for CUs in TGM
and A categoriestable.5 shows the proportions of BDPCM in
the A and TGM categories, which are 2.50% and 38.85%,
respectively. Given the relatively small proportion of BDPCM
in the A category, our focus shifts to determining whether
BDPCM is the best mode for CUs in the TGM category.

The performance of BDPCM can be effectively reflected
by the residual coefficients. When examining a CU using
BDPCM, if the values of its residual coefficients are small and
evenly distributed, this indicates that the CU is predicted very
well. BDPCM is thus highly likely to be the best mode, and
the subsequent RDO processes can be terminated early. As the
variance of residual coefficients can accurately measure their
complexity, we select the overall variance (OVRB), horizontal
variance (HVRB), and vertical variance (VVRB) of residual
coefficients as features. Additionally, if the proportion of zero
values in the quantized residual coefficients is notably high,
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it also indicates that the CU is predicted very well, making
BDPCM likely to be the best mode. Therefore, the proportion
of zero values in the quantized residual coefficients, denoted
as PZQR, is also chosen as a feature. It is noteworthy that
the RD cost of BDPCM reflects its performance well and is
included as a feature. Since this is the first paper investigating
BDPCM early termination, all its features are novel. Based
on the aforementioned analysis, the selected features and their
respective Information Gain of Attribute Evaluation (IGAE)
values are listed in Table VIFeatures and their respective IGAE
values for BDPCM early terminationtable.6.

TABLE VI
FEATURES AND THEIR RESPECTIVE IGAE VALUES FOR BDPCM EARLY

TERMINATION

Features IGAE
OVRB 6.90
HVRB 1.31
VVRB 1.24
POZV 6.64

RD cost 84.05

Feeding these features into a decision tree allows us to
determine the confidence level of utilizing BDPCM as the best
mode. Clearly, confidence levels are closely linked to BDPCM
selection. If the confidence level is greater than or equal to
a predefined threshold, BDPCM can be chosen as the best
mode, leading to the early termination of subsequent coding
processes. To identify the optimal threshold, the aforemen-
tioned experimental conditions and sequences are employed in
testing. Theoretically, only when thresholds are greater than
or equal to 0.5 can BDPCM be selected as the best mode.
Therefore, we exclusively use thresholds greater than or equal
to 0.5 for testing purposes. The corresponding thresholds and
their associated BDBRs are illustrated in Fig. 5Thresholds and
their respective BDBR for CUs in the TGM categoryfigure.5.
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Fig. 5. Thresholds and their respective BDBR for CUs in the TGM category.

From Fig. 5Thresholds and their respective BDBR for CUs
in the TGM categoryfigure.5, it is evident that as the thresholds
increase, the corresponding BDBR gradually decreases. This
phenomenon can be explained by the fact that, as confidence
levels increase, the number of mispredicted CUs also decreases
gradually. However, with smaller confidence levels, more CUs
meet the conditions, leading to a greater improvement in
coding speed. A tradeoff exists between coding speed and
coding efficiency. Considering both factors, we choose a
threshold of 0.5. When a CU is examined by BDPCM, if its

confidence level is greater than or equal to 0.5, BDPCM is
selected as the best mode, and subsequent RDO processes can
be terminated early.

VII. FEATURE-BASED CU SPLITTING EARLY TERMINATION
(FBCSET)

As previously mentioned, VVC SCC employs the QTMT
coding structure for CU partitioning. A CTU can be partitioned
into CUs of up to 17 different sizes, and each CU can support
a maximum of six SMs: non-splitting (NS), HB, HT, VB, VT,
and QT. This results in a substantial number of SMs and a
highly complex coding process. Although each CU size can
have up to six SMs, their proportions of use vary significantly.
Notably, NS constitutes a significant portion. Furthermore, the
smaller the size of the CU, the higher the proportions of NS.
After examining the NS mode for a CU, if we can determine
that it does not need to be split, subsequent coding processes
can be terminated early, and coding speed can be significantly
improved.

To accurately determine whether a CU needs to be split
further, the key lies in selecting the best features. In general,
the higher the QP, the less likely CUs are to be split, namely,
they are more likely to select the NS mode, and vice versa.
Additionally, both quad-tree depth (QD) and multi-type tree
depth (MD) play important roles in the decision of splitting
CUs [39], [40]. Therefore, QP, QD, and MD are chosen as
features.

After examining the NS mode for a CU, we can acquire
valuable CF that directly reflects its coding performance and is
closely related to CU splitting. Therefore, the following coding
information has been chosen as features:

(1) ISP mode: This mode is introduced to subdivide an intra-
predicted block into multiple subpartitions. Therefore, in areas
where pixels within the same subpartition are very similar but
are significantly different in different subpartitions, ISP mode
is often chosen as the best coding mode. It is observed that
CUs using ISP mode are more likely to be further split.

(2) Coding information of the Best CM (BCM): After
examining all three CMs for a CU, the CM with the smallest
RD cost is chosen as the BCM. The coding information of
the BCM is closely related to CU splitting. It is evident that
the smaller the variance of residual coefficients and the RD
cost of the BCM, the higher the probability that a CU will
not be split, and vice versa. Therefore, we can leverage the
coding information of BCM, including its residual coefficients
and RD cost, to determine whether the CU needs to be split.

Based on the above analysis, the Flag of ISP (FISP), BCM,
and the RD cost, as well as the overall, horizontal, and vertical
variances of residual coefficients (denoted as OVRS, HVRS,
and VVRS, respectively), are all selected as features of a CU.
Since coding information from the BCM is never utilized in
prediction, all these features are novel. Specifically, BCM,
RCBM, OVRS, HVRS, and VVRS are all novel features.
These features, along with their IGAE values for CU splitting
early termination, are listed in Table VIIFeatures and their re-
spective IGAE values for CU splitting early terminationtable.7.

Feeding these features into a decision tree enables us to
determine the corresponding confidence level. If the con-
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TABLE VII
FEATURES AND THEIR RESPECTIVE IGAE VALUES FOR CU SPLITTING

EARLY TERMINATION

Categories Features IGAE(A) IGAE(CC)

DF
QP 0.14 0.28
QD 0.44 0.55
MD 23.60 30.31

CF

FISP 1.12 1.55
BCM 0.54 0.55

OVBC 1.50 4.50
HVBC 0.27 0.27
VVBC 0.39 0.46
RCBC 72.37 61.56

fidence level is greater than or equal to a threshold, the
corresponding CU does not need to be split. To obtain the
optimal threshold, we utilize the aforementioned experimental
conditions and sequences in testing. The thresholds and their
respective BDBRs for CUs in the A category are illustrated in
Fig. 6Thresholds and their respective BDBR for CUs in the A
categoryfigure.6.
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Fig. 6. Thresholds and their respective BDBR for CUs in the A category.

From Fig. 6Thresholds and their respective BDBR for CUs
in the A categoryfigure.6, it is evident that as confidence
levels increase, the corresponding BDBR gradually decreases.
Additionally, when confidence levels are smaller than or
equal to 0.5, BDBR decreases significantly. Otherwise, BDBR
decreases steadily and slowly. Clearly, there is a turning point
at 0.5. Therefore, we choose 0.5 as the threshold for CUs in
the A category. After examining the NS mode for a CU, if its
confidence level is greater than or equal to 0.5, the CU does
not need to be split. Similarly, we establish the threshold for
CUs in the CC category, which is also set to 0.5.

The texture of TGM CUs is relatively simple, mostly
encoded at small depths, and has similar features. For example,
a large number of color blocks in TGM CUs do not require
further splitting, and the existing optimization algorithms in
VTM are able to accurately terminate the coding process for
these types of CUs. Therefore, FBCSET is not suitable for
TGM CUs.

VIII. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm, we
employed the VTM-17.0 reference software for testing on a
server equipped with an Intel Xeon Gold 5122 CPU and 64GB
of memory. The experimental parameters were configured in

accordance with the CTC. Specifically, both GOPSize and
IntraPeriod were set to 1, and QPs were set as (22, 27, 32, 37).
Due to the unavailability of certain video sequences, only some
sequences of the SC included in the CTC are considered. The
coding efficiency was evaluated using BDBR, representing the
percentage of bitrate increase for the same quality compared
to the reference software. Positive and negative values indicate
a loss and an improvement in coding efficiency, respectively.
Computational complexity was measured by the percentage of
the coding time savings, denoted as ΔT.

The proposed algorithm integrates four strategies: DLBCC,
CFBCMP, CRCBBET, and FBCSET. DLBCC is specifically
designed for classifying content types of CUs, and although it
does not directly improve coding speed, it aids the other three
strategies in doing so. Therefore, it is necessary to present
only the performance of the remaining three strategies in
Table VIIIPerformance of the three strategiestable.8.

From Table VIIIPerformance of the three strategiestable.8,
it is evident that CFBCMP, CRCBBET, and FBCSET ex-
hibit average coding speed improvements of 29.65%, 7.38%,
and 11.02%, respectively. The corresponding average BDBRs
increase by 0.77%, 0.10%, and 0.15%, respectively. Addi-
tionally, it can be observed that CFBCMP enhances coding
speed for all sequences. Since the proportions of BDPCM
for sequences in the A and CC categories are very small,
CRCBBET cannot improve their coding speed. Furthermore,
FBCSET significantly improves coding speed for CUs in
both A and CC categories, but it achieves only insignificant
or minimal improvement in coding speed for some Mixed
and TGM sequences. The reason is that, as aforementioned,
FBCSET is not applied to TGM CUs but only applied for A
and CC CUs. Since the proportions of A and CC CUs in many
Mixed and TGM sequences are not very high, their coding
speed improvements for FBCSET are also not very significant
accordingly. However, sequence SlideShow may include a high
proportion of A and CC CUs, FBCSET achieves remarkable
coding speed improvement for this sequence. Different CU
content types exhibit significantly different characteristics,
which seriously influence coding speed improvements. There-
fore, we need to classify CU content types and then develop
their corresponding methods to improve coding speed.

Considering the limited research on VVC SCC and the
abundance of works on HEVC SCC, we compare our over-
all performance with MLMD [21], and OLBD [23], FSC-
NET [25]. It is important to note that we did not compare
with the latest two papers, namely Gao et al.’s algorithm [17]
and Zuo et al.’s algorithm [41]. The rationale behind this
decision is that Gao et al.’s algorithm assigns different CMs
to CUs of various sizes in HEVC, which encompasses only
four CUs of different sizes. In contrast, VVC supports CUs
of 17 different sizes. Consequently, Gao’s method is not
suitable for a direct comparison with our proposed algorithm.
Incorporating Gao et al.’s algorithm into VVC would result
in a very limited time reduction, rendering it an unfair basis
for comparison. The coding speed of Zuo et al.’s algorithm
has increased by 90.51%, but this improvement comes at
the cost of a 9.47% increase in BDBR. Despite the notable
improvement in coding speed, the coding efficiency of Zuo et
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TABLE VIII
PERFORMANCE OF THE THREE STRATEGIES

Categories Sequences CFBCMP CRCBBET FBCSET
BDBR (%) ΔT (%) BDBR (%) ΔT (%) BDBR (%) ΔT (%)

A Robot 0.92 24.17 -0.06 -5.63 0.44 19.54

CC EBURainFruits 0.00 33.07 -0.11 -6.4 0.1 28.62
Kimono1 1.07 31.12 0.18 -4.96 0.53 42.16

Mixed
BasketballScreen 0.84 29.49 0.16 9.03 0.19 6.47

MissionControlClip2 0.49 24.64 0.18 12.72 0.07 9.98
MissionControlClip3 0.52 29.69 0.05 10.68 0.08 5.6

TGM

Console 0.32 35.91 0.11 15.23 -0.03 2.03
Desktop 0.08 46.09 0.02 19.56 -0.14 4.4

FlyingGraphics 2.88 30.90 0.23 12.59 0.18 3.89
Map 1.03 18.86 0.15 1.74 0.07 -0.76

Programming 0.87 25.15 0.3 12.54 -0.01 2.5
SlideShow 0.67 16.94 0.04 0.61 0.7 13.88

WebBrowsing 0.32 39.48 0.07 18.18 -0.18 4.97
All Average 0.77 29.65 0.10 7.38 0.15 11.02

TABLE IX
OVERALL PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS

Categories Sequences Proposed MLMD [21] OLBD [23] FSCNET [25]
BDBR (%) ΔT (%) BDBR (%) ΔT (%) BDBR (%) ΔT (%) BDBR (%) ΔT (%)

A Robot 1.46 38.78 1.57 17.49 0.69 18.50 1.98 37.33

CC EBURainFruits 0.23 53.40 1.32 16.87 0.27 28.01 0.07 36.44
Kimono1 1.51 56.99 2.13 16.77 1.79 38.37 -0.07 24.66

Mixed
BasketballScreen 1.39 39.28 1.44 21.90 0.72 10.01 4.38 25.16

MissionControlClip2 1.08 41.99 1.22 22.19 0.67 10.98 2.17 31.23
MissionControlClip3 0.89 39.48 1.10 24.59 0.47 9.17 5.71 29.32

TGM

Console 0.43 41.39 2.33 27.37 0.49 16.74 1.98 23.69
Desktop 0.30 51.03 1.56 30.89 0.5 20.72 2.24 32.29

FlyingGraphics 3.25 38.28 1.71 24.28 0.57 13.19 6.66 18.51
Map 1.54 26.66 1.65 20.56 1.03 10.84 2.28 26.87

Programming 1.30 33.04 1.29 23.09 0.79 9.73 3.64 24.55
SlideShow 1.37 28.53 1.74 17.86 0.85 11.01 3.77 23.19

WebBrowsing 0.44 45.93 1.87 26.35 0.46 17.35 7.01 17.62
All Average 1.17 41.14 1.61 22.32 0.72 16.51 3.22 26.98

al.’s algorithm has significantly deteriorated. This degradation
in coding efficiency cannot be deemed an acceptable trade-off
for improved coding performance. Consequently, Zuo et al.’s
algorithm is not an ideal benchmark for comparison. To the
best of our knowledge, these three algorithms are the state-of-
the-art fast Intra coding algorithms for VVC SCC. To ensure a
fair comparison, we implement these algorithms on the same
computing platform and use identical experimental parameters.
The comparison of coding performance and coding speed is
presented in Table IXOverall performance comparison among
different algorithmstable.9. In consideration of the practicality
of our algorithm, the inference time of the models employed
in our algorithm has been included in the experimental results.

From Table IXOverall performance comparison among
different algorithmstable.9, it can be observed that coding
speed improvements achieved by our proposed algorithms,
MLMD, OLBD, and FSCNET, are 41.14%, 22.32%, 16.51%
and 26.98%, respectively. The corresponding average BDBR
increases by 1.17%, 1.61%, 0.72%, and 3.22%, respectively.
When compared with FSCNET and MLMD, our proposed
algorithm performs significantly better in terms of both coding

speed and coding efficiency. In comparison to OLBD, the
proposed algorithm is faster by 24.63% with a 0.45% BDBR
increase. Although the proposed algorithm exhibits slight cod-
ing efficiency losses, they can be considered negligible when
considering the substantial coding speed improvements. Ta-
ble VIIIPerformance of the three strategiestable.8 presents the
respective performance metrics in BDBR of the three proposed
techniques, while Table IXOverall performance comparison
among different algorithmstable.9 is their collective perfor-
mance. Each proposed technique can improve coding speed
but also results to misprediction. When the three proposed
techniques are used simultaneously, they inevitably influence
each other, leading to a further increase in misprediction.
Therefore, the sum of the BDBR performances of the proposed
method presented in Table IXOverall performance comparison
among different algorithmstable.9 is greater than the sum of
the BDBR performances of the three proposed techniques in
Table VIIIPerformance of the three strategiestable.8.

The VVC SCC introduces BDPCM and QTMT, but algo-
rithms developed for HEVC SCC, such as MLMD and OLBD,
have not investigated BDPCM and QTMT. In both VVC and
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HEVC, CM selection and CU splitting exhibit notable similar-
ities. To ensure a fair comparison, we primarily investigate CM
selection and CU splitting in this paper. FSCNET is developed
for VVC SCC, it is solely focused on CM selection, leading
to only marginal improvements in coding speed. Furthermore,
the trained model’s accuracy is not sufficiently high, causing
a significant loss of coding efficiency.

The key factors that contribute to the effective enhancement
of coding speed by the proposed algorithm are as follows:
Due to the substantial differences in the distribution of CMs,
BDPCM, and SMs across various content types of CUs, deep
learning is employed to classify CUs into distinct content
categories. Building upon this classification, we independently
predict candidate CMs, resulting in significantly improved pre-
diction accuracy. Additionally, beyond CM prediction, we have
advanced the early termination mechanisms for both BDPCM
and CU splitting. Consequently, our algorithm significantly
improves coding speed.

IX. CONCLUSIONS

In this paper, we propose a fast mode and CU splitting
decision for Intra prediction in VVC SCC. We initially employ
deep learning techniques to classify CUs. Subsequently, we
develop CM prediction, BDPCM early termination, and CU
splitting early termination based on CU content types and
features. Experimental results demonstrate that the proposed
algorithm, on average, improves coding speed by 41.14%, with
BDBR increasing by 1.17% on average. In our future work,
we plan to develop efficient deep learning-based algorithms to
further improve the coding speed of VVC SCC.
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