
HAL Id: hal-04572421
https://hal.science/hal-04572421v1

Preprint submitted on 10 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Grushin problem for Bismut’s hypoelliptic
Laplacian

Xingfeng Sang, Francis White, Francis Nier

To cite this version:
Xingfeng Sang, Francis White, Francis Nier. The Grushin problem for Bismut’s hypoelliptic Laplacian.
2024. �hal-04572421�

https://hal.science/hal-04572421v1
https://hal.archives-ouvertes.fr


The Grushin problem for Bismut’s hypoelliptic Laplacian

Francis Nier∗

Xingfeng Sang†

Francis White‡

May 10, 2024

Abstract

The name “Grushin problem” refers here to the variation of Schur complement technique introduced by
J. Sjöstrand in [Sjo] which is now a commonly used tool in spectral analysis. A general presentation of this
method with a wide range of applications was given in [SjZw]. Recently in [ReTa], Q. Ren and Z. Tao proposed
such an approach for the analysis of the low lying eigenvalues in the large friction limit for a simple scalar
kinetic model. Inspired by this recent work and with the introduction of functional spaces in [NSW] adapted to
the analysis of geometric Kramers-Fokker-Planck operators, we study in this article the combined asymptotic
analysis of Bismut’s hypoelliptic Laplacian, in the high friction b → 0+ and possibly low temperature h → 0+

regimes.
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1 Introduction

1.1 Problem and motivations

In [Bis041][Bis042], J.M. Bismut introduced the hypoelliptic Laplacian which allows to extend to p-forms the
generator of the semigroup associated with the Langevin process. The Witten Laplacian, self-adjoint and elliptic,
corresponds to the simpler description of the Brownian motion, proposed by Einstein and where the temperature
denoted by h > 0 is essentially the only parameter. The full Langevin process written here in the euclidean case:

dq = pdt , dp = − 1

h
∂qV dt− 1

b
pdt+

1√
b
dW

involves actually the two independent parameters h > 0 and b > 0, where h > 0 can be interpreted (after
rescaling) as a temperature and 1

b as a friction parameter. The low temperature limit h → 0+ is known as the
semiclassical limit for the semiclassical Witten Laplacian ∆V,h and many works have been devoted to its analysis
after the seminal articles [Wit][HeSj4][CFKS] or to its consequences for the theory of topological invariant of man-
ifolds (see e.g. [Zha][BiZh]). It also has obvious relationships with all the asymptotic results of Freidlin-Wentzell
theory (see e.g. [FrWe]) and its development in the study of simulated annealing in the late 70’s (see e.g. [HKS]
or [Mic]). We refer the reader to [Ber] for additional references and a historical background and to [LeSt] for the
presentation of more recent applications and issues for the design of effective algorithms in molecular dynamics.
It was rapidly shown in [BiLe] that the large friction limit b → 0+ (and h > 0 fixed) of Bismut’s hypoelliptic
Laplacian , is related to the Witten or Hodge Laplacian on the base manifold. It is summarized by the commonly
used terminology of “overdamped Langevin process” for Einstein’s description of the brownian motion.
Motivated by the applications to molecular dynamics or kinetic theory many works have been devoted in the last
twenty years to the accurate computations of small eigenvalues of such operators, with the aim of providing quan-
titative information about the trend to the equilibrium. Even in the elliptic, self-adjoint and purely semiclassical
framework of the semiclassical Witten Laplacian new questions arouse concerned with the accurate computation
of spectral element in various geometrical or topological landscape and possibly with boundary value problems.
In particular, in [LNV2] it was proved that when the potential V ∈ C∞(Q;R) has finitely many critical values and
Q is a closed manifold, the various exponentially small scales of low-lying spectrum of the semiclassical Witten
Laplacian’s ∆V,h in the limit h→ 0+ are determined by a topological object: the persistent homology bar code
of the function V .
One question adressed in this text is whether a similar result holds for Bismut’s hypoelliptic Laplacian in the
limit b→ 0+ and h→ 0+ .
Before giving our main result, let us recall, what is known about similar problems:

• The accurate description of exponentially small eigenvalues for semi-classical Witten Laplacians, in con-
nection with Eyring-Kramers asymptotics, the generalized Arrhenius law, or the study of quasistationnary
distributions, has been studied or used in [BEGK] [BGK] [HKN] [HeNi2] [Lep1] [LeNi] [DLLN] [LeNe]
[LNV1] [LNV2] and references therein.

• For the Langevin process, the semiclassical regime, which after a rescaling corresponds to b ∝
√
h and

h → 0+ , for functions (0-forms) in the euclidean space with a Morse potential V was considered in
[HHS]. An accurate study of the tunnel effect, with microlocal analytic techniques, led to a full asymptotic
description of the bottom spectrum under the above assumptions.

• A similar asymptotic framework was considered in the Ph.D thesis of S. Shen (in [She]) for Bismut’s
hypoelliptic Laplacian on the cotangent of a closed riemannnian manifold with b ∝

√
h , h → 0+ , the

potential V is a Morse function and the metric is euclidean in Morse coordinates around critical points.

• In [BLM] the analysis of Hérau-Hitrik-Sjöstrand was extended to a more general class of still scalar (0-forms)
semiclassical non self-adjoint and subelliptic operators. Such methods have been developped in [Nor1][Nor2]
for other relevant kinetic scalar models where the diffusive part is no longer given by a harmonic oscillator
hamiltonian but by a possibly non local operator in the momentum variable.

• In [BFLS] the authors considered the scalar operator for the Langevin dynamics in the euclidean space
but with rather general kinetic energy and potential function. They discuss according to the friction and
temperature parameter, the size of the spectral gap (or resolvent estimate). Their variational (so called
“hypocoercive”) method is combined with a Schur complement method which is reminiscent of the formal
calculations of [BiLe]-Chap 17.

• In [ReTa] Ren and Tao developed a Grushin problem approach for a simple kinetic model in a high friction
limit γ = 1

b → +∞ . Their operator is Y−γ∆S

V on the cosphere bundle S∗Q =
{
(q, p) ∈ T ∗Q, gij(q)pipj = 1

}
,

where Y is the hamiltonian vector field of the geodesic flow and ∆S

V is the vertical Laplace-Beltrami operator
on the spherical fiber.
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The results of S. Shen in [She] are up to now the only accurate asymptotic results on p-forms for Bismut’s
hypoelliptic Laplacian in the combined limit b→ 0+ and h→ 0+ , and it is done under some restricted asumptions.
We note that the works of [BiLe] and [She] are also concerned with the convergence of generalized determinants
in connection with Ray-Singer metrics on determinant bundles and other topological invariants, by developing
the strategy of [BiZh][Zha].
Additionally it is known from the various studies of the elliptic case, i.e. the semiclassical Witten Laplacian,
that 1-forms can be extremely useful even if one is only interested in the scalar case (degree 0). This is due to
the supersymmetric argument: if ω is an eigenvector in degree p then for a Hodge type operator, (d + d∗)2 =
dd∗ + d∗d , dω 6= 0 (resp. d∗ω 6= 0) , dω (resp. d∗ω) is an eigenvector of degree p+ 1 (resp. p− 1) . For these
reasons, it is very natural to explore the accurate description of the small eigenvalues in the combined asymptotic
regimes b→ 0+ and h→ 0+ .
Although our previous work, was initially intended to the study of Bismut’s hypoelliptic Laplacian with boundary
conditions, it rapidly appeared after we heard of Ren and Tao article [ReTa] , that our functional framework
should allow a rather straightforward transposition of their method. Briefly said, it suffices to replace the total
Laplacian ∆q,p on the total space S∗Q by the operator W 2

θ introduced in [NSW] for the definition of global
Sobolev spaces adapted to the analysis of Bismut’s hypoelliptic Laplacian. This combined with various explicit
geometric formulas in [Bis05][BiLe] finally convinced us that an accurate description in the double asymptotics
b→ 0+ and h→ 0+ ( it works for h = 1) and for a general potential V ∈ C∞(Q;R) should be accessible.

1.2 Main result and comments

We are concerned with the spectral and semigroup properties of Bismut’s hypoelliptic Laplacian, denoted here by
B±,b, 1hV on X = T ∗Q, where b, h > 0 are parameters . Actually, the operator B±,b,V is equal to 2(A′

φb,±H)2 with

the presentation of [BiLe]-Section 2 and the additional parameter h > 0 is introduced by replacing V by 1
hV .

We refer to Subsection 2.5 below for a detailed presentation. The semiclassical Witten Laplacian on the closed
base manifold Q is given by ∆V,h = (dV,h + d∗V,h)

2 with dV,h = e−
V
h (hd)e

V
h = hd+ dV ∧ and we refer the reader

to Subsection 2.3 and Subsection 2.6 for various unitarily equivalent presentations adapted to our problem. We
use the h−dependent version of the double exponent Sobolev spaces W̃s1,s2

h introduced in Definition 2.4.2 for
h = 1 and in Definition 2.6.1 for h ∈]0, 1] .

The data of our problem are the spectrum of the semiclassical Witten Laplacian Spec(∆V,h) = Spec(∆V h,1)
and the parameters b, h ∈]0, 1] .

The following definition makes sense if one considers asymptotic regimes where h → 0+ and when V ∈
C∞(Q;R) has a finite number of critical values.

Definition 1.2.1. The parameter ̺h ∈]0, 1] parametrized by h ∈]0, 1] measures a spectral gap for ∆V,h according
to

Spec(
1

2
∆V,h) ∩ [0, ̺h] ⊂ [0, e−

c
h ] ⊂ [0,

̺h
2
]

and Spec(
1

2
∆V,h)∩]̺h,+∞[⊂ [4̺h,+∞[

for all h ∈]0, 1] . We call N±(V ) the rank of 1[0,̺h](
1
2∆V,h) and N (p)

± (V ) the rank of 1[0,̺h](
1
2∆

(p)
V,h) for p ∈

{0, . . . , d} , where the ± sign refers to the choice of the line bundle F+ = Q× C or F− = (Q× C)⊗ orQ .

For every p ∈ {0, . . . , d} the eigenvalues of 1
2∆

(p)
V,h in [0, ̺h] , repeated with multiplicity, are labelled by λ̃

(p)
±,j,h(V ) ,

1 ≤ j ≤ N±(V ) , in the increasing order.

It was proved in [HeSj4] (resp. in [LNV2]) that one can take ̺h = ch with c > 0 (resp. ̺h = e−
ε
h with

ε > 0 arbitrarily small) when V ∈ C∞(Q;R) is a Morse function (resp. has a finite number of critical values).

Additionally the number of eigenvalues of 1
2∆

(p)
V,h counted with multiplicities, in [0, ̺h] , is fixed for h ∈]0, h0] ,

h0 > 0 small enough, and determined by the topological properties of the sublevel sets of V , via Morse the-
ory, or more generally via the barcode of persistent homology. We note also that the Poincaré duality implies

N (p)
+ (V ) = N (d−p)

− (−V ) for every p ∈ {0, . . . , d} .

Definition 1.2.2. For every p ∈ {0, . . . , 2d}, the eigenvalues of B
(p)

±,b, V
h

lying in D(0, ̺h

h2 ) , repeated according to

their algebraic multiplicity, will be denoted by (λ
(p)
±,j,h)1≤j≤N (p)

±
. The characteristic space

E
(p)
±,b,h = Ran

(
1

2iπ

∫

|z|=̺h
h2

(z −B
(p)

±,b, Vh
)−1 dz

)
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has the dimension N (p)
± = dim(E

(p)
±,b,h) . When B

(p)

±,b, Vh

∣
∣
E

(p)
±,b,h

is diagonalizable (see Theorem 1.2.3-a)), a basis of

eigenvectors is written (u
(p)
±,j,h)1≤j≤N (p)

±
and its L2 dual basis is denoted by (v

(p)
±,j,h)1≤j≤N (p)

±
.

Theorem 1.2.3. Let g be a metric on Q and let V ∈ C∞(Q;R) be a potential function with finitly many critical
values. In the following statements Cs ≥ 1 denotes a large enough constant determined by s ∈ R .

a) When bC0 ≤ h̺h ≤ h all the eigenvalues of B±,b, Vh
with real part below ̺h

h2 are real and non negative:

Spec(B±,b, Vh
) ∩ {z ∈ C ,Re z ≤ ̺h

h2
} = Spec(B±,b, Vh

) ∩ [0,
̺h
h2

] = Spec(B±,b,Vh
) ∩D(0,

̺h
h2

) .

In degree p ∈ {0, . . . , 2d} , their number, counted with multiplicity, is given by N (p)
± = N (p− d

2± d
2 )

± (V ) ,

which is 0 if p > d (resp. p < d) in the + case (resp. − case). Poincaré duality implies λ
(p)
+,j,h = λ

(2d−p)
−,j,h .

Additionally the restricted operator B
(p)

±,b, Vh

∣
∣
E

(p)
±,b,h

is diagonalizable.

b) Under the stronger assumption bA4C0 ≤ h̺h ≤ h with A ≥ C0 , the comparison between the Witten Laplacian
and Bismut’s hypoelliptic Laplacian of the low lying spectrum, is given by

∀p ∈ {0, . . . , 2d}, ∀j ∈ {1, . . . ,N (p)
± } , (1+C0A

−1/2)−1
λ̃
(p− d

2± d
2 )

±,j,h (V )

h2
≤ λ

(p)
j,±,h ≤ (1+C0A

−1/2)
λ̃
(p− d

2±d
2 )

±,j,h (V )

h2
.

c) When bCs ≤ h̺h , the semigroup (e
−tB±,b, V

h )t>0 satisfies:

e
−tB±,b, V

h =
∑

p∈{0,...,2d}

∑

j

e−tλ
(p)
±,j,h |u(p)

±,j,h〉〈v
(p)
±,j,h|+Rh(t)

with ‖Rh(t)‖L(W̃0,s
h ;W̃0,s

h ) ≤
1

b2
(h2 +

1

t
)e−t

̺h
h2

and max(‖u(p)
±,j,h‖W̃0,s

h
, ‖v(p)±,j,h‖W̃0,s

h
) ≤ Cs ,

for suitably normalized basis of eigenvectors (u
(p)
±,j,h)1≤j≤N (p)

±
.

The second statement b) says in particular that in the limit h→ 0+ the eigenvalues of Bismut’s hypoelliptic
Laplacian have the same exponentially small asymptotic behaviour as the eigenvalues of the Witten Laplacian.
The latter were shown in [LNV2] to be related to the bar codes of persistent homology.

Corollary 1.2.4. When V ∈ C∞(Q;R) has finitely many critical values and under the condition C5
0b ≤ h̺h ,

the eigenvalues (λ
(p)
+,j,h)1≤j≤N (p)

±
satisfy limh→0+ −h log(λ(p)

+,j,h) = 2ℓ
(p)
j , where ℓ

(p)
j is the length of a bar, indexed

by j , with a degree p endpoint in the bar code associated with V . The − case is obtained by Poincaré duality

with λ
(p)
−,j,h = λ

(2d−p)
+,j,h .

Comments:

• In order to write a general statement, we preferred to expressed things in terms of the non explicit spectral
gap ̺h of Definition 1.2.1. For a general function V ∈ C∞(Q;R) with finitely many critical values the result
of [LNV2] says that one can take ̺h = e−

ε
h with ε > 0 arbitrarily small. But when one knows better the

geometry of the critical sets an algebraic expression ̺h = hν can be obtained. The basic example is when

V (x) = xn in R, in which case a simple rescaling argument gives ̺h = h2n−1
n .

• When the potential V is a Morse function, the condition C0b ≤ ̺hh says b ≤ ch2, which is stronger than the
condition b ≤ c

√
h suggested by the works of S. Shen [She] and Hérau-Hitrik-Sjöstrand [HHS] , where they

considered b ∝
√
h . Actually our method relies on the elimination of the potential term, as a perturbative

term, after the rescaling φh : Q 7→ Qh = 1
hQ of Subsection 2.6. A similar analysis of what is proposed here,

could be developed with better treatment of the Morse potential function. Instead of the above dilation

take φ√
h : Q 7→ Q

√
h = 1√

h
Q and use on Q

√
h a partition of unity in riemannian balls of radius M

√
h

with M ≥ 1 large enough. With a more inclusive description of the scalar quadratic model in every ball,

which takes better into account the quadratic Taylor approximation of the potential V
√
h(q) = 1√

h
V (
√
hq) ,

subelliptic estimates of [NSW] can be improved in particular by using the accurate quantitave estimates
of [BNV] for quadratic Kramers-Fokker-Planck operators in the euclidean space. In the end the rescaling

leads to the comparison of the spectral gap for ∆V
√

h,1 on Q
√
h , which by unitary equivalence is equal to

1
h̺h ∝ 1 and the rescaled parameter b√

h
instead of b

h . One then recovers the natural condition b ≤ c
√
h .

This is just a sketch and an accurate spectral analysis remains to be done. In this article, we preferably
considered a C∞-function without assuming that it is a Morse function, in order to highlight the generality
of the Grushin problem approach.
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• In [LNV2] results were given for non smooth potentials, in particular when V is a Lipschitz subanalytic
function. This more general case is not considered here and it would require a specific analysis, which could
follow partly the strategy presented here.

• Theorem 1.2.3 is a digest of what can be deduced from the Grushin problem method. Many intermediate
resolvent estimates can be used and maybe improved for other purposes.

• Finally, we have not considered as in [BiLe] and [She] the convergence of generalized determinants. Actually,
for topological invariants which do not depend on the riemannian metric, the simplifying assumptions of
[She] suffice for a general treatment. It is not clear that a more accurate and general analysis would bring
relevant improvements.

1.3 Outline of the article

The geometric framework, the operators, the various scalings and the functional spaces are defined in Section 2.
Remember that Bismut’s hypoelliptic Laplacian is a second order non self-adjoint and non elliptic operator acting
on differential forms defined on the total space X of the cotangent bundle T ∗Q of the closed riemannian man-
ifold (Q, g) . The definition of the hypoelliptic Laplacian in[Bis05][BiLe], the associated Weitzenböck formula,
and the introducition of adapted functional spaces, strongly relies on the horizontal and vertical decomposition
T (T ∗Q) = TX = THX ⊕ T V X recalled in subsection 2.2. The exact definition of the Witten Laplacian and
the hypoelliptic Laplacian are given in Subsections 2.3 and 2.5. An h-dependent change of scale is introduced
in Subsection 2.6. This allows to get easily uniform constants with respect to h ∈]0, 1] in all the subelliptic
estimates which are used in the text. The first of these subelliptic estimates in Subsection 2.7 is an adaptation
of the general results of [NSW] to the present framework. Although Theorem 1.2.3 is expressed for the operator
B±,b, 1hV = B±,(Q,g, Vh ,b) on X = T ∗Q , all the analysis of this text is carried out on the dilated geometry of

Subsection 2.6 with the operator B±,b′,V h = B±,(Qh,gh,V h,b′), b
′ = b

h and where the ′ is dropped afterward) where
the h-dependence is easier to track.

In Section 3, various perturbations or modifications of the operator B±,b,V h are considered, which have no
spectrum around 0 . For such new operators, resolvent and possibly subelliptic estimates are specified. One of
them, denoted by B±,b,V h +QA,L,V h , is directly inspired from the work [ReTa] of Q. Ren and Z. Tao. In a crucial
way, this section aims at providing subelliptic estimates for B±,b,V h +QA,L,V h with a uniform lower bound with
respect to b, h ∈]0, 1] for a large enough new additional parameter A ≥ 1 . Due to the new complexity of our
problem but also in order to improve Ren-Tao lower bounds, this is done in two steps with the intermediate
operator B±,b,V h +A2π0,± easier to handle, especially if one uses the maximal subelliptic estimates.

The writing of a Grushin problem in Section 4 allows an accurate comparison of the resolvents (B±,b,V h +

QA,L,V h −z)−1 , (B±,b,V h −z)−1 , (∆V h,1−z)−1 and (∆V h,1+ Q̃A,L,V h −z)−1 . Although the resolvent estimates
of Section 3 can be written with uniform constants which are independent of the Sobolev exponent s ∈ R , the
range of validity for the parameters b, h, A > 0 actually depends on this Sobolev exponent s . Attention must be
paid to the formal calculations which are not done in the general distributional setting but rather in an arbitrarily
fixed range of Sobolev exponents s ∈ [smin, smax] .

The proof of Theorem 1.2.3 is achieved in Section 5. The resolvent comparison in Section 4 and the spectral
information of the semiclassical Witten Laplacian, summarized in Definition 1.2.1 , provide the first accurate
localization of the spectrum ofB±,b,V h around 0 , with new accurate estimates for the resolvent and the semigroup.
We finally use the Hodge structure and the PT-symmetry property, r∗B±,b,V hr∗ = B∗

±,b,V h with r∗ a unitary
involution, in order to make an accurate comparison between the eigenvalues of B±,b,V h , identified now as the
squared singular values of a restricted differential, and the eigenvalues of the Witten Laplacian ∆V h,1 , with
Spec(∆V h,1) = Spec(∆V,h) .

2 Framework

2.1 Total space X of the cotangent bundle

Let (Q, gTQ) be a closed Riemannian manifold of dimension d, ∇LC the associated Levi-Civita connection and
let X = T ∗Q be the total space of the cotangent bundle. On one side, the total space X is a symplectic manifold
with the canonical symplectic form σ . One the other side, the kinetic energy function is globally defined by

∀x = (q, p) ∈ T ∗
q Q, H(x) = |p|

2
q

2
=

1

2
gT

∗Q(p, p). (2.1.1)
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Then the hamiltonian vector field Y of the geodesic flow is given by

dXH + iYσ = 0. (2.1.2)

The scalar vertical harmonic oscillator O is the self-adjoint differential operator defined with its maximal domain
in L2(X, dqdp;C) by

1

2
(gTQ(Dp, Dp) + gT

∗Q(p, p)) ≥ d

2
Id with Dp =

1

i
∂p (2.1.3)

where −∆V = gTQ(Dp, Dp) is the fiberwise vertical Laplacian.

2.2 The horizontal-vertical decomposition

The Levi-Civita connection induces a splitting of the tangent space and cotangent space of X given by

TX = THX ⊕ T VX ≃ π∗(TQ⊕ T ∗Q) ; T ∗X = (T ∗X)H ⊕ (T ∗X)V ≃ π∗(T ∗Q ⊕ TQ) (2.2.1)

where π : X = T ∗Q → Q is the natural projection, THX ≃ π∗(TQ) is the horizontal distribution and T V X =
ker(dπ) ≃ π∗(T ∗Q) is the vertical distribution. Once a frame u1, u2, . . . , ud and the associated coframe u1, . . . , ud

are locally chosen, we take a copy of those two frames û1, û2, . . . , ûd and û1, . . . , ûd where the above identification
is written

THX ≃ Span(u1, . . . , ud) ; T V X ≃ Span(û1, . . . , ûd)

and
(T ∗X)H = Span(u1, . . . , ud) ; (T ∗X)V = Span(û1, . . . , ûd).

In the rest of the text we will use the above identification with the following additional conventions

• When ui’s are associated to a coordinate system on Q i.e. ui =
∂
∂qi for all i ∈ {1, . . . , d} then we use the

notation

π∗(ui) = ei =
∂

∂qi
+ Γk

ijpk
∂

∂pj
∈ THX ; π∗(ûi) = êi =

∂

∂pi
∈ T VX

and
π∗(ui) = ei = dqi ∈ (T ∗X)H ; π∗(ûi) = êi = dpi − Γk

ijpkdq
j ∈ (T ∗X)V .

Where Γk
ij denote the Christoffel symbol for the Levi-Civita connection, defined by ∇LC

∂

∂qi

∂
∂qj = Γk

ij(q)
∂

∂qk .

• When ui’s is an (local) orthonormal frame of TQ we will use the notation

π∗(ui) = fi ∈ THX : π∗(ûi) = f̂ i ∈ T V X (2.2.2)

and π∗(ui) = f i ∈ (T ∗X)H ; π∗(ûi) = f̂i ∈ (T ∗X)V . (2.2.3)

Passing from one writing to another is simply given by a section P of the fiber bundle GL(TQ) above Q. Indeed
for all i ∈ {1, . . . , d}

ui = P (q)ji
∂

∂qj
.

The following relations hold on TX and T ∗X

fi = P (q)ji ej f̂ i = (P (q)−1)ij ê
j ,

and f i = (P (q)−1)ije
j f̂i = P (q)ji êj.

With this decomposition

• The metric gTX on TX is defined as gTX = gTQ ⊕⊥ gT
∗Q with respect to the decomposition (2.2.1). The

frame f1, . . . , fd, f̂
1, . . . , f̂d is an orthonormal frame with respect to gTX . Similarly we define the metric

gT
∗X = gT

∗Q⊕⊥gTQ on the cotangent space T ∗X of X . For the exterior algebra we use ΛT ∗X ≃ (ΛT ∗Q)⊗
(ΛTQ) as a vector space and gΛT∗X = gΛT∗X ⊗ gΛTX . With the orthonormal frames f1, . . . , fd, f̂1, . . . , f̂

d,

an orthonormal frame of ΛT ∗X is given by (f I ∧ f̂J)I,J⊂{1,...,d}.

• The hamiltonian vector field Y defined by (2.1.2) can be written

Y = gT
∗Q(ei, ej)pjei =

d∑

i=1

p̃ifi

where p = pidq
i = p̃if

i ∈ T ∗
q Q.
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• The vertical Laplacian equals

∆V = gTQ(ei, ej)ê
iêj =

d∑

i=1

(f̂ i)2.

• The tautological connection on TX and T ∗X , extended to ΛT ∗X or ΛT ∗X ⊗ π∗or(Q), is defined by the
following formula

∇TX
ei ej = Γk

ijek ; ∇TX
ei êj = −Γj

ikê
k,

∇TX
êi ej = 0 ; ∇TX

êi êj = 0

and ∇T∗X
ei ej = −Γj

ike
k ; ∇T∗X

ei êj = Γk
ij êk,

∇T∗X
êi ej = 0 ; ∇T∗X

êi êj = 0.

2.3 Hermitian trivial bundle F over Q

Although Bismut’s theory of the hypoelliptic Laplacian in [Bis041][Bis042][Bis05] works in a much more general
framework, we focus here on the simpler case which makes the connection with the standard semiclassical Witten
Laplacian on the base manifold Q. Namely we work with the trivial bundle F = Q × C on the base manifold
Q, equiped with the hermitian metric gF = exp(−2V (q))dz̄ ⊗ dz and the trivial connection ∇F = dQ. When
smooth duality arguments are used on a non-oriented manifold Q, the trivial bundle Q×C must be replaced by
(Q× C)⊗ orQ where orQ is the orientation bundle on Q. Locally nothing is changed.
By following Bismut’s notations, set

ω(∇F , gF ) = (gF )−1∇F gF = −2dV,

which is here a real scalar 1−form on Q. The adjoint connection ∇F∗ of ∇F with respect to gF equals

∇F∗ = dQ − 2dV

and the associated unitary connection ∇F,u is

∇F,u = dQ − dV.

Contrary to the general case studied in [Bis05][BiLe], here the unitary connection ∇F,u is flat since its curvature
RF is given by RF = − 1

4ω(∇F , gF ) ∧ ω(∇F , gF ) = −dV ∧ dV = 0.
In Bismut work and more generally for a probabilistic approach, the natural L2-space is L2(Q, dVolg; ΛT

∗Q⊗F )
where the notation recalls the non trivial metric gF = e−2V (q) on F ≃ Q⊗ C, in the L2-scalar product

〈u, v〉L2(Q,dVolg ;ΛT∗Q⊗F ) =

∫

Q

gΛT∗Q(u, v) e−2V (q) dVolg(q).

For the accurate spectral analysis it is simpler to work in the standard L2-space, L2(Q, dVolg; ΛT
∗Q⊗ C), with

the scalar product

〈u, v〉L2(Q,dVolg;ΛT∗Q⊗C) =

∫

Q

gΛT∗Q(u, v) dVolg(q).

Passing from one formulation to the other via the unitary multiplication by e±
V (q)

h is summarized by the following
table.

Functional space L2(Q, dVolg; Λ
·T ∗Q⊗ F ) L2(Q, dVolg; Λ

·T ∗Q⊗ C)

Sections v = eV u u = e−V v

metric gF = exp(−2V ) 1

Connection ∇F = dQ dQ + dV

Endomorphism ω ω(∇F , gF ) = −2dV ω(∇F , gF ) = −2dV
Adjoint connection ∇F∗ = dQ − 2dV dQ − dV

unitary connection ∇F,u dQ

differential dQ dQ + dV ∧ =: dV,1

codifferential dQ,F,∗ = e2V dQ,∗e−2V = dQ,∗ + 2i∇V dQ,∗ + i∇V =: d∗V,1
Hodge/Witten Laplacian �Q,F = (dQ + dQ,F,∗)2 ∆V,1 = (dV,1 + d∗V,1)

2

Table 1: Correspondance of L2 spaces
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We recall the formulas

�
Q,F = (dQdQ,∗ + dQ,∗dQ) + 2L∇V , (2.3.1)

dV,1 = e−V (d)eV = d+ dV ∧ , d∗V,1 = eV (d∗)e−V = (dV,1)
∗ = d∗ + i∇V , (2.3.2)

∆V,1 = (dV,1 + d∗V,1)
2 = (dV,1d

∗
V,1 + d∗V,1dV,1) = (dQdQ,∗ + dQ,∗dQ) + |∇V |2 + (L∇V + L∗∇V ) . (2.3.3)

The subscript 1 in dV,1, d
∗
V,1 and ∆V,1 refers to the specific case h = 1 for the semiclassical Witten differential,

codifferential and Laplacian:

dV,h = e−
V
h (hd)e

V
h , d∗V,h = e

V
h (hd)∗e−

V
h

∆V,h = (dV,h + d∗V,h)
2 = h2(dd ∗+d ∗ d) + |∇V |2 + h(L∇V + L∗∇V ) .

Within the presentation of Table 1 the semiclassical regime can be introduced by simply replacing V by V
h and

by choosing the metric gF = e−
2V
h . This actually leads to

�
F = (dQdQ,∗ + dQ,∗dQ) +

2

h
L∇V

in L2(Q, dVolg; ΛT
∗Q⊗ F ) , transformed in the L2(Q; dVolg; ΛT

∗Q⊗ C) picture into

(dQd∗,Q + d∗,QdQ) +
1

h2
|∇V |2 + 1

h
(L∇V + L∗∇V ) =

1

h2
∆V,h .

We will explain in the specific Subsection 2.6 how the semiclassical asymptotic regime, or more generally h ∈]0, 1] ,
can be easily introduced in the analysis of geometric Kramers-Fokker-Planck operators of [NSW], where the
parameter h ∈]0, 1] was actually not considered.

2.4 Functional spaces on X

The isomorphism of vector bundles E and π∗(ΛT ∗Q⊗ ΛTQ⊗ F
︸ ︷︷ ︸

=E

) is provided by the horizontal-vertical decom-

position (2.2.1) of ΛT ∗X ⊗ π∗F . With this identification, the vector bundle E is endowed with the metric

π∗(gΛT∗Q ⊗ gΛTQ ⊗ gF ) where we recall F = Q×C (or possibly F = (Q×C)⊗ orQ) and gF = e−
2V (q)

h dz̄ ⊗ dz .
The pulled back vector bundle will be denoted by E = ΛT ∗X ⊗ π∗F and depending on the case E+ = ΛT ∗X ⊗C

and E− = ΛT ∗X ⊗C⊗ π∗(orQ). With the symplectic volume denoted by dqdp = dVolg⊕⊥g−1 , the associated L2

space, denoted by L2(X, dqdp; E) and equal to L2(X, e−
2V (q)

h dqdp; E±), is given by the hermitian scalar product

〈u, v〉L2(X,dqdp;E) =
∫

X

gΛT∗X(u, v)e−
2V (q)

h dqdp .

After setting ũ = e−
V (q)

h u and ṽ = e−
V (q)

h v , it can be replaced by the standard L2(X, dqdp; E±) with the scalar
product

〈ũ, ṽ〉 =
∫

X

gΛT∗X(ũ, ṽ) dqdp = 〈u, v〉L2(X,dqdp;E±) .

Those L2 spaces and the Schwartz space of rapidly decaying (as p→∞) smooth sections, S(X ; E) and S(X ; E±),
coincide with the obvious density result. The first L2-norm depends on h > 0 while the second L2-norm does
not change with h > 0 and is more convenient here.

We work in L2(X, dqdp; E±).
When necessary, formulas of [Bis05][BiLe] written in L2(X, dqdp; E) with the corresponding scalar product

and duality, will be translated later by extending the general rules of Table 1
For the analysis it is more convenient to work with a local presentation on the base manifold Q of the

functional spaces and associated differential operators.

Definition 2.4.1. Let
∑J

j=1 θ
2
j (q) ≡ 1 be a quadratic partition of unity on Q , such that above a neighborhood

Vθ,j of every supp θj , there are smooth dual orthonormal frames (u1
j , . . . , u

d
j ) of T ∗Q

∣
∣
Vθ,j

and (uj,1, . . . , uj,d) of

TQ
∣
∣
Vθ,j

. Set f i = π∗(ui) ∈ (T ∗X)H and f̂i = π∗(ui) ∈ (T ∗X)V according to (2.2.3).

For F = Q× C or F = (Q× C)⊗ orQ, let Iθ,Q and Iθ,X denote the product of isometries:

Iθ,Q :L2(Q, dVolg; ΛT
∗Q ⊗ F )→

⊥
⊕

1≤j≤J
L2(Vθ,j , dVolg; (ΛT ∗Q⊗ F )

∣
∣
Vθ,j

)→
⊥
⊕

1≤j≤J
I⊂{1,...,d}

L2(Vθ,j, dVolg;C) (2.4.1)

s 7→ (θjs)1≤j≤J 7→ Iθ,Qs = (sj,I) 1≤j≤J
I⊂{1,...,d}

(2.4.2)
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with
θjs =

∑

I⊂{1,...,d}
sj,I(q)u

I
j , uj,I = ui1

j ∧ . . . ∧ u
i|I|
j ,

and

Iθ,X :L2(X, dqdp; E±)→
⊥
⊕

1≤j≤J
L2(π∗(Vθ,j),dqdp; E±

∣
∣
π∗(Vθ,j)

)→
⊥
⊕

1≤j≤J
I,K⊂{1,...,d}

L2(π∗(Vθ,j), dqdp;C) (2.4.3)

s 7→ (θjs)1≤j≤J 7→ (sKj,I) 1≤j≤J
I,K⊂{1,...,d}

, (2.4.4)

with
θjs =

∑

I,K⊂{1,...,d}
sKj,I(q)f

I
j ∧ f̂j,K , f I

j = f i1
j ∧ . . . ∧ f

i|I|
j , f̂j,K = f̂j,k1 ∧ . . . ∧ f̂j,k|K|

Let us gather obvious properties of the isometries Iθ,Q and Iθ,X :

• The adjoints of Iθ,Q and Iθ,X are given by

I∗θ,Q
[

(sj,I) 1≤j≤J
I⊂{1,...,d}

]

=
∑

1≤j≤J
I⊂{1,...,d}

θj(q)sj,Iu
I
j ,

and I∗θ,X
[

(sKj,I) 1≤j≤J
I,K⊂{1,...,d}

]

=
∑

1≤j≤J
I⊂{1,...,d}

θj(q)s
K
j,If

I
j ∧ f̂j,K .

• The isometry Iθ,Q is continuous from C∞(Q; ΛT ∗Q⊗F ) to ⊕ 1≤j≤J
I⊂{1,...d}

C∞0 (Vθ,j;C), resp. Iθ,X is continuous

from S(X : E±) to ⊕ 1≤j≤J
I⊂{1,...d}

S(π∗(Vθ,j);C) while the supports satisfy supp sKj,I ⊂ π∗(supp θj), with

I∗θ,QIθ,Q = IdL2 , I∗θ,QIθ,Q
∣
∣
C∞(Q;ΛT∗Q⊗F )

= IdC∞(Q;ΛT∗Q⊗F ) ,

and I∗θ,XIθ,X = IdL2 , I∗θ,XIθ,X
∣
∣
S(X;E±)

= IdS(X;E±) .

• The vertical harmonic oscillator hamiltonian given by (2.1.3) satisfies as a self-adjoint operator

O = I∗θ,X

[

−∆V + |p|2q
2

⊗ Id
CJ×22d

]

Iθ,X (2.4.5)

with the functional calculus given by

f(O) = I∗θ,X

[

f(
−∆V + |p|2q

2
)⊗ Id

CJ×22d

]

Iθ,X (2.4.6)

for any Borel function f : R→ C .
The vertical degree NV written locally as

∑d
i=1 f̂j,i ∧ if̂j,i is diagonal according to

NV = I∗θ,X
[

⊥
⊕

K⊂{1,...,K}
|K|Id

CJ×2d

]

Iθ,X . (2.4.7)

We recall now the general definition of the global Sobolev spaces W̃s1,s2(X ; E±), (s1, s2) ∈ R2, introduced in
[NSW].
With the horizontal-vertical decomposition (2.2.1) and the metric gTQ, the horizontal scalar Laplacian (see
[BeBo]) is given by

∆H = gij(q)(eiej − Γk
ijek) = (ei)

∗ ◦ gij(q) ◦ ej ,
while the vertical scalar harmonic oscillator operator O has already been introduced in (2.1.3).
The scalar operator W 2 is defined as the closure in L2(X, dqdp;C) of the differential operator Cg −∆H +CgO2 :
S(X ;C)→ S(X ;C) for Cg ≥ 1 large enough. The operatorW 2 is self-adjoint and (W 2,O) is a pair of commuting
self-adjoint operators.
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The non scalar version W 2
θ is modelled on the scalar version after using the quadratic partition of unity on Q ,

∑J
j=1 θ

2
j (q) ≡ 1 and the isometry Iθ,X . It is given by

W 2
θ = I∗θ,X

[
W 2 ⊗ Id

CJ×22d

]
Iθ,X =

J∑

j=1

θj(q) ◦W 2
sc,j ◦ θj(q) . (2.4.8)

whereW 2
sc,j is defined by using the connection∇j which is trivial in the orthonormal frame (f1

j , . . . , f
d
j , f̂j,1, . . . , f̂j,d) .

Again for Cg ≥ 1 large enough, (W 2
θ ,O) is a pair of strongly commuting self-adjoint operators in L2(X, dqdp; E±).

We refer the reader to [NSW] for details.

Definition 2.4.2 (Sobolev Spaces). For all s1, s2 ∈ R, the double exponent Sobolev space W̃s1,s2(X, dqdp; E±) is
defined by

W̃s1,s2(X ; E±) = {u ∈ S ′(X ; E±),O
s1
2 (W 2

θ )
s2/2u ∈ L2(X, dqdp; E±)}.

The norm is defined as ‖u‖W̃s1,s2 (X;E±) = ‖O
s1
2 (W 2

θ )
s2
2 u‖L2. For simplicity, those spaces will often be denoted

by W̃s1,s2 .

The pseudodifferential calculus associated with W 2
θ was introduced in [NSW] where the order of operators is

recalled here:
pi, Dpi (1/2) , O, ei (1) , ∇E±

Y (3/2) , (W 2
θ )

s/2 (s) ,

and it says in particular

W̃0,s2+
s1
2 ⊂ W̃s1,s2 ⊂ W̃0,s2 ,

W̃0,s2 ⊂ W̃−s1,s2 ⊂ W̃0,s2− s1
2 for s1 ≥ 0, s2 ∈ R ,

and
∩

s2∈R

W̃s1,s2 = S(X ; E±) ∪
s2∈R

W̃s1,s2 = S ′(X ; E±) for all s1 ∈ R.

We end this section by adding some notations and by recalling some functional analysis properties.

Definition 2.4.3. For a continuous operator A : S(X ; E±)→ W̃0,s(X ; E±) , which is closable in the Hilbert space

W̃0,s(X ; E±) , its closure will be denoted by A
s
while A = A

0
.

Its formal adjoint for the W̃0,s(X ; E±)-scalar product will be written A′,s : W̃0,s(X ; E) → S ′(X ; E±) , with A′ =
A′,0 . The same notation will be used for its restriction to S(X ; E±) instead of A′,s∣∣

S(X;E±)
.

Its adjoint for the W̃0,s(X ; E±) will be denoted by A∗,s : D(A∗,s)→ W̃0,s(X ; E±) with u ∈ D(A∗,s) characterized
by

∃Cu ≥ 0 , ∀v ∈ S(X ; E) , |〈u , Av〉W̃0,s | ≤ Cu,s‖v‖W̃0,s .

Again the simpler notation A∗ = A∗,0 is reserved for the case s = 0 .

Because (W 2
θ )

s/2 : W̃0,s(X ; E±) → L2(X, dqp; E±) is unitary, while it is a continuous automorphism of

S(X ; E±) (resp. S ′(X ; E±)), the study of A : S(X ; E±)→ W̃0,s(X ; E±) is equivalent to the one of

As = (W 2
θ )

s/2A(W 2
θ )

−s/2 : S(X ; E±)→ L2(X, dpdp; E±) .

This is in particular convenient when A : S(X ; E)→ S(X ; E) is continuous. Actually A
s
= (W 2

θ )
−s/2As

0
(W 2

θ )
s/2

and we can simply work in L2(X, dqdp; E±) with the family of densely defined operators (As)s∈R as we already
did in the proof of Proposition 2.7.2.
We deduce in particular the formulas:

A′,s =
[

(W 2
θ )

−s/2As(W
2
θ )

s/2
]′,s

= (W 2
θ )

−s
[

(W 2
θ )

−s/2As(W
2
θ )

s/2
]′
(W 2

θ )
s (2.4.9)

= (W 2
θ )

−s/2A′
s(W

2
θ )

s/2

(A′,s)s = A′
s (2.4.10)

and (A∗,s)s = A∗
s . (2.4.11)

In all of our cases the operator A and its formal adjoint A′ are continuous from S(X ; E±) to itself. Alternatively
A is continous from S(X ; E±) to itself and from S ′(X ; E±) to itself. We always have

A′,ss ⊂ A∗,s and A′
s ⊂ A∗

s
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in the sense that A′,ss is the minimal extension of A′,s∣∣
S(X;E±)

while A∗,s is its maximal extension. Under the

above assumption the case of equality is treated via the equivalence

(

A′,ss = A∗,s
)

⇔
(

A
′
s = A∗

s

)

.

Remember that accretive operators are closable and with an additional positive constant they are one to one and
have a closed range. Essential maximal accretivity, under the above assumptions, means exactly A′,s = A∗,s or,
equivalently, A′

s = A∗
s .

2.5 Bismut’s hypoelliptic Laplacian

We do present here neither the construction of the hypoelliptic Laplacian as a deformed Hodge type operator,
nor the various various versions of it which are presented in [Bis05][BiLe]. We directly start with the Weitzenböck
formula for the version denoted by 2A′

φb,±H in [BiLe]-p 32 formulas (2.3.12)(2.3.13). According to [BiLe]-p32 (see
formula (2.3.14)) it makes sense as an operator acting on S(X ; E) and the formal adjoints are computed with
the scalar product of L2(X, dqdp; E) = L2(X, e−2V (q)dqdp; E±) . For this presentation the parameter h ∈]0, 1] is
not yet considered but it suffices to replace like in Subsection 2.3 the potential V by V

h and various equivalent
representations are explained in Subsection 2.6.
Formulas (2.3.12)(2.3.13) of [BiLe] say for a local orthonormal frame f1, . . . , fd of TQ:

2A′2
φb,±H =

1

b2
α′
± +

1

b
β′
± + γ′

± (2.5.1)

where

α′
± =

1

2
(−∆V + |p|2g ± (2f̂iif̂i − d)), (2.5.2)

β′
± =− (±∇Λ·T∗X⊗π∗F,u

Y − (fiV )∇Λ·T∗X
f̂i ), (2.5.3)

γ′
± =− 1

4

〈
RTQ(fi, fj)fk, fℓ

〉
(f i − f̂i)(f

j − f̂j)ifk+f̂k ifℓ+f̂ℓ (2.5.4)

−
(

±
〈
RTQ(p, fi)p, fj

〉
− (fi(fjV ) + Γ̃k

ijfkV )
)

(f i − f̂i)ifj+f̂j , (2.5.5)

and Γ̃k
ij(q) = fk(∇TQ

fi
fj) the Christoffel symbol expressed in this frame.

In order to have good duality arguments when the base manifold Q is not oriented, the vector bundle E must be
ΛT ∗X ⊗ C in the + case and ΛT ∗X ⊗ C⊗ π∗(orQ) in the − case.
In [Bis05], Propositions 3.14 also provides the formula

π0,±(γ
′
± − β′

±α
′,−1
± β′

±)π0,± =
�Q,F

2
, (2.5.6)

where π0,± is the orthogonal projection on the kernel of ker(α′
±) . In the formula (2.5.6), there is an identification

between operators acting on Ranπ0,± and operators defined on the base manifold Q which is detailed below. Let
us keep for the moment the notations of [Bis05][BiLe].

In our framework, i.e. when we work in L2(X, dqdp; E±), it suffices to conjugate all the operators according
to A 7→ e−V AeV . We obtain

B±,b,V = 2e−V
A

′2
φb,±HeV =

1

b2
α± +

1

b
β± + γ± (2.5.7)

where

α± =α′
± =

1

2
(−∆V + |p|2g ± (2f̂iif̂i − d)), (2.5.8)

β± =e−V (q)β′
±e

V (q) = −e−V (q)(±∇Λ·T∗X⊗π∗F,u
Y − (fiV )∇Λ·T∗X

f̂i )eV (q), (2.5.9)

γ± =γ′
± = −1

4

〈
RTQ(fi, fj)fk, fℓ

〉
(f i − f̂i)(f

j − f̂j)ifk+f̂k ifℓ+f̂ℓ (2.5.10)

−
(

±
〈
RTQ(p, fi)p, fj

〉
− (fi(fjV ) + Γ̃k

ijfkV )
)

(f i − f̂i)ifj+f̂j . (2.5.11)

The only non trivial calculation is for β±. According to Table 1, e−V (q)∇F,ueV (q) = dQ and we obtain

e−V (q)∇Λ·T∗X⊗π∗F,ue−V (q) = ∇E±

11



where ∇T∗X is the tautological connection on T ∗X associated with the Levi-Civita connection on TQ and ∇E±

is the exterior algebra extension.
We obtain

β± = −(±∇E±
Y − (fiV )∇E±

f̂i
) (2.5.12)

Because α′
± commutes with e±V (q) the kernel of α± and the orthogonal projections π0,± are not changed. By

Table 1 we also know
e−V (q)

�
Q,F eV (q) = ∆V,1 .

The formula (2.5.6) becomes

π0,±(γ± − β±α
−1
± β±)π0,± =

1

2
∆V,1 ,

and when the potential V is replaced by V
h , h ∈]0, 1] ,

π0,±(γ± − β±α
−1
± β±)π0,± =

1

2h2
∆V,h , (2.5.13)

where ∆V,h = (dV,h + d∗V,h)
2 is the semiclassical Witten Laplacian.

Another property proved in [Bis05][BiLe] which will be useful for proving Spec(B±,b,V ) ⊂ [0,+∞[ for b > 0
small enough, is related with the Hodge structure of B±,b,V = 2A′2

φb,±H that we briefly recall here.

Definition 2.5.1.

• The tensorial operations λ0 and µ0, expressed in the orthonormal frames (fi, f̂
i, f i, f̂i)1≤i≤d , are λ0 =

f i ∧ if̂i (resp. µ0 = f̂i ∧ ifi) which increases the horizontal (resp. vertical) degree by 1 and decreases the

vertical (resp. horizontal) degree by 1 .

• For a ∈ R , ra : X → X is given by ra(q, p) = (q, ap) and r∗a : S(X ; E±)→ S(X ; E±) is the natural pull-back.
The simpler notations r and r∗ will be used for the isometric involutions obtained for a = −1 . The linear
map Ka : S(X ; E±) → S(X ; E±) is given by Ka(s

J
I (q, p)f

I f̂J) = ad/2sJI (q, ap)f
I f̂J with a trivial action in

the bases (f I , f̂J)I,J⊂{1,...,d}, at x = (q, p) and (f I , f̂J)I,J⊂{1,...,d}, at x = (q, ap) .

• The hermitian form 〈 , 〉r on S(X ; E±) is given by

〈u , v〉r = 〈u , r∗v〉 .

The operator A
′
±,b equals

B±,b,V = 2A′2
φb,±H = 2(

δ±,b,V + δ∗,r±,b,V

2
)2 =

1

2
[δ±,b,V δ

∗,r
±,b,V + δ∗,r±,b,V δ±,b,V ] , (2.5.14)

with δ±,b,V = Kbe
−µ0e−V dX± 1

b2
HeV eµ0K−1

b = e−µ0e∓H−V (Kbd
XK−1

b )e±H+V eµ0 , (2.5.15)

and δ∗,r±,b,V = e−λ0e±H+V Kbd
X,∗K−1

b e∓H−V e+λ0 , (2.5.16)

where dX,∗ stand for the standard Hodge codifferential for the metric π∗(g ⊕ g−1) on TX = T (T ∗Q) .
The operator δ∗,r±,b,V is actually the 〈 , 〉r-formal adjoint of δ±,b,V :

∀u, v ∈ S(X ; E±), 〈u , r∗(δ∗,r±,b,V )v〉 = 〈δ±,b,V u , r
∗v〉 .

The important properties for us are δ2±,b,V = 0 , (δ∗,r±,b,V )
2 = 0 and the fact that 1

2B±,b,h is the square of the 〈 , 〉r
symetric operator A′

φb,±H .
Let us explain how (2.5.14)(2.5.15) and (2.5.16) written in our setting are deduced from the formulas (2.1.23)
(2.1.24) and (2.1.28) of [BiLe] (see also Section 2 and Section 3 of [Bis05]):

• The factors e±V come from our choice of scalar product 〈 , 〉 instead of 〈 , 〉L2(X,dqdp;E) and the correspon-
dance of Table 1. Once this is settled, this factor can be forgotten for the comparison with the formulas of
[BiLe].

• For a general b > 0 , the formula (2.1.28)-[BiLe]

A
′
φb,±H = KbA

′
φ1,±r∗1

b

HK−1
b = KbA

′
φ1,± 1

b2
HK−1

b

allows to extend the formulas (2.1.22)(2.1.23)-[BiLe] written for the case b = 1 to the general case. Because
Kb commutes with µ0 (and λ0) this provides the formula (2.5.15). Because Kb commutes with r∗ it implies
that δ∗,r±,b,V is the 〈 , 〉r-formal adjoint of δ±,b,V .
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• Finally the explicit expression of δ±,b,V is obtained after using the property that λ0 is the 〈 , 〉-formal
adjoint of µ0 , and the involutive identity r∗λ0r

∗ = −λ0 .

Like in [BiLe]-page 32 but with now the L2(X, dqdp; ΛT ∗X) scalar product 〈 , 〉, we recall the elementary
functional properties of α± and β± . Meanwhile, we make the identifications hidden in (2.5.6) and (2.5.13) more
explicit by using the isometries Iθ,X and Iθ,Q of Definition 2.4.1.

• The operator α± = O ± (NV − d/2) is self-adjoint on its domain W̃2,0(X ; E±),. By using the fiberwise

change of variable p̃i = (
√

g(q)
ij
pj the Hilbert space L2(X, dqdp; E±) can be written as the direct integral

L2(X, dqdp; E±) =
∫ ⊕

Q

L2(Rd, dp̃;C22d) dVolg(q)

if we notice dqdp = | det(g(q))|1/2 dqdp̃ . In this direct integral representation, α± is nothing but

α± =

∫ ⊕

Q

−∆p̃ + |p̃|2
2

⊗ Id
C22d ± (NV − d/2) dVolg(q)

where
−∆p̃+|p̃|2

2 =
∑d

i=1

−∂2
p̃j

+p̃2
j

2 is the euclidean scalar harmonic oscillator. Therefore the spectrum of α±

equals N. The kernel of α+ is given by horizontal forms times exp
(
− |p|2q

2

)
and the kernel of α− is given

by the exterior product of horizontal forms with a top vertical form times exp
(
− |p|2q

2

)
.

• With the orthogonal projection π0,± on the kernel of α± and 1− π0,± = π⊥,± its orthogonal complement,
we have

L2(X, dqdp; E±) = kerα±
⊥
⊕Ranα± = Ranπ0,±

⊥
⊕Ranπ⊥,±

and S(X ; E±) =
(
Ranπ0,± ∩ S(X ; E±)

)
⊕
(
Ranπ⊥,± ∩ S(X ; E±)

)

while the functional calculus says that α± : Ranπ⊥,± ∩ W̃2,0(X ; E±) → Ranπ⊥,± is invertible with the
norm of α−1

± π⊥,± equal to 1.

• The differential operator β± maps kerα± ∩ S(X ; E±) = Ranπ0,± ∩ S(X ; E±) into Ranα± ∩ S(X ; E±) =
Ranπ⊥,± ∩ S(X ; E±).

• With (2.4.5)(2.4.6)(2.4.7) we can write

f(α±) = I∗θ,X

[

⊕
K⊂{1,...,d}

f

(

−∆V + |p|2q
2

± (|K| − d/2)

)

⊗ IdCJ×2d

]

Iθ,X

for any Borel function f : R→ C . In particular for f = 1{0} we obtain

π0,± = I∗θ,X

[

1{0}
(−∆V + |p|2q − d

2

)
1{0}

(
|K| − d/2± d/2

)

]

Iθ,X .

The kernel of the harmonic oscillator
−∆V +|p|2q−d

2 equals C e−
|p|2q
2

πd/4 with

∫

Rd

|e
− |p|2q

2

πd/4
|2 dp = | det(g(q)|1/2 .

We deduce that

U+,θ = I∗θ,X




e−

|p|2q
2

πd/4
×



 Iθ,Q (2.5.17)

is a unitary transform U+,θ : L2(Q, dVolg; ΛT
∗Q ⊗ C) → Ranπ+,0 = ker(α+) in the + case. In the −

case, we choose η ∈ C∞(X ; Λd(T ∗X)V ⊗ π∗(orQ)) to be a normalized non vanishing section, which can

be written locally as f̂j,1 ∧ . . . ∧ f̂j,d with the suitable orientation. Then the unitary transform U−,θ :
L2(Q, dVolg; ΛT

∗Q⊗ C⊗ orQ)→ Ranπ−,0 = ker(α−) is given by

U−,θ = I∗θ,X




e−

|p|2q
2

πd/4
×



 (Iθ,Q ∧ η). (2.5.18)
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When Iθ,Q(s) = (sj,I) 1≤j≤J
I⊂{1,...,d}

for s ∈ L2(Q, dVolg; ΛT
∗Q ⊗ F ) (F = Q × C in the + case and F =

(Q× C⊗ orQ) in the − case) we get

U+,θs =
∑

1≤j≤J
I⊂{1,...,d}

θj(q)sj,I(q)
e−

|p|2q
2

πd/4
f I
j (2.5.19)

and U−,θs =
∑

1≤j≤J
I⊂{1,...,d}

θj(q)sj,I(q)
e−

|p|2q
2

πd/4
f I
j ∧ f̂j,1 ∧ . . . ∧ f̂j,d . (2.5.20)

When Iθ,X(s′) = (sKj,I) 1≤j≤J
I,K⊂{1,...,d}

for s′ ∈ L2(X, dqdp; E±) we get

U−1
+,θs

′ = U∗
+,θs

′ =
∑

1≤j≤J
I⊂{1,...,d}

θj(q)





∫

T∗
q Q

e−
|p|2q
2

πd/4
s∅j,I(q, p) dp



uI
j (2.5.21)

and U−1
−,θs

′ = U−,θs
′ =

∑

1≤j≤J
I⊂{1,...,d}

θj(q)





∫

T∗
q Q

e−
|p|2q
2

πd/4
s
{1,...,d}
j,I (q, p) dp



uI
j ∧ f̂j,1 ∧ . . . ∧ f̂j,d . (2.5.22)

The unitary map U±,θ : L2(Q, dVolg; ΛT
∗Q ⊗ F ) → Ranπ0,± = ker(α±) clearly induces an isomorphism

depending on the case:

U+,θ : C∞(Q; Λ·T ∗Q⊗ C)→ S(X ; E+) ∩ kerα+

U−,θ : C∞(Q; Λ·T ∗Q⊗ C⊗ orQ)→ S(X ; E−) ∩ kerα− .

Other functional spaces can be considered. With those notations, formula (2.5.13) means precisely

U−1
±,θ[π0,±(γ± − β±α

−1
± β±)π0,±]U±,θ =

1

2h2
∆V,h . (2.5.23)

Notice also that ei(e
− |p|2q

2 a(q)) = e−
|p|2q
2

∂a
∂qi (q) implies

U−1
±,θ[π0,±W

2
θ π0,±]U±,θ = I∗θ,Q

[

(C + C
d2

4
− 1

2
∆Q)⊗ Id

CJ×2d

]

Iθ,Q (2.5.24)

where ∆Q is the scalar Laplace-Beltrami operator on Q .

Lemma 2.5.2. There exists a constant Cg,θ ≥ 1 determined by the metric g and the quadratic partition of unity
∑J

j=1 θ
2
j (q) ≡ 1 such that

C−1
g,θ‖u‖2W̃0,1 ≤ ‖u‖2L2 + ‖∇E±

Y u‖2L2 ≤ Cg,θ‖u‖2W̃0,1

holds for all u ∈ S(X ; E±) ∩ kerα± .

Proof. We first notice that for any connection ∇ and all u ∈ S(X ; E±) ∩ kerα± ,

∇Yu = e−
|p|2q
4 ∇Ye

|p|2q
4 π0,±u .

Because ∇E±
Y is a first order differential operator we have

‖∇E±
Y u‖2L2 =

J∑

j=1

‖∇E±
Y (θj(q)u)‖2L2 −

J∑

j=1

‖(Yθj)u‖2L2 .

With the local formula

Yθj = gik(q)pk(∂q
iθj)(q) = e−

|p|2q
4 gikpk(∂q

iθj)(q)e
|p|2q
4

and ‖e
|p|2q
4 π0‖L(L2) ≤ Cg we obtain

C−1
g,θ,1

J∑

j=1

‖θj(q)u‖2L2 + ‖∇E±
Y (θj(q)u)‖2L2 ≤ ‖u‖2L2 + ‖∇E±

Y u‖2L2 ≤ C1,g,θ

J∑

j=1

‖θj(q)u‖2L2 + ‖∇E±
Y (θj(q)u)‖2L2 .
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Above the neighborhood Vθ,j ⊃ supp θj , we use the connection ∇j which is trivial in the local orthonormal frame

(f1
j . . . fd

j , f̂j,1, . . . , f̂j,d) .
The relation

∇E±
Y −∇j

Y = e−
|p|2q
4 gik(q)pk(∇E±

ei −∇j
ei)e

|p|2q
4

allows the same comparison which leads to

C−1
j

(

‖θju‖2L2 + ‖∇E±
Y (θju)‖2L2

)

≤ ‖θju‖2L2 + ‖∇j
Y(θju)‖2L2 ≤ Cj

(

‖θju‖2L2 + ‖∇E±
Y (θju)‖2L2

)

.

With the trivial connection ∇j in the orthonormal frame (f1
j , . . . , f

d
j , f̂j,1, . . . , f̂j,d) the estimate of the middle

term is reduced to the computation of ‖θju‖2L2 + ‖Y(θju)‖2L2 for u = π−d/4e−
|p|2q
2 a(q) for a ∈ C∞0 (Vθ,j;C). We

compute

‖Y(π−d/4e−
|p|2q
2 θja)‖2L2 =

∫

Q

[∫

Rd

|gik(q)pk(∂qi(θja)|2π−d/2e−gik(q)pipk dp

]

dq =
1

2

∫

Q

|∇g
q(θja)|2dVolg(q).

Similarly the definition W 2
θ = I∗θ,X

[
W 2 ⊗ Id

CJ×22d

]
Iθ,X reduces the problem to the computation of

〈θju , W 2θju〉 = 〈θju , [C −∆H + CO2]θju〉

with u = π−d/4e−
|p|2q
2 a(q) , a ∈ C∞0 (Vθ,j;C) . We obtain like in (2.5.24)

〈θju , W 2θju〉 = (C + C
d2

4
)‖θja‖2L2 +

1

2

∫

Q

|∇g
q(θja)|2dVolg(q)

and this ends the proof.

2.6 Scalings

When we consider semiclassical Witten Laplacians, it is natural to introduce semiclassical Sobolev spaces. Ac-
cordingly the space W̃0,s(X ; E±) has to be defined with an h-dependent norm. There are various transformations
on the operators, Witten’s and Bismut’s Laplacian, and on the functional spaces which allow to reduce the h-
dependent problem, h ∈]0, 1] , to the case h = 1 . This simplifies the asymptotic analysis with respect to the pair
of parameters b > 0, h > 0 . In particular, the initial subelliptic estimates of [NSW], where only the parameter
b > 0 was considered, can be easily translated into a b, h-dependent version.
Semiclassical Witten Laplacian: The semiclassical Witten Laplacians ∆V,h on the riemannian manifold
(Q, g) can be given several equivalent presentations. It is better to think in terms of the four data (Q, g, V, h)
where (Q, g) is the riemannian manifold V ∈ C∞(Q;R) is the potential function and h ∈]0, 1] is the semiclassical
parameter.
The semiclassical Witten Laplacian equals

∆V,h = ∆(Q,g,V,h) = (dV,h + d∗,gV,h)

where dV,h = e−
V
h (hd)e

V
h = hd+ dV ∧ d∗,gV,h = e−

V
h (hd∗,g)e

V
h = hd∗,g + i∇gV ,

where the subscripts recall that the Hodge star operator, the codifferential and the gradient all depend on the
chosen metric g .
Relations between the following differential operators acting on C∞(Q; ΛT ∗Q⊗ F±) can be written:

d∗,
1
h2 g = h2d∗,g , ∇ g

h2
V = h2∇gV

dV,h = hdV
h ,1 , d∗,gV,h =

1

h
d
∗, g

h2

V
h ,1

, ∆(Q,g,V,h) = ∆(Q, g

h2 ,Vh ,1) .

For the L2-spaces we note that

dVol 1
h2 g = h−ddVolg

∫

Q

〈s, s′〉 1
h2 g dVol 1

h2 g =

∫

Q

(h2)degs−d/2〈s , s′〉g dVolg

and the map s 7→ hd/2−deg ss is a unitary map from L2
g
(Q; ΛT ∗Q⊗F±) onto L2

1
h2 g

(Q; ΛT ∗Q⊗F±) . Semiclassical

Sobolev spaces are defined by replacing derivatives of vector fields with g-norms bounded by 1 , by vector
fields with 1

h2 g-norms bounded by 1 or g-norms of size O(h) . By using a Laplace type operator ∆(Q,g,0,1) or

H0,g =
∑J

j=1 θj(q)∆sc,gθj(q) the semiclassical Sobolev norms are given by

‖u‖Hs,h
g (Q) = ‖(1 + h2H0,g)

s/2u‖L2
g(Q) = ‖h

d
2−deg(1 +H0, 1

h2 g)
s/2u‖L2

g

h2
(Q) .
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Another introduction of the scaling relies on the fact that (Q, g) can be isometrically embedded in the euclidean
space (RdQ ; g

R
dQ ) , according to Nash embedding theorem (see e.g. [Gro]). This isometric embedding can be

done such that dgRQ (0, Q) = 1 and one may consider the homothetic transformation of Q with center 0 and

ratio 1
h , Qh = 1

hQ or Qh = φhQ with φh(q) =
1
hq for q ∈ RdQ . The tangent and conormal vector bundle TQ ,

N∗Q =
{

v ∈ T ∗
R

dQ
∣
∣
Q
, ∀t ∈ TQ , v.t = 0

}

are well defined and the euclidean metric gR
dQ

allows to identify

T ∗Q =
{

v ∈ T ∗RdQ
∣
∣
Q
, ∀w ∈ N∗Q , (gR

dQ
)−1(v, w) = 0

}

. The same can be done with Qh which is endowed

with the metric gh = gR
dQ
∣
∣
TQh×TQh . Then the riemannian manifold (Qh, gh) is isometric to (Q, 1

h2 g) and when

H0,gh =
∑J

j=1 θj(h.)∆sc,ghθj(h.) and V h(q) = 1
hV (hq) we obtain

φ∗
h∆(Qh,gh,V h,1)φh,∗ = ∆(Q, 1

h2 g, 1hV,1) = ∆(Q,g,V,h)

‖u‖Hs,h
g (Q) = ‖h

d
2−deg(1 +H0, 1

h2 g)
s/2u‖L2

1
h2 g

(Q) = ‖h
d
2−deg(1 +H0,gh)s/2φh,∗u‖L2

gh
(Qh) .

If instead of the quadratic partition of unity
∑J

j=1 θ
2
j (q) ≡ 1 on Q one takes an h-dependent partition of unity

∑Jh

j=1 θ
2
j,h(q) ≡ 1 subordinate to an atlas ∪Jh

j=1Ωj,h = Q with diamg(Ωj,h) ≤ Ch or (diam 1
h2 g(Ωj,h) ≤ C) and an

intersection number uniformly bounded with respect to h , one sees that gh in a coordinates system in φhΩj,h

satisfies
‖∂α

q g
h‖L∞(φhΩj,h) + ‖∂α

q (g
h)−1‖L∞(φhΩj,h) ≤ Cα, .

Although the volume of Qh , Vol(Qh) = h−dVol(Q) increases as h→ 0 , the above quantity ‖(1+H0,gh)sv‖L2

gh
(Qh)

correspond to the standard Sobolev space norm on Qh with a uniform control of the local variations of the metric
while ∇ghV h is uniformly bounded as well as its covariant derivatives with respect to vector fields with a bounded

gh-norms. We will use the short notation Hs(Qh; ΛT ∗Qh ⊗ F±) for H
s,1
gh (Qh; ΛT ∗Qh ⊗ F±) .

Qh

Q
1

1
h

RdQ

Figure 1: The grey areas represent on Q a ball of radius 1 (resp. h) for the metric 1
h2 g (resp. g) and on Qh the

isometric ball of radius 1 for the metric gh .

Bismut hypoelliptic Laplacian: We do the same kind of scalings as above for the Bismut hypoelliptic Lapla-
cian. Actually we will start from the expression (2.5.7)(2.5.8)(2.5.9)(2.5.10) of the operator B±,b, Vh

which is

actually determined by the data (Q, g, Vh , b) where (Q, g) is the base riemannian manifold, V ∈ C∞(Q;R) is the
potential function and b, h > 0 are the two parameters:

B±,b,Vh
= B±,(Q,g, Vh ,b) =

1

b2
α±,(Q,g) +

1

b
β±,(Q,g,Vh ) + γ±,(Q,g, Vh ) .

By mimicking what we observed for the Witten Laplacian, we firstly want to establish a simple relation between
B±,(Q,g,Vh ,∗) and B±,(Q, 1

h2 g,Vh ,∗) . We notice

(
1

h2
g)⊕ (

1

h2
g)−1 = (

1

h2
g)⊕ (h2g−1)

while the Christoffel symbols Γk
ij(q) are the same for the metric g and the rescaled metric 1

h2 g and the Levi-
Civita connection is not changed. If local orthonormal frames given by (2.2.2) and (2.2.3) are denoted by
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(fi,g)1≤i≤d ,(f̂
i
g)1≤i≤d (f i

g)1≤i≤d and (f̂i,g)1≤i≤d for the metric g , orthonormal frames for the metric 1
h2 g are

given by

fi, 1
h2 g = hfi,g , f̂ i

1
h2 g =

1

h
f̂ i
g ,

and f i
1
h2 g =

1

h
f i
g , f̂i, 1

h2 g = hf̂i,g .

Other simple relations for the kinetic energy and the hamiltonian vector field Y are:

|p|2q,g
2

=
gij(q)pipj

2
=

1

2h2
(
1

h2
g)ijpipj =

|p|2
q, 1

h2 g

2h2
and Yg =

1

h2
Y 1

h2 g

while the symplectic form σ = dp ∧ dq on T ∗Q is not changed.
Although B±,(Q,g, Vh ,b) preserves the total degree |I|+ |J | , it mixes the horizontal degree |I| and vertical degree

|J | for sections sJI (x)f
I f̂J . The different homogeneities in the conformal change of metric from g to 1

h2 g must
be considered carefully as well.
Because X = T ∗Q is a vector bundle on Q , while E± = π∗(ΛT ∗Q ⊗ ΛTQ ⊗ F±) , we define the mapping
Ψh : S(X ; E±)→ S(X ; E±) by

Ψh(sI(q, p)
Jf I

1
h2 g f̂J, 1

h2 g) = h− d
2+|I|−|J|sJI (q, h

−1p)f I
1
h2 gf̂J, 1

h2 g = h−d
2 sJI (q, h

−1p)f I
g f̂J,g .

We obtain

Ψ−1
h (α±,(Q,g))Ψh =

1

2

(

−h−2∆V
g + h2|p|2q,g ± (2f̂i,gif̂i

g
− d)

)

= α±,(Q, 1
h2 g)

and Ψ−1
h (β±,(Q,g, Vh ))Ψh = −(±h∇E±

Yg
− 1

h2
(fi,gV )∇E±

f̂i
g

) = − 1

h
(±∇E±

Y 1
h2 g
− (fi, 1

h2 g

V

h
)∇E±

f̂i
1
h2 g

) =
1

h
β±,(Q, 1

h2 g, Vh ) .

For Ψ−1
h γ±,Q,gΨh firstly notice that the Riemann curvature tensors are compared according to

RTQ
g = h2RTQ

1
h2 g

while the coefficient Γ̃k
ij(q) = fk(∇TQ

fi
fj) satisfies

Γ̃k
ij,g(q) =

1

h
Γ̃k
ij, 1

h2 g .

The definition of the mapping Ψh ensures the identity of the tensorial operations

Ψ−1
h

(

f i
g∧

f̂i,g∧

)

Ψh =




f i

1
h2 g
∧

f̂i, 1
h2 g∧



 and Ψ−1
h

(

ifi,g

if̂i
g

)

Ψh =






if
i, 1

h2 g

if̂i
1
h2 g




 .

We deduce

Ψ−1
h γ±,(Q,g, Vh )Ψh =

1

h2
γ±,(Q, 1

h2 g,Vh ) .

We have proved

Ψ−1
h B±,(Q,g,Vh ,b)Ψh =

1

h2

[
h2

b2
α±,(Q, 1

h2 g) +
h

b
β±,(Q, 1

h2g
,Vh ) + γ±,(Q, 1

h2 g,Vh )

]

=
1

h2
B±,(Q, 1

h2 g,Vh , b
h )

Let us consider now what happens on the functional spaces.
The linear map Ψh is actually a unitary transform from L2

1
h2 g

(X, dqdp; E±) to L2
g(X, dqdp; E±) .

The h-dependent norms for the W̃ s1,s2(X ; E±)g were not studied in [NSW] but we follow the dilatation trick
presented for the Witten Laplacian in order to reduce the problem to uniform estimates in the case h = 1 .

Definition 2.6.1. On the cotangent space X = T ∗Q where Q is endowed with the riemannian metric g , the
h-dependent norm, h ∈]0, 1] , of W̃s1,s2(X ; E±) is given by

‖u‖W̃s1,s2
h

= ‖Os1/2(W 2
θ,h)

s2/2u‖L2(X;E±)

where

W 2
θ,h =

J∑

j=1

θj(q)(Cg − h2∆H + CgO2)θj(q) .
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Remember that the operator W 2
θ,h is an elliptic self-adjoint operator for any fixed (Q, g, h) with h ∈]0, 1] when

Cg ≥ 1 is chosen large enough. However the uniformity of the subelliptic estimates for B±,(Q,g, Vh ,b) with these

h-dependent norms requires some explanation.
We keep track of the change of riemannian metrics with subscripts like before and write ∆H = ∆H,g and
W 2

θ,h = W 2
θ,h,g . Actually the definition of ∆H, 1

h2 g gives ∆H, 1
h2 g = h2∆H,g and

Ψ−1
h W 2

θ,h,gΨh = (Cg −∆H, 1
h2 g + Cg(O 1

h2 g)
2) = W 2

θ,1, 1
h2 g .

After the riemannian embedding Q → RdQ and the identfication of X = T ∗Q as a subbundle of (T ∗Rdq)
∣
∣
Q

the

dilatation Φh : q 7→ q
h in RdQ with Φh,∗ : X = T ∗Q → Xh = T ∗Qh is a symplectic map, and an isometry from

(X, ( 1
h2 g)⊕⊥ (h2g−1)) to (Xh, gh ⊕⊥ (gh)−1) . We obtain

Φh,∗Ψ
−1
h (W 2

θ,h,g)ΨhΦ
∗
h = W 2

θ,1,gh ,

and

‖u‖W̃s1,s2
h,g (X;E±) = ‖Os1/2

g (W 2
θ,h,g)

s2/2u‖L2
g(X;E±) = ‖Os1/2

gh (W 2
θ,1,gh)

s2/2Φh,∗Ψ
−1
h u‖L2

gh
(Xh;Φh,∗E±)

= ‖Φh,∗Ψ
−1
h u‖W̃s1,s2

1,gh
(Xh;Φh,∗E±) .

The above discussion can be summarized by the following statement.

Proposition 2.6.2. With the above notation Φh,∗Ψ
−1
h is a unitary map from W̃s1,s2

h,g (X, E±)g to W̃s1,s2
1,gh (Xh; Φh,∗E±)

for all s1, s2 ∈ R with

Φh,∗Ψ
−1
h B±,(Q,g,Vh ,b)ΨhΦ

∗
h =

1

h2
B±,(Qh,gh,V h, b

h )

Φh,∗Ψ
−1
h α±,(Q,g)ΨhΦ

∗
h = α±,(Qh,gh)

Φh,∗Ψ
−1
h β±,(Q,g,Vh )ΨhΦ

∗
h =

1

h
β±,(Qh,gh,V h) , Φh,∗Ψ

−1
h γ±,(Q,g, Vh )ΨhΦ

∗
h =

1

h2
γ±,(Qh,gh,V h)

and Φh,∗Ψ
−1
h W 2

θ,g,hΨhΦ
∗
h = W 2

θ(h.),gh,1 ,

with V h(q) = 1
hV (hq) , θj(h.)(q) = θj(hq) for q ∈ Qh . Additionally ∇ghV h and gh and (gh)−1 , expressed in the

coordinates associated with the atlas Qh = ∪Jj=1
1
hΩj (or 1

h times the coordinates associated with Q = ∪Jj=1 Ωj)
have uniformly bounded derivatives.

This result and what we recalled just above for the semiclassical Witten Laplacian, allow to eliminate the
parameter h ∈]0, 1] in the analysis. Actually it suffices to make the analysis for (Qh, gh, V h) and (Qh, gh, V h, b

h)

where the parameter b is replaced by b
h and to use the uniform control of all the norm estimates with respect to

h ∈]0, 1] on the dilated manifolds Qh and Xh = T ∗Qh .

2.7 The Hypoelliptic Laplacian as a perturbed Geometric Kramers-Fokker-Planck

operator

Although we are ultimately interested in Bismut’s hypoelliptic LaplacianB±,b,Vh
= B±,(Q,g, Vh ,b) , Proposition 2.6.2

with

Φh,∗Ψ
−1
h B±,(Q,g,Vh ,b)ΨhΦ

∗
h =

1

h2
B±,(Qh,gh,V h, b

h )

allows to reduce the analysis to B±, bh ,V h = B±,(Qh,gh,V h, bh ) with uniform controls of the local derivatives (in

coordinate charts) of ∇ghV h , gh and (gh)−1 . For the sake of simplicity we replace b
h by b > 0 and we write

B±,b,V h = B±,(Qh,gh,V h,b) .

We will use the short notations Eh± = Φh,∗E± for the vector bundle above Xh = T ∗Qh and the connection ∇E±,h

will be the connection on Eh± associated with the metric gh on Qh .

With these modifications, Bismut’s hypoelliptic Laplacian can be written as

B±,b,V h = P±,b +R0,h +R2,h +
1

b
R1,⊥,h, (2.7.1)

where the principal part is

P±,b =
1

b2
α±,gh ∓ 1

b
∇E±,h

Y
gh

(2.7.2)
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and the three lower order corrections are

R0,h = −1

4
〈RTQ

gh (fi,gh , fj,gh)fk,gh , fℓ,gh〉(f i
gh − f̂i,gh)(f j

gh − f̂j,gh)if
k,gh

+f̂k,gh if
ℓ,gh

+f̂ℓ,gh + (fi,gh(fj,ghV h)

+Γ̃k
ij,ghfk,ghV h)(f i

gh − f̂i,gh)if
j,gh

+f̂j

gh

R1,⊥,h = R1 = (fi,ghV h)∇E±,h

f̂i,gh

R2,h = ∓〈RTQ
gh (p, fi,gh)p, fj,gh〉(fi,gh − f̂i,gh)if

j,gh
+f̂j,gh

where we have neglected the ± sign in the notations R0,h, R1,⊥,h, R2,h .
These notations are motivated by the following conditions indexed by i = 0, 1, 2 :

∀s ∈ R, ∃Cs,i > 0 , ‖A‖L(W̃i,0;L2) + ‖A‖L(L2;W̃−i,0) + ‖(W 2
θ )

s/2A(W 2
θ )

−s/2 −A‖L(L2;L2) ≤ Cs,i , (2.7.3)

π0,±Aπ0,± = 0 . (2.7.4)

The collection of operators R0,h, R1,h = R1,⊥,h, R2,h are differential operators in the class OpS1Ψ(Q
h; End(Eh±))

introduced in [NSW] while (W 2
θ )

s ∈ OpSsΨ(Q
h; End(Eh±)) has a scalar principal symbol. We recall that actually

W 2
θ = W 2

θ,gh and that, because of the uniform bounds of Proposition 2.6.2, all of the local seminorms of symbols

are uniformly controlled with respect to h ∈]0, 1] . Therefore R0,h, R1,⊥,h, R2,h all satisfy, uniformly with
respect to h ∈]0, 1] , ‖(W 2

θ )
s/2Ri,h(W

2
θ )

−s/2 − Ri,h‖L(L2;L2) ≤ Cs,i , while the inequality ‖Ri,h‖L(W̃i,0;L2) +

‖Ri,h‖L(L2;W̃−i,0) ≤ Ci according to the index i = 0, 1, 2 is straigthforward.

Finally the index ⊥ in R1,⊥,h recalls that R1,h = R1,⊥,h satisfies the condition (2.7.4).

The following result allows to reduce the analysis of Bismut’s hypoelliptic Laplacians in any W̃0,s(Xh; Eh±) space
to the case s = 0 .

Proposition 2.7.1. The conditions (2.7.3) and (2.7.4) are left invariant by a conjugation by (W 2
θ )

s′/2 for any
s′ ∈ R , or by taking the formal adjoint for the L2-scalar product.
The conjugation of Bismut’s hypoelliptic Laplacian by (W 2

θ )
s′/2 , s′ ∈ R , equals

(W 2
θ )

s′/2B±,b,V h(W 2
θ )

−s′/2 = P±,b +Rs′
0,h +Rs′

2,h +
1

b
Rs′

1,⊥,h

with Rs′
0,h = (W 2

θ )
s′/2R0,h(W

2
θ )

−s′/2 , Rs′
2,h = (W 2

θ )
s′/2R2,h(W

2
θ )

−s′/2

and Rs′
1,⊥,h = Rs′

1,h = (W 2
θ )

s′/2R1,h(W
2
θ )

−s′/2 ∓
[

(W 2
θ )

s′/2∇E±,h
Y

gh
(W 2

θ )
−s′/2 −∇E±,h

Y
gh

]

where Rs′
0,h, R

s′
1,h, R

s′
2,h satisfy the condition (2.7.3), uniformly with respect to h ∈]0, 1] , for the respective values

of i = 0, 1, 2 and Rs
1,⊥,h = Rs′

1,h satisfies the condition (2.7.4). Additionally (R0,h = 0 and R2,h = 0)⇒ (Rs′
0,h =

0 and Rs′
2,h = 0) .

Finally the formal adjoint B′,s′
±,b,V h for the W̃0,s′(Xh; Eh±) scalar product, according to Definition 2.4.3 satisfies

(W 2
θ )

s′/2B±,b,V h(W 2
θ )

−s′/2 = (P±,b)
′,0 + (Rs′

0,h)
′ + (Rs′

2,h)
′ +

1

b
(Rs′

1,⊥,h)
′ (2.7.5)

with (P±,b)
′ =

1

b2
α±,gh ± 1

b
∇E±,h

Y
gh

: L2(Xh, dqdp; Eh±) −→ S ′(Xh; Eh±) . (2.7.6)

Proof. The invariance of (2.7.3) actually comes from the continuous imbeddings W̃ i,0 ⊂ L2 ⊂ W̃−i,0 for
i = 0, 1, 2 .
The invariance of (2.7.4) is due to the commutation of (W 2

θ )
s′/2 with π0,± = 1{0}(α±,gh): Actually W 2

θ strongly
commutes with Ogh and preserves the vertical degree. It therefore commutes with α±,gh and with any functions
of α±,gh .

For the last property it suffices to check that AY =
[

(W 2
θ )

s′/2∇E±,h
Y

gh
(W 2

θ )
−s′/2 −∇E±,h

Y
gh

]

satisfies the two condi-

tions (2.7.3) for i = 1 and (2.7.4).
The estimate

‖
[

(W 2
θ )

s′/2∇E±,h
Y

gh
(W 2

θ )
−s′/2 −∇E±,h

Y
gh

]

‖L(W̃1,0;L2) ≤ Cs′ (2.7.7)

was proved in [NSW]-Proposition 3.8, where the uniform constant C′
s with respect to h ∈]0, 1] is made possible

by the uniform control of the derivatives of gh and (gh)−1 recalled in Proposition 2.6.2. By duality and because
A∗

Y +AY ∈ L(L2) we deduce as well

‖
[

(W 2
θ )

s′/2∇E±,h
Y

gh
(W 2

θ )
−s′/2 −∇E±,h

Y
gh

]

‖L(L2;W̃−1,0) ≤ Cs′ .
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Because ∇E±,h
Y

gh
∈ OpS

3/2
Ψ (Qh; Eh±) , while (W 2

θ )
s ∈ OpSsΨ(Q

h; Eh±) with a scalar principal symbol, we deduce that

AY ∈ OpS
1/2
Ψ (Qh; Eh±) , with local seminorm of symbols uniformly bounded with respect to h ∈]0, 1] . Therefore

(W 2
θ )

sAY
gh
(W 2

θ )
−s − AY

gh
∈ OpS

−1/2
Ψ (Qh; End(Eh±)) is a bounded operator in L2(Xh, dqdp; Eh±) with norm

uniformly bounded with respect to h ∈]0, 1] .
The condition (2.7.4) is due to the identity π0,±∇E±,h

Y
gh

π0,± = 0 as continuous operator on S ′(Xh; Eh±) .
For the formal adjoint B′,s′

±,b,V h , it suffices to apply (2.7.5)(2.7.6) after noticing that B±,b,V h is continuous as an

operator S(Xh; Eh±) → S(Xh; Eh±) and S ′(Xh; Eh±) → S ′(Xh; Eh±) . The expression of P ′
±,b comes from the fact

that α±,gh is self-adjoint and ∇E±,h
Y

gh
is anti-adjoint because the connection ∇E±,h is unitary.

Proposition 2.7.2. There exists a constant Cg ≥ 1 determined by the metric g and, for any s ∈ R , a constant
Cg,V,s ≥ 1 determined by s ∈ R, the metric g and the potential function V ∈ C∞(Q;R) such that the following
properties hold when 0 < b < 1

Cg
and κs ≥ Cg,V,s :

The operator κs

b2 + B±,b,V h , as an unbounded operator in W̃0,s(Xh; Eh±) , is essentially maximal accretive on
C∞0 (Xh; Eh±) (or on S(Xh; Eh±)).
If B±,b,V h

s
denotes its closure according to Definition 2.4.3, the inequalities

Re〈u , (κs

b2
+B±,b,V h

s
)u〉W̃0,s ≥

1

16b2
[
‖u‖2W̃1,s + κs‖u‖2W̃0,s

]
, (2.7.8)

and

∥
∥
∥
∥

(

B±,b,V h

s − iλ

b

)

u

∥
∥
∥
∥
W̃0,s

+
2κs

b2
‖u‖W̃0,s ≥

1

Cg

(∥
∥
∥
∥

Ogh

b2
u

∥
∥
∥
∥
W̃0,s

+

∥
∥
∥
∥

1

b

(

∇E±,h
Y

gh
− iλ

)

u

∥
∥
∥
∥
W̃0,s

+
1

b4/3

[

||u||W̃0,s+2
3
+ ‖

( |λ|
〈p〉q

)2/3

u‖W̃0,s+

]

+

( |λ|1/2
b3/2

)

‖u‖W̃0,s

)

(2.7.9)

hold for every u ∈ D(B±,b,V h

s
) and every λ ∈ R .

The formal adjoint B′,s
±,b,V h and adjoint B∗,s

±,b,V h of Definition 2.4.3 satisfy (B′,s
±,b,V h

∣
∣
S(Xh;Eh

±)
)
s
= B∗,s

±,b,h while

the formal adjoint B′,s
±,b,V h = (W 2

θ )
−sB′

±,b,V h(W
2
θ )

s satisfies (2.7.5)(2.7.6).

Remark 2.7.1. It will be checked after Proposition 3.1.1 that Cg,V,s +B±,b,V h

s
is maximal accretive with

∀u ∈ D(B±,b,V h

s
) , Re 〈u , B±,b,V hu〉W̃0,s ≥ 0 .

Proof. By Proposition 2.7.1 the problem is reduced to the case s = 0 for the operator

P±,b +Rs
0,h +Rs

2,h +
1

b
Rs

1,⊥,h =
1

b2
Ogh ∓∇E±,h

Y
gh

+M0,s(b, h) +M1,s(b, h) +R2,h

with

M0,s(b, h) =
±(2f̂i,gh if̂i

gh
− d) + d

2b2
+Rs

0,h +Rs
2,h −R2,h , ‖M0,s(b, h)‖L(L2;L2) ≤

ν0,s
b2

M1,s(b, h) =
1

b
Rs

1,⊥,h , ‖M1(b, h)‖L(W̃1,0;L2) ≤
ν1,s
bh
≤ Cg + 8ν0,s

16b2
(1 + b2) ,

R2,h = ∓〈RTQ
gh (p, fi,gh)p, fj,gh〉(f i

gh − f̂i,gh)if
j,gh

+f̂j,gh , ‖R2‖L(W̃2,0;L2) ≤ νg .

Actually
Rs

2,h −R2,h = (W 2
θ )

s/2R2(W
2
θ )

−s/2 −R2,h ∈ OpS1−1
Ψ (Qh; End(Eh±)) ⊂ L(L2;L2)

and the above inequalities hold true for suitably well chosen s-dependent values of ν0,s > 0 and ν1,s > 0 when
0 < b ≤ 1 , uniformly with respect to h ∈]0, 1] . The last result concerned with the equality of the minimal
and maximal extension of the formal adjoint results from the essential maximal accretivity, as it is recalled after
Definition 2.4.3.
When the final term R2,h is replaced by 0 , the result is actually given by Proposition 7.2 in [NSW] with the
following changes:

• the lower bound 1
8b2

[

‖u‖2W̃1,0 + κs‖u‖2L2

]

in (2.7.8)
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• the coefficient 1
4Cg(1+b)7 in the right-hand side of (2.7.9), under the sufficient condition κs ≥ (Cg+16ν0,s)(1+

b2) ;

• the term
(

|λ|1/2
b3/2

)

‖u‖L2 in the right-hand side of (2.7.9) which is not written in [NSW].

For the last term of
(

|λ|1/2
b3/2

)

‖u‖L2 in (2.7.9) , it suffices to notice the interpolation inequality

( |λ|1/2
b3/2

)

‖u‖L2 ≤ 3
[ 1

b4/3
‖ |λ|〈p〉q

u‖L2 +
1

b2
‖|p|2qu‖L2

]

≤ 12
[ 1

b4/3
‖ |λ|〈p〉q

u‖L2 +
1

b2
‖Oghu‖L2

]

.

Because 0 < b ≤ 1 , it suffices to replace the constant Cg,old of Proposition 7.2 in [NSW] by Cg = Cg,new2
9 ×

13Cg,old and then to choose Cg,s = 2(Cg,new + 16ν0,s) .

Let us consider now the case with the final term R2,h = ∓〈RTQ
gh (p, fi,gh)p, fj,gh〉(f i

gh − f̂i,gh)if
j,gh

+f̂j

gh
. We set

As(b, h) = P±,b +M0,s(b, h) +M1,s(b, h) and we now consider As(b, h) + R2,h by perturbative arguments. The
accretivity of As(b, h) +R2,h is due to

|Re〈u , R2,hu〉L2 | ≤ C′
g‖u‖2W̃1,0

while we know

Re〈u , As(b, h)u〉L2 ≥ 1

8b2
[
‖u‖2W̃1,0 + κs‖u‖2L2

]
.

It thus suffices to assume 0 < b ≤ 1

4
√

C′
g

. The second inequality (2.7.9) for As(b, h) implies

∀u ∈ D(As(b, h)) , ‖As(b, h)u‖L2 +
2κs

b2
‖u‖L2 ≥ 1

Cgb2
‖Oghu‖L2 ≥ 1

Cgνgb2
‖R2,hu‖L2 .

Therefore R2,h is a relatively bounded perturbation of As(b, h) with relative bound Cgνgb
2 ≤ 1/4 < 1 provided

that 0 < b ≤ 1

2
√

Cgνg
. By [ReSi]-Theorem X.50, As(b, h) +R2,h is maximal accretive with the same domain as

As(b, h) . This relative boundedness also implies

‖(B±,b,V h − iλ)u‖L2 +
2κs

b2
‖u‖L2 ≥ 3

4

[

‖(As(b, h)− iλ)u‖L2 +
2κs

b2
‖u‖L2

]

and the subelliptic estimate (2.7.9), with the coefficient 3
4Cg

in the right-hand side follows.

We end the proof by adjusting a new value of Cg according to Cg,new = max(4/3Cg,
√
4C′

g, 2
√
Cgνg) .

Let us recall a few consequences of Proposition 2.7.2:

1. For any s ∈ R and z ∈ C , the compact imbedding: W̃0,s+2/3(Xh; Eh±) ⊂ W̃0,s(Xh; Eh±) implies B±,b,V h

s−z :

D(B±,b,V h

s
) → W̃s(Xh; Eh±) is a Fredholm operator with index 0 . Therefore the spectrum of B±,b,V h

s
is

discrete.

2. By a bootstrap argument when z 6∈ Spec(B±,b,V h

s
) the resolvent (B±,b,V h

s − z)−1 sends continuously
S(Xh; Eh±) to S(Xh; Eh±) and the same holds for (B∗,s

±,b,V h − z)−1 . Hence for two different s, s′ ∈ R the

resolvent (B±,b,V h

s− z)−1 and (B±,b,V h

s′ − z)−1 coincide as L(S(Xh; Eh±);S ′(Xh; Eh±))-valued meromophic

functions and Spec(B±,b,V h

s
) does not depend on s ∈ R as well.

3. The subelliptic estimate (2.7.9) ensures that B±,b,V h

s
is cuspidal according to the terminology of [Nie] (see

also [HerNi][HeNi][EcHa][BiLe]) and the integral representation

e−tB±,b,V h
s

=
1

2iπ

∫

Γb

e−tz(z −B±,b,h
s
)−1 dz

is a convergent integral for t > 0 when

Γb =

{

z ∈ C ,Re z ≥ 1

Cb
〈Im z〉1/2 − Cb

}
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and e−tB±,b,V h
s

: S ′(Xh; Eh±) 7→ S(Xh; Eh±) .
This implies that the poles of the resolvent (z − B±,b,V h)−1 are continuous finite rank operators from
S ′(Xh; Eh±) to S(Xh; Eh±) .

4. Changing the contour Γb above allows to isolate the main contribution to e−tB±,b,V h
s

associated with
eigenvalues with small real part from the others with exponentially smaller remainder as t→ +∞ .

5. With the scaling and Proposition 2.6.2 all these functional properties can be transferred to the operator
B±,b,Vh

associated with (Q, g, Vh , b) after replacing the condition 0 < b ≤ 1
Cg

by 0 < b
h ≤ 1

Cg
, the spaces

W̃s1,s2(Xh; Eh±) by the spaces W̃s1,s2
h (X ; E±) according to Definition 2.6.1 and by multiplying the spectral

parameter by 1
h2 or the time by h2 .

3 Improved lower bounds for modified operators

In this whole section we work with the rescaled Bismut Laplacian B±,b,V h associated with the scaled data

(Qh, gh, V h, b) and the Sobolev spaces W̃s1,s2(Xh; Eh±) = W̃s1,s2
1 (Xh; Eh±) . Although the connection, the vector

field Y , the terms α± , β± , γ± , and some other related quantities depend on h or the metric gh , we will drop
the corresponding subscript notations for the sake of simplicity. This is especially relevant owing to the uniform
estimates Proposition 2.6.2 and of Proposition 2.7.2. For further comparisons, we keep the memory of the h-
parameter only via the notations V h, Qh, Xh , Eh± and ∇E±,h .

For the accurate spectral asymptotic analysis we need subelliptic estimates for the operatorB±,b,V h

s
itself without

adding the constant κs

b2 in order to study the spectrum around 0 . Because α± and possibly B±,b,V h

s
have a

non trivial kernel, resolvent estimates must be given for operators modified in such a way that the singularity
of the resolvent at z = 0 is removed with a good control as the parameter b tends to 0 (uniform with respect
to h ∈]0, 1]) . The first modification consists in adding A2π0,± with A = A(b) suitably chosen according to b ,

the second modification consists in looking at π⊥,±B±,b,V h

s
π⊥,± with π⊥,± = 1 − π0,± . Finally the third one

consists in adding A2π0,±χ
( 2W 2

θ

(LA)2 )π0,± with χ ∈ C∞0 (R; [0, 1]) instead of A2π0,± .

3.1 The first modified operator B±,b,V h + A2π0,±

The main result of this paragraph is about a subelliptic estimate for B±,b,V h+A2π0,± without adding a remainder
term

κb,h

b2 and where the lower bound has coefficients which can be fixed large, independently of b → 0+. With
this aim, the maximal subelliptic exponent 2/3 is replaced by the lower value 2/5 as a result of interpolation.

Proposition 3.1.1. There exist two constants C,Cs ≥ 1, which are respectively uniform and s-dependent, s ∈ R,

such that the condition Cs max(Ab, b, A−1) ≤ 1 implies that B±,b,V h +A2π0,±
s
with D(B±,b,V h +A2π0,± − A2

2

s
) =

D(B±,b,V h

s
) ⊂ W̃0,s(Xh; Eh±) is maximal accretive with

C
∥
∥(B±,b,V h +A2π0,± − z)u

∥
∥
W̃0,s ≥ A2 ‖u‖W̃0,s +A2 ‖Ou‖W̃0,s +A2b

∥
∥
∥∇E±,h

Y u
∥
∥
∥
W̃0,s

+bA2|Im z|1/2‖u‖W̃0,s +A2b
2
3 ‖u‖W̃0,s+2

3
+A

8
5 ‖u‖W̃0,s+2

5
(3.1.1)

for all u ∈ S(Xh; Eh±) and all z ∈ C such that Re z ≤ A2

2 , and where we recall that the operators O,Y and the

Sobolev spaces W̃ s1,s2 depend on the metric gh.

Remark 3.1.1. The constants C,Cs ≥ 1 in Proposition 3.1.1 are obtained after several steps, and at every step
the values of the constants C,Cs are suitably tuned. We will often conclude such an intermediate analysis at step
n with the sentence “Choose (Cnew , CR,s,new) = Expression of (Cold, CR,s,old)”, where old refers to the values
obtained at step n− 1 and new to the conclusion for the step n.

Before starting a proof let us verify the maximal accretivity announced in Remark 2.7.1.

Corollary 3.1.2. For all s ∈ R there exists Cs ≥ 1 such that Cs +B±,b,V h

s
is maximal accretive when Csb ≤ 1

and h ∈]0, 1]:
∀u ∈ D(B±,b,V h

s
) , Re 〈u , (Cs +B±,b,V h)u〉W̃0,s ≥ 0 .

Proof. It suffices to notice

Re 〈u , (A2 +B±,b,V h)u〉W̃0,s ≥ Re 〈u , (B±,b,V h +A2π0,±)u〉W̃0,s ≥ 0

when Cs,old max(Ab, b, 1
A ) ≤ 1 , to choose A = Cs,old , b ≤ 1

C2
s,old

and to take Cs,new = C2
s,old .
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We start the proof of Proposition 3.1.1 with the simpler operator

P±,b +
1

b
R1,⊥,h +A2π0,± (3.1.2)

where A is a positive number and P±,b and R1,⊥,h are defined as in (2.7.1). Remember that the conjugated

operator (W 2
θ )

s
2 [P±,b+

1
bR1,⊥,h+A2π0,±](W 2

θ )
− s

2 with (W 2
θ )

s
2 = (W 2

θ,gh)
s
2 , takes the same form P±,b+

1
b R̃1,s,⊥,h+

A2π0,± with a new s-dependent remainder term 1
bR1,⊥,h with the same uniform estimates. After this we will

consider

B±,b,V h = [P±,b +
1

b
R1,⊥,h] +R0,h +R2,h

by a simple perturbative argument.
We use the notations u0 = π0,±(u) and u⊥ = π⊥,±u = u − u0 for u ∈ S ′(Xh; Eh±). The following properties

are obvious

• The equality Ou0 = Oghu0 = d
2u0 holds and therefore

‖u0‖2W̃1,0 =
d

2
‖u0‖2L2 ≥ 1

2
‖u0‖2L2 .

• With α± = O ± (Nv − d/2) we have O + d/2 ≥ α± ≥ O − d/2 and

‖u⊥‖2W̃1,0 +
d

2
‖u⊥‖2L2 ≥ 〈u⊥ , α±u⊥〉 ≥ ‖u⊥‖2W̃1,0 −

d

2
‖u⊥‖2L2 (3.1.3)

while we know 〈u⊥ , α±u⊥〉 ≥ ‖u⊥‖2L2 . (3.1.4)

We begin with the following integration by parts.

Proposition 3.1.3. For all A, b ∈ R∗
+, the inequality

Re 〈(P±,b +A2π0,±)u, u〉L2 ≥ 2

(d+ 2)b2
‖u⊥‖2W̃1,0 +A2‖u0‖L2 (3.1.5)

holds for all u ∈ S(Xh; Eh±).

Proof. Just use Re 〈P±,bu , u〉 = 〈u⊥ , α±u⊥〉 and (3.1.3)(3.1.4).

Proposition 3.1.4. There is a positive constant cR > 0 , such that for all ε > 0, the inequality

cR|Re 〈R1,⊥,hu, u〉 | ≤ ε ‖u0‖2L2 + (1 +
1

ε
) ‖u⊥‖2W̃1,0

holds for all u ∈ S(Xh; Eh±).

Proof. From conditions (2.7.3), (2.7.4) we deduce

R1,⊥,h = π0,±R
′
1,hπ⊥,± + π⊥,±R

′′
1,hπ0,± + π⊥,±R

′′′
1,hπ⊥,±,

with R′
1,h, R

′′
1,h, R

′′′
1,h ∈ L(W̃1,0;L2). The triangular and Cauchy-Schwarz inequalities yield

|Re 〈R1,⊥,hu, u〉 | ≤ |
〈
R′

1,hu⊥, u0

〉
|+ |

〈
R′′

1,hu0, u⊥
〉
|+ |

〈
R′′′

1,hu⊥, u⊥
〉
|

≤ CR (‖u⊥‖W̃1,0 ‖u0‖L2 + ‖u0‖L2 ‖u⊥‖L2 + ‖u⊥‖W̃1,0 ‖u⊥‖L2) ,

where 0 < 1
2cR

= CR = suph∈]0,1]max(‖R′
1,h‖L(W̃1,0;L2),

√
d
2‖R′′

1,h‖L(W̃1,0;L2), ‖R′′′
1,h‖L(W̃1,0;L2)) < ∞ by our

hypothesis on R1,⊥,h.

cR|Re 〈R1,⊥,hu, u〉 | ≤ ‖u⊥‖W̃1,0 ‖u0‖L2 + ‖u⊥‖2W̃1,0 .

The result follows when we apply the inequality

∀a, b, ε ∈ R
∗
+ , 2ab ≤ εa2 +

1

ε
b2,

with a = ‖u0‖L2 and b = ‖u⊥‖W̃1,0 .

The following proposition is a consequence of Proposition 3.1.3 and Proposition 3.1.4.
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Proposition 3.1.5. There is a constant CR,s ≥ 1, which depends s ∈ R, such that the condition max(Ab, b, 1
A ) ≤

1
CR,s

implies the inequalities

Re
〈
(P±,b +

1
bR1,⊥,h +A2π0,±)u, u

〉

W̃0,s ≥ 1

(d+ 2)b2
‖u⊥‖2W̃1,s +

3A2

4
‖u0‖2W̃0,s (3.1.6)

∥
∥(P±,b +

1
bR1,⊥,h +A2π0,± − iλ)u

∥
∥
W̃0,s ≥ 3A2

4
‖u‖W̃0,s , (3.1.7)

and
∥
∥(P±,b +

1
bR1,⊥,h +A2π0,± − iλ)u

∥
∥
2

W̃0,s ≥ 3A2

4(d+ 2)b2
‖u⊥‖2W̃1,s +

9A4

16
‖u0‖2W̃0,s (3.1.8)

for all u ∈ S(Xh; Eh±) and all λ ∈ R . Moreover under the above condtion, (P±,b+
1
bR1,⊥,h+A2π0,±) is essentially

maximal accretive on S(Xh; Eh±) in W̃0,s(Xh; Eh±).

Proof. We begin with the case s = 0, Proposition 3.1.4 gives

Re 〈(P±,b +A2π0,± +
1

b
R1,⊥,h)u, u〉L2 ≥

( 2

(d+ 2)b2
− 1

bcR
(1 +

1

ε
)
)
‖u⊥‖2W̃1,0 +

(
A2 − ε

bcR

)
‖u0‖2L2 ,

for all ε > 0. Choosing ε = Ab
√
d+ 2 and the sufficient conditions

b ≤ cR
2(d+ 2)

and
4
√
d+ 2

cR
≤ A

imply
( 2

(d+ 2)b2
− 1

bcR
︸︷︷︸

≤ 1
2(d+2)b2

− 1

bcRε
︸ ︷︷ ︸

≤ 1
2(d+2)b2

)
≥ 1

(d+ 2)b2
and

(
A2 − ε

bcR

)
≥ 3A2

4
.

This proves (3.1.6) under the condition max(Ab, b, 1
A ) ≤ 1

CR,0
, with CR,0 = max(2(d+2)

cR
,
√
d+ 2, 4

√
d+2
cR

) .

With ‖u⊥‖2W̃1,0
≥ d

2‖u⊥‖2L2 and

Re 〈(P±,b +A2π0,± +
1

b
R1,⊥,h)u, u〉L2 = Re 〈(P±,b +A2π0,± +

1

b
R1,⊥,h − iλ)u, u〉L2

the Cauchy-Schwarz inequality combined with (3.1.6) gives

‖(P±,b +
1

b
R1,⊥,h +A2π0,± − iλ)u‖L2‖u‖L2 ≥ d

2(d+ 2)b2
‖u⊥‖2L2 +

3A2

4
‖u0‖2L2 ≥

3A2

4
‖u‖2L2 (3.1.9)

as soon as d
(d+2)b2 ≥ A2 , which is implied by

√
d+ 2Ab ≤ CR,0Ab ≤ 1. This yields (3.1.7).

The inequality (3.1.8) is a consequence of (3.1.7) and (3.1.9).

For the maximal accretivity property, the decomposition

P±,b +
1

b
R1,⊥,h +A2π0,± =

[
C′

b2
+

1

b2
O ∓ 1

b
∇E±,h

Y +
1

b
R1,⊥,h

]

+

[

A2π0 −
C′

b2
± 1

b2
(NV − d/2)

]

shows that (P±,b +
1
bR1,⊥,h +A2π0,±) is a bounded perturbation of

C′

b2
+ P±,b,M =

C′

b2
+

1

b2
O ∓ 1

b
∇E±,h

Y +M1

where M1 = 1
bR1,⊥,h fulfills the assumptions of Proposition 7.2 in [NSW] when CR,0b ≤ 1 . Then Proposition 7.2

in [NSW] says that C′

b2 + P±,b,M is essentially maximal accretive on S(Xh; Eh±) for C′ > 0 chosen large enough.

Finally, the case with a general s ∈ R amounts to the case s = 0 owing to

(W 2
θ )

s
2

(
P±,b +

1

b
R1,⊥,h +A2π0,±

)
(W 2

θ )
− s

2 = P±,b +
1

b
Rs

1,⊥,h +A2π0,±.

Below we give a first global subelliptic estimate without remainder for P±,b +
1
bR1,⊥,h +A2π0.
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Proposition 3.1.6. There exist two constants C,CR,s ≥ 1, which are respectively uniform and s-dependent,
s ∈ R, such that the inequality

C

∥
∥
∥
∥
(P±,b +

1

b
R1,⊥,h +A2π0,± − z)u

∥
∥
∥
∥
W̃0,s

≥ A2 ‖u‖W̃0,s +A2 ‖Ou‖W̃0,s +A2b
∥
∥
∥∇E±,h

Y u
∥
∥
∥
W̃0,s

+A2b
2
3 ‖u‖W̃0,s+2

3

+A2b|λ|1/2‖u‖W̃0,s (3.1.10)

holds for all u ∈ S(Xh; Eh±) and all z ∈ R , such that Re z ≤ A2

2 as soon as CR,s max(Ab, b, A−1) ≤ 1 .

Proof. Owing to the accretivity of Proposition 3.1.5, the case of a general z ∈ C , Re z ≤ A2

2 , is reduced to the

case z = iλ , λ ∈ R . Actually the accretivity of P±,b +
1
bR1,⊥,h +A2π0,± − A2

2 implies

‖(P±,b +
1

b
R1,⊥,h +A2π0,± − z)u‖W̃0,s ≥ ‖(P±,b +

1

b
R1,⊥,h +A2π0,± −

A2

2
− iIm z)u‖W̃0,s

when Re z ≤ A2

2 . But the inequality (3.1.7) also says

‖(P±,b +
1

b
R1,⊥,h +A2π0,± −

A2

2
− iλ)u‖W̃0,s ≥ ‖(P±,b +

1

b
R1,⊥,h +A2π0,± − iλ)u‖W̃0,s −

A2

2
‖u‖W̃0,s

≥ 1

3
‖(P±,b +

1

b
R1,⊥,h +A2π0,± − iλ)u‖W̃0,s .

So we focus on the case z = iλ , λ ∈ R .
In the case s = 0 we refer again to Proposition 7.2 in [NSW]. Actually with R1,⊥,h = 0 , we set M0 =
A2π0,± ± 1

b2 (NV − d/2) and

P±,b +A2π0,± =
1

b2
O +

1

b
∇E±,h

Y +

[

A2π0,± ±
1

b2
(NV − d/2)

]

= P±,b,M0

where the right-hand side refers to the notation introduced in [NSW]. The operator M0 = A2π0,±± 1
b2 (NV −d/2)

fulfills the assumptions of Proposition 7.2 in [NSW] with ν1 = 0 and a uniform ν0 > 0 . It provides us the
subelliptic estimate

C′
1

(
∥
∥
∥
∥
(P±,b,M0 − i

λ

b
)u

∥
∥
∥
∥
L2

+
C′

0

b2
‖u‖L2

)
≥ C′

0

b2
‖u‖L2 +

1

b2
‖Ou‖L2 +

1

b

∥
∥
∥∇E±,h

Y u
∥
∥
∥
L2

+
1

b
4
3

‖u‖W̃0, 2
3
+
|λ|1/2
b3/2

‖u‖L2 ,

or after replacing λ
b by λ ,

C′
1

(
‖(P±,b,M0 − iλu)‖L2 +

C′
0

b2
‖u‖L2

)
≥ C′

0

b2
‖u‖L2 +

1

b2
‖Ou‖L2 +

1

b

∥
∥
∥∇E±,h

Y u
∥
∥
∥
L2

+
1

b
4
3

‖u‖W̃0, 2
3
+
|λ|1/2
b
‖u‖L2 ,

(3.1.11)
for fixed uniform constants C′

1 ≥ 1 and C′
0 ≥ 1 when b ≤ 1. Interpolation or the functional calculus tells us

‖u‖W̃1,s ≤ ‖u‖1/2W̃0,s
‖u‖1/2W̃2,s

= ‖u‖1/2W̃0,s
‖Ou‖1/2W̃0,s

≤ δ‖u‖W̃0,s + δ−1‖Ou‖W̃0,s . (3.1.12)

Applied here with s = 0 and δ =
√

C′
0, this implies

‖1
b
R1,⊥,hu‖L2 ≤ CR

b
‖u‖W̃1,0 ≤

CR

b
× C′

1b
2

√

C′
0

(
‖P±,b,M0u‖L2 +

C′
0

b2
‖u‖L2

)

and

C′
1

(
∥
∥
∥
∥
(P±,b +

1

b
R1,⊥,h +A2π0,± − iλ)u

∥
∥
∥
∥
L2

+
C′

0

b2
‖u‖L2

)
≥ C′

1

(

1− CRC
′
1b

√

C′
0

)

(
‖(P±,b,M0 − iλ)u‖L2 +

C′
0

b2
‖u‖L2

)
.

By assuming CR,0 max(Ab, b, 1
A) ≤ 1 the inequality (3.1.7) implies

C′
1

(

1 +
2C′

0

b2A2

)∥
∥
∥
∥
(P±,b +

1

b
R1,⊥,h +A2π0,± − iλ)u

∥
∥
∥
∥
L2

≥ C′
1

(

1− CRC
′
1b

√
C′

0h

)

(
‖(P±,b,M0 − iλ)u‖L2 +

C′
0

b2
‖u‖L2

)
.

With b ≤
√

C′
0

2CRC′
1
after a multiplication by 2A2b2 we obtain

C′
1

(
2A2b2 + 4C′

0

)
∥
∥
∥
∥
(P±,b +

1

b
R1,⊥,h +A2π0,± − iλ)u

∥
∥
∥
∥
L2

≥ A2b2C′
1

(
‖(P±,b,M0 − iλ)u‖L2 +

C′
0

b2
‖u‖L2

)

≥ C′
0A

2 ‖u‖L2 + A2 ‖Ou‖L2 +A2b
∥
∥
∥∇E±,h

Y u
∥
∥
∥
L2

+A2b2/3 ‖u‖W̃0, 2
3
+ bA2|λ|1/2‖u‖L2 .
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Because A2b2 ≤ 1
(CR,0)2

≤ C′
0 we deduce

6C′
1C

′
0

∥
∥
∥
∥
(P±,b +

1

b
R1,⊥,h +A2π0,± − iλ)u

∥
∥
∥
∥
L2

≥ A2 ‖u‖L2 +A2 ‖Ou‖L2 +A2b
∥
∥
∥∇E±,h

Y u
∥
∥
∥
L2

+A2b2/3 ‖u‖W̃0, 2
3
+ bA2|λ|1/2‖u‖L2.

We have proved the result for s = 0 if we take C = 6C′
1C

′
0 , after replacing the initial value of CR,0 = CR,0,old by

CR,0,new = max(CR,0,old,
2C′

1CR√
C′

0

).

Let us now consider the case of a general s ∈ R. We apply the inequality (3.1.11) in the case s = 0 to the
operator P±,b + A2π0,± + 1

bR
s
1,⊥,h = (W 2

θ )
s
2 (P±,b + A2π0,± + 1

bR1,⊥,h)(W
2
θ )

− s
2 and the function v = (W 2

θ )
s
2u,

with the constant C = 6C′
1C

′
0. Because Rs

1,⊥,h satisfies the same estimates uniform with respect to h ∈]0, 1] as
R1,⊥,h, there exists a constant CR,s ≥ 1 such that when max(Ab, b, 1

A ) ≤ 1
CR,s

we have

6C′
1C

′
0

∥
∥
∥
∥
(P±,b +A2π0,± +

1

b
R1,⊥,h − iλ)u

∥
∥
∥
∥
W̃0,s

≥A2‖u‖W̃0,s +A2‖Ou‖W̃0,s +A2b‖∇E±,h
Y v‖L2

+A2b2/3‖u‖W̃0,s+2
3
+A2b|λ|1/2‖u‖W̃0,s . (3.1.13)

We use again (2.7.7) which gives the uniform bound ‖[∇E±,h
Y , (W 2

θ )
s
2 ](W 2

θ )
− s

2 ‖L(W̃1,0;L2) < Cs. Thus the decom-

position ∇E±,h
Y v = (W 2

θ )
s
2∇E±,h

Y u+ [∇E±,h
Y , (W 2

θ )
s
2 ](W 2

θ )
− s

2 v entails

‖∇E±,h
Y u‖W̃0,s ≤ ‖∇E±,h

Y v‖L2 + Cs‖u‖W̃1,s .

The interpolation inequality (3.1.12) used with δ = 1 tells us ‖u‖W̃1,s ≤ ‖u‖W̃0,s + ‖Ou‖W̃0,s while (3.1.13) gives

‖u‖W̃1,s ≤ 12C′
0C

′
1

A2 ‖(P±,b +A2π0,± + 1
bR1,⊥,h)u‖W̃0,s .

We finally obtain

6C′
0C

′
1(1 + 2Csb)

∥
∥
∥
∥
(P±,b +A2π0,± +

1

b
R1,⊥,h − iλ)u

∥
∥
∥
∥
W̃0,s

≥A2‖u‖W̃0,s + A2‖Ou‖W̃0,s +A2b‖∇E±,h
Y u‖W̃0,s

+A2b2/3‖u‖W̃0,s+2
3
+A2b|λ|1/2‖u‖W̃0,s .

It now suffices to take C = 18C′
0C

′
1 , while CR,s,new = max(CR,s,old, 2Cs) for the result concerned with z = iλ ,

and to take C = 3 ∗ 18C′
0C

′
1 for a general z ∈ C such that Re z ≤ A2

2 .

The subelliptic estimate (3.1.10) is not yet satisfactory because the norm ‖u‖W̃0,s+2/3 appears in the right-
hand side with the factor A2b2/3 which is too small as b → 0. By possibly reducing the 2/3-gain of regularity,
we seek a factor of the form Aα, α > 0 . In order to do this we write for u ∈ S(Xh; Eh±)

(
P±,b +

1

b
R1,⊥,h +A2π0,± − iλ

)
u = f

where we focus again on the case Re z = iλ and decompose u and the right-hand side f according to

u = u0 + u⊥ = π0,±u+ π⊥,±u , f = f0 + f⊥ = π0,±f + π⊥,±f .

Lemma 3.1.7. There is a constant CR,s ≥ 1, which depends on s ∈ R , such that the inequality

‖u⊥‖W̃1,s ≤ 2(d+ 2)b2

ε
‖f‖W̃0,s + ε ‖u0‖W̃0,s , (3.1.14)

holds true for all u ∈ S(Xh; Eh±) and all ε ∈]0, 1] as soon as CR,s max(Ab, b, A−1l) ≤ 1.

Proof. In this case inequality (3.1.6) and orthogonality give

1

(d+ 2)b2
‖u⊥‖2W̃1,s ≤ | 〈f0 , u0〉W̃0,s + 〈f⊥ , u⊥〉W̃0,s | ≤ ‖f0‖W̃0,s ‖u0‖W̃0,s + ‖f⊥‖W̃0,s ‖u⊥‖W̃0,s .

By using αβ ≤ α2+β2

2 with (α, β) = ( b
ε0
‖f0‖W̃0,s ,

ε0
b ‖u0‖W̃0,s) and (α, β) = (

√
d+ 2b‖f⊥‖W̃0,s , 1√

d+2b
‖u⊥‖W̃0,s)

we obtain

1

(d+ 2)b2
‖u⊥‖2W̃1,s ≤

b2

2ε20
‖f0‖2W̃0,s +

ε20
2b2
‖u0‖2W̃0,s +

(d+ 2)b2

2
‖f⊥‖2W̃0,s +

1

2(d+ 2)b2
‖u⊥‖2W̃0,s .
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Multiplied by 2(d+ 2)b2, it becomes

‖u⊥‖2W̃0,s ≤ 2(d+ 2)b4 max(
1

ε20
, d+ 2) ‖f‖2W̃0,s + ε20(d+ 2) ‖u0‖2W̃0,s .

By choosing ε0 = ε√
d+2

, ε ∈]0, 1], we obtain

‖u⊥‖2W̃0,s ≤
2(d+ 2)2b4

ε2
‖f‖2W̃0,s + ε2 ‖u0‖2W̃0,s ≤

(
2(d+ 2)b2

ε
‖f‖W̃0,s + ε ‖u0‖W̃0,s

)2

.

Lemma 3.1.8. There exist two constants C̃, CR,s ≥ 1, which are respectively uniform and s-dependent, s ∈ R,
such that CR,s max(Ab, b, A−1) ≤ 1 implies

1

C̃
‖u0‖W0,s+1 ≤ (b+

1

A
) ‖f‖W0,s + b2 ‖f‖W0,s+1 , (3.1.15)

for all u ∈ S(Xh, Eh±).

Proof. We start with the proof in the s = 0 case.
Let πi,± denote the spectral projection on the eigenspace of the operator α± associated with the eigenvalue
i ∈ {0, 1, 2}. By projecting the equation f =

(
P±,b +

1
bR1,⊥,h +A2π0,±

)
u on Ran(π1,±), we obtain

1

b2
u1 ∓

1

b
π1∇E±,h

Y (u0 + u2) +
1

b
π1R1,⊥,hu = f1,

where ui = πi,±u and fi = πi,±f for i ∈ {0, 1, 2}. By isolating π1∇E±,h
Y u0 = ∇E±,h

Y u0, it gives:

∇E±,h
Y u0 = bf1 −

1

b
u1 − π1∇E±,h

Y u2 − π1R1,⊥u.

An upper bound of
∥
∥
∥∇E±,h

Y u0

∥
∥
∥
L2

is thus given by

∥
∥
∥∇E±,h

Y u0

∥
∥
∥
L2
≤ b ‖f1‖L2 +

1

b
‖u1‖L2 + ‖u2‖W0,1 + ‖R1,⊥u‖L2 . (3.1.16)

We now use the inequality (3.1.14) with the two regularity exponents s = 0 and s = 1 and with different values
of ε ∈]0, 1] . It makes sense under the following constraints

max(CR,0, CR,1)max(Ab, b, A−1) ≤ 1 .

We obtain

• ‖u1‖L2 ≤ 2
d‖O1/2u1‖L2 ≤ 2 ‖u⊥‖W̃1,0 ≤ 4(d+2)b2

ε0
‖f‖L2 + 2ε0 ‖u0‖L2 ;

• ‖u2‖W̃0,1 ≤ 2 ‖u⊥‖W̃1,1 ≤ 4(d+2)b2

ε1
‖f‖W̃0,1 + 2ε1 ‖u0‖W̃0,1 ;

• ‖R1,⊥u‖L2 ≤ C′
R,0 ‖u‖W̃1,0 ≤ C′

R,0(‖u⊥‖W̃1,0 +
√

d
2 ‖u0‖L2) ≤ C′

R,0(
2(d+2)b2

ε2
‖f‖L2 + (

√
d
2 + ε2) ‖u0‖2L2) ;

where C′
R,0 = suph∈]0,1] ‖R1,⊥,h‖L(W̃1,0;L2) <∞. The upper bound (3.1.16) becomes

∥
∥
∥∇E±,h

Y u0

∥
∥
∥
L2
≤
(

b+
4(d+ 2)b

ε0
+

C′
R,02(d+ 2)b2

ε2

)

‖f‖L2

+

(

2ε0
b

+ C′
R,0(

√

d

2
+ ε2)

)

‖u0‖L2 +
4(d+ 2)b2

ε1
‖f‖W̃0,1 + 2ε1 ‖u0‖W̃0,1 .

On S(Xh; Eh±) ∩ Ranπ0,± = S(Xh; Eh±) ∩ kerα±, Lemma 2.5.2 provides the equivalence

1

C̃0

‖u0‖W̃0,1 ≤
∥
∥
∥∇E±,h

Y u0

∥
∥
∥
L2

+ ‖u0‖L2 ≤ C̃0 ‖u0‖W̃0,1
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for some uniform C̃0 ≥ 1 so that

(
1

C̃0

− 2ε1

)

‖u0‖W̃0,1 ≤
(

b+
4(d+ 2)b

ε0
+

C′
R,02(d+ 2)b2

ε2

)

‖f‖L2

+

(

1 +
2ε0
b

+ C′
R,0(

√

d

2
+ ε2)

)

‖u0‖L2 +
4(d+ 2)b2

ε1
‖f‖W̃0,1 .

The integration by parts inequality (3.1.7) of Proposition 3.1.5 says

‖u0‖L2 ≤ ‖u‖L2 ≤
2

A2
‖f‖L2 .

We have proved

(
1

C̃0

− 2ε1)‖u0‖W̃0,1 ≤
(

b+
4(d+ 2)b

ε0
+

2(d+ 2)C′
R,0b

2

ε2
+

2

A2

(
1 +

2ε0
b

+ C′
R,0(

√

d

2
+ ε2)

)

)

‖f‖L2

+
4(d+ 2)b2

ε1
‖f‖W̃0,1 ,

and we choose

ε0 = ε2 =
√
d+ 2 bA ≤ CR,0Ab ≤ 1 , ε1 =

1

4C̃0

≤ 1 .

This implies

1

2C̃0

‖u0‖W̃0,1 ≤
(

b+
2
√
d+ 2

A
+

2
√
d+ 2C′

R,0b

A
+

2

A2
+

2
√
d+ 2

A
+

√
2dC′

R,0

A2
+

2
√
d+ 2C′

R,0b

A

)

‖f‖L2

+ 16C̃0(d+ 2)b2‖f‖W̃0,1

≤
(

b+
4
√
d+ 2

A
+

4
√
d+ 2C′

R,0b

A
+

2

A2
+

√
2dC′

R,0

A2

)

‖f‖L2 + 16C̃0(d+ 2)b2‖f‖W̃0,1 .

The condition C′
R,0 max(b, A−1) ≤ 1 ensures

1

2C̃0

‖u0‖W̃0,1 ≤
(
b+

1

A
(6
√
d+ 2 +

2

A
+
√
2d)
)
‖f‖L2 + 16C̃0(d+ 2)b2‖f‖W̃0,1 .

We conclude the proof of the case s = 0 by choosing new values of the constants CR,0 and C̃ according to

CR,0,new = max(C′
R,0, CR,0,old, CR,1) ,

√

C̃ = max(2C̃0, 6
√
d+ 2 +

√
2d+ 2, 16C̃0(d+ 2)) ≥ 1 .

For general s ∈ R, writing (W 2
θ )

s/2f = (W 2
θ )

s/2
(
P±,b +

1
bR1,⊥,h +A2π0,±

)
(W 2

θ )
−s/2(W 2

θ )
s/2u in the form

(W 2
θ )

s/2f =
(
P±,b +

1

b
Rs

1,⊥,h +A2π0,±
)
(W 2

θ )
s/2u

reduces the problem to the case s = 0 with R1,⊥,h replaced again by

Rs
1,⊥,h = (W 2

θ )
s/2R1,⊥,h(W

2
θ )

−s/2 + (W 2
θ )

s/2∇E±,h
Y (W 2

θ )
−s/2 −∇E±,h

Y .

Lemma 3.1.9. There exist two constants C̃, CR,s ≥ 1, which are respectively uniform and s-dependent, s ∈ R,
such that CR,s max(Ab, b, A−1) ≤ 1 implies

1

C̃
‖u⊥‖W̃1,s+1 ≤

(

b+
1

A

)

‖f‖W̃0,s + b2 ‖f‖W̃0,s+1 (3.1.17)

for all u ∈ S(Xh; Eh±).
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Proof. Apply the inequality (3.1.14) with s replaced by s+ 1 and ε = 1:

‖u⊥‖W̃1,s+1 ≤ 2(d+ 2)b2 ‖f‖W̃0,s+1 + ‖u0‖W̃0,s+1 .

With (3.1.15) we deduce

‖u⊥‖W̃1,s+1 ≤ b2
(

2(d+ 2) + C̃
)

‖f‖W̃0,s+1 + C̃

(

b+
1

A

)

‖f‖W̃0,s .

Finally choose C̃new = 2(d+ 2) + C̃old and CR,s,new ≥ max(CR,s,Lemma 3.1.7, CR,s,Lemma 3.1.8) .

We now decompose the equation

f = (P±,b +
1

b
R1,⊥,h +A2π0,± − iλ)u

into terms which adapt the low and high-frequency analysis of [ReTa]: The frequency truncations are actually
replaced by spectral truncations associated with (W 2

θ ) .
Let us set:

• fL = 1{W 2
θ ≤ 1

b2
}f the orthogonal projection of f on the low lying spectral part of (W 2

θ ) ;

• fH = 1{W 2
θ >

1
b2

}f the spectral projection of f corresponding to high energies of (W 2
θ )j ;

• uL = (P±,b +
1
bR1,⊥,h +A2π0,± − iλ)−1fL the preimage of fL by P±,b +

1
bR1,⊥,h +A2π0,± ;

• uH = (P±,b +
1
bR1,⊥,h +A2π0,± − iλ)−1fH the preimage of fH by P±,b +

1
bR1,⊥,h +A2π0,± .

Lemma 3.1.10. Under the condition CR,s max(Ab, b, A−1) ≤ 1 with constants C̃, CR,s ≥ 1, which are respectively
uniform and s-dependent, s ∈ R, the inequalities

‖uH‖W̃0,s+1 ≤ C̃b

A
‖fH‖W̃0,s+1 , (3.1.18)

‖uL‖W̃0,s+1 ≤ C̃

A
‖fL‖W̃0,s . (3.1.19)

hold for all u ∈ S(Xh; Eh±).

Proof. By the triangular inequality and the continuity of the inclusion W1,s+1 →֒ W0,s+1 , we know

‖u‖W̃0,s+1 ≤ ‖u0‖W̃0,s+1 +

√

2

d
‖u⊥‖W̃1,s+1 .

Let us fix

C̃ ≥ C̃Lemma 3.1.8 +

√

2

d
C̃Lemma 3.1.9 , CR,s ≥ max(CR,s+1,Lemma 3.1.8, CR,s+1,Lemma 3.1.9) .

We can now apply inequality (3.1.15) to ‖u0‖W̃0,s+1 and inequality (3.1.17) to ‖u⊥‖W̃1,s+1 with

1

C̃
‖u‖W̃0,s+1 ≤ (b +

1

A
) ‖f‖W̃0,s + b2 ‖f‖W̃0,s+1 . (3.1.20)

The functional calculus gives
{

‖fL‖W̃0,s+1 ≤ 1
b ‖fL‖W̃0,s ,

‖fH‖W̃0,s ≤ b ‖fH‖W̃0,s+1 .

By combining (3.1.20) for u = uH and u = uL respectively, we deduce

{

‖uH‖W̃0,s+1 ≤ 2C̃b(b+ 1
A ) ‖fH‖W̃0,s+1 ,

‖uL‖W̃0,s+1 ≤ 2C̃(b+ 1
A ) ‖fL‖W̃0,s .

Since we assumed CR,sAb ≤ 1 it suffices to take C̃new = 4C̃old .
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Lemma 3.1.11. Under the condition CR,s max(Ab, b, A−1) ≤ 1 with constants C̃, CR,s ≥ 1, which are respectively
uniform and s-dependent, s ∈ R, the inequalities







‖uL‖W̃0,s+2
5
≤ C̃

A
8
5
‖fL‖W̃0,s ,

‖uH‖W̃0,s+2
5
≤ C̃

A
8
5
‖fH‖W̃0,s

hold for all u ∈ S(Xh; Eh±).
Proof. When we interpolate between integration by parts inequality (3.1.7)

‖uL‖W̃0,s ≤ 2

A2
‖fL‖W̃0,s ,

and (3.1.19)

‖uL‖W̃0,s+1 ≤
C̃

A
‖fL‖W̃0,s .

We obtain

‖uL‖W̃0,s+2
5
≤ 2

3
5 C̃

2
5

A
8
5

‖fL‖W̃0,s .

By doing the same with the subelliptic estimate (3.1.10), we get

‖uH‖W̃0,s+2
3
≤ C

A2b
2
3

‖fH‖W̃0,s ,

and (3.1.18)

‖uH‖W̃0,s ≤
C̃b

A
‖fH‖W̃0,s ,

and thus

‖uH‖W̃0,s+2
5
≤ C

3
5 C̃

2
5

1

A
8
5

‖fH‖W̃0,s .

Take C̃new = max(2
3
5 , C

3
5 )C̃

2
5 . The result follows for some large enough constants Cs, CR,s ≥ 1 .

Proposition 3.1.12. There exist two constants C,CR,s ≥ 1, which are respectively uniform and s-dependent,
s ∈ R, such that CR,s max(Ab, b, A−1) ≤ 1 implies

C

∥
∥
∥
∥
(P±,b +

1

b
R1,⊥,h +A2π0,± − z)u

∥
∥
∥
∥
W̃0,s

≥ A2 ‖u‖W̃0,s +A2 ‖Ou‖W̃0,s +A2b
∥
∥
∥∇E±,h

Y u
∥
∥
∥
W̃0,s

+A2b
2
3 ‖u‖W̃0,s+2

3

+A
8
5 ‖u‖W̃0,s+2

5
+A2b|λ|1/2‖u‖W̃0,s (3.1.21)

for all u ∈ S(Xh; Eh±) and all z ∈ C such that Re z ≤ A2

2

Proof. When z = iλ the result follows from Proposition 3.1.6 and the inequality

‖u‖W̃0,s+2
5
≤ ‖uL‖W̃0,s+2

5
+ ‖uH‖W̃0,s+2

5
≤ C̃

A
8
5

(‖fL‖W̃0,s + ‖fH‖W̃0,s) ≤
√
2C̃

A
8
5

‖f‖W̃0,s .

For a general z ∈ C , Re z ≤ A2

2 , we use again the inequality

∥
∥
∥
∥
(P±,b +

1

b
R1,⊥,h +A2π0,± − z)u

∥
∥
∥
∥
W̃0,s

≥ 1

3

∥
∥
∥
∥
(P±,b +

1

b
R1,⊥,h +A2π0,± − iImz)u

∥
∥
∥
∥
W̃0,s

,

which is a consequence of Proposition 3.1.5.
Taking Cnew = 3

√
2(Cold + 1)C̃ , the inequality (3.1.21) is proved.

End of the proof of Proposition 3.1.1. We use

B±,b,V h = [P±,b +
1

b
R1,⊥,h] +R0,h +R2,h ,

where Proposition 3.1.5 (resp. Proposition 3.1.12) provides the result about the maximal accretivity (resp. the
desired subelliptic estimate) with some constants C,CR,s ≥ 1 when R0,h = 0 and R2,h = 0 .
The property (2.7.3) of R0,h and R2,h implies the uniform inequality

‖R0,h‖L(W̃0,s;W̃0,s) + ‖R2,h‖L(W̃2,s;W̃0,s) + ‖R2,h‖L(W̃1,s;W̃−1,s) ≤ C(1)
s
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For the accretivity of Bb,±,V h +A2π0,± − A2

2

s
we write

Re 〈u , (B±,b,V h +A2π0 −
A

2

2
)u〉W̃0,s ≥ 1

(d+ 2)b2
‖u⊥‖2W̃1,s +

3A2

4
‖u0‖2W̃0,s − 2C(1)

s ‖u‖2W̃1,s −
A2

2
‖u‖2W̃0,s

≥ [
1

(d+ 2)b2
− 2C(1)

s − A2

4
]‖u⊥‖2W̃1,s + [

A2

4
− dC(1)

s ]‖u0‖W̃0,s ≥ 0

where the inequality A2 ≥ 4dC
(1)
s holds when Cs ≥ 1 is large enough , and where the inequality 1

(d+2)b2 −2C
(1)
s ≥

A2

4 holds as soon as Cs max(Ab, b, 1
A ) ≤ 1 .

For the subelliptic estimate, (3.1.21) implies

‖(R0,h +R2,h)u‖W̃0,s ≤ C(1)
s (‖u‖W̃0,s + ‖u‖W̃2,s) ≤

CC
(1)
s

A2
‖(P±,b +

1

b
R1,⊥,h +A2π0,± − iλ)u‖W̃0,s

≤ 2CC
(1)
s

A2
‖(P±,b +

1

b
R1,⊥,h +A2π0,± − iλ)u‖W̃0,s ,

when
CR,s max(Ab, b, A−1) ≤ 1 .

We conclude by choosing A such that
2CC(1)

s

A2 ≤ 1
2 ≤ C

2 , which is ensured by the new value

Cs = max(CR,s,

√

4CC
(1)
s ) ,

and provides the result of Proposition 3.1.1 with the new value Cnew = 2C .

3.2 Second modified operator π⊥,±B±,b,V hπ⊥,±

Another lower bound without the term κb

b2 can be obtained after considering the block diagonal restriction of
Bb,±,V h to Ranπ⊥,± = ker(α±) . Actually it is not a subelliptic estimate because there is no gain of regularity.
But the strong accretivity inequality with a lower bound 1

b2 will be strong enough for our applications. Because
W 2

θ commutes with π0,± and π⊥,± the same notions of closure, formal adjoint and adjoint, as in Definition 2.4.3

can be considered with W̃0,s(Xh; Eh±) , S(Xh; Eh±) and S ′(Xh; Eh±) replaced respectively by

π⊥,±W̃0,s(Xh; Eh±) , π⊥,±S(Xh; Eh±) and π⊥,±S ′(Xh; Eh±) .

All the discussion after Definition 2.4.3 and the properties of Proposition 2.7.1 can be adapted with

B±,b,V h,⊥ = π⊥,±B±,b,V hπ⊥,± , (W 2
θ )

s/2B±,b,V h,⊥(W
2
θ )

−s/2 = π⊥,±

[

P±,b +Rs
0,h +

1

b
Rs

1,⊥,h +Rs
2,h

]

π⊥,±

B′,s
±,b,V h,⊥ = π⊥,±(B

′,s
±,b,V h)π⊥,± = π⊥,±

[

P ′
±,b + (Rs

0,h)
′ +

1

b
(Rs

1,⊥,h)
′ + (Rs

2,h)
′
]

π⊥,± .

Proposition 3.2.1. There exists a constant Cs ≥ 1 which depends on s ∈ R such that the condition Csb ≤ 1
guaranties the following results.
The densely defined operator B±,b,V h,⊥ = π⊥,±B±,b,V hπ⊥,± in π⊥,±W̃0,s(Xh; Eh±) with domain π⊥,±S(Xh; Eh±)
is essentially maximal accretive with the inequality

∀u ∈ π⊥,±S(Xh; Eh±) , Re 〈u , [π⊥,±B±,b,V hπ⊥,±]u〉W̃0,s ≥
1

12b2
‖u‖2W̃0,s . (3.2.1)

Addtionally the resolvent of its closure B±,b,V h,⊥
s
= [π⊥,±B±,b,V hπ⊥,±]

π⊥,± ˜W0,s

satisfies

∀z ∈ C,Re z ≤ 1

24b2
, ‖(z −B±,b,V h,⊥

s
)−1‖L(W̃0,s;W̃0,s) ≤ 24b2 .

Finally the closure of the π⊥,±W̃0,s(Xh; Eh±) formal adjoint B′,s
±,b,V h,⊥ satisfies

B′,s
±,b,V h,⊥

∣
∣
S(Xh;Eh

±)

s
= B′,∗

±,b,V h,⊥ .

For the proof, we check firstly the accretivity in Proposition 3.2.2 and secondly the injectivity of the adjoint
B∗,s

±,b,V h,⊥ = (B±,b,V h,⊥)
∗,s in Proposition 3.2.3. The final statement above is just a consequence of the essential

maximal accretivity.
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Proposition 3.2.2. There exists a constant Cs ≥ 1 which depends on s ∈ R such that, under the assumption
Csb ≤ 1, the operator B±,b,V h,⊥ = π⊥,±B±,b,V hπ⊥,± is accretive in π⊥,±W̃0,s(Xh; Eh±), with

∀u ∈ π⊥,±S(Xh; Eh±) , Re 〈u , B±,b,V h,⊥u〉W̃0,s ≥
1

2(d+ 2)b2
‖u‖2W̃1,s ≥

d

4(d+ 2)b2
‖u‖2W̃0,s ≥

1

12b2
‖u‖2W̃0,s .

(3.2.2)
Hence its closure B±,b,V h,⊥

s
is one to one with a closed range.

Proof. Take u = u⊥, since π⊥,±π0,±π⊥,± = 0 the inequality (3.1.6) holds at least with an arbitrary A > 0 that
satisfies the required condition. Integration by parts gives

Re 〈B±,b,V hu , u〉W̃0,s =
1

b2
Re 〈(P±,b +

1

b
R1,⊥,h)u , u〉W̃0,s + Re 〈(R0,h +R2,h)u , u〉W̃0,s

≥ 1

(d+ 2)b2
‖u‖2W̃1,s − ‖R0,h‖L(W̃0,s;W̃0,s)‖u‖2W̃0,s − ‖R2,h‖L(W̃1,s;W̃−1,s)‖u‖2W̃1,s .

The condition (2.7.3) ensures R0,h ∈ L(W̃0,s; W̃0,s) and by interpolation R2,h ∈ L(W̃1,s; W̃−1,s). Remember
that d

2‖u‖2W̃0,s ≤ ‖u‖2W̃1,s . Finally

Re 〈B±,b,V hu , u〉W̃0,s ≥ 1

b2

(

1

(d+ 2)
−

2‖R0,h‖L(W̃0,s;W̃0,s)b
2

d
− ‖R2,h‖L(W̃1,s;W̃−1,s)b

2

)

‖u‖2W̃1,s

≥ 1

b2

(
1

d+ 2
− (

2

d
+ 1)C̃Rb

2

)

‖u‖W̃1,s

with C̃R = suph∈]0,1]

[

‖R0,h‖L(W̃0,s;W̃0,s) + ‖R2,h‖L(W̃1,s;W̃−1,s)

]

.

Taking Cs >

√
2C̃R

d (d+ 2) and CR,s as in Proposition 3.1.5 , we have

1

d+ 2
−

2‖R0,h‖L(W̃0,s;W̃0,s)b
2

d
− ‖R2,h‖L(W̃1,s;W̃−1,s)b

2 ≥ 1

2(d+ 2)

as soon as Csb ≤ 1.

Proposition 3.2.3. There is a constant Cs ≥ 1 which depends on s ∈ R, such that the adjoint B∗,s
±,b,V h,⊥ =

(B±,b,V h,⊥
s
)∗,s is one to one and therefore B±,b,V h,⊥

s
is maximal accretive, as soon as Csb ≤ 1 .

Proof. Assume w ∈ ker(B∗,s
±,b,V h,⊥) and let us prove w = 0 . By setting w = (W 2

θ )
−s/2v, the assumption is

equivalent to (W 2
θ )

s/2B∗,s
±,b,V h,⊥(W

2
θ )

−s/2v = (W 2
θ )

−s/2B∗
±,b,V h,⊥(W

2
θ )

s/2v = 0 and v ∈ L2(Xh, dqdp; Eh±). The
problem is reduced to

π⊥,±
[

P ∗
±,b + (Rs

0,h)
′ + 1

b (R
s
1,⊥,h)

′ + (Rs
2,h)

′
]

π⊥,±v = 0 in S ′(Xh; Eh±)
v ∈ L2(Xh, dqdp; Eh±)






⇒ v = 0 .

We set B̃±,b,V h,⊥,s = P ′
±,b+(Rs

0,h)
′+ 1

b (R
s
1,⊥,h)

′+(Rs
2,h)

′ which has the same form as B±,b,V h with a changed sign

before∇E±,h
Y and remainder termsR0,h, R1,⊥,h, R2,h replaced by the s-dependent versions (Rs

0,h)
′, (Rs

1,⊥,h)
′, (Rs

2,h)
′ .

In particular π⊥,±B̃±,b,V h,sπ⊥,± is accretive on π⊥,±S(Xh; Eh±) for the L2(Xh, dqdp; Eh±) scalar product, with the
same lower bounds as in (3.2.2), as soon as C1

s b ≤ 1 for some C1
s ≥ 1 .

We take two cut-off functions χ, χ̃ ∈ C∞
0 (R, [0, 1]) such that

• χ and χ̃ is equal to 1 near 0 ,

• supp(χ̃) ⊂ χ−1({1}) ,

and we recall that f(W 2
θ ) is continuous from S ′(Xh; Eh±) to S(Xh; Eh±) and commutes with π⊥,± and more

generally with any function of α± for all f ∈ C∞0 (R;C) . For ε > 0 we set vε = χ(εW 2
θ )v ∈ S(Xh; Eh±). A

straightforward computation shows

π⊥,±B̃±,b,V h,sπ⊥,±vε = π⊥,±[B̃±,b,V h,s, χ(εW
2
θ )]π⊥,±v

= π⊥,±[±
1

b
∇E±,h

Y + (Rs
0,h)

′ +
1

b
(Rs

1,⊥,h)
′ + (Rs

2,h)
′

︸ ︷︷ ︸

=D

, χ(εW 2
θ )]π⊥,±v, (3.2.3)
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where D is a differential operator in OpS
3/2
Ψ (Qh; End Eh±) . The Helffer-Sjöstrand formula for the commutator

gives

[D,χ(εW 2
θ )] = [D,W 2

θ ]W
−2
θ χ′(εW 2

θ )εW
2
θ + rε,

where

rε = − 1

2iπ

∫

C

∂z̄χ̃(z)ε
2(z − εW 2

θ )
−1[[D,W 2

θ ],W
2
θ ](z − εW 2

θ )
−2 dz ∧ dz̄ .

By pseudo differential calculus in OpS∗Ψ(Q
h; End Eh±), the commutator [[D,W 2

θ ],W
2
θ ] is a pseudo differential

operator of order 3
2 + (2− 1) + (2− 1) = 7

2 . This implies that [[D,W 2
θ ],W

2
θ ](W

2
θ )

− 7
4 is bounded. The inequality

‖ε7/4(W 2
θ )

− 7
4 (z − εW 2

θ )
−2‖ ≤ sup

λ>0

∣
∣
∣
∣

λ7/8

|z − λ|

∣
∣
∣
∣

2

≤ C

[

sup
λ>0

1 + λ

|z − λ|

]2

≤ C′ 〈z〉2
|Im z|2

yields
‖rε‖L(L2;L2) ≤ CR,sε

1/4 , (3.2.4)

where again the constant CR,s is uniform with respect to h ∈]0, 1] .
The obvious equality χ′(t) = (1 − χ̃(t))χ′(t) for all t ∈ R implies

[D,χ(εW 2
θ )] = [D,W 2

θ ]W
−2
θ χ′(εW 2

θ )εW
2
θ (1− χ̃(εW 2

θ )) + rε. (3.2.5)

Let us consider the following scalar product by using (3.2.3) and (3.2.5)

Re 〈vε, π⊥,±B±,b,V h,sπ⊥,±vε〉L2 = Re 〈vε , [D,W 2
θ ]W

−2
θ χ′(εW 2

θ )εW
2
θ (1− χ̃(εW 2

θ ))v〉L2 + Re 〈vε , rεv〉L2

= Re 〈εW 2
θ χ

′(εW 2
θ )W

−2
θ [W 2

θ , D
′]vε , (1− χ̃(εW 2

θ ))v〉L2 + Re 〈vε , rεv〉L2 .

Applying the Cauchy-Schwarz inequality to the right-hand side of this equality yields

Re 〈vε, π⊥,±B̃
∗
±,b,V h,sπ⊥,±vε〉L2 ≤ ‖εW 2

θ χ
′(εW 2

θ )W
−2
θ [W 2

θ , D
′]vε‖L2‖(1−χ̃(εW 2

θ ))v‖L2 +‖vε‖L2‖rεv‖L2 . (3.2.6)

By functional calculus the operator εW 2
θ χ

′(εW 2
θ ) is a bounded operator

‖εW 2
θ χ

′(εW 2
θ )‖L(L2;L2) ≤M = sup

t∈[0,+∞[

|tχ′(t)| <∞ ,

while (2.7.7) and (2.7.3) ensure

W−2
θ [W 2

θ , D
′] = ∓W−2

θ [W 2
θ ,

1

b
∇E±,h

Y ]
︸ ︷︷ ︸

∈L(W̃1,0;L2)

+W−2
θ [W 2

θ , R
s
0,h +

1

b
Rs

1,⊥,h +Rs
2,h]

︸ ︷︷ ︸

∈L(L2;L2)

.

The left-hand side of (3.2.6) is thus bounded by

Re 〈vε, π⊥,±B̃±,b,V h,sπ⊥,±vε〉L2≤ MCR,Y,s‖vε‖W̃1,0‖(1− χ̃(εW 2
θ ))v‖L2 + CR,sε

1/4‖v‖2L2

≤ 1

2
ε′MCR,Y,s,b‖vε‖2W̃1,0 +

MCR,Y,s,b

2ε′
‖(1− χ̃(εW 2

θ ))v‖2L2 + CR,sε
1/4‖v‖2L2

where

CR,Y,s,b =
1

b
sup

h∈]0,1]

max(‖W−2
θ [W 2

θ ,∇E±,h
Y ]‖L(W̃1,0;L2),W

−2
θ [W 2

θ , R
s
i=0,1,2;h]‖L(L2;L2)) .

By Proposition 3.2.2 and (3.2.2) applied now to π⊥,±B̃±,b,V h,sπ⊥,± , the left hand-side is bounded from below
by 1

2(d+2)b2 ‖vε‖2W̃1,0 when Csb ≤ 1 .

By choosing ε′ = 1
2(d+2)b2MCR,Y,s,b

, we obtain

d

8(d+ 2)b2
‖vε‖2L2 ≤ 1

4(d+ 2)b2
‖vε‖2W̃1,0 ≤ 2(d+ 2)b2M2C2

R,Y,s,b‖(1− χ̃(εW 2
θ ))v‖2L2 + CR,sε

1/4‖v‖2L2.

When ε goes to 0, the spectral theorem and the dominated convergence Theorem imply

lim
ε→0
‖vε‖2L2 = ‖v‖2L2 and lim

ε→0
‖1− χ̃(εW 2

θ ))v‖2L2 = 0.

We have proved v = 0 and B∗,s
±,b,V h,⊥ is one to one.
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3.3 Final modifications with a frequency or spectral truncation

For χ ∈ C∞0 (R, [0, 1]) such that

Supp(χ) ⊂ [−2, 2] and χ(t) = 1 for t ∈ [−1, 1] .

let QA,L = A2π0,±χ
( 2W 2

θ

(LA)2

)
π0,± for L,A ≥ 1 , where we drop subscript h although it depends on h ∈]0, 1] , and

consider the operator
B±,b,V h +QA,L .

Remember that the operator U±,θ = U±,θ,h : L2(Qh, dVolgh ; ΛT ∗Qh ⊗ F±) → ker(α±) = ker(α±,gh) , with
F+ = Q× C and F− = Q × C× orQ , introduced in (2.5.17)(2.5.18)(2.5.19)(2.5.20) , is unitary and satisfies

2π0,±(W
2
θ )π0,± = U±,θ(2C + C

d2

2
︸ ︷︷ ︸

Cd

+H0)U
−1
±,θ

where H0 = H0,h is the non negative elliptic, Laplace type operator, H0 = −∑J
j=1 θj(hq)(∆Q,gh )scθj(hq) and

where ∆Q,gh is the Laplace Beltrami operator, with a scalar realization in the orthonormal frame (uI
j,gh)I⊂{1,...,d}

for every j ∈ {1, . . . , J} .
Owing to the uniform estimates of gh and V h stated in Proposition 2.6.2 the operators (dQ

h

+ dQ
h,∗gh

)2 and the

Witten Laplacian ∆V h,1 = (dQ
h

+ dQ
h,∗gh

)2 + |∇Vh(q)|2 + (L∇V h + L∗∇V h) are elliptic operators in the classical

space OpS2(Qh; Eh±) with the same scalar principal symbol as H0 and with uniformly controlled lower order
corrections.
By choosing the above constant C ≥ Cg,V ≥ 1 large enough and by setting again Cd = 2C +C d2

2 , we deduce for
every s ∈ R the equivalence of norms

∀u ∈ Hs(Qh; ΛT ∗Qh ⊗ F±) ,

( ‖u‖Hs

‖(Cd +∆V h,1)s/2u‖L2

)±1

=

( ‖(Cd +H0)
s/2u‖L2

‖(Cd +∆V h,1)s/2u‖L2

)±1

≤ Cs .

With the operator U±,θ we also have

‖U±,θu‖W̃s1,s2 = ‖(O)s1/2(Wθ)
s/2U±,θu‖L2

=

(
d

2

)s1

‖(Cd +H0)
s2/2u‖L2

=

(
d

2

)s1

‖u‖Hs2 ≍ ‖(Cd +∆V h,1)
s2/2u‖L2 .

Because we aim at clarifying the relations between Spec(B±,b,V h) and Spec (∆V h,1) = Spec (∆(Qh,gh,V h),1) =
Spec (∆(Q,g,V,h)) (see Subsection 2.6) , we consider the two perturbations of B±,b,V h

QA,L = A2π0,± ◦ χ
( 2W 2

θ

(LA)2
)
◦ π0,± = A2U±,θ ◦ χ

(Cd +H0

(LA)2
)
◦ U−1

±,θ (3.3.1)

and QA,L,V h = A2U±,θ ◦ χ
(Cd +∆V h,1

(LA)2
)
◦ U−1

±,θ . (3.3.2)

The comparison of QA,L and QA,L,V h is easier to understant while staying on the base manifold Qh and we also
use the following notations.

Definition 3.3.1. The operators Q̃A,L : E ′(Qh; ΛT ∗Qh ⊗ F±) → C∞(Qh; ΛT ∗Qh ⊗ F±) and Q̃A,L,V h :
E ′(Qh; ΛT ∗Qh ⊗ F±)→ C∞(Qh; ΛT ∗Qh ⊗ F±) are defined by

Q̃A,L = A2χ(
Cd +H0

(LA)2
) and Q̃A,L,V h = A2χ(

Cd +∆V h,1

(LA)2
) .

These two operators are bounded as well as A2π0,±−QA,L and A2π0,±−QA,L,V h . We will prove the following
result.

Proposition 3.3.2. There are constants L ≥ 1 , Cs ≥ 1 and Cχ,s ≥ 1 respectively uniform, s ∈ R-dependent
and (χ, s)-dependent, such that inequality

1

4
‖(B±,b,V h +A2π0,± − z)

s
u‖W̃0,s ≤ ‖(B±,b,V h +QA,L,V h − z)

s
u‖W̃0,s ≤

9

4
‖(B±,b,V h +A2π0,± − z)

s
u‖W̃0,s
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holds for all u ∈ D(B±,b,V h

s
) and all z ∈ C , such that Re z ≤ A2

2 , as soon as

Cs max(b, Ab,
1

A
) ≤ 1 . (3.3.3)

Therefore the subelliptic estimate (3.1.1) holds true with B±,b,V h + A2π0,± replaced by B±,b,V h + QA,L,V h and
the constant C ≥ 1 replaced by 4C .

Proof. 1) We start with the simpler perturbation QA,L instead of QA,L,V h and we write:

B±,b,V h +QA,L − z = B±,b,V h +A2π0,± − z + (A2π0,±(1 − χ)
( 2W 2

θ

(LA)2
)
π0,±)

= (1 −A2π0,±(1 − χ)(
2W 2

θ

(LA)2
)π0,±(B±,b,V h +A2π0,± − z)−1)(B±,b,V h +A2π0,± − z).

According to Proposition 3.1.1 and under the condition 3.3.3, the resolvent (B±,b,V h+A2π0,±−z)−1 is continuous

from W̃0,s to W̃0,s+ 2
5 with norm less than C

A
8
5
. Because χ ≡ 1 on [−1, 1] , the operator (1−χ)( 2W 2

θ

(LA)2 ) is a bounded

operator from W̃0,s+ 2
5 to W̃0,s with norm less than 1

(LA)
2
5
. When L ≥ (2C)

5
2 we obtain

‖A2π0,±(1− χ)(
2W 2

θ

(LA)2
)π0,±(B±,b,V h +A2π0,± − z)−1‖L(W̃0,s;W̃0,s) ≤

C

L
2
5

≤ 1

2
.

Therefore the operator

1−A2π0,±(1− χ)(
2W 2

θ

(LA)2
)π0,±(B±,b,V h +A2π0,± − z)−1

is invertible by Neumann series and the norm of its inverse is less than 2 , while its norm is bounded by 3/2 . We
have proved

1

2
‖(B±,b,V h +A2π0,± − z)

s
u‖W̃0,s ≤ ‖(B±,b,V h +QA,L − z)

s
u‖W̃0,s ≤

3

2
‖(B±,b,V h +A2π0,± − z)

s
u‖W̃0,s ,

(3.3.4)

for all u ∈ D(B±,b,V h

s
) and all z ∈ C such that Re z ≤ A2

2 .

2) We now use the similar perturbative argument for

B±,b,V h +QA,L,V h − z = B±,b,V h +QA,L − z − (QA,L −QA,L,V h).

The inequality (3.3.8) of Lemma 3.3.3 below gives

‖QA,L −QA,L,V h‖L(W̃0,s;W̃0,s) = ‖Q̃A,L − Q̃A,L,V h‖L(Hs;Hs) ≤
Cχ,sA

2

(LA)2
(3.3.5)

when L,A ≥ 1 , uniformly with respect to h ∈]0, 1] .
The subelliptic inequality (3.1.1) combined with (3.3.4), leads to

∣
∣‖(B±,b,V h +QA,L,V h − z)u‖W̃0,s − ‖(B±,b,V h +QA,L − z)u‖W̃0,s

∣
∣ ≤ Cχ,s

A2

(LA)2
‖u‖W̃0,s

≤ 2CCχ,s

(LA)2
‖(B±,b,V h +QA,L)u‖W̃0,s .

By taking Cs,new ≥ 1 such that Cs,new max(b, Ab, 1
A ) ≤ 1 implies A ≥

√
4CCχ,s and (LA)2 ≥ 4CCχ,s , the

right-hand side is less than 1
2‖(B±,b,V h +QA,L)u‖W̃0,s .

We conclude by stating the result with Cs = Cs,new = max(
√
4CCχ,s, Cs,old).

Lemma 3.3.3. For all s, s′ ∈ R there exists Cχ,s,s′ ≥ 1 such that

‖χ(Cd +∆V h,1

(LA)2
)‖L(Hs;Hs′ ) + ‖χ(

Cd +H0

(LA)2
)‖L(Hs;Hs′ ) ≤ Cχ,s,s′(LA)

(s′−s)+ , (3.3.6)

∀z ∈ C ,Re z ≤ A2

2
, ‖1

2
(∆V h,1 + Q̃A,L,V h − z)−1‖L(Hs;Hs) ≤

2

A2 − Re z + |Im z| ≤
4

A2 + 2|Im z| (3.3.7)

and

‖χ(Cd +H0

(LA)2
)− χ(

Cd +
1
h2∆V h,1

(LA)2
)‖L(Hs;Hs) ≤

Cχ,s,s

(LA)2
(3.3.8)

hold as soon as A
Cs

, L ≥ 1 and for all h ∈]0, 1] .
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Proof. The two first inequalities (3.3.6) and (3.3.7) are straightforward applications of the functional calculus,
because the Hs-norm is equivalently evaluated with ‖(Cd +H0)

s/2u‖L2 or with ‖(Cd +∆V h,1)
s/2u‖L2 .

For (3.3.8), the difference
RA,L,h = Cd +∆V h,1 − Cd +H0 +RA,L,h (3.3.9)

satisfies ‖RA,L,h‖L(Hs;Hs) ≤ C
(1)
χ,s uniformly with respect to h ∈]0, 1] .

The Helffer-Sjöstrand formula gives

χ(
Cd +∆V h,1

(LA)2
)−χ(

Cd +H0

(LA)2
) =

1

2iπ

∫

C

1

(LA)2
(∂z̄χ̃)(

z

(LA)2
)(z −Cd −∆V h,1)

−1RA,L,h(z −Cd −H0)
−1 dz ∧ dz̄ ,

where χ̃ ∈ C∞0 (C;C) is an almost analytic extension of χ with

|∂zχ̃(z)| ≤ Cχ,N |Im , z|N

while ∂zχ̃ ≡ 0 in a neighborhood of 0 . The L(Hs;Hs)-norm of this difference in given by the L(L2;L2)-norm of

(Cd +∆V h,1)
−s/2

[

χ(
Cd +∆V h,1

(LA)2
)− χ(

Cd +H0

(LA)2
)

]

(Cd +H0)
s/2

or, by setting R̃A,L,h = (Cd +∆V h,1)
−s/2RA,L,h(Cd +H0)

s/2 , of

1

2iπ

∫

C

1

(LA)2
(∂z̄χ̃)(

z

(LA)2
)(z − Cd −∆V h,1)

−1R̃A,L,h(z − Cd −H0)
−1 dz ∧ dz̄ .

With
‖R̃A,L,h‖L(L2;L2) ≤ C(2)

χ,s‖RA,L,h‖L(Hs;Hs) ,

and the inequalities

‖(z − Cd −∆V h,1)
−1‖L(L2;L2)‖(z − Cd −H0)

−1‖L(L2;L2) ≤
1

|Im z|2 ,

and

∣
∣
∣
∣
∂zχ̃(

z

(LA)2
)

∣
∣
∣
∣
≤ Cχ,2

|Im z|2
(LA)4

,

a simple integration yields the result.

4 The Grushin problem

4.1 Functional analysis of the Grushin problem

We consider the operators

Pz =

(

B±,b,V h +QA,L,V h − z U±,θ

U−1
±,θπ0 0

)

and P ′
z =

(

B′
±,b,V h +QA,L,V h − z̄ U±,θ

U−1
±,θπ0 0

)

. (4.1.1)

Remember that B±,b,V h ∈ OpS
3/2
Ψ (Qh,End(Eh±)) while QA,L,V h : S ′(Xh; Eh±) → S(Xh; Eh±) and U±,θ is an

isomorphism fromHs(Qh; ΛT ∗Qh⊗F±) to W̃0,s(Xh; Eh±) for all s ∈ R , with F+ = Q×C and F− = (Q×C)⊗orQh .
In particular, the operators Pz, P ′

z are bounded

Pz,P ′
z : W̃0,s(Xh; Eh±)⊕Hs(Qh; ΛT ∗Qh ⊗ F±) −→ W̃0,s−3/2(Xh; Eh±)⊕Hs(Qh; ΛT ∗Qh ⊗ F±) (4.1.2)

for all s ∈ R . With

∩
s∈R

W̃0,s(Xh; Eh±)⊕Hs(Qh; ΛT ∗Qh ⊗ F±) = S(Xh; Eh±)⊕ C∞(Qh; ΛT ∗Qh ⊗ F±) , (4.1.3)

∪
s∈R

W̃0,s(Xh; Eh±)⊕Hs(Qh; ΛT ∗Qh ⊗ F±) = S ′(Xh; Eh±)⊕ E ′(Qh; ΛT ∗Qh ⊗ F±) (4.1.4)

the continuity also holds with these spaces endowed with their usual topology.
We will use the following abbreviations

W̃0,s ⊕Hs′ = W̃0,s(Xh; Eh±)⊕Hs′(Qh; ΛT ∗Qh ⊗ F±) ,

S ⊕ C∞ = S(Xh; Eh±)⊕ C∞(Qh; ΛT ∗Qh ⊗ F±) ,

BQ,z = B±,b,V h +QA,L,V h − z and B′
Q,z = B′

±,b,V h +QA,L,V h − z̄ .
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We recall

B±,b,V h =
1

b2
α± +

1

b
β± + γ±

with π0,±BQ,zπ⊥,± = π0,±(
1

b
β± + γ±)π⊥,± ,

π⊥,±BQ,zπ0,± = π⊥,±(
1

b
β± + γ±)π0,± ,

and π0,±BQ,zπ0,± = π0,±(γ +QA,L,V h − z)π0,± .

We check that Pz and P ′
z are invertible in a weak sense under suitable conditions and then we deduce via the Schur

complement formula an explicit expression of (B±,b,V h +QA,L,V h

s − z)−1 as an operator from W̃0,s(Xh; Eh±)→
W̃0,s−3(Xh; Eh±) . Because the condition b ≤ 1

Cs
, which ensures the invertibility of π⊥,±(B±,b,V h − z)π⊥,±

s
in

Proposition 3.2.1, depends on s , there is no choice of parameters which guarantees the meaning of some formulas
simultaneously for all s ∈ R , but only for all s in a fixed interval [smin, smax] ⊂ R . Therefore not all the
compositions of operators in what follows make sense with the topologies of (4.1.3) and (4.1.4) and products or
inverses must be handled carefully. In particular, although we make product of continuous operators between
different spaces, they do not necessarily have a closed range and we must distinguish clearly left-inverses and
right-inverses. Alternatively it is better handled by the separate studies of the uniqueness and of the existence
of solutions for linear systems.

Proposition 4.1.1. Assume that the condition b ≤ 1
Cs

of Proposition 3.2.1 holds true for all s ∈ [−smax, smax] ,
for some smax ∈]3,+∞[ .

1) When |s| ≤ smax and Rez ≤ 1
24b2 , the operator Pz : S ⊕ C∞ → W̃±s ⊕H±s+1 admits a left-inverse

Gz =

(

E E+

E− E−+

)

∈ L(W̃0,±s ⊕H±s+1; W̃0,±s ⊕H±s−1) .

The same result holds of P ′
z : S ⊕ C∞ → W̃∓s ⊕H∓s+1 with the left inverse

G′z =

(

E′ E′
+

E′
− E′

−+

)

∈ L(W̃0,∓s ⊕H∓s+1; W̃0,∓s ⊕H∓s−1) .

2) For |s| ≤ smax − 3/2 and Rez ≤ 1
24b2 , , the relations

Gz ◦ Pz = iW̃0,±s⊕H±s→W̃0,±s−3/2⊕H±s−5/2

and G′z ◦ P ′
z = iW̃0,∓s⊕H∓s→W̃0,∓s−3/2⊕H∓s−5/2

make sense as the products A ◦ B , with A ∈ L(W̃0,±s−3/2 ⊕ H±s−1/2; W̃0,±s−3/2 ⊕ H±s−5/2) and A ∈
L(W̃0,±s ⊕H±s; W̃0,±s−3/2 ⊕H±s) ⊂ L(W̃0,±s ⊕H±s; W̃0,±s−3/2 ⊕H±s−1/2) .

3) For |s| ≤ smax−3/2 , z ∈ C\σ(B±,b,V h+QA,L,V h) and Re z < 1
24b2 , the operator E−+ ∈ L(Hs−1/2;Hs−5/2) ⊂

L(C∞; E ′) admits a right-inverse (E−+)
−1
r ∈ L(C∞; C∞) and a left-inverse (E−+)

−1
ℓ ∈ L(E ′; E ′) with

(E−+)
−1
ℓ ∈ L(Hs′ ;Hs′+2/3) for all s′ ∈ R and (E−+)

−1
ℓ

∣
∣
C∞ = (E−+)

−1
r .

4) For |s| ≤ smax − 4 the equality

(B±,b,V h +QA,L,V h

s − z)−1 = E − E+(E−+)
−1
ℓ E− (4.1.5)

holds in the sense of L(W̃0,s; W̃0,s−3)-valued meromorphic functions in
{
z ∈ C ,Re z < 1

24b2

}
.

Proof. 1) The range of Pz

∣
∣
S⊕C∞ is included in S ⊕ C∞ . Let us check that for

(

f

f+

)

∈ S ⊕ C∞ the equation

Pz

(

u

u−

)

=

(

f

f+

)

admits at most one solution in W̃0,s ⊕Hs−1 when |s| ≤ smax .

By applying π⊥,± to the first line of the system

{

BQ,zu+ U±,θu− = f

U−1
±,θπ0,±u = f+
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we must have

π⊥,±BQ,zπ⊥,±u+ π⊥,±(
1

b
β± + γ±)U±,θf+ = π⊥,±f .

When π⊥,±BQ,zπ⊥,± = π⊥,±(B±,b,V h − z)π⊥,± is invertible

u = π⊥,±u+ π0,±u = [π⊥(B±,b,V h − z)π⊥]
−1(π⊥,±f − π⊥,±(

1

b
β± + γ±)U±,θf+) + U±,θf+

With the conditions b ≤ 1
Cs

and Re z ≤ 1
24b2 and by noticing π⊥,±(1bβ± + γ±)U±,θ ∈ L(Hs+1; W̃0,s) , Proposi-

tion 3.2.1 actually says

u = Ef + E+f+

with E = (B±,b,V h,⊥
s − z)−1π⊥,± ∈ L(W̃0,s; W̃0,s) , (4.1.6)

and E+ = U±,θ − (B±,b,V h,⊥
s − z)−1π⊥,±(

1

b
β± + γ±)U±,θ ∈ L(Hs+1; W̃0,s) (4.1.7)

By applying the projection π0,± on the first line of the system, we must have

π0,±f = π0,±(
1

b
β±+γ±+QA,L,V h−z)u+U±,θu− = π0,±(

1

b
β±+γ±)π⊥,±u+π0,±(γ±+QA,L,V h−z)U±,θf++U±,θu−

and π0,±(1bβ± + γ± +QA,L,V h − z) ∈ L(W̃0,s;Hs−1) now gives

u− = E−f + E−+f+ ,

with E− = U−1
±,θπ0,± − U−1

±,θπ0,±(
1

b
β± + γ±)(B±,b,V h,⊥

s − z)−1π⊥,± ∈ L(W̃0,s;Hs−1) , (4.1.8)

E−+ = U−1
±,θπ0(z −QA,L,V h − γ±)U±,θ + U−1

±,θπ0(
1

b
β± + γ±)(B±,b,V h,⊥

s − z)−1π⊥,±(
1

b
β± + γ±)U±,θ ,

and E−+ ∈ L(Hs+1;Hs−1) . (4.1.9)

The result for P ′
z is straightforward because

P ′
z =

(

B′
±,b,V h +QA,L,V h − z U±,θ

U−1
±,θπ0 0

)

and (B′
±,b,V h,⊥

−s − z) = (W 2
θ )

s(B±,b,V h,⊥
s − z)∗,s(W 2

θ )
−s .

2) By 1) and |s| ≤ smax − 3/2 , we know that Gz ∈ L(W̃0,s−3/2 ⊕Hs−1/2; W̃0,s−3/2 ⊕Hs−5/2) is a left-inverse
on S ⊕ C∞ and we deduce

∀
(

u

u−

)

∈ S ⊕ C∞ , Gz ◦ Pz

(

u

u−

)

=

(

u

u−

)

.

The density of S⊕C∞ in W̃0,s⊕Hs , combined with Pz ∈ L(S⊕C∞;S⊕C∞)∩L(W̃0,s⊕Hs; W̃0,s−3/2⊕Hs−1/2)
and Gz ∈ L(W̃0,s−3/2 ⊕Hs−1/2) , yields the result.
3) Let us prove firstly that for u− ∈ C∞ ⊂ Hs−5/2 the equation E−+f+ = u− admits at least one solution in

f+ ∈ C∞ ⊂ Hs−1/2 when |s| ≤ smax − 3/2 , z 6∈ σ(B±,b,V h + QA,L,V h) and Re z ≤ 1
b2 . Take w = (B±,b,V h

s′
+

QA,L,V h − z)−1U±,θu− which belongs to D(B±,b,V h

s′
) ⊂ W̃0,s′+2/3 according to Proposition 2.7.2 where the

condition 0 < b ≤ h ≤ 1
Cg

does not depend on s′ ∈ R . Set u = π0,±w ∈ π0,±
(

∩s′∈R W̃0,s′
)

= U±,θC∞ and

v = π⊥,±w ∈ π⊥,±
(

∩s′∈R W̃0,s′
)

= π⊥,±S . By projecting the equation (B±,b,V h + QA,L,V h − z)w = U±,θu−
written in S with the projections π0,± and π⊥,± , we obtain:

π0,±(QA,L,V h + γ± − z)u+ π0(
1

b
β± + γ±)v = U±,θu− ,

and π⊥,±(
1

b
β± + γ±)u+ π⊥,±(B±,b,V h − z)v = 0 .

By taking f+ = −U−1
±,θu and by noticing (1bβ± + γ±)u ∈ W̃0,s−3/2 , with |s| ≤ smax − 3/2 , we deduce

π0,±(QA,L,V h + γ± − z)u− π0,±(
1

b
β± + γ±)(B±,b,V h,⊥

s−3/2 − z)−1(
1

b
β± + γ±)u = U±,θu− .

This means exactly that f+ = U−1
±,θu ∈ C∞ ⊂ Hs−1/2 satisfies E−+f+ = u− in Hs−5/2 . But the formula

f+ = (E−+)
−1
r u− = U−1

±,θπ0(B±,b,V h +QA,L,V h

s′ − z)−1U±,θu− for all s′ ∈ R , proves that this right-inverse
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(E−+)
−1
r actually belongs to L(C∞; C∞) .

With the dual statements of 1) and 2) this means also that the formal adjoint E′
−+ ∈ L(H−s−1/2;H−s−5/2) ⊂

L(C∞; E ′) admits the right-inverse (E′
−+)

−1
r u− = U±,θπ0(B′

±,b,V h +QA,L,V h

−s′ − z̄)−1U±,θ for all s′ ∈ R and

(E′
−+)

−1
r ∈ L(C∞; C∞) . Duality implies that (E−+)

−1
ℓ = [(E

′
−+)

−1
r ]′ ∈ L(E ′; E ′) is a left-inverse of E−+ ∈

L(C∞;D′) . With the formula

[(E
′
−+)

−1
r ]′ =

[

U−1
±,θ(B

′
±,b,V h +QA,L,V h

s′ − z̄)−1U±,θ

]′
= U−1

±,θ(B±,b,V h +QA,L,V h

−s′ − z)−1U±,θ , (4.1.10)

the regularizing property of (E−+)
−1
ℓ ∈ L(Hs′ ;Hs′+2/3) and the identification (E−+)

−1
ℓ

∣
∣
C∞ = (E±)−1

r are
straightforward.
4) When |s| ≤ smax − 3/2 and Re z ≤ 1

24b2 , the first formula of 2) implies

(EBQ,z + E+U
−1
±,θπ0)u = u in W̃0,s−3/2 , (4.1.11)

(E−BQ,z + E−+U
−1
±,θπ0)u = 0 in Hs−5/2 , (4.1.12)

for all u ∈ W̃0,s . With |s− 5/2| ≤ |s|+ 5/2 ≤ smax − 3/2 , and 3), the equality (4.1.12) becomes

U−1
±,θπ0u = −(E−+)

−1
ℓ E−BQ,zu in Hs−5/2+2/3 .

for z 6∈ σ(B±,b,V h +QA,L,V h) .
Put in the equality (4.1.11) we obtain

(E − E+(E−+)
−1
ℓ E−)(BQ,z)u = u in W̃0,s−5/2+2/3−1 ,

when z 6∈ σ(B±,b,V h + QA,L,V h) and u ∈ W̃0,s . Applied to u = (B±,b,V h +QA,L,V h

s−2/3 − z)−1v ∈ W̃0,s for

v ∈ W̃0,s−2/3 , we obtain

(E − E+(E−+)
−1
ℓ E−) = (B±,b,V h +QA,L,V h

s−2/3 − z)−1in L(W̃0,s−2/3; W̃s−5/2−1/3) .

and we know that the right-hand side is a meromorphic function of z in C .
The condition |s| ≤ smax−4 ≤ smax−5/2−2/3 allows to replace s−2/3 by s , by noticing s+2/3−5/2−1/3≥ s−3 ,
with

(E − E+(E−+)
−1E−) = (B±,b,V h +QA,L,V h

s − z)−1

as an L(W̃0,s; W̃0,s−3)-valued meromorphic function in
{
z ∈ C , Re z < 1

24b2

}
.

4.2 Quantitative comparisons of truncated resolvents

After setting

δB,∆,z = (B±,b,V h +QA,L,V h − z)−1 − U±,θ(
1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θ (4.2.1)

we consider the finite rank operators

δB,∆,z ◦QA,L′,V h and QA,L′,V h ◦ δB,∆,z ,

where L′ ≥ L ≥ 1 will be fixed later.

Proposition 4.2.1. Let L ≥ 1 be the uniform constant of Proposition 3.3.2 and fix L′ ≥ 1 . For all s ∈ R , there
exist constants Cs ≥ 1 , determined by s such that the condition Cs max(b, Ab,A−1) ≤ 1 implies the inequalities

‖δB,∆,z ◦QA,L′,V h‖L(W̃0,s;W̃0,s) ≤ Cs
bA

3
2

1 +A−1
√

|Imz|
(4.2.2)

‖QA,L′,V h ◦ δB,∆,z‖L(W̃0,s;W̃0,s) ≤ Cs
bA

3
2

1 +A−1
√

|Imz|
(4.2.3)

for all z ∈ C such that |Re z| ≤ A2

2 .

Proof. For a given s ∈ R we fix smax ≥ |s| + 10 so that the estimates of Proposition 4.1.1 and the expressions
of E,E−, E+ and E−+ given in the proof make sense for the Sobolev exponent s replaced by s2 ∈ [s, s + 6] .

Actually for |s2| ≤ smax − 4 and Re z ≤ A2

2 ≤ min(A
2

2 , 1
24b2 ) , the equality (4.1.5) gives

δB,∆,z ◦QA,L′,V h = (E − E+(E−+)
−1
ℓ E−)QA,L′,V h − U±,θ(

1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θQA,L′,V h ,
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as an equality of L(W̃0,s2 ; W̃0,s2−3)-valued meromorphic functions. Actually because QA,L′,V h ∈ L(S ′;S) while
δB,∆,z ∈ L(S,S) when Re z ≤ A2

2 , z 6∈ Spec(B±,b,V h +QA,L,V h

s2
) , the left-hand side as well as the final term

belong to L(S ′;S) . The above equality can therefore be extended to an equality of L(W̃0,s2 ; W̃0,s2)-valued
meromorphic function. Actually with Re z ≤ A2/2, z is not in Spec(∆V h,1 + Q̃A,L,V h) and the final term is
holomorphic. Owing to EQA,L,V h = Eπ0,± = 0 and with the expressions (4.1.7) of E+ and (4.1.8) of E−, we
obtain

δB,∆,z ◦QA,L′,V h = −E+(E−+)
−1
ℓ E−QA,L′,V h − U±,θ(

1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θQA,L′,V h

= (I) + (II) ,

where

(I) = −U±,θ[(E−+)
−1
ℓ + (

1

2
∆V h,1 + Q̃A,L,V h − z)−1]U−1

±,θQA,L′,V h

= −U±,θ(E−+)
−1
ℓ [

1

2
∆V h,1 + Q̃A,L,V h − z + E−+](

1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θQA,L′,V h ,

(II) = (B±,b,V h,⊥
s′2 − z)−1π⊥,±(

1

b
β± + γ±)U±,θ(E−+)

−1
ℓ U−1

±,θQA,L′,V h .

and s′2 is any other exponent such that |s′2| ≤ smax .
By combining Bismut’s formula (2.5.23) , recalled here,

U−1
±,θ[π0,±(γ± − β±α

−1
± β±)π0,±]U±,θ =

1

2
∆V h,1 ,

with the expression (4.1.9) of E−+ , (I) becomes

(I) = U±,θ(E−+)
−1
ℓ U−1

±,θπ0,±(III)U±,θ(
1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θQA,L′,V h ,

where

(III) = β±α
−1
± β± − (

1

b
β± + γ±)(B±,b,V h,⊥

s′′2 − z)−1π⊥,±(
1

b
β± + γ±) ,

and |s′′2 | ≤ smax . The above operator can be rewritten

(III) = (
1

b
β± + γ±)π⊥,±[b

2α−1
± − (B±,b,V h,⊥

s′′2 − z)−1]π⊥,±(
1

b
β± + γ±)

−b(β± + bγ±)α
−1
± π⊥,±γ± − bγ±α

−1
± β±

= (
1

b
β± + γ±)α

−1
± π⊥,±[b

2(B±,b,V h,⊥
s′′2 − z)− α±](B±,b,V h,⊥

s′′2 − z)−1π⊥,±(
1

b
β± + γ±)

−b(β± + bγ±)α
−1
± π⊥,±γ± − bγ±α

−1
± β±

= (
1

b
β± + γ±)α

−1
± π⊥,±[bβ± + b2(γ± − z)](B±,b,V h,⊥

s′′2 − z)−1π⊥,±(
1

b
β± + γ±)

︸ ︷︷ ︸

(III′)

−b(β± + bγ±)α
−1
± π⊥,±γ± − bγ±α

−1
± β±

︸ ︷︷ ︸

−(III.3)

.

Let’s rewrite (III ′) as the sum of (III.1) and (III.2) where

(III.1) = (
1

b
β± + γ±)α

−1
± π⊥,±[bβ± + b2γ±](B±,b,V h,⊥

s′′2 − z)−1π⊥,±(
1

b
β± + γ±)

(III.2) = −zb2(1
b
β± + γ±)α

−1
± (B±,b,V h,⊥

s′′2 − z)−1π⊥,±(
1

b
β± + γ±) .

The operator (III.1) can be depicted by

W̃0,s W̃2,s+1 W̃0,s+1 W̃0,s+ 5
2 W̃0,s+ 5

2 W̃2,s+ 7
2

1
bβ±+γ± α−1

± π⊥,± bβ±+b2γ± (B±,b,V h,⊥−z)−1π⊥,±
1
bβ±+γ±

and “− (III.2)/zb2” is depicted by

W̃0,s W̃2,s+1 W̃0,s+1 W̃0,s+1 W̃2,s+2 .
1
bβ±+γ± α−1

± π⊥,± (B±,b,V h,⊥−z)−1π⊥,±
1
bβ±+γ±
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Combining the previous decomposition with

∀s1, s2 ∈ R , β± + bγ± ∈ Op
3
2

Ψ(X
h, Eh±) ∩ L(W̃s1+2,s2+1; W̃s1,s2)

and ∀s ∈ R , ‖(B±,b,V h,⊥ − z)−1π⊥,±‖L(W̃0,s;W̃0,s) ≤ 24b2

due to Proposition 3.2.1 as soon as Re z ≤ 1
24b2 implies

‖(III.1)‖L(W̃2,s+7
2 ;W̃0,s)

≤ bCs and ‖(III.2)‖L(W̃2,s+2;W̃0,s) ≤ Cs|z|b2.

We claim that
‖(III.3)‖L(W̃2,s+1;W̃0,s) ≤ Csb.

Now we decompose (I) as
(I) = (I.1) + (I.2)− (I.3)

With (I.∗) depicted by

W̃0,s W̃0,s W̃2,s′ W̃0,s ,
U±,θ(E−+)−1

ℓ U−1
±,θπ0,± (III.∗) U±,θ(∆V h,1

+Q̃
A,L,V h−z)−1U−1

±,θQA,L′,V h

(4.2.4)

where the choice of s′ will depend on the cases for indexed by ∗ .

‖U±,θ(
1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θQA,L′,V h‖L(W̃0,s;W̃2,s′) =
d

2
‖(1

2
∆V h,1 + Q̃A,L,V h − z)−1Q̃A,L′,V h‖L(Hs;Hs′ ) .

With Q̃A,L′,V h = A2χ(
Cd+∆

V h,1

(L′A)2 ) , the inequality (3.3.6) gives

‖Q̃A,L′,V hu‖Hs′ ≤ CL′,s,s′A
2A(s′−s)+‖u‖Hs ;

The inequality 3.3.7 gives

‖(1
2
∆V h,1 + Q̃A,L,V h − z)−1‖L(Hs2 ;Hs2 ) ≤

4

A2 + 2|Imz|

when 1
A ≤ 1

Cs′
and Cs′ ≥ 1 large enough, and

‖(1
2
∆V h,1 + Q̃A,L,V h − z)−1Q̃A,L′,V hu‖L(Hs;Hs′ ) ≤ Cs,s′A

(s′−s)+ .

We conclude that

‖U±,θ(
1

2
∆V h + Q̃A,L,V h − z)−1U−1

±,θQA,L′,V h‖L(W̃0,s;W̃2,s′) ≤ Cs,s′
A(s′−s)+

1 + 2|Imz|A−2
.

For the left arrow, the expression (4.1.10) of E−1
−+ combined with the subelliptic estimate of Proposition 3.3.2

(and Proposition 3.1.1) gives

‖(E−+)
−1
ℓ ‖L(Hs;Hs) ≤

Cs

A2(1 + b
√

|Im z|)
.

We can now conclude for the norm estimate of I.∗ decomposed as (4.2.4):

• For (I.∗) = (I.1), we take s′ = s+ 7
2 and we obtain

‖(I.1)‖L(W̃0,s;W̃0,s) ≤ Cs
A−2

1 + b
√

|Imz|
‖(III.1)‖L(W̃0,s;W̃0,s+7

2 )

A
7
2

1 + 2|Imz|A−2

≤ Cs

(1 + b
√

|Imz|)(1 + 2|Imz|A−2)
bA

3
2 .

• For (I, ∗) = (I.2), we take s′ = s+ 2 and we obtain

‖(I.2)‖L(W̃0,s;W̃0,s) ≤ Cs
|z|b2

(1 + b
√

|Imz|)(1 + 2|Imz|A−2)
.

• For (I, ∗) = (I.3), we take s′ = s+ 1 and we obtain

‖(I.3)‖L(W̃0,s;W̃0,s) ≤ CsA
−2‖(III.3)‖L(W̃0,s;W̃0,s+1)A ≤ Cs

b

A(1 + b
√

|Imz|)(1 + 2|Imz|A−2)
.
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we proved

‖(I)‖L(W̃0,s;W̃0,s) ≤ Cs

bA
3
2 + b2|z|+ b

A

(1 + b
√

|Imz|)(1 + 2|Imz|A−2)
.

The operator (II) is depicted by

W̃0,s W̃0,s W̃2,s+1 W̃2,s+1 W̃0,s .
(B±,b,V h,⊥

s−z)−1π⊥,± 1
bβ±+γ± U±,θ(E−+)−1

ℓ U−1
±,θ

Q
A,L′,V h

The same arguments as above lead to

‖(II)‖L(W̃0,s;W̃0,s) ≤ Cs
Ab

(1 + b
√

|Imz|)(1 + 2|Imz|A−2)
.

The largest upper bound is Cs
bA

3
2 +b2|z|

(1+b
√

|Imz|)(1+2|Imz|A−2)
) obtained for the term (I) .

Under the condition |Re z| ≤ A2 we have the inequaity

|z|b2
(1 + |Imz|A−2)(1 + b

√

|Imz|)
≤ A2b2 +

√

|Imz|b
1 + 2|Imz|A−2

.

This leads to

‖δB,∆,z ◦QA,L′,V h‖L(W̃0,s;W̃0,s) ≤ Cs
bA

3
2 + b

√

Im(z)

1 + |Imz|A−2
≤ C′

s

bA
3
2

1 +A−1
√

|Imz|
.

Finally the estimate (4.2.3) for QA,L′,V hδB,∆,z is obtained by taking the adjoints with z replaced by z and B±,b,V h

replaced by its formal adjoint B′
±,b,V h which has the same properties as B±,b,V h .

Let us define the intermediate operators

MB,z = IW̃0,s − (B±,b,V h +QA,L,V h − z)−1QA,L,V h

M∆,z = IW̃0,s − U±,θ(
1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θQA,L,V h

M̃∆,z = IHs − (
1

2
∆V h,1 + Q̃A,L,V h − z)−1Q̃A,L,V h

while the other ordered products are recovered by taking the formal adjoints

M ′
B′,z = IW̃0,s −QA,L,V h(B±,b,V h +QA,L,V h − z)−1

M ′
∆,z = IW̃0,s −QA,L,V hU±,θ(

1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θ

M̃ ′
∆,z = IHs − Q̃A,L,V h(

1

2
∆V h,1 + Q̃A,L,V h − z)−1 .

Lemma 4.2.2. For s ∈ R, there is a constant Cs ≥ 1 depending on s and for all z ∈ C the inequality holds

‖M̃−1
∆,z‖L(Hs;Hs) ≤ Cs(1 +

A2

dist(z, Spec(12∆V h,1))
)

‖M−1
∆,z‖L(W̃0,s;W̃0,s) ≤ Cs

(

1 +
A2

dist(z, Spec(∆V h,1))

)

(4.2.5)

for all z 6∈ Spec(12∆V h,1) ∩ Spec(12∆V h,1 + Q̃A,L,V h) .
The more accurate conditions

|Re z| ≤ A2

2
, bA4dist (z,

1

2
Spec (∆V h,1) ≤

1

Cs
,

Cs max(b, Ab,A−1) ≤ 1 ,

suffice for the uniform estimates

‖M−1
∆,zδB,∆,zQA,L,V h‖L(W̃0,s;W̃0,s) + ‖M−1

B,zδB,∆,zQA,L,V h‖L(W̃0,s;W̃0,s) ≤
1

2
(4.2.6)

‖M−1
B,z‖L(W̃0,s;W̃0,s) ≤ Cs

(

1 +
A2

dist(z, Spec(∆V h,1))

)

(4.2.7)

‖(M ′
B′,z̄)

−1‖L(W̃0,s;W̃0,s) ≤ Cs

(

1 +
A2

dist(z, Spec(∆V h,1))

)

. (4.2.8)
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Proof. A straightforward computation gives

M̃∆,z = (
1

2
∆V h,1 + Q̃A,L,V h − z)−1(

1

2
∆V h,1 − z) .

We deduce that the operator M̃∆,z is invertible when z 6∈ Spec(12∆V h,1) and the inverse is given by

M̃−1
∆,z = (

1

2
∆V h,1 − z)−1(

1

2
∆V h,1 + Q̃A,L,V h − z)

= I + Q̃A,L,V h(
1

2
∆V h,1 − z)−1 .

The functional calculus for the self adjoint operator 1
2∆V h,1 yields

‖M̃−1
∆,z‖L(Hs;Hs) ≤ Cs

(

1 +
A2

dist(z, Spec(12∆V h,1))

)

.

The operator M∆,z is actually invertible when z 6∈ Spec(12∆V h,1) for the following reason:

M∆,z = π⊥,± + π0,±
[
Iker(α±) − U±,θ(

1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θQA,L,V h

]
π0,±

= π⊥,± + U±,θM̃∆,zU
−1
±,θ

and its inverse equals

M−1
∆,z = π⊥,± + U±,θM̃

−1
∆,zU

−1
±,θ

= IW̃0,s + U±,θ

[
Q̃A,L,V h(

1

2
∆V h,1 − z)−1

]
U−1
±,θ.

The estimate (4.2.5) of M−1
z follows.

Another computation gives
MB,z = M∆,z(I −M−1

∆,zδB,∆,zQA,L,V h)

we deduce that it is invertible as soon as ‖M−1
∆,zδB,∆,zQA,L,V h‖L(W̃0,s;W̃0,s) < 1 and the norm of its inverse is

given by

‖M−1
B,z‖L(W̃0,s;W̃0,s) ≤

‖M−1
∆,z‖L(W̃0,s;W̃0,s)

1− ‖M−1
∆,zδB,∆,zQA,L,V h‖L(W̃0,s;W̃0,s)

.

Applying inequality (4.2.2) yields

‖M−1
∆,zδB,∆,zQA,L,V h‖L(W̃0,s;W̃0,s) ≤ Cs

(

1 +
A2

dist(z, Spec(12∆V h,1))

)(

bA
3
2

1 +A−1
√

|Imz|

)

≤







Cs
bA

7
2

dist(z,Spec( 1
2∆V h,1

))
if |Imz| ≤ A2

Cs
bA

5
2√

|Imz|
if |Imz| ≥ A2

Conditions |Imz| ≥ A2 and |Re z| ≤ A2

2 ensure

dist(z, Spec(
1

2
∆V h,1)) ≥ |Imz| ≥ 1

2
|z| ≥ 1

2
dist(z, Spec(

1

2
∆V h,1)). (4.2.9)

The condition Cs max(Ab, b, A−1) ≤ 1 and 4.2.9 allow us to give a sufficient condition for

‖M−1
∆,zδB,∆,zQA,L,V h‖L(W̃0,s;W̃0,s) < 1

which is b A4

dist(z,Spec( 1
2∆V h,1

))
≤ 1

Cs
. Finally the estimate M ′

B′,z̄ is obtained by taking the adjoints with z replaced

by z and B±,b,V h replaced by its formal adjoint B′
±,b,V h , which has the same properties as B±,b,V h .
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4.3 Quantitative comparison of resolvents

When Re z ≤ A2

2 , Proposition 3.3.2 and the subelliptic estimate (3.1.1) for B±,b,V h + A2π0,± − z say that z

belongs to the resolvent set of B±,b,V h +QA,L,V h

s
and

B±,b,V h − z = (I −QA,L,V h(B±,b,V h +QA,L,V h − z)−1)(B±,b,V h +QA,L,V h − z)

= M ′
B′,z̄(B±,b,V h +QA,L,V h − z) in L(D(B±,b,V h

s
); W̃0,s) (4.3.1)

and B±,b,V h − z = (B±,b,V h +QA,L,V h − z)(I − (B±,b,V h +QA,L,V h − z)−1QA,L,V h)

= (B±,b,V h +QA,L,V h − z)MB,z in L(W̃0,s;D((B∗,s
±,b,V h)

′)) . (4.3.2)

Because Corollary 3.1.2 says that B±,b,V h + Cs
s
is maximal accretive, we focus on the case |Re z| ≤ A2

2 under
the condition A ≥ Cs ≥ 1 .

Proposition 4.3.1. For s ∈ R there exists Cs ≥ 1 such that the conditions Cs max(Ab, b, A−1) ≤ 1 and

|Re z| ≤ A2

2
, dist(z, Spec(

1

2
∆V h,1)) ≥ CsbA

4 ,

imply the inequalities

‖
(
(B±,b,V h − z)−1 − U±,θ(

1

2
∆V h,1 − z)−1U−1

±,θ

)
‖L(W̃0,s;W̃0,s)

≤
[(

1 +
A2

dist(z, Spec(12∆V h,1))

)2

bA− 1
2 +A−2

]

Cs

1 + b
√

|Imz|
. (4.3.3)

Proof. Let us decompose u ∈ W̃0,s as u = ulow + uhigh with

{

ulow = U±,θχ(
Cd+∆

V h,1

(2LA)2 )U−1
±,θu = 1

A2QA,L′,V hu with L′ = 2L

uhigh = u− ulow

.

The upper bound on the norm of the operator D =
(
(B±,b,V h−z)−1−U±,θ(

1
2∆V h,1−z)−1U−1

±,θ

)
will be obtained

by considering separately its action on the two pieces uhigh and ulow.
For uhigh we have

‖Duhigh‖W̃0,s ≤ ‖(B±,b,V h − z)−1uhigh‖W̃0,s + ‖U±,θ(
1

2
∆V h,1 − z)U−1

±,θuhigh‖W̃0,s .

The second term of the right-hand side is bounded by

‖U±,θ(
1

2
∆V h,1 − z)−1U−1

±,θuhigh‖W̃0,s = ‖U±,θ(
1

2
∆V h,1 − z)−1(1− χ(

Cd +∆V h,1

(2LA)2
))U−1

±,θu‖W̃0,s

≤ ‖(1
2
∆V h − z)−1(1− χ(

Cd +∆V h,1

(2LA)2
))‖L(Hs;Hs)‖u‖W̃0,s .

The choice of the cut-off function χ and Q̃A,L,V h = A2χ
(

Cd+∆
V h,1

(LA)2

)

ensure the equality

(
1

2
∆V h,1 − z)−1(1− χ(

Cd +∆V h,1

(2LA)2
)) = (

1

2
∆V h,1 + Q̃A,L,V h − z)−1 ◦ (1− χ(

Cd +∆V h,1

(2LA)2
))

where the two factors satisfy

‖(1
2
∆V h,1 + Q̃A,L,V h − z)−1‖L(Hs;Hs) ≤

4

A2 + 2|Imz|

and ‖(1− χ(
Cd +∆V h,1

(2LA)2
))‖L(Hs;Hs) ≤ Cs

respectively according to inequality (3.3.6) and inequality (3.3.7). We have proved

‖(1
2
∆V h − z)−1(1− χ(

Cd +∆V h,1

(2LA)2
))‖L(Hs;Hs) ≤

Cs

A2 + 2|Imz| ≤
Cs

A2

1

1 + b
√

|Imz|
.

44



According to the formula (4.3.1), the inverse of B±,b,V h − z equals

(B±,b,V h − z)−1 = (B±,b,V h +QA,L,V h − z)−1M ′−1
B′,z̄

= (B±,b,V h +QA,L,V h − z)−1
(

M ′−1
z̄ + [M ′−1

B′,z̄ −M ′−1
z̄ ]

)

= (B±,b,V h +QA,L,V h − z)−1
(

I +M ′−1
B′,z̄

[
QA,L,V hδB,∆,z

])

M ′−1
z̄ .

Therefore, the subelliptic estimate given in Proposition 3.3.2 for B±,b,V h +QA,L,V h − z when |Re z| ≤ A2

2 ,

‖(B±,b,V h +QA,L,V h − z)−1‖L(W̃0,s;W̃0,s) ≤
Cs

A2(1 + b
√

|Imz|)
,

and the inequality (4.2.6) imply

‖(B±,b,V h − z)−1uhigh‖W̃0,s ≤ Cs
1

A2(1 + b
√

|Imz|)
‖M ′−1

z̄ uhigh‖W̃0,s

= Cs
1

A2(1 + b
√

|Imz|)
‖uhigh‖W̃0,s .

We have proved

‖Duhigh‖W̃0,s ≤
Cs

A2

1

1 + b
√

|Imz|
.

The last inequality comes from the fact that QA,L,V huhigh = U±,θχ(
Cd+∆

V h,1

(LA)2 )(1 − χ(
Cd+∆

V h,1

(2LA)2 ))U−1
±,θu = 0

implies M ′−1
z̄ uhigh = (I −QA,L,V hU±,θ(

1
2∆V h,1 − z +QA,L,V h)−1U−1

±,θ)
−1uhigh = uhigh.

For the ulow-component, ulow = 1
A2QA,L′,V hu , the formula (4.3.2) for B±,b,V h and the analogous one for 1

2∆V h,1

give

D = M−1
B,z(B±,b,V h +QA,L,V h − z)−1 − U±,θM̃

−1
∆,z(

1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θ

= (MB,z)
−1δB,∆,z +

[

(MB,z)
−1 − U±,θM̃

−1
∆,zU

−1
±,θ

]

U±,θ(
1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θ (4.3.4)

Owing to

(MB,z)
−1δB,∆,zulow =

1

A2
(MB,z)

−1δB,∆,zQA,L′,V hu ,

the inequality (4.2.2) combined with the inequality (4.2.8) imply that the first term of (4.3.4) applied to ulow is
bounded by

‖(MB,z)
−1δB,∆,zulow‖W̃0,s ≤

Cs

A2

(

1 +
A2

dist(z, Spec(12∆V h,1))

)(

bA
3
2

1 +A−1
√

|Imz|

)

‖u‖W̃0,s .

On ker(α±) = Ran(U±,θ) , we know

U±,θM̃
−1
∆,zU

−1
±,θ = M−1

∆,z .

The second term of (4.3.4) thus equals

[

(MB,z)
−1 − U±,θM̃

−1
∆,zU

−1
±,θ

]

U±,θ(
1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θ

=

[

(MB,z)
−1 −M−1

∆,z

]

U±,θ(
1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θ .

Further computations show that the right-hand side is
[

(MB,z)
−1 −M−1

∆,z

]

U±,θ(
1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θ

= M−1
B,z

[

M∆,z −MB,z

]

M−1
∆,zU±,θ(

1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θ

= M−1
B,z

[

M∆,z −MB,z

]

U±,θM̃
−1
∆,z(

1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θ

= M−1
B,z

[

δB,∆,zQA,L,V h

](

U±,θ(
1

2
∆V h,1 − z)−1U−1

±,θ

)

.
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By using again inequality (4.2.7) and Proposition 4.2.1 for the right-hand side, the above operator is estimated
by

∥
∥
∥
∥

[

(MB,z)
−1 − U±,θM̃

−1
∆,zU

−1
±,θ

]

U±,θ(
1

2
∆V h,1 + Q̃A,L,V h − z)−1U−1

±,θ

∥
∥
∥
∥
L(W̃0,s;W̃0,s)

≤ Cs

(

1 +
A2

dist(z, Spec(12∆V h,1))

)(

bA
3
2

1 +A−1
√

|Imz|

)

1

dist(z, Spec(12∆V h,1))
.

By adding the two terms we obtain

‖Dulow‖W̃0,s ≤ Cs

(

1 +
A2

dist(z, Spec(12∆V h,1))

)2
(

bA− 1
2

1 +A−1
√

|Imz|

)

.

By summing the two upper bounds for ‖Duhigh‖W̃0,s and ‖Dulow‖W̃0,s , we get

‖D‖L(W̃0,s;W̃0,s) ≤ Cs

[(

1 +
A2

dist(z, Spec(12∆V h,1))

)2
(

bA− 1
2

1 +A−1
√

|Imz|

)

+
1

A2

1

1 + b
√

|Imz|

]

,

which can be simplifed into (4.3.3) owing to b ≤ A−1 .

5 Spectral consequences

This final section actually ends the proof of Theorem 1.2.3 and its various statements are picked from Proposi-
tion 5.1.1, Proposition 5.1.3 and Proposition 5.2.1. A simple translation is obtained after recalling the unitary
equivalences

B±,b,Vh
= B±,(Q,g, Vh ,b) ←→ 1

h2
B±,(Qh,gh,V h,b′) =

1

h2
B±,b′,V h b′ =

b

h
,

∆V,h = ∆(Q,g,V,h) ←→ ∆(Qh,gh,V h,1) = ∆V h,1

z

h2
∈ Spec(B±,b, Vh

) ←→ z ∈ Spec(B±,b′,V h) b′ =
b

h
,

W̃s1,s2
h (X, E±) ←→ W̃s1,s2

h=1 (Xh, Eh±) .

Once this is fixed the first statement a) of Theorem 1.2.3 is a corollary of Proposition 5.1.1. The second statement
b) of Theorem 1.2.3 is a rewriting of Proposition 5.2.1 of which the proof strongly relies on the Hodge structure of

restricted operator B±,b,V h

∣
∣
E±,b,V h

and where the hermitian form 〈 , 〉r
∣
∣
∣
(E±,b,V h)2

is positive definite by the PT-

symmetry argument checked in the proof of Proposition 5.1.1. Finally the third statement c) of Theorem 1.2.3
about the semigroup expansion is a transcription of Proposition 5.1.3.

5.1 Rough estimates

The data of our problem are the spectrum of the semiclassical Witten Laplacian Spec(∆V,h) = Spec(∆V h,1) and
the parameters b, h ∈]0, 1] . We introduced the additional parameter A ≥ 1 and recall the condition

Cs max(Ab, b, A−1) ≤ 1 .

We recall, according to Definition 1.2.1, that the parameter ̺h ∈]0, 1] measures a spectral gap for ∆V,h according
to

Spec(
1

2
∆V,h) ∩ [0, ̺h] ⊂ [0, e−

c
h ] ⊂ [0,

̺h
2
] (5.1.1)

and Spec(
1

2
∆V,h)∩]̺h,+∞[⊂ [4̺h,+∞[ (5.1.2)

for all h ∈]0, 1] . Remember as well the notations

N (p)
± (V ) = rank 1[0,̺h](

1

2
∆

(p)
V,h) and N±(V ) =

d∑

p=0

N (p)
± (V ) ,

where the ± sign refers to the choice of the line bundle F+ = Q× C or F− = (Q× C)⊗ orQ .
Making an accurate use of the quantitative comparison of the resolvents in Proposition 4.3.1 requires the iden-
tification of different areas in the complex plane, presented in the picture below, and of which the accurate
definitions are given just after.
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̺h 2̺h−̺h

1

−1
−A2−

A2−

− 1
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1
b2− M

N
O
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Q

R

O′

P ′

Γ+

Γ−

−A2

2
A2

2 ̺h−̺h

1

−1

N

Q

O′

P ′

Figure 2: The right-hand side summarizes the spectral localization and the shape of contours deduced from the

analysis in |Re z| ≤ A2

2 . In this picture 1
2∆Vh,1 = Spec(12∆V,h) is represented by the black circle around 0 and

the thick real half-line [2̺h,+∞[.
The picture on the left-hand side is zoomed into the region |Re z| ≤ ̺h and |Im z| ≤ 1. The small circles represent
the eignvalues of B±,b,V h in the region |Re z| ≤ ̺h .
In both pictures the gray area represents a part of the resolvent set of B±,b,V h .

The curves Γ± are defined by

Γ± =
{
z ∈ C , ±[1 + (Re z − ̺h)

2] = b2Im z
}
. (5.1.3)

The points M,N,Q,R are on the line Re z = ̺h with the respective imaginary parts 1
b2 , 1,−1,− 1

b2 . The points

O,O′ (resp. P, P ′) have an imaginary part equal to 1 (resp. −1) and real part equal to −A2

2 and −̺h .
We will use the oriented contours Γ = Γ+ + Γ0 + Γ− with Γ0 =

{
z ∈ C , |z − ̺h| = 1

b2 ,Re z ≤ ̺h
}
, Γ+ +

[MNOPQR] + Γ− , Γ+ + [MNO′P ′QR] + Γ− , Γ+ + [MR] + Γ− and [NO′P ′Q] .

The main results of this section are gathered in the two following propositions.

Proposition 5.1.1. There exists C0 ≥ 1 such that A = C0 and 2C5
0b ≤ ̺h implies the following properties.

a) The sets
{

Re z ≤ A2

2 and |Im z| ≥ 1
}

, {Re z ≤ −̺h} , [N,Q] = {Re z = ̺h, |Im z| ≤ 1} and the one partly

delimited by Γ± ,
{
Re z ≥ ̺h and 1 + (Re z − ̺h)

2 ≤ b2|Im z|
}
, are all contained in the resolvent set of

B±,b,V h . The union of these sets (the gray area in the left-hand side picture of Figure 2) contains all the
oriented contours listed above.

b) If E
(p)

±,b,V h is the characteristic space, which is the range of

π
E

(p)

±,b,V h

=
1

2iπ

∫

NOPQ

(z −B
(p)

±,b,V h)
−1dz =

1

2iπ

∫

NO′P ′Q
(z −B

(p)

±,b,V h)
−1 dz

then N (p)
+ := dimE

(p)

+,b,V h = N (p)
+ (V ) and N (p)

− := dimE
(p)

−,b,V h = N (p−d)
− (V ) .

c) When r : Xh → Xh is the involution defined by r(q, p) = (q,−p) and r∗ denotes its action on S(Xh; Eh±) ,
according to Definition 2.5.1, then r∗ is a unitary involution of L2(Xh; Eh±) such that r∗B±,b,V h(r∗)−1 =
r∗B±,b,V hr∗ = B′

±,b,V h .

d) The hermitian form (u, v) 7→ 〈u , v〉r = 〈u , r∗v〉L2 , of Definition 2.5.1 is positive definite on E±,b,V h and
B±,b,V h

∣
∣
E±,b,V h

is self-adjoint and positive for the scalar product 〈 , 〉r . The eigenvalues of B±,b,V h in the

disc {z ∈ C, |z| ≤ ̺h} actually belong to [0, ̺h[ . Additionally on E±,b,V h we have the equivalence of norms

∀u ∈ E±,b,V h ,
√

1− C0b2‖u‖L2 ≤ ‖u‖r ≤ ‖u‖L2 . (5.1.4)
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Definition 5.1.2. The eigenvalues of B
(p)

±,b,V h lying in [0, ̺(h)] will be denoted by (λ
(p)
±,j)1≤j≤N (p)

±
with the asso-

ciated 〈 , 〉r-orthonormal basis of eigenvectors (u
(p)
±,j)1≤j≤N (p)

±
.

Proposition 5.1.3. For every s ∈ R there exists Cs ≥ 1 such that taking A = Cs with the condition ̺h ≥ bC5
s

implies that the semigroup (e−tB±,V h )t>0 admits for every t > 0 the following convergent integral representation

e
−tB

(p)

±,b,V h =
1

2iπ

∫

Γ

e−tz

z −B
(p)

±,b,V h

dz =
1

2iπ

∫

NO′P ′Q

e−tz

z −B
(p)

±,b,V h

dz

︸ ︷︷ ︸

(I)

+
1

2iπ

∫

Γ++[MR]+Γ−

e−tz

z −B
(p)

±,b,V h

dz

︸ ︷︷ ︸

(II)

.

In the above formula the first term equals

(I) =

N (p)
±∑

i=1

e−tλ
(p)
±,j |u(p)

±,j〉〈r∗u
(p)
±,j|

with ‖u(p)
±,j‖W̃0,s = ‖r∗u(p)

±,j‖W̃0,s ≤ Cs ,

and the second term satisfies

‖(II)‖L(W̃s;W̃s) ≤
1 + t−1

b2
e−t̺h .

The proofs of Proposition 5.1.1 and Proposition 5.1.3 actually rely on the two following lemmas. The first
one is an application of Proposition 4.3.1 with the specific geometric partition of C represented in Figure 2.

Lemma 5.1.4. For any s ∈ R , there exists Cs ≥ 1 such that A ≥ Cs and ̺h

2 ≥ CsbA
4 imply that the norms of

(B±,b,V h − z)−1 , Dz = (B±,b,V h − z)−1 − U±,θ(
1

2
∆V h,1 − z)−1U−1

±,θ ,

have upper bounds given by the following table. Because B±,b,V h and U±,θ
1
2∆V h,1U

−1
±,θ preserve the total degree

p ∈ {0, . . . , 2d} , (B±,b,V h − z)−1 and Dz can be respectively replaced by

(B
(p)

±,b,V h − z)−1 , D
(p)
z = (B

(p)

±,b,V h − z)−1 − U±,θ(
1

2
∆

(p− d
2± d

2 )

V h,1
− z)−1U−1

±,θ .

Sets ‖Dz‖L(W̃0,s;W̃0,s) ‖(B±,b,V h − z)−1‖L(W̃0,s;W̃0,s) Label

{Re z ≤ −A2

2 } 4
A2 for s = 0 (1)

{|Re z| ≤ A2

2 and |Im z| ≥ 1} Cs(bA
7
2 +A−2) Cs(

1
|Im z| + bA

7
2 +A−2) (2)

{(

Re z ≤ −̺h
or Re z = ̺h

)

and |Im z| ≤ 1

}

Cs

(

A−2 + bA
7
2

̺2
h/4+|Im z|2

)

Cs

(

A−2 + 1+bA
7
2

̺2
h/4+|Im z|2

)

(3)

{
Re z = 0 and |Im z| ≥ 1

b2

}
Cs

A−2+bA− 1
2

b
√

|Im z|
≤ 1

8b
√

|Im z|
1

|Im z| +
1

8b
√

|Im z|
≤ 1

4b
√

|Im z|
(4)

Table 2: Resolvent norm estimates

Proof. The conditions A ≥ Cs and ̺h

2 ≥ CsbA
4 with ̺h ≤ 1 ensure the validity of the hypotheses of Proposi-

tion 4.3.1:

Cs max(Ab, b, A−1) ≤ 1 and dist(z, Spec(
1

2
∆V h,1)) ≥ CsbA

4

as soon as dist(z, Spec(12∆V h,1)) ≥ ̺h

2 .

(1) This line is only concerned with the case s = 0. By Corollary 3.1.2 there is constant C0 ≥ 1 such that

C0 +B±,b,V h

is accretive as soon as C0b ≤ 1 and h ∈]0, 1]. Take z ∈ {Re z ≤ −A2

2 },
‖(B±,b,V h − z)u‖2L2

= ‖(B±,b,V h − iIm z)u‖2L2 + |Re z|2‖u‖2L2 + 2(−Re z) Re
〈
B±,b,V hu, u

〉

= ‖(B±,b,V h − iIm z)u‖2L2 +
[
|Re z|2 − 2C0|Re z|

]
‖u‖2L2 + 2|Re z| Re

〈
(C0 +B±,b,V h)u, u

〉

︸ ︷︷ ︸

≥0

≥
[
|Re z|2 − 2C0|Re z|

]
‖u‖2L2

≥ A2

2
(
A2

2
− 2C0)‖u‖2L2
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When A2

8 ≥ C0 , we obtain

‖(B±,b,V h − z)u‖L2 ≥ A2

4
‖u‖L2 .

(2) For z ∈ {|Re z| ≤ A2

2 and |Im z| ≥ 1} we know

dist(z, Spec(
1

2
∆V h,1)) ≥ |Imz| ≥ 1 ≥ ̺h

2

and

‖U±,θ(
1

2
∆V h,1 − z)−1U−1

±,θ‖L(W̃0,s;W̃0,s) ≤
1

dist(z, Spec(12∆V h,1))
≤ 1

|Im z| ≤ 1 . (5.1.5)

Proposition 4.3.1 gives for a proper choice of Cs ≥ 1 the inequality

‖Dz‖L(W̃0,s;W̃0,s) ≤ Cs

1 + b
√

|Im z|

[

A−2 + (1 +
A2

dist(z, Spec(12∆V h,1))
)2bA− 1

2

]

≤ 4Cs[A
−2 + bA7/2] . (5.1.6)

The upper bound for (B±,b,V h − z)−1 is deduced at once from (5.1.5) and (5.1.6).

(3) The following inequality holds for z ∈ {(Re z ≤ −̺h or Re z = ̺h) and |Im z| ≤ 1}

dist(z, Spec(
1

2
∆V h,1))

2 ≥ ̺2h
4

+ |Im z|2 ,

with the detailed cases:

• if Re z ≤ −̺h then dist(z, Spec(12∆V h,1))
2 ≥ |z|2 ≥ ̺2h + |Imz|2 ≥ ̺2

h

4 + |Imz|2 ;
• if Re z = ̺h then the hypothesis (5.1.1) ensure that dist(z, Spec(12∆V h,1))

2 ≥ (̺h

2 )2 + |Im z|2 .

Applying Proposition 4.3.1 gives

‖Dz‖L(W̃0,s;W̃0,s) ≤ Cs

[

A−2 +
bA7/2

̺2h/4 + |Im z|2
]

.

(4) If z ∈ {Re z = and |Im z| ≥ 1
b2 } the distance to the spectrum is bounded by

dist(z,
1

2
∆V h,1) ≥ |Im z| ≥ 1

b2
.

Proposition 4.3.1, with Ab ≤ 1, implies

‖Dz‖L(W̃0,s;W̃0,s) ≤ Cs
A−2 + bA− 1

2

b
√

|Im z|
≤ 1

8b
√

|Im z|
,

by choosing again A and 1
b large enough. Finally

‖(B±,b,V h − z)−1‖L(W̃0,s;W̃0,s) ≤
1

|Im z| +
1

8b
√

|Im z|
≤ b2 + 1

8

b
√

|Im z|
≤ 1

4b
√

|Im z|
.

The second lemma is a variation of [Nie]-Proposition 2.15, which was itself inspired from the article of Hérau-
Hitrik-Sjöstrand [HHS].

Lemma 5.1.5. Let (B,D(B)) be a closed densely defined operator in a separable Hilbert space H, such that (1+
B)−1 is compact, so that Spec (B) is discrete, and D(B) = D(B∗) . Assume that there exists a unitary involution
U∗ = U−1 = U such that U∗BU = B∗ . Then the spectrum Spec (B) is invariant by complex conjugation.
If additionally there exist γ > 0 , ε ∈]0, 1

4 [ , an orthogonal projection Π0 = Π∗
0 and a bounded contour Γ , symmetric

w.r.t z → z , such that:

• Π0U = UΠ0 = Π0 ;

• the real part Re B = B+B∗

2 is non negative and Re B ≥ γ(1−Π0)− εγIdH ;
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• with ΠΓ = 1
2πi

∫

Γ
(z −B)−1 dz ,

Re Tr

[
1

2πi

∫

Γ

B(z −B)−1 dz

]

= Tr [BΠΓ] ≤ εγ ; (5.1.7)

then the following properties hold:

• The form 〈u, v〉U = 〈u, Uv〉 is a hermitian positive definite form on EΓ = RanΠΓ .

• The norms ‖u‖U =
√

〈u , Uu〉 and ‖u‖ are equivalent

∀u ∈ EΓ ,
√
1− 4ε‖u‖ ≤ ‖u‖U ≤ ‖u‖ . (5.1.8)

• The restricted operator B
∣
∣
EΓ

= BΠΓ

∣
∣
EΓ

= ΠΓB
∣
∣
EΓ

is self-adjoint and non negative for the scalar product

〈 , 〉U .

• The vector space EΓ admits a basis of eigenvectors of B, (e1, . . . , eN ), orthonormal for the scalar product
〈 , 〉U .

• For all z ∈ C inside the contour Γ , the inequality

‖(z −B)−1
∣
∣
EΓ
‖L(EΓ;EΓ) ≤

1√
1− 4εdist(z, {λ1, . . . , λN})

,

holds with the initial norm ‖ ‖ on EΓ .

• The “distance” ~d(EΓ,RanΠ0) = ‖(1−Π0)ΠΓ‖L(H) is bounded by
√
2ε and Π0 is an isomorphism from EΓ

to Π0EΓ .

Proof. The PT -symmetry property B∗ = U∗BU implies

(z −B∗)−1 = (z − U∗BU)−1 = U∗(z −B)−1U

whenever one of the resolvent exists, so that

Spec (B) = Spec (B∗) = Spec (B)

and the spectrum Spec (B) is symmetric with respect to the real axis. The accretivity of B gives Spec (B) ⊂
{z ∈ C, Re z ≥ 0} . Another consequence is that if the integration contour Γ is symmetric w.r.t the real axis and
if z → f(z) is a holomorphic function satisfying f(z) = f(z) then

fΓ(B)∗ =
−1
2iπ

∫

Γ

f(z̄)

(z̄ −B∗)
dz̄ = U∗

[
1

2iπ

∫
f(z)

(z −B)
dz

]

U = U∗fΓ(B)U ,

and in particular

Tr [fΓ(B)] =
1

2
(Tr [fΓ(B)] + Tr [U∗fΓ(B)U ]) = Re Tr [fΓ(B)] ∈ R .

Therefore the condition (5.1.7) makes sense (take f(z) = z) when there are eigenvalues of B with small real parts
and multiplicities that are not too large. On the space EΓ = RanΠΓ , the form (u, v) 7→ 〈u , v〉U = 〈u , Uv〉 is a
hermitian form and it is a scalar product when 〈u , u〉U > 0 for any nonzero u ∈ EΓ .
When u ∈ EΓ with ‖u‖ = 1 , it can be completed into an orthonormal basis (e1 = u, e2, . . . , eN) of EΓ for the
scalar product 〈 , 〉 . We have

εγ ≥ Tr (BΠΓ) = Re





N∑

j=1

〈ej , Bej〉





=

N∑

j=1

〈ej , Re Bej〉 ≥ 〈u , Re Bu〉 ≥ γ‖(1−Π0)u‖2 − εγ ,

and
‖(1−Π0)u‖2 < 2ε = 2ε‖u‖2 . (5.1.9)

Now compute

〈u , Uu〉 = 〈u ,Π0Uu〉+ 〈u , (1 −Π0)Uu〉
= ‖Π0u‖2 + 〈(1−Π0)u , U(1−Π0)u〉
≥ ‖Π0u‖2 − ‖(1−Π0)u‖2 = ‖u‖2 − 2‖(1−Π0)u‖2 ≥ (1− 4ε)‖u‖2 > 0 .
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This proves that the hermitian form 〈 , 〉U is positive definite on EΓ and the equivalence of norms comes at once.
Let BΓ be the restriction of B to EΓ , which is a finite dimensional Hilbert space with the scalar product 〈 〉U
(and 〈 , 〉) . For u, v ∈ EΓ , the series of equalities

〈u , BΓv〉U = 〈u , U(BΠΓ)v〉 = 〈u , (BΠΓ)
∗Uv〉 = 〈(BΠΓ)u , Uv〉

= 〈BΓu , v〉U .

says that BΓ is self-adjoint on (EΓ, 〈 , 〉U ) . The two statements follow for the scalar product 〈 , 〉U and the
norm ‖ ‖U , are consequences.
The equivalence of the norms ‖ ‖U and ‖ ‖ gives the upper bound on ‖(z −B)−1

∣
∣
EΓ
‖L(EΓ;EΓ) .

Finally the estimate on ~d(EΓ; RanΠ0) is due to (5.1.9)

Proof of Proposition 5.1.1. This is concerned essentially with the localization of the spectrum, which does not
depend on s ∈ R for the closed realization Bs

±,b,V h in W̃0,s(X ; E±) . Therefore we focus on the case s = 0 in
particular while applying Lemma 5.1.4.
The conditions A = C0 and ̺h ≥ 2C5

0b , for C0 ≥ 1 , large enough, imply the conditions

A ≥ C0 and
̺h
2
≥ C0bA

4

of Lemma 5.1.4.
a) The first three complex domains considered in a) are covered by unions of (1), (2) and (3) in Lemma 5.1.4.
For the last domain

{
Re z ≥ ̺h and 1 + (Re z − ̺h)

2 ≤ b2|Im z|
}
we start with

‖(B±,b,V h − z)u‖L(L2;L2) ≥ ‖(B±,b,V h − iIm z)u‖L2 − |Re z|‖u‖L2

≥
(
4b
√

|Im z| − |Re z|
)
‖u‖L2 .

We conclude by noticing that b
√

|Im z| ≥
√

1 + (Re z − ̺h)2 implies

b
√

|Im z| ≥ |Re z − ̺h| ≥ |Re z| − 1

and |Re z| ≤ 1 + b
√

|Im z| ≤ 2b
√

|Im z| .

We have actually proved ‖(B±,b,V h − z)−1‖L(L2;L2) ≤ 1

2b
√

|Im z|
in this domain.

b) Let us consider now the operator

R
(p) =

1

2iπ

∫

NO′P ′Q
D

(p)
z dz

which is the difference between the projection π
E

(p)

±,b,V h

and the orthogonal projection π
(p)
h = U±,θπ̃

(p)
h U−1

±,θ with

π̃
(p)
h =

1

2iπ

∫

NO′P ′Q
(z − 1

2
∆

(p− d
2± d

2 )

V h,1
)−1 dz .

The following bounds are consequences of Table 2 of Lemma 5.1.4 for s = 0:

‖
∫

NO′∪P ′Q
D

(p)
z dz‖L(L2;L2) ≤ 8C0̺h(A

−2 + bA7/2) ≤ 8C0A
−2 + 4A−1/2 (5.1.10)

≤ 8

C0
+

4√
C0

,

‖
∫

O′P ′∪QN

D
(p)
z dz‖L(L2;L2) ≤ 2C0A

−2 + 2C0bA
7/2

∫ 1

−1

1

(̺h/2)2 + t2
dt (5.1.11)

≤ 2C0(A
−2 + 2A7/2̺−1

h π) ≤ 2C0A
−2 +A−1/22π

≤ 2

C0
+

2π√
C0

,

where we used C0bA
4 ≤ ̺h

2 ≤ 1
2 , and finally A = C0 for the last upper bounds . With C0 ≥ 1 large enough we

have proved

‖π
E

(p)

±,b,V h

− π
(p)
h ‖L(L2;L2) < 1 .

With ‖π(p)
h ‖L(L2;L2) ≤ 1 ,we obtain

‖(1− π
E

(p)

±,b,V h

)π
(p)
h ‖L(L2;L2) = ‖(πE

(p)

±,b,V h

− π
(p)
h )π

(p)
h ‖L(L2;L2) < 1 ,
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and π
E

(p)

±,b,V h

: Ranπ
(p)
h → E

(p)

±,b,V h is one to one and N (p)
± = dimE

(p)

±,b,V h ≥ N (p− d
2± d

2 )
± (V ) .

With ‖(1− π
(p)
h )‖L(L2;L2) ≤ 1 , we obtain

‖(1− π
(p)
h )π

E
(p)

±,b,V h

‖L(L2;L2) = ‖(1− π
(p)
h )π

E
(p)

±,b,V h

(π
E

(p)

±,b,V h

− π
(p)
h )‖L(L2;L2) < 1 ,

and π
(p)
h : E

(p)

±,b,V h → Ranπ
(p)
h is one to one and N (p)

± = dimE
(p)

±,b,V h ≤ N (p− d
2±d

2 )
± (V ) , which is finite and

independent of h ∈]0, h0] .
c) It comes from Bismut identification of B±,b,V h as a Hodge type operator for the 〈 , 〉r hermitian form, recalled
in (2.5.14):

B±,b,V h = 2(δ±,b,V h + δ∗,r±,b,V h)
2 : S(Xh; Eh±)→ S ′(Xh; Eh±) ,

which implies r∗B±,b,V h(r∗)−1 = r∗B±,b,V hr∗ = B′
±,b,V h .

d)We apply Lemma 5.1.5 with B = C0+B±,b,V h , U = r∗,Π0 = π0,± and the translated contour Γ = C0+NO′P ′Q
. Let us check the assumption of Lemma 5.1.5 while specifying the values of γ > 0 and ε ∈]0, 1

4 [:

• The equality Π0U = UΠ0 = Π0 comes from the fact that r∗α±(r∗)−1 = α±.

• The real part Re B = C0 +
1
b2α± + Re γ±,V h is non negative owing to the accretivity of C0 + B±,b,V h in

Corollary 3.1.2. The inequality Re B ≥ γ(1 − Π0) − εγId is obtained by the same integration by parts
computations as in Proposition 3.1.3 and for the accretivity of Proposition 3.1.1. Let us compute

〈u,Re Bu〉L2 ≥ C0‖u‖2L2 +
1

b2
〈u, α±u〉 − ‖γ±,V h‖L(W̃1,0;W̃−1,0)‖u‖2W̃1,0

≥ C0‖u‖2L2 +
1

b2
〈u, α±u〉 − ‖γ±,V h‖L(W̃1,0;W̃−1,0)(

d

2
‖Π0u‖2L2 + ‖(1−Π0)u‖2W̃1,0)

≥ (C0 − d‖γ±,V h‖L(W̃1,0;W̃−1,0))‖u‖2L2 + (
1

b2
− ‖γ±,V h‖L(W̃1,0;W̃−1,0))‖(1−Π0)u‖2L2

≥ C0

2
‖u‖2L2 +

1

2b2
‖(1−Π0)u‖2L2 ,

by fixing C0 larger than 2d‖γ±,V h‖L(W̃1,0;W̃−1,0) and by using

1

b2
≥ 1

b
≥ 2C0A

4 ≥ 2C0 ≥ 2‖γ±,V h‖L(W̃1,0;W̃−1,0) .

With this constraint on C0 ≥ 1, we have proved

〈u,Re Bu〉 ≥ γ‖(1−Π0)u‖L2 with γ =
1

2b2
.

• For the upper bound of the trace Tr [BΠΓ] we use the notations

dimE±,b,V h = N± =

2d∑

p=0

N (p)
± =

d∑

p′=0

N (p′)
± (V ) = dimRan π̃h .

We write:

Re Tr

[
1

2iπ

∫

C0+NO′P ′Q
B(z −B)−1 dz

]

= C0N± + Re Tr

[
1

2iπ

∫

NO′P ′Q
z(z −B±,b,V h)−1 dz

]

= C0N± + Re Tr

[
1

2iπ

∫

NO′P ′Q
zDz dz

]

+ Re Tr [πh]

≤ C0N± +
C0

2π
N±(2A

−2 + 8bA7/2̺−1
h

π

2
) +N±

̺h
2

≤ 3C0N±
≤ εγ ,

with γ = 1
2b2 like above and ε = 6C0N±b2 which belongs to ]0, 14 [ when b2 < 1

24C0N±
. Remember that

N± = dimRan π̃h does not depends on h ∈]0, h0] .
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The three above points ensure that all the hypotheses of Lemma 5.1.5 are fulfilled. Therefore 〈 , 〉r is hermitian
positive definite form on Ran ΠΓ = E±,b,V h and the equivalence of norms (5.1.4) is a straightforward consequence
of (5.1.8).
The space E±,b,V h is a finite dimensional subspace of S(Xh; Eh±) endowed with the positive definite hermitian form
〈 , 〉r . Additionally because δ±,b,V hB±,b,V h = B±,b,V hδ±,b,V h on S(Xh; Eh±) and the same holds when δ±,b,V h is
replaced by δ∗,r±,b,V h , we deduce that δ±,b,V h and δ∗,r±,b,V h send E±,b,V h into itself. Thus formula (2.5.14) implies

that B±,b,V h

∣
∣
E±,b,V h

= [(δ±,b,V h + δ∗,r±,b,V h)
∣
∣
E±,b,V h

]2 is the square of a self-adjoint operator on (E±,b,V h , 〈 , 〉r) .
Therefore B±,b,V h

∣
∣
E±,b,V h

is a self-ajoint non negative operator for 〈 , 〉r and its eigenvalues are non-negative.

Proof of Proposition 5.1.3. The expression of (I) is a consequence of Proposition 5.1.1 because it says that

B
(p)

±,b,V h

∣
∣
E

(p)

±,b,V h

is diagonalizable. Additionally the L2 dual basis of (u
(p)
±,j)1≤j≤N (p)

±
in E

(p)

±,b,V h is (r∗u(p)
±,j)1≤j≤N (p)

±

because
〈u(p)

±,i, u
(p)
±,j〉r = 〈r∗u(p)

±,i, u
(p)
±,j〉L2 = δij ,

while r∗B±,b,V hr∗ = B
(p)′
±,b,V h implies that r∗u(p)

±,j is an eigenvector of B
(p)′
±,b,V h .

Let us check the uniform bound of ‖u(p)
±,j‖W̃0,s . For s = 0 it comes from (5.1.4) with

‖u(p)
±,j‖L2 ≤ 1√

1− C0b2
‖u(p)

±,j‖r =
1√

1− C0b2
≤ 2 .

For s > 0 we use the equation

[B±,b,V h +A2π0,±]u
(p)
±,j = λ

(p)
j,±u±,j +A2π0,±u

(p)
±,j

where the subelliptic estimate of Proposition 3.1.1 implies

C
8/5
0 ‖u

(p)
j,±‖W̃0,s+2/5 = A8/5‖u(p)

j,±‖W̃0,s+2/5 ≤ C(λ
(p)
j,± +A2)‖u(p)

±,j‖W̃0,s ≤ C(1 + C2
0 )‖u(p)

±,j‖W̃0,s

by choosing A = C0 like in Proposition 5.1.1 . A bootstrap argument leads to

‖u(p)
j,±‖W̃0,2/5k ≤ [C(1 + C

2/5
0 )]k‖u(p)

±,j‖L2 ≤ 2[C(1 + C
2/5
0 )]k

for every k ∈ N and the general result for s > 0 follows by interpolation.
The integral

1

2iπ

∫

Γ

e−tz

z −B
(p)

±,b,V h

dz

converges if and only if the two integrals
∫

Γ±
e−tRe z‖(z − B

(p)

±,b,V h)
−1‖ |dz| converge. With the parametrization

of Γ± given by z = u+ ̺h ± i( 1
b2 (1 + u2)) for u ∈ [0,+∞[ , we obtain

∫

Γ±

e−tRe z‖(z −B
(p)

±,b,V h)
−1‖ |dz| ≤

∫ +∞

0

∥
∥
∥
∥

e−tz

z −B
(p)

±,b,V h

∥
∥
∥
∥
L(W̃0,s;W̃0,s)

∣
∣
∣
∣
1± 2i

u

b2

∣
∣
∣
∣
du

≤
∫ +∞

0

e−t(u+̺h)

4b
√

b−2(1 + u2)

∣
∣
∣
∣
1± i

2u

b2

∣
∣
∣
∣
du

≤ e−t̺h

2b2

∫ +∞

0

e−tu du

≤ e−t̺h

2b2
1

t
.

The integral over the line segment MR is estimated by

et̺h

∫ 1
b2

− 1
b2

∥
∥
∥
∥

e−tz

z −B±,b,V h

∥
∥
∥
∥
L(W̃0,s;W̃0,s)

du

≤ Cs

∫

1≤|u|≤ 1
b2

(|u|−1 + bA7/2 +A−2) du + Cs

∫

|u|≤1

(A−2 +
1 + bA7/2

̺2h/4 + u2
) du

≤ 2Cs(−2 ln b+ (2bA7/2 +A−2)(
1

b2
− 1)) + Cs2(A

−2 +
1

̺h
(1 + bA7/2)

π

2
) ≤ 1

b2

by using CsbA
4 ≤ ̺h

2 ≤ 1
2 , CsbA

7/2 = CsbA
4

A1/2 ≤ 1
10 for A ≥ 1 large enough , b2| ln(b)| ≤ 1

10Cs
and Cs

̺h
≤ 1

bA4 ≤
1
b ≤ 1

10b2 for b > 0 small enough.
By conclude by adding the two upper bound for

∫

Γ+
+
∫

Γ−
and

∫

[MR] .
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5.2 Hodge type structure and accurate spectral estimates

We prove now the accurate comparison of Spec(B±,b,V h)∩{z ∈ C, |z| ≤ ̺h} ⊂ [0, ̺h[ and Spec(12∆V h,1)∩[0, ̺h] =
Spec(12∆V,h) ∩ [0, e−

c
h ] .

Proposition 5.2.1.

Let (λ
(p)
j )

1≤j≤N (p)
±

0≤p≤2d

be the eigenvalues of B±,b,V h contained in [0, ̺h[ and let (λ̃
(p)
j (V ))

1≤j≤N (p)
± (V )

0≤p≤d

be the eigen-

values of 1
2∆V h,1 contained in [0, e−

c
h ] . There exists C0 ≥ 1 such that for all A ≥ C0 and with the additional

condition 1 ≥ ̺h ≥ C0A
4b ≥ C5

0 b , the eigenvalues are compared according to

∀p ∈ {0, . . . , 2d}, ∀j ∈ {1, . . . ,N (p)
± } , (1 + C0A

−1/2)−1λ̃
(p− d

2± d
2 )

j (V ) ≤ λ
(p)
j ≤ (1 + C0A

−1/2)λ̃
(p− d

2± d
2 )

j (V ) ,

where we recall that N (p)
± = N (p− d

2± d
2 )

± vanishes when p− d
2 ± d

2 6∈ {0, . . . , d} .

This result relies on the Hodge type structure of 2B±,b,V h

∣
∣
E±,b,h

and ∆V h,1

∣
∣
Ran1[0,̺h](∆V h,1

)
and the iden-

tification of eigenvalues of those operators with the squares of singular values by following the strategy of
[HKN][Lep][LNV2] and other related works. We start with three lemmas.

Lemma 5.2.2. Let E be a finite dimensional Hilbert space with the hermitian positive definite form ( , ) . Let
d be an operator such that d ◦ d = 0 and set ∆ = (d + d∗)2 = dd∗ + d∗d , where d∗ is the adjoint of d for the
scalar product ( , ) . The E admits the orthogonal decomposition

E = ker(∆)
⊥
⊕Rand

⊥
⊕Rand∗ = ker(d)

⊥
⊕Rand∗ = ker(d∗)

⊥
⊕Rand .

The eigenvalues of ∆ are the squares of the singular values of d and equivalently d∗ . More precisely there exists
an orthonormal basis (uj)1≤j≤dimE such that (uj)1≤j≤N (resp. (uj)N+1≤j≤2N ) is an orthonormal basis of Rand∗

(resp. Rand) and (uj)2N+1≤j≤dimE is an orthonormal basis of ker∆ and

∀j ∈ {1, . . . , N} , duj = µjuj+N µj > 0 .

We will set µj = 0 for j 6∈ {1, . . . , N} and write, with an abuse of notation duj = µjuj+N for all j ∈
{1, . . . , dimE} .

Proof. It suffices to notice ∆ = 0⊕⊥ dd∗ ⊕⊥ d∗d in the decomposition E = ker(∆)⊕⊥ Rand⊕⊥ Rand∗ . Then
one takes for (uj)1≤j≤N an orthonormal eigenbasis of d∗d

∣
∣
Rand

with d∗duj = µ2
juj and to set uj+N = 1

µj
duj .

Definition 5.2.3. In a finite dimensional Hilbert space (E, ( , )) , a basis B = (vj)1≤j≤dimE is ε-orthonormal
for ε ∈]0, 1[ if ‖((vj , vk))1≤j,k≤dimE − IdCdimE‖ ≤ ε .
The function τ : ⊔∞n=1]0, 1[

n→]0,+∞[ is defined by τ(ε1, . . . , εn) =
∏n

k=1
1+εk
1−εk

.

The following lemma is extracted from Proposition 5.4 in [LNV2].

Lemma 5.2.4. Let B = (uj)1≤j≤dimE (resp. B′ = (vj)1≤j≤dimE) be an ε1- (resp. ε2−) orthonormal basis of the

Hilbert space (E, ( , )) for ε1, ε2 ∈]0, 1[ . For B ∈ L(E) , let (µj(B))1≤j≤dimE (resp. (µj(B̃))1≤j≤dimE) denote

the singular values of B (resp. of the matrix B̃ = ((vk , Buj))1≤j,k≤dimE) , in the usual decreasing order. Then

∀j ∈ {1, . . . , dimE} , τ(ε1, ε2)
−1/2µ̃j ≤ µj ≤ τ(ε1, ε2)

1/2µ̃j .

Proof of Proposition 5.2.1. We start the proof for B+,b,V h and the case of B−,b,V h will be recovered in the end
by a Poincaré duality argument.
We do not distinguish the form degree here and recall that the number of eigenvalues of 1

2∆V h,1 in [0, e−
c
h ] and

of B+,b,V h in [0, ̺h] are equal to

N+ =

2d∑

p=0

N (p)
+ =

d∑

p=0

N+(V ) = N+(V ) .

Let us set π̃h = 1
[0,e−

c
h ]
(12∆V h,1) = 1

[0,2e−
c
h ]
(∆V h,1) and πh = U+,θπ̃hU

∗
+,θ . Because ∆V h,1 = (dV h,1 + d∗V h,1)

2 ,

Lemma 5.2.2 tells us that there is an orthonormal basis (ũj)1≤j≤N+ such that ũj belongs to Ran (d∗V h,1

∣
∣
Ran π̃h

)

(resp. Ran (dV h,1

∣
∣
Ran π̃h

)) for 1 ≤ j ≤ N (resp. N + 1 ≤ j ≤ 2N) and

dV h,1ũj =

{

µ̃j ũj+N if 1 ≤ j ≤ N

0 otherwise ,
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where µ̃j , 1 ≤ j ≤ N , are the non zero singular values of dV h,1

∣
∣
Ran π̃h

. With the abuse of notation of Lemma 5.2.4,

it is summarized by dV h,1ũj = µ̃j ũj+N for all j ∈ {1, . . . ,N+} with µ̃j = 0 for j > N .
Let πE

+,b,V h
be the spectral projector associated with B+,b,V h given by

πE
+,b,V h

=
1

2iπ

∫

NO′P ′Q
(z −B+,b,V h)−1 dz

like in Proposition 5.1.1.
We consider B′ = (vj)1≤j≤N+ with

vj = πE
+,b,V h

[U+,θũj] ,

and U+,θũj =
e−H

πd/4
[ũj ](q) , H =

|p|2q
2

.

Let us compute the scalar products 〈vj , vj′ 〉r:

〈vj , vj′ 〉r = 〈πE
+,b,V h

(U+,θũj) , πE
+,b,V h

(U+,θũj′)〉r
π∗,r
E

+,b,V h
=πE

+,b,V h

= 〈U+,θũj , πE
+,b,V h

(U+,θũj′)〉r

= 〈U+,θũj , r
∗πE

+,b,V h
(U+,θũj′)〉

r∗U+,θ=U+,θ
= 〈U+,θũj , πE

+,b,V h
(U+,θũj′)〉

= δj,j′ + 〈U+,θũj , [πE
+,b,V h

− πh](U+,θũj′)〉 .

But from (5.1.10) and (5.1.11) we deduce

‖πE
+,b,V h

− πh‖ ≤ 10C0A
−2 + (4 + 2π)A−1/2 ≤ 30A−1/2 .

We deduce that B′ is an ε-orthonormal basis of E+,b,V h with ε = 30N+A
−1/2 ∈]0, 1[ for A ≥ C0 large enough.

Remember µ0 = f̂i ∧ ifi introduced in Definition 2.5.1. We now consider the basis B = (uj)1≤j≤N+ with

uj = πE
+,b,V h

[e−µ0U+,θũj ] = vj + πE
+,b,V h

[(e−µ0 − 1)U+,θũj ] .

From (e−µ0 − 1) =
∑d

k=1
(−1)k

k! (f̂i ∧ ifi)k and RanU+,θ = Ranπ0,+ we deduce

(e−µ0 − 1)U+,θ = (1− π0,+)(e
−µ0 − 1)U+,θ .

We write now

‖πE
+,b,V h

(1 − π0,+)‖ = ‖(1− π0,+)
∗π∗

E
+,b,V h

‖ = ‖(1− π0,+)r
∗πE

+,b,V h
r∗‖

= ‖r∗(1− π0,+)πE
+,b,V h

r∗‖ = ‖(1− π0,+)πE
+,b,V h

‖

but we proved in Proposition 5.1.1 after Lemma 5.1.5 the upper bound

‖(1− π0,+)πE
+,b,V h

‖ = ~d(E+,b,V h ,Ranπ0,+) ≤
√

2C′
0N+b2 .

Remember also the equivalence of norms 1
2‖u‖ ≤ ‖u‖r ≤ 2‖u‖ for u ∈ E±,b,V h . Therefore there exists a constant

C0,N+ ≥ 1 such that B (and B′) are ε-orthornormal bases of (E+,b,V h , 〈 , 〉r) with ε = C0,N+A
−1/2 ∈]0, 1[ for

A ≥ 2C2
0,N+

.
We now apply Lemma 5.2.2 to

2B+,b,V h

∣
∣
E

+,b,V h
= (δ+,b,V h

∣
∣
E

+,b,V h
)(δ∗,r

+,b,V h

∣
∣
E

+,b,V h
) + (δ∗,r

+,b,V h

∣
∣
E

+,b,V h
)(δ+,b,V h

∣
∣
E

+,b,V h
) ,

where we recall (2.5.15)

δ+,b,V h = e−µ0e−H−V h

(Kbd
XK−1

b )e+H+V h

eµ0 .

Because δ+,b,V hB+,b,V h = B+,b,V hδ+,b,V h on S(Xh; Eh+) and E±,b,V h ⊂ S(Xh; Eh+) we know actually

δ+,b,V hπE
+,b,V h

= πE
+,b,V h

δ+,b,V h = πE
+,b,V h

δ+,b,V hπE
+,b,V h

and δ∗,r
+,b,V hπE

+,b,V h
= πE

+,b,V h
δ∗,r
+,b,V h = πE

+,b,V h
δ∗,r
+,b,V hπE

+,b,V h
.
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We now compute 〈vj′ , δ+,b,V huj〉r:
〈vj′ , δ+,b,V huj〉r = 〈πE

+,b,V h
(U+,θũj′) , δ+,b,V hπE

+,b,V h
(e−µ0U+,θũj)〉r

= 〈πE
+,b,V h

(U+,θũj′) , δ+,b,V h(e−µ0U+,θũj〉r
= 〈πE

+,b,V h
(U+,θũj′) , e

−µ0e−H−V h

(Kbd
XK−1

b )e+H+V h

U+,θũj〉r
= 〈πE

+,b,V h
(U+,θũj′) , e

−µ0U+,θ[dV h,1ũj]〉r
= µ̃j〈πE

+,b,V h
(U+,θũj′) , e

−µ0U+,θ[ũj+N ]〉r
= µ̃j〈U+,θũj′ , r

∗e−µ0U+,θ[ũj+N ]〉+ µ̃jRj,j′,h

= µ̃j〈U+,θũj′ , r
∗e−µ0U+,θ[ũj+N ]〉+ µ̃jRj,j′,h

= µ̃j〈e−λ0r∗U+,θũj′ , U+,θ[ũj+N ]〉+ µ̃jRj,j′,h

= µ̃jδj′,j+N + µ̃jRj,j′,h

where we used e−λ0r∗U+,θ = e−λ0r∗π0,+U+,θ = U+,θ in the last identity, where µ̃j = 0 for j > N and where

|Rj,j′,h| =
∣
∣
∣〈[πE

+,b,V h
− πh](U+,θũj′) , e

−µ0U+,θũj+N 〉r
∣
∣
∣ ≤ 2‖[πE

+,b,V h
− πh](U+,θũj′)‖ ≤ 60A−1/2 .

By Gaussian elimination like in [Lep] or equivalently by changing the basis B′ into an other ε-orthonormal basis
of (E+,b,V h , 〈 , 〉r) with ε = C0,N+A

−1/2 , we deduce with a possibly enlarged constant C0,N+ that the singular
values, µj of δ+,b,V h

∣
∣
E

+,b,V h
satisfy:

∀j ∈ {1, . . . ,N+} , (1 + C0,N+A
−1/2)−1µ̃j ≤ µj ≤ (1 + C0,N+A

−1/2)µ̃j

We deduce the comparison between eigenvalues (λj)1≤j≤N+ of B±,b,h and (λ̃j)1≤j≤N+ or 1
2∆V h,1 is deduced from

λj =
1
2µ

2
j and λ̃j =

1
2 µ̃

2
j , by doubling the constant C0 ≥ 1 .

Finally, still in the case of B+,b,V h , the degree can be followed by splitting the orthonormal basis (ũj)1≤j≤N+

according to the degree p ∈ {0, . . . , d} with {ũj, 1 ≤ j ≤ N+} = ∪dp=0{ũ(p)
jk

, , 1 ≤ k ≤ N (p)
+ (V )} . In particular

we notice that ũj = ũ
(p)
jk

implies that the total degree of uj and vj equals p (in this +-case).

Let us give some details for the Poincaré duality argument which gives the result in the − case. Attention
must be paid on the choice of the Thom form, the unitary map U−,θ , when Q is not orientable and F = Q×C 6=
(Q × C) ⊗ orQ . Let us split the basis ũj,V h constructed in the + case according to the degree p ∈ {0, . . . , d} ,
for the potential and let ⋆Q (resp. ⋆X) denote the Hodge star operator on Q (resp X which is orientable). We
construct the basis B (resp. B′) with the vectors

u
(d+p)
j = π

E
(d+p)

−,b,V h

e−λ0U−,θ[⋆Q ũ
(d−p)

j,−V h ] = π
E

(d+p)

−,b,V h

⋆X e−µ0U+,θ[ũ
(d−p)

j,−V h ] ,

resp. v
(d+p)
j′ = π

E
(d+p)

−,b,V h

U−,θ[⋆Q ũ
(d−p)

j,−V h ] = π
E

(d+p)

−,b,V h

⋆X U+,θ[ũ
(d−p)

j,−V h ] .

The C0

A1/2 -orthonormality of B and B′ is easily deduced from the + case. Then we must compute

δ∗,r−,b,V hu
(d+p)
j = e−λ0e−H+V h

Kbd
∗,XK−1

b eH−V h

eλ0u
(d+p)
j

= ⋆X e−µ0e−H+V h

Kb ⋆
−1
X d∗,X ⋆X K−1

b e−H+V h

U+,θ[ũ
(d−p)

j,−V h ]

= (−1)(d−p+1) ⋆X e−µ0e−H+V h

Kbd
XK−1

b eH−V h

U+,θ[ũ
(d−p)

j,−V h ]

= (−1)(d−p+1) ⋆X e−µ0U+,θ[d−V h,1 ũ
(d−p)

j,−V h ]

= (−1)(d−p+1)µ̃
(d−p)

j,−V h ⋆X e−µ0U+,θ[ũ
(d−p+1)

k(j),−V h ] .

By taking the 〈 , 〉r scalar product with v
(d+p′)
j′ like in the + case, we obtain

〈v(d+p′)
j′ , δ∗,r−,b,V hu

(d+p)
j 〉r = (−1)d−p+1δp′,p−1δj′,k(j)µ̃

(d−p)

j,−V h + µ̃
(d−p)

j,−V hO(A−1/2) .

We deduce that the singular values of δ∗,r−,b,V h

∣
∣
E

(d+p)

−,b,V h

are comparable, with an (1 + O(A−1/2)) factor, with the

singular values of d−V h,1 : Ran 1[0,2̺h](∆
(d−p)

F+,−V h,1
) → Ran 1[0,2̺h](∆

(d−p+1)

F+,−V h,1
) , where we recall that ∆F+,−V h,1

acts on C∞(Q,ΛT ∗Q ⊗ C) . The eigenvalues of B
(d+p)

−,b,V h are thus comparable with an (1 + O(A−1/2)) factor,

with the eigenvalues of 1
2∆

(d−p)

F+,−V h,1
which by Poincaré duality for the Witten Laplacian are the eigenvalues of

1
2∆

(p)

F−,+V h,1
, where we recall that ∆F−,V h,1 acts on C∞(Q,ΛT ∗Q⊗ C⊗ orQ) .
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