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Abstract

The name “Grushin problem” refers here to the variation of Schur complement technique introduced by
J. Sjostrand in which is now a commonly used tool in spectral analysis. A general presentation of this
method with a wide range of applications was given in [SjZw]. Recently in [ReTal, Q. Ren and Z. Tao proposed
such an approach for the analysis of the low lying eigenvalues in the large friction limit for a simple scalar
kinetic model. Inspired by this recent work and with the introduction of functional spaces in [NSW] adapted to
the analysis of geometric Kramers-Fokker-Planck operators, we study in this article the combined asymptotic
analysis of Bismut’s hypoelliptic Laplacian, in the high friction & — 0% and possibly low temperature h — 0T
regimes.
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Keywords: Bismut’s hypoelliptic Laplacian, Grushin problem and spectral convergence, multiscale analysis,
large friction, low temperature.
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1 Introduction

1.1 Problem and motivations

In [Bis041][Bis042], J.M. Bismut introduced the hypoelliptic Laplacian which allows to extend to p-forms the
generator of the semigroup associated with the Langevin process. The Witten Laplacian, self-adjoint and elliptic,
corresponds to the simpler description of the Brownian motion, proposed by Einstein and where the temperature
denoted by h > 0 is essentially the only parameter. The full Langevin process written here in the euclidean case:

dg=pdt , dp= f%&]‘/dt — %pdt + %dW
involves actually the two independent parameters h > 0 and b > 0, where h > 0 can be interpreted (after
rescaling) as a temperature and % as a friction parameter. The low temperature limit A~ — 07 is known as the
semiclassical limit for the semiclassical Witten Laplacian Ay, and many works have been devoted to its analysis
after the seminal articles [Wit] [HeSj4] [CFKS] or to its consequences for the theory of topological invariant of man-
ifolds (see e.g. |[Zha][BiZh]). It also has obvious relationships with all the asymptotic results of Freidlin-Wentzell
theory (see e.g. [FrWe]) and its development in the study of simulated annealing in the late 70’s (see e.g. [HKS]
or [Mic]). We refer the reader to [Ber] for additional references and a historical background and to [LeSt] for the
presentation of more recent applications and issues for the design of effective algorithms in molecular dynamics.
It was rapidly shown in [Bile] that the large friction limit & — 0% (and h > 0 fixed) of Bismut’s hypoelliptic
Laplacian , is related to the Witten or Hodge Laplacian on the base manifold. It is summarized by the commonly
used terminology of “overdamped Langevin process” for Einstein’s description of the brownian motion.
Motivated by the applications to molecular dynamics or kinetic theory many works have been devoted in the last
twenty years to the accurate computations of small eigenvalues of such operators, with the aim of providing quan-
titative information about the trend to the equilibrium. Even in the elliptic, self-adjoint and purely semiclassical
framework of the semiclassical Witten Laplacian new questions arouse concerned with the accurate computation
of spectral element in various geometrical or topological landscape and possibly with boundary value problems.
In particular, in [LNV2] it was proved that when the potential V' € C°°(Q;R) has finitely many critical values and
Q is a closed manifold, the various exponentially small scales of low-lying spectrum of the semiclassical Witten
Laplacian’s Ay, in the limit A — 0T are determined by a topological object: the persistent homology bar code
of the function V.
One question adressed in this text is whether a similar result holds for Bismut’s hypoelliptic Laplacian in the
limit 6 — 0% and h — 0% .
Before giving our main result, let us recall, what is known about similar problems:

e The accurate description of exponentially small eigenvalues for semi-classical Witten Laplacians, in con-
nection with Eyring-Kramers asymptotics, the generalized Arrhenius law, or the study of quasistationnary
distributions, has been studied or used in [BEGK]| [BGK| [HKN] [HeNi2] [Lepl] [LeNi] [DLLN] [LeNe]
[LNVI] [LNV2| and references therein.

e For the Langevin process, the semiclassical regime, which after a rescaling corresponds to b Vvh and
h — 0T, for functions (O-forms) in the euclidean space with a Morse potential V was considered in
[HHS]. An accurate study of the tunnel effect, with microlocal analytic techniques, led to a full asymptotic
description of the bottom spectrum under the above assumptions.

e A similar asymptotic framework was considered in the Ph.D thesis of S. Shen (in [She]) for Bismut’s
hypoelliptic Laplacian on the cotangent of a closed riemannnian manifold with b o< v/h, h — 0%, the
potential V' is a Morse function and the metric is euclidean in Morse coordinates around critical points.

e In [BLM] the analysis of Hérau-Hitrik-Sjostrand was extended to a more general class of still scalar (0-forms)
semiclassical non self-adjoint and subelliptic operators. Such methods have been developped in [Norl][Nor2)
for other relevant kinetic scalar models where the diffusive part is no longer given by a harmonic oscillator
hamiltonian but by a possibly non local operator in the momentum variable.

e In [BELS] the authors considered the scalar operator for the Langevin dynamics in the euclidean space
but with rather general kinetic energy and potential function. They discuss according to the friction and
temperature parameter, the size of the spectral gap (or resolvent estimate). Their variational (so called
“hypocoercive” ) method is combined with a Schur complement method which is reminiscent of the formal
calculations of [BiLe]-Chap 17.

e In [ReTal Ren and Tao developed a Grushin problem approach for a simple kinetic model in a high friction
limit v =  — 4o00. Their operator is Y—yAY, on the cosphere bundle S*Q = {(¢,p) € T*Q, g (q)pip; = 1}
where ) is the hamiltonian vector field of the geodesic flow and A%} is the vertical Laplace-Beltrami operator
on the spherical fiber.



The results of S. Shen in [She] are up to now the only accurate asymptotic results on p-forms for Bismut’s
hypoelliptic Laplacian in the combined limit b — 0" and A — 07, and it is done under some restricted asumptions.
We note that the works of [Bile] and [She] are also concerned with the convergence of generalized determinants
in connection with Ray-Singer metrics on determinant bundles and other topological invariants, by developing
the strategy of [BiZh|[Zha].

Additionally it is known from the various studies of the elliptic case, i.e. the semiclassical Witten Laplacian,
that 1-forms can be extremely useful even if one is only interested in the scalar case (degree 0). This is due to
the supersymmetric argument: if w is an eigenvector in degree p then for a Hodge type operator, (d + d*)? =
dd* +d*d, dw # 0 (resp. d*w # 0), dw (resp. d*w) is an eigenvector of degree p + 1 (resp. p — 1). For these
reasons, it is very natural to explore the accurate description of the small eigenvalues in the combined asymptotic
regimes b — 0 and h — 0T

Although our previous work, was initially intended to the study of Bismut’s hypoelliptic Laplacian with boundary
conditions, it rapidly appeared after we heard of Ren and Tao article [ReTal, that our functional framework
should allow a rather straightforward transposition of their method. Briefly said, it suffices to replace the total
Laplacian A, , on the total space S*@ by the operator W¢ introduced in [NSW] for the definition of global
Sobolev spaces adapted to the analysis of Bismut’s hypoelliptic Laplacian. This combined with various explicit
geometric formulas in [Bis05][BiLe] finally convinced us that an accurate description in the double asymptotics
b— 07 and h — 0% (it works for h = 1) and for a general potential V € C*°(Q;R) should be accessible.

1.2 Main result and comments

We are concerned with the spectral and semigroup properties of Bismut’s hypoelliptic Laplacian, denoted here by
Bi@%v on X =T*(Q, where b, h > 0 are parameters. Actually, the operator B4 p v is equal to 2(m;5b7i7'[)2 with

the presentation of [BiLel-Section 2 and the additional parameter h > 0 is introduced by replacing V' by %V.
We refer to Subsection below for a detailed presentation. The semiclassical Witten Laplacian on the closed
base manifold @ is given by Ay, = (dv,s + d*v,h)Q with dyp, = e ¥ (hd)e% = hd + dV A and we refer the reader
to Subsection 2.3 and Subsection for various unitarily equivalent presentations adapted to our problem. We
use the h—dependent version of the double exponent Sobolev spaces W21’52 introduced in Definition for

h =1 and in Definition 2.6.1] for h €]0,1].

The data of our problem are the spectrum of the semiclassical Witten Laplacian Spec(Avy,;) = Spec(Ayn 1)
and the parameters b, h €]0,1].

The following definition makes sense if one considers asymptotic regimes where h — 0% and when V €
C*(Q;R) has a finite number of critical values.

Definition 1.2.1. The parameter op, €]0,1] parametrized by h €]0, 1] measures a spectral gap for Ay, according
to

1 c
Spec(5Av,) N[0, o] € [0,e77] € [0, 5]

1
and Spec(aAv,h)ﬂ]gh, +o00[C [4on, +00]

for all h €]0,1]. We call No(V) the rank of 1g,,,](3Av,n) and Nj(tp)(V) the rank of 1[0,gh](%A$L) forp €
{0,...,d}, where the £ sign refers to the choice of the line bundle Fx = Q x C or F_ = (Q xC) ® org .

For every p € {0,...,d} the eigenvalues of %AE}?L in [0, on] , repeated with multiplicity, are labelled by ng)j,h(V) ,

1<j<NiL(V), in the increasing order.

It was proved in [[HeSj4] (resp. in [LNV2]) that one can take g5 = ch with ¢ > 0 (resp. on = e~ % with
€ > 0 arbitrarily small) when V' € C*°(Q;R) is a Morse function (resp. has a finite number of critical values).

Additionally the number of eigenvalues of %Ag}h counted with multiplicities, in [0, gz], is fixed for h €]0, ho],
ho > 0 small enough, and determined by the topological properties of the sublevel sets of V', via Morse the-
ory, or more generally via the barcode of persistent homology. We note also that the Poincaré duality implies
/\/'J(rp)(V) = NPV for every p € {0,...,d}.

Definition 1.2.2. For every p € {0,...,2d}, the eigenvalues of Bip,)b,% lying in D(0, %) , repeated according to

their algebraic multiplicity, will be denoted by ()\gf)j h)1<j<N(p) . The characteristic space
T/ 1<G<N

)  _ 1 () -1
Elyn Ran<% /z_gg(ZBi’b’%) dz)
h



has the dimension ./\/'ip) = dim(Ef)b n) - When Bf)b v |E(p) is diagonalizable (see Theorem[I.2.3-a)), a basis of
7 DR NN

etgenvectors is written (ugf)] h)1<j<N(p) and its L? dual basis is denoted by (vf)J h)1<]<N(p>
G 1<GENY

Theorem 1.2.3. Let g be a metric on Q and let V € C(Q;R) be a potential function with finitly many critical
values. In the following statements Cs > 1 denotes a large enough constant determined by s € R.

a) When bCy < hop < h all the eigenvalues of By, v with real part below %% are real and non negative:

Spec(Biybﬁ%) N{zeC,Re z < ﬁ} = Spec(Biybﬁ%) [0, ﬁ] = Spec(Biybﬁ%) N D(0, ﬁ)
In degree p € {0,...,2d}, their number, counted with multiplicity, is given by Nj([p) ./\/'(]Di5 %)(V) ,

o . . . L 2d—
which is 0 if p > d (resp. p < d) in the + case (resp. — case). Poincaré duality implies )\(p) = )\( p) .

Additionally the restricted operator B is diagonalizable.

:t b V ’E(P)

b) Under the stronger assumption bA*Cy < hop, < h with A > Cy, the comparison between the Witten Laplacian
and Bismut’s hypoelliptic Laplacian of the low lying spectrum, is given by

~(P—_%i%)(v)

_ )‘:I: h
<AL, < (hcpa il

+
M)

Vpe{0,...,2d},Vj € {1,... NP}, (14+CoA~1/2)! >

c) When bCy < hoy , the semigroup (e "% );~o satisfies:

_tB _
o Py _ Z Ze N h|u(P>] h><”§f)g W+ Ri(t)
pe{0,...,2d} J
1 +on

with || Rp(t Hz;(w“w“)—b2(h2 t) "

and  max([|ul; [l [02) llgo) < C,

for suitably normalized basis of eigenvectors (ugf,)j,h)gjg/\/g) .

The second statement b) says in particular that in the limit A — 07 the eigenvalues of Bismut’s hypoelliptic
Laplacian have the same exponentially small asymptotic behaviour as the eigenvalues of the Witten Laplacian.
The latter were shown in [LNV2] to be related to the bar codes of persistent homology.

Corollary 1.2.4. When V € C*®(Q;R) has finitely many critical values and under the condition C§b < hoy, ,

/\(p)] h)1<j<N(p) satisfy limy, o+ —hlog()\sf)J n) = 2€§p) , where Egp) is the length of a bar, indexed
+ SISNE

the eigenvalues (
by j, with a degree p endpoint in the bar code assoctated with V . The — case is obtained by Poincaré duality

with A@) a= AP

+.4,h
Comments:

e In order to write a general statement, we preferred to expressed things in terms of the non explicit spectral
gap gy, of Definition[[L2.Jl For a general function V' € C*°(Q; R) with finitely many critical values the result
of [LNV2] says that one can take g, = e~ with € > 0 arbitrarily small. But when one knows better the
geometry of the critical sets an algebraic expression g, = h” can be obtained. The basic example is when
V(z) = 2™ in R, in which case a simple rescaling argument gives gp = Rt

e When the potential V' is a Morse function, the condition Cob < gph says b < ch?, which is stronger than the
condition b < ¢v/h suggested by the works of S. Shen [She] and Hérau-Hitrik-Sjostrand [HHS] , where they
considered b o< v/h . Actually our method relies on the elimination of the potential term, as a perturbative
term, after the rescaling ¢y, : Q — Q" = %Q of Subsection 2.6l A similar analysis of what is proposed here,
could be developed with better treatment of the Morse potential function. Instead of the above dilation
take ¢ 5 @ Q Q‘/ﬁ = ﬁ@ and use on Q‘/ﬁ a partition of unity in riemannian balls of radius Mvh
with M > 1 large enough. With a more inclusive description of the scalar quadratic model in every ball,
which takes better into account the quadratic Taylor approximation of the potential V‘/E(q) = ﬁV(\/ﬁq) ,
subelliptic estimates of [NSW] can be improved in particular by using the accurate quantitave estimates
of [BNV] for quadratic Kramers-Fokker-Planck operators in the euclidean space. In the end the rescaling
leads to the comparison of the spectral gap for AV\/EJ on Q‘/ﬁ, which by unitary equivalence is equal to

%gh o 1 and the rescaled parameter % instead of % . One then recovers the natural condition b < c¢vh .
This is just a sketch and an accurate spectral analysis remains to be done. In this article, we preferably
considered a C*°-function without assuming that it is a Morse function, in order to highlight the generality
of the Grushin problem approach.



e In [LNV2] results were given for non smooth potentials, in particular when V is a Lipschitz subanalytic
function. This more general case is not considered here and it would require a specific analysis, which could
follow partly the strategy presented here.

e Theorem [[L2.3]is a digest of what can be deduced from the Grushin problem method. Many intermediate
resolvent estimates can be used and maybe improved for other purposes.

e Finally, we have not considered as in [Bile] and [She|] the convergence of generalized determinants. Actually,
for topological invariants which do not depend on the riemannian metric, the simplifying assumptions of
[She] suffice for a general treatment. It is not clear that a more accurate and general analysis would bring
relevant improvements.

1.3 Outline of the article

The geometric framework, the operators, the various scalings and the functional spaces are defined in Section
Remember that Bismut’s hypoelliptic Laplacian is a second order non self-adjoint and non elliptic operator acting
on differential forms defined on the total space X of the cotangent bundle T*@Q of the closed riemannian man-
ifold (@,g). The definition of the hypoelliptic Laplacian in[Bis05][BiLe], the associated Weitzenbock formula,
and the introducition of adapted functional spaces, strongly relies on the horizontal and vertical decomposition
T(T*Q) = TX = THX © TV X recalled in subsection The exact definition of the Witten Laplacian and
the hypoelliptic Laplacian are given in Subsections and An h-dependent change of scale is introduced
in Subsection This allows to get easily uniform constants with respect to h €]0,1] in all the subelliptic
estimates which are used in the text. The first of these subelliptic estimates in Subsection 27 is an adaptation
of the general results of [NSW] to the present framework. Although Theorem [[23is expressed for the operator
By v = By (o, g9, ¥ p) ON X = T*Q@Q, all the analysis of this text is carried out on the dilated geometry of

2y
Subsection .6l with the operator By i yr = By (gn gn v by, b =7 b and where the / is dropped afterward) where
the h-dependence is easier to track.

In Section [3, various perturbations or modifications of the operator B, ;, y» are considered, which have no
spectrum around 0. For such new operators, resolvent and possibly subelliptic estimates are specified. One of
them, denoted by By , yr + Q4 1 vn, is directly inspired from the work [ReTa] of Q. Ren and Z. Tao. In a crucial
way, this section aims at providing subelliptic estimates for By , y» + Q4 1 y» with a uniform lower bound with
respect to b, h €]0,1] for a large enough new additional parameter A > 1. Due to the new complexity of our
problem but also in order to improve Ren-Tao lower bounds, this is done in two steps with the intermediate
operator By ; yn + A%mg 4 easier to handle, especially if one uses the maximal subelliptic estimates.

The writing of a Grushin problem in Section [ allows an accurate comparison of the resolvents (B , yn +
Qarvh—2)" (Beyyr—2)"1, (Ayng —2) " and (Ayn 1 +Qa pyn —2) . Although the resolvent estimates
of Section [] can be written with uniform constants which are independent of the Sobolev exponent s € R, the
range of validity for the parameters b, h, A > 0 actually depends on this Sobolev exponent s. Attention must be
paid to the formal calculations which are not done in the general distributional setting but rather in an arbitrarily
fixed range of Sobolev exponents s € [Smin, Smax] -

The proof of Theorem is achieved in Section Bl The resolvent comparison in Section @ and the spectral
information of the semiclassical Witten Laplacian, summarized in Definition [L21], provide the first accurate
localization of the spectrum of B, , y/» around 0, with new accurate estimates for the resolvent and the semigroup
We finally use the Hodge structure and the PT -symmetry property, r* By , yart = Bi bvh with r* a unitary
involution, in order to make an accurate comparison between the e1genvalues of By ; yn, identified now as the
squared singular values of a restricted differential, and the eigenvalues of the Witten Laplacian Ay ;, with
Spec(Ayn 1) = Spec(Avy,p) -

2 Framework

2.1 Total space X of the cotangent bundle

Let (Q,g7?) be a closed Riemannian manifold of dimension d, VC the associated Levi-Civita connection and
let X = T*Q be the total space of the cotangent bundle. On one side, the total space X is a symplectic manifold
with the canonical symplectic form . One the other side, the kinetic energy function is globally defined by

2
Iply 1 g

Vr = (¢,p) € T, Q, M@ZQ 39 “(0.p)- (2.1.1)



Then the hamiltonian vector field ) of the geodesic flow is given by
d*H +iyo = 0. (2.1.2)

The scalar vertical harmonic oscillator O is the self-adjoint differential operator defined with its maximal domain
in L?(X, dgdp; C) by

1 . d 1
5(9TQ(Dp,Dp) +9" 9p,p)) > Sld with Dp = =9, (2.1.3)

where —AYV = ¢T?(D,, D,) is the fiberwise vertical Laplacian.

2.2 The horizontal-vertical decomposition

The Levi-Civita connection induces a splitting of the tangent space and cotangent space of X given by
TX=TIX@T"X ~r*(TQaT*Q) ; T'X=(T"X)" o (T"X)" ~7*(T*Q & TQ) (2.2.1)

where 7 : X = T*Q — Q@ is the natural projection, T# X ~ 7*(TQ) is the horizontal distribution and TV X =

ker(dn) ~ 7*(T*Q) is the vertical distribution. Once a frame uy,us, . .., uq and the associated coframe u®, ..., u?
are locally chosen, we take a copy of those two frames @1, s, . . ., Ug and @', ..., 4% where the above identification
is written
THX ~ Span(uy,...,ug) ; TVX ~Span(d',...,a%)
and
(T*X)" = Span(u',...,u?) ; (T*X)V = Span(iy,...,4q).
In the rest of the text we will use the above identification with the following additional conventions
e When u;’s are associated to a coordinate system on Q) i.e. u; = 6%1- for all ¢+ € {1,...,d} then we use the
notation 5 5
™ (u;) = e; = —eTHX ; 7@ =¢é= eTVX
( 1) ( aq ijk ap] ) ( ) apz
and

') = e =d¢t € (T* X)) 5 7*(t;) = é& = dp; — Fupkdq c(T*X)V

Where Ffj denote the Christoffel symbol for the Levi-Civita connection, defined by V

o 9
By =T} (0) 55

e When u;’s is an (local) orthonormal frame of T'Q we will use the notation
™) =fieTIX : m@)=ferT"Xx (2.2.2)
and W) = fle (X))  mt(a) = fi e (T*X)V. (2.2.3)

Passing from one writing to another is simply given by a section P of the fiber bundle GL(T'Q) above Q. Indeed
foralli e {1,...,d}

i 0
J— J_—~_
u; = P(q)] o0
The following relations hold on T'X and T*X
fi = P(@)le; fr=(Pg)~")e,
and  f' = (P(q)7")j¢’ fi = P(g)é;.

With this decomposition

e The metric g7X on TX is defined as g7% = g7@ @t 7" with respect to the decomposition ([Z2.I). The
frame fi,..., f4, f", ..., f% is an orthonormal frame with respect to ¢7X. Similarly we define the metric
g7 X = gT" @1 g2 on the cotangent space T* X of X. For the exterior algebra we use AT*X (AT*Q)

(ATQ) as a vector space and M"Y = gAT"X @ gATX  With the orthonormal frames f1,..., f4 fi,..., f4,
an orthonormal frame of AT* X is given by (f! A f)ricq...dy

e The hamiltonian vector field ) defined by (ZI.2) can be written
Y= gT*Q pgez szfz

where p = p;dq’ = p; f' € 7;Q.



e The vertical Laplacian equals
d

AV = g"es ep)e'e = (1)
i=1
e The tautological connection on TX and T*X, extended to AT*X or AT*X ® n*or(Q), is defined by the
following formula

TX _ k . TX 35 _ _1J sk
Ve e = ek ;o Vel = —Iyer,
Vgixej = 0 ; VéTiXé] =0
T*X j _  _TJ .k . T*X 5 k5
and Vev* e = Ie® Vei* e = TIYex,
VeT Xel =0 ; VeT Xe; = 0.

2.3 Hermitian trivial bundle F' over ()

Although Bismut’s theory of the hypoelliptic Laplacian in [Bis041] [Bis042] [Bis05] works in a much more general
framework, we focus here on the simpler case which makes the connection with the standard semiclassical Witten
Laplacian on the base manifold (). Namely we work with the trivial bundle ' = @ x C on the base manifold
Q, equiped with the hermitian metric g = exp(—2V(q))dZ ® dz and the trivial connection V¥ = d?. When
smooth duality arguments are used on a non-oriented manifold @, the trivial bundle @ x C must be replaced by
(Q x C) ® org where org is the orientation bundle on ). Locally nothing is changed.

By following Bismut’s notations, set

w(VF, g") = (¢")'VFg" = 24V,

which is here a real scalar 1—form on Q. The adjoint connection V™* of V¥ with respect to gf' equals

VI =d? —2dv

and the associated unitary connection V5 is

vt = d@ — qv.

Contrary to the general case studied in [Bis05][BiLe], here the unitary connection VI is flat since its curvature

RF is given by RF =

—1w(VE, gF)y Aw(VE, gF) = —dV A dV = 0.

In Bismut work and more generally for a probabilistic approach, the natural L?-space is L?(Q, dVoly,; AT*Q @ F')
where the notation recalls the non trivial metric ¢ = e=2V(@ on F ~ Q ® C, in the L?-scalar product

(U, V) L2(Q,dVol, AT+ Qe F) = / gAT*Q(ﬂ,v) e 2V dVol,(q).
Q

For the accurate spectral analysis it is simpler to work in the standard L2-space, L*(Q, dVoly,; AT*Q ® C), with

the scalar product

<ua”>L2(Q,dV019;AT*Q®C) = /QQAT*Q(EU) dVOlg(Q)-

Passing from one formulation to the other via the unitary multiplication by e*

table.

2 is summarized by the following

Functional space

L2(Q,dVoly; AT*Q ® F)

L*(Q,dVoly; A T*Q @ C)

\%4

\%4

Sections v=e’u u=e v
metric gt = exp(=2V) 1
Connection VE =d? d® +dv
Endomorphism w w(VF gl = —2dv w(VEF gl = —2dv
Adjoint connection VE* =d@ —2dV d® —dv
unitary connection Vi d@
differential d? d9 + dVA =: dva
codifferential d9F* = o2V q@xe—2V — JQ@* 4 9iqy, d9* 4+ igy =: dyy

Hodge/Witten Laplacian

O%F = (d9 + @ Fx)?

Ay, = (dva +dy,)?

Table 1: Correspondance of L? spaces



We recall the formulas

OeF — (deQ,* + dQ’*dQ) + 2Ly, (2.3.1)
dvp = e V(d)e =d+dVA , dyy=e"(d)e " = (dv1)" =d" +ivy, (2.3.2)
Avi = (dvi+dy,)® = (dvady, +dydy,) = (d9d9" +d9%d9) + |VV? + (Lov + LGy) . (2.3.3)

The subscript 1 in dv,1, dj,; and Ay,; refers to the specific case h = 1 for the semiclassical Witten differential,
codifferential and Laplacian:

dvy =e 7 (hd)er , dj, =en (hd)*e
AV,h = (dV,h + d*Vyh)Q = hQ(dd * +d * d) + |VV|2 + h(EVV + [’*VV)

Within the presentation of Table [Il the semiclassical regime can be introduced by simply replacing V' by % and
by choosing the metric & = e~ . This actually leads to

2
OF = (d9d?" + d9*d?) + Loy
in L?(Q, dVoly; AT*Q ® F), transformed in the L?(Q;dVoly; AT*Q ® C) picture into

1

EAV,}‘L .

We will explain in the specific Subsection 2.6 how the semiclassical asymptotic regime, or more generally h €]0, 1],
can be easily introduced in the analysis of geometric Kramers-Fokker-Planck operators of [NSW]|, where the
parameter h €]0, 1] was actually not considered.

1 1
(9479 + ") + 5|V + - (Lov + Ly) =

2.4 Functional spaces on X

The isomorphism of vector bundles £ and 7*(AT*Q ® ATQ ® F') is provided by the horizontal-vertical decom-

=E

position (2Z21)) of AT*X ® n*F . With this identification, the vector bundle £ is endowed with the metric
(g2 @ @ gMT? ® gF') where we recall F = Q x C (or possibly F = (Q x C) ® org) and g =
The pulled back vector bundle will be denoted by £ = AT*X ® 7*F and depending on the case £, = AT* X @ C
and £- = AT*X @ C ® m*(orq). With the symplectic volume denoted by dgdp = dVol g ,~1, the associated L?

space, denoted by L?(X,dqdp;E) and equal to L?(X, e~ L

dqdp; Ei) is given by the hermitian scalar product

<uvv>L2(X,dqdp;5) :/ gAT X(u ’U)
X

V(q)

After setting & = e~ "% w and 0 = e*@v, it can be replaced by the standard L?(X, dqdp; £+) with the scalar
product

(,7) = /XgAT X(@,9) dgdp = (u,v) r2(x dgdpses) -

Those L? spaces and the Schwartz space of rapidly decaying (as p — o) smooth sections, S(X; ) and S(X;E4),
coincide with the obvious density result. The first L?-norm depends on h > 0 while the second L?-norm does
not, change with h > 0 and is more convenient here.

We work in L?(X, dgdp; ).

When necessary, formulas of [Bis05|[Bile| written in L?(X, dqdp; £) with the corresponding scalar product
and duality, will be translated later by extending the general rules of Table [T

For the analysis it is more convenient to work with a local presentation on the base manifold @ of the
functional spaces and associated differential operators.
Definition 2.4.1. Let ZJ 1 J( ) = 1 be a quadratic partition of unity on Q, such that above a neighborhood

Vo.; of every supp0; , there are smooth dual orthonormal frames (ujl, ey j of T*Q’V and (uj1,...,u;q) of

TQ‘V Set fi =m*(u') € (T*X)T and f; = 7*(w;) € (T*X)V according to (ZZ3I).
For F QxCorF=(QxC)®org, let Ty g and Iy x denote the product of isometries:

1 1
Ty :L*(Q,dVoly; AT*Q @ F)— <@<]L2(v9,j,d\/olg; AT*Q@F)|, )= &  L*(Vp;,dVoly;C)  (2.4.1)
1<5<. »J

s > (0j8)1<i<s = Tpqs=(sj1) 1<y (24.2)
{



with

0js = Z Sjﬁ]((])U; , uj’I:uél /\.../\u;m ,
Ic{1,...,d}
and
2 e P + 2/«
Zox :L7(X, dqdp;rfi)%KEBQL (7" (Vo) dadp; x| .., 1) = B L (7" (Va,5) dqdp; C) (2.4.3)
== I Kc_{Jl_,,,,,d}
s = (058)1<j<s = (X)) 1<i<s (2.4.4)
IL,KC{1,...,d}
with . ' _ . . A
Ops= Y si@ff Nk o F=FAANET L fik=Fie A A fi
ILKC{1,...,d}
Let us gather obvious properties of the isometries Zy o and Zy x:
e The adjoints of Zy g and Zp x are given by
I {(S;‘,I) 1<5<J ] = > 0(@siu,
Ic{1,...,d} 1<j<J
I1c{1,...,d}
and T5 % [(s] 1) 1<j<J ] = Z ej(Q)Sffff A fix -
IL,KC{1,...,d} 155<0
Ic{1,...,d}

e The isometry Zy ¢ is continuous from C®(Q; AT*Q® F) to & 1<j<s C5(Va,5;C), resp. Iy x is continuous
Ic{1,...d}
from S(X : £x) to ® 1<j<s S(7*(Ve,;); C) while the supports satisfy supp si; C 7*(supp 6;), with
Ic{1,...d} ’

Ig,QIG,Q = ]:dL2 ) IngI&Q‘C‘X’(Q;AT*Q(@F) = IdC“’(Q;AT*Q@F) )

and IgﬁxIH,X = IdL2 5 Ig»XI‘g’X‘S(X;Ei) = IdS(X;gi) .

e The vertical harmonic oscillator hamiltonian given by (21.3]) satisfies as a self-adjoint operator

[_AV +|pl2
O0=1I5x fmq @ Idgyuoza | Lo, x (2.4.5)
with the functional calculus given by
—AY + pl7
1) = Tj x| H(———5—20) @ Td g s | To x (2.4.6)

for any Borel function f: R — C. .
The vertical degree NV written locally as 2?21 fiaNi Fo is diagonal according to

1
NY =1; « @ |K|1d©,x2d} To.x - (2.4.7)
T LKC{L,.. K}

We recall now the general definition of the global Sobolev spaces W52 (X;&+), (s1,s2) € R2, introduced in
INSW].
With the horizontal-vertical decomposition ([Z21]) and the metric g%, the horizontal scalar Laplacian (see
[BeBd]) is given by - -

An = g (@)(eie; = Ther) = ()" 0 g7 (a) o 5.,
while the vertical scalar harmonic oscillator operator O has already been introduced in (2.1.3)).
The scalar operator W? is defined as the closure in L?(X, dgdp; C) of the differential operator C, — Ay + C,O? :
S(X;C) — S(X;C) for Cy > 1 large enough. The operator W2 is self-adjoint and (W?, O) is a pair of commuting
self-adjoint operators.



The non scalar version W¢ is modelled on the scalar version after using the quadratic partition of unity on @,
Z'] 02(q) = 1 and the isometry Zp x . It is given by

Jj=1"7
J
Wi =T x W?@1dg,u0a | Tox =Y _0;(q) o W2 ;00;(q). (2.4.8)
j=1
where wa» is defined by using the connection V7 which is trivial in the orthonormal frame ( jl, ey f]d, fj71, cey fj,d) .

Again for C; > 1 large enough, (W¢, O) is a pair of strongly commuting self-adjoint operators in L?(X, dqdp; £+ ).
We refer the reader to [NSW] for details.

Definition 2.4.2 (Sobolev Spaces). For all s1,s5 € R, the double exponent Sobolev space W2 (X, dqdp; E+) is
defined by : "

Wes2(X:E1) = {u € S'(X;E4), 02 (W3)*™/?u € L*(X,dgdp; 1)}
The norm is defined as ||l o2 (x.e,) = |OF (W2)F ul|L2. For simplicity, those spaces will often be denoted
by WeLs2 |

The pseudodifferential calculus associated with W§ was introduced in [NSW] where the order of operators is
recalled here:

pi,Dy, (1/2) . O,e; (1) , V5 (3/2) , (W)*/2(s),

and it says in particular

WO T3 Cpyssz ¢ Wos2
)
e e Pt il
WOz c Ysnse c Yos2—3 for s1 > 0,50 € R,

and
QW2 =S8(X36:) U W =S/(X;€s) foralls €R

s2€R S$2€

We end this section by adding some notations and by recalling some functional analysis properties.

Definition 2.4.3. For a continuous operator A : S(X;E4) — WO’S(X; E+), which is closable in the Hilbert space
WO’S(X;Ei) , its closure will be denoted by A% while A=A". R

Its formal adjoint for the W (X; Ex)-scalar product will be written A : WO3(X; &) — S'(X;E1), with A’ =
A0 The same notation will be used for its restriction to S(X;Ex) instead of Ahs’S(X‘Si) .

Its adjoint for the WO*(X; EL) will be denoted by A** : D(A*5) — W95 (X; Ey) with u € D(A*®) characterized

by
3C, >0, Vv e S(X;8),[(u, Av) .| < Cusl

UHV\}U,S .
Again the simpler notation A* = A*0 is reserved for the case s = 0.

Because (W3)*/? : WO3(X; &) — L*(X,dgp;E+) is unitary, while it is a continuous automorphism of
S(X;E+) (resp. 8'(X;E4)), the study of A: S(X;E+) — WY¥(X;E4) is equivalent to the one of

Ay = (WE)PAWE) /2 S(X;Ex) — L*(X, dpdp; Ex) .

This is in particular convenient when A : S(X; ) — S(X; ) is continuous. Actually A = (VV(,Q)’S/QA_SO(I/VQQ)5/2
and we can simply work in L?(X, dqdp; £+) with the family of densely defined operators (Ay)ser as we already
did in the proof of Proposition

We deduce in particular the formulas:

1,8 !/
A = (W TRAWRTR]T = W) (WA W (W) (2.4.9)
= (W) PAL (W)
(A")s = A (2.4.10)
and (A*), = A*. (2.4.11)

In all of our cases the operator A and its formal adjoint A" are continuous from S(X; &) to itself. Alternatively
A is continous from S(X; 1) to itself and from S§’'(X;E4) to itself. We always have

A" c A% and AL C Af

10



in the sense that A”-5" is the minimal extension of A’ while A*% is its maximal extension. Under the

S
‘S(X;Si)
above assumption the case of equality is treated via the equivalence

(ﬂs - A*vS) & (A; - A;) .

Remember that accretive operators are closable and with an additional positive constant they are one to one and
have a closed range. Essential maximal accretivity, under the above assumptions, means exactly A”* = A** or,
equivalently, AL = A%.

2.5 Bismut’s hypoelliptic Laplacian

We do present here neither the construction of the hypoelliptic Laplacian as a deformed Hodge type operator,
nor the various various versions of it which are presented in [Bis05][BiLe]. We directly start with the Weitzenbock
formula for the version denoted by 22 _,, in [BiLe]-p 32 formulas (2.3.12)(2.3.13). According to [BiLe|-p32 (see
formula (2.3.14)) it makes sense as an operator acting on S(X; &) and the formal adjoints are computed with
the scalar product of L*(X,dqdp; ) = L*(X,e 2V @dqdp; £+). For this presentation the parameter h €0, 1] is
not yet considered but it suffices to replace like in Subsection 23] the potential V' by % and various equivalent
representations are explained in Subsection

Formulas (2.3.12)(2.3.13) of [BiLe] say for a local orthonormal frame fi, ..., fq of TQ:

MY = gpole + 0k (2.5.1)
where
oy =3 (A7 4 |pf2 = (2fik g — ), (252)
By = — (£Vy TXET I _ (V) VAT, (2:5.3)
o == 3 (BT 1) o o) (FF = PO~ Fg ek (254)
~ (B0 10w 13) ~ BUV) +TELY)) (= Figy g (2:5.5)

and f‘fj (q) = fk(V?iQ f;j) the Christoffel symbol expressed in this frame.

In order to have good duality arguments when the base manifold @ is not oriented, the vector bundle £ must be
AT*X @ C in the + case and AT*X @ C® 7*(org) in the — case.

In [Bis05], Propositions 3.14 also provides the formula

0e-F
2 )

mo.+ (Ve — Bl Bl)mo x = (2.5.6)
where 7o 1 is the orthogonal projection on the kernel of ker(a/,) . In the formula (2Z5.6]), there is an identification
between operators acting on Ran g + and operators defined on the base manifold () which is detailed below. Let
us keep for the moment the notations of [Bis05][BiLe].

In our framework, i.e. when we work in L?(X, dqdp; £+), it suffices to conjugate all the operators according
to A+ eV Ae" . We obtain

Bipv =2¢"VAZ e’ = b%ai + %Bi + 7+ (2.5.7)
where
o =0y = (~AY + pl3 £ (2 — d), (25.8)
B :e’v(‘?)ﬂ;ev(‘” - ,e*V(q)(ivg\)-T*XQ@ﬂ'*F,u B (fiv)v?;T*x)ev(q), (2.5.9)
V=V = —i (RTC(fis 1) s fe) (FF = F)(F7 = F)ig oy, e (2.5.10)
— (£ (BT, fp. f3) = LUV + TERV)) (P = iy 7o (2.5.11)

The only non trivial calculation is for B+. According to Table[d] e~V (@ VFueV (@) = d? and we obtain

er(q) vA’T*X@ﬂ'*F,uer(q) — Vgi

11



where V7™ X is the tautological connection on T*X associated with the Levi-Civita connection on T'Q and V&

is the exterior algebra extension.
We obtain i .
Bi = —(£Vy" = (FV)V) (2.5.12)

Because o/, commutes with etV(9) the kernel of ax and the orthogonal projections mo,+ are not changed. By

Table [[] we also know
e~ V(@O FVia) — Ay .

The formula (Z56) becomes
_ 1
70,4 (ya — Brai ! fa)mo + = SAvL,

and when the potential V is replaced by % , h €]0,1],

_ 1
mo,+ (v — Bray ' Be)mo+ = 2—h2AV,h, (2.5.13)
where Ay, = (dvp, + dy, »)? is the semiclassical Witten Laplacian.

Another property proved in [Bis05|[BiLe] which will be useful for proving Spec(Bx .v) C [0,400[ for b > 0
small enough, is related with the Hodge structure of B4 p v = 291;%” 14 that we briefly recall here.
Definition 2.5.1.

o The tensorial operations Ao and po, expressed in the orthonormal frames (fi,fi,fi,ﬁ-)lgigd , are A\g =
FiA if (resp. po = fi Ay, ) which increases the horizontal (resp. wvertical) degree by 1 and decreases the
vertical (resp. horizontal) degree by 1.

o Fora eR,ry: X — X is given byrq(q,p) = (¢, ap) and r* : S(X;E1) = S(X;E4) is the natural pull-back.
The simpler notations v and r* will be used for the isometric involutions obtained for a = —1. The linear
map K, : S(X;E1) — S(X;E4) is given by K.(s7(q,p)f1 f7) = a??s{(q,ap)f' f; with a trivial action in
the bases (f', f1)r.5cq1,...ap> at © = (q,p) and (f', f5)rcq,...ap 0t © = (g, ap) .

o The hermitian form { , ), on S(X;&1) is given by

(u, V) = {u, r*v).

The operator Ql/i’b equals

6:|:,b,V +51Tbv 1 * *
Biyy = 2m§b7iﬂ = 2(#)2 = 5[5i7by5£fw + 0 v 0 b V], (2.5.14)
with  dapy = Kpe eV df 1 eV et Kt = eTroe TV (R d T K e et (2.5.15)
b

7/\06iH+VKbdX’*KI;1€$H7V€+)\O

and 51;7‘/ =e , (2.5.16)

where d*>* stand for the standard Hodge codifferential for the metric 7*(g © ¢~ ') on TX = T(T*Q).

The operator 83, y, is actually the (', )r-formal adjoint of o4  v:
Vu,v € S(X;Ex),  (u, (03" y)v) = (0xpvu, r™v).

The important properties for us are 03 , , = 0, (017, 1,)* = 0 and the fact that 1By 5 is the square of the (, ),
symetric operator 24, L4 .

Let us explain how 25TI4)(25.15) and (25.16) written in our setting are deduced from the formulas (2.1.23)
(2.1.24) and (2.1.28) of [BiLe| (see also Section 2 and Section 3 of [Bis05]):

e The factors etV come from our choice of scalar product ( , ) instead of ( , ) L2(X,dqdp;e) and the correspon-

dance of Table[Il Once this is settled, this factor can be forgotten for the comparison with the formulas of
[BiLel.

e For a general b > 0, the formula (2.1.28)-[BiLe¢]

4 _ / -1 _ / -1
oo = K2y e g Ky = Ky, 4 g K
b

allows to extend the formulas (2.1.22)(2.1.23)-[BiLe] written for the case b = 1 to the general case. Because

K} commutes with pg (and Ag) this provides the formula (Z5.15]). Because K, commutes with +* it implies
that 63", is the (, ),-formal adjoint of 64 v .

12



e Finally the explicit expression of d4 ;v is obtained after using the property that ¢ is the ( , )-formal
adjoint of ug, and the involutive identity r*Agr* = — g .

Like in [BiLe]-page 32 but with now the L2(X,dgdp; AT*X) scalar product ( , ), we recall the elementary
functional properties of oy and B4 . Meanwhile, we make the identifications hidden in (Z5.6]) and (25I3) more
explicit by using the isometries Zy x and Zy ¢ of Definition 2.4.1]
e The operator ax = O + (NV — d/2) is self-adjoint on its domain W*°(X;€+),. By using the fiberwise
change of variable p; = («/g(q)”pj the Hilbert space L?(X,dgdp; £+) can be written as the direct integral

@ 2
L*(X, dqdp; €1) = / L2(RY, dj; C*™) dVoly(q)
Q
if we notice dgdp = |det(g(q))|'/? dgdp. In this direct integral representation, a is nothing but
(&) —Ax ~12
s — /Q %'m © Ldyaa + (Ny — d/2) dVoly(q)

2 ~2
—As+pl? _ ~d 2%
where =228 _ 5t | %,

2
equals N. The kernel of ay is given by horizontal forms times exp ( — %) and the kernel of a_ is given

is the euclidean scalar harmonic oscillator. Therefore the spectrum of a4

2
by the exterior product of horizontal forms with a top vertical form times exp ( — %)

e With the orthogonal projection mp 4+ on the kernel of ax and 1 — mp 4+ = 7 + its orthogonal complement,
we have

1 1L
LQ(X, dgdp; 1) =kerar ®Ranay = Ranmg + ® Ranm 4
and S(X;&+) = (Ranmo+ NS(X;€4)) & (Ranmy 4+ NS(X;E4))

while the functional calculus says that a4 : Ranm; 4+ N V~\/2’O(X ;€+) — Ranm 1 is invertible with the
norm of aZ'7) 4+ equal to 1.

e The differential operator S+ maps keray N S(X;E1) = Ranmg+ NS(X;E4) into Ranay NS(X;E1) =
Ranm; + NS(X;E4).

o With (ZZ4.1)(ZZ40) Z4T) we can write

f(a:t) =1y x @ / 7:‘:(|K|*d/2> ® Idgoxea | Zg, x
’ Kc{1,...,d} 2
for any Borel function f: R — C. In particular for f = 149y we obtain
—AY +pl; —d
T+ = Zp x | Lo} (%)qmﬂm —d/2+d/2)| Iy x -
Ipl2
‘ - —AV+|plg—d e mt .
The kernel of the harmonic oscillator ———*— equals C<—7— with
_leig
€ 2 — 1/2
y |~z I” dp = | det(g(a)[ "~
We deduce that )
U+19 :IQ,X WX IQ7Q (2517)

is a unitary transform Uy g : L*(Q,dVoly; AT*Q ® C) — Ranmy o = ker(ay) in the + case. In the —
case, we choose n € C®°(X; AYT*X)V ® 7*(org)) to be a normalized non vanishing section, which can

be written locally as f;1 A ... A fj,d with the suitable orientation. Then the unitary transform U_ 4 :
L3(Q,dVoly; AT*Q ® C ® org) — Ranm_ o = ker(a_) is given by

Ip|2
* ez
U,ﬁ = IH,X W X (Ing A 77) (2518)
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When Ty o(s) = (sj1) 1<j<s for s € L*(Q,dVoly; AT*Q ® F) (F = Q x C in the + case and F =
Ic{1,...,d}
(@ x C®org) in the — case) we get

Ip|2
e 2
Utps = Z 9j(Q)5j,1(Q)Wff (2.5.19)
1<5<J m
Ic{1,...,d}
_lig
e 2 A ~
and  U_ps= Y 0;(@)sjr(@)—g ] AFia Ao A fia (2.5.20)
1<j<J T
Ic{1,...,d}

When Zp x(s') = (si;) 1<j<s for s’ € L*(X, dgdp; Ex) we get

ILKC{,...,d}
L
_ . e 2
U+7103I = U+,HSI = Z 9]((]) / WS?,I((],])) dp U]I (2521)
1<j<J ;e
Ic{1,...,d}
L
- ez cnd A 2
and Ufyles’ =U_ys = Z 0;(q) / Ws;lf ’ }(q,p) dp u§ ANfjaN. A fia.  (25.22)
1<j<J ;e
Ic{1,...,d}

The unitary map Uy g : L?(Q,dVoly,; AT*Q @ F) — Ranmg + = ker(ay) clearly induces an isomorphism
depending on the case:

Urp + C(QATQRC) = S(X;E4) Nkeray
U_g @ CR(QAT'QRC®org) - S(X;E-)Nkera_ .

Other functional spaces can be considered. With those notations, formula ([2.5.13]) means precisely

_ _ 1
Ug plmo+(v+ — Brai'Ba)mo +|Usp = Spa vk - (2.5.23)
. Ipla P17 5 . .
Notice also that e;(e™ 2" a(q)) = e™ = 3% (q) implies
-1 2 ” 2 1
Ui79[7T07:|:W9 mo,+)Us,0 = Ing (C+ CI — §AQ) & Idc‘,“d %) (2.5.24)

where A is the scalar Laplace-Beltrami operator on Q).
Lemma 2.5.2. There exists a constant Cgq 9 > 1 determined by the metric g and the quadratic partition of unity
Z'j]:l 0%(q) = 1 such that
-1 2 2 & 2 2
Coallulzon < llullze + Vi ullzs < Copllullyyo,
holds for all u € S(X;Ex) Nker ay .
Proof. We first notice that for any connection V and all u € S(X;E+) Nker ay

2 2
Iply Iply

Vyu=e 1 Vye T my1u.

Because V;i is a first order differential operator we have

J J
£ £
IV5 ullZze =D IV5 (05 (@w)llFe = D I1(V6;)ul.
j=1 j=1

With the local formula

) . Iplz ; ﬁ
VO0; = g™ (q)pr(99°0;)(q) = e~ 5 g™ pr(dg'0;)(q)e

Ipl7
and ||e%7r0|\L(Lz) < Cy we obtain

J J
_ £ E &
Coon D N05(@uliz + IV (0;(@u)72 < llullfz + IVy ulZz < Crgo > 105(@)ulliz + IV (05(0)w)l|7= -
j=1

j=1
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Above the ne1ghborhood Vo, D supp 6, we use the connection V7 which is trivial in the local orthonormal frame

(fl f])f]la"'vfj,d)

The relation

2 2
Iplg . B Iplg

VS~V = e 1 g* (qpr (VEE — VI Je 1"

allows the same comparison which leads to
— & j &
L (05ule + 195 @5u)l2 ) < 105ull3 + V505032 < C5 (I05ule + 95 (0)]32) -

With the trivial connection V7 in the orthonormal frame ( ,...,fj ,fj,l, R fj,d) the estimate of the middle

Ip|2

/e~ a(q) for a € C§°(Vy,;;C). We

term is reduced to the computation of ||6;u|%. + || Y(0;u)||3. for u =7~
compute

13 Plg

Ip . i 1
||))(7r’d/4 2 0, a)||L2 :/ [/ |ng(q)pk(8qi(Oja)|27r*d/2679k(q)p”’k dp] dg = 5/ |VZ(9ja)|2dVolg(q).
Q L/R4 Q
Similarly the definition W = Ty [W?2 @ Idg,y22¢ ) T, x reduces the problem to the computation of

<9ju, W29ju) = <9ju, [C —Ag+ 002]9]U>

2
Iply

with u = 7~%%e~="a(q), a € C§°(Vy j; C) . We obtain like in (Z5.24)
2 d? 2 1 g 2
<9ju, W 9ju> = (C + CZ)HQJGHN + 5 o |Vq(9]a)| dVOlg(q)
and this ends the proof. O

2.6 Scalings

When we consider semiclassical Witten Laplacians, it is natural to introduce semiclassical Sobolev spaces. Ac-
cordingly the space WO’S(X ; €1) has to be defined with an h-dependent norm. There are various transformations
on the operators, Witten’s and Bismut’s Laplacian, and on the functional spaces which allow to reduce the h-
dependent problem, h €]0, 1], to the case h = 1. This simplifies the asymptotic analysis with respect to the pair
of parameters b > 0,h > 0. In particular, the initial subelliptic estimates of [NSW]|, where only the parameter
b > 0 was considered, can be easily translated into a b, h-dependent version.

Semiclassical Witten Laplacian: The semiclassical Witten Laplacians Ay on the riemannian manifold
(Q, g) can be given several equivalent presentations. It is better to think in terms of the four data (Q,g,V,h)
where (@, g) is the riemannian manifold V' € C*°(Q; R) is the potential function and h €]0, 1] is the semiclassical
parameter.

The semiclassical Witten Laplacian equals

Avih = A@,gvn) = (dv,n +dy5)
where  dyy = e W (hd)er =hd+dV A dyS = e (hd™9)eh = hd™ +iv, v,

where the subscripts recall that the Hodge star operator, the codifferential and the gradient all depend on the
chosen metric g .
Relations between the following differential operators acting on C*°(Q; AT*Q ® Fy) can be written:

AR = h2d09 | VoV =h2V,V
h2
* 1 «,-9
dvp =hdy ; , dyj = gd%f‘f v B@ovin =AY

For the L2-spaces we note that

dVol 1 , = h=%dVol, /Q (5,8) 14 dVol 1, = /Q (h2)dees=d/2(5 &\ dVol,

and the map s — h%/27de€5 ig a4 unitary map from L2 (Q; AT*Q® Fy) onto L2 (Q AT*Q® Fy). Semiclassical

Sobolev spaces are defined by replacing derivatives of vector fields with g- norms bounded by 1 , by vector
fields with g norms bounded by 1 or g-norms of size O(h). By using a Laplace type operator A(Q,g,o,l) or

Hy g4 = ijl 0;(q)Asc,q0;5(g) the semiclassical Sobolev norms are given by

S 4_ € S
lull sy = 1L+ B2 Hog)* ullrz (@) = K248 (1 + Hy 1 )**ull 12, (q) -

h2
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Another introduction of the scaling relies on the fact that (@, ¢g) can be isometrically embedded in the euclidean
space (R9Q; gpag ), according to Nash embedding theorem (see e.g. [Gro]). This isometric embedding can be
done such that ng@ (0,Q) = 1 and one may consider the homothetic transformation of @ with center 0 and
ratio % , QM = %Q or Q" = ¢,Q with ¢p,(q) = %q for ¢ € R . The tangent and conormal vector bundle T'Q,

N*Q = {v € T*R% |Q , YteTQ,vt= 0} are well defined and the euclidean metric ngQ allows to identify
TQ = {’U € T*R%e ‘Q , Ywe N*Q, (ngQ)_l(v, w) = 0} . The same can be done with Q" which is endowed

‘@ ’TthTQh . Then the riemannian manifold (Q", g") is isometric to (Q, 75 ¢) and when

Hy gn = P 0;(h.)Age gnb;(h.) and V" (q) = £V (hq) we obtain

J=1

with the metric g" = g®

PhB@Qn gh v )P = A, g tvi) = D@ Vi)

297

d_ s d_ s
Il gy gy = 10545+ Ho, ) ulliz, (@) = W50+ Ho ) onullz, vy -
h

If instead of the quadratic partition of unity ijl 9J2-(q) =1 on @ one takes an h-dependent partition of unity
Zjil 9;2',h(Q) = 1 subordinate to an atlas U]Jllﬂjﬁh = @ with diamy(€; ) < Ch or (diamh%g(Qjﬁh) < () and an

intersection number uniformly bounded with respect to k, one sees that ¢g" in a coordinates system in Dnn
satisfies

1059 | 900, + 1105 (6"~ = (o) < -
Although the volume of Q" , Vol(Q") = h=?Vol(Q) increases as h — 0, the above quantity || (1+Ho g0 )0l L2, (@n)

correspond to the standard Sobolev space norm on Q" with a uniform control of the local variations of the metric
while V gn V" is uniformly bounded as well as its covariant derivatives with respect to vector fields with a bounded

g"-norms. We will use the short notation H*(Q"; AT*Q" ® F..) for H;;L1 QM AT*Q" @ Fy).

R

Figure 1: The grey areas represent on @ a ball of radius 1 (resp. h) for the metric %g (resp. g) and on Q" the
isometric ball of radius 1 for the metric g" .

Bismut hypoelliptic Laplacian: We do the same kind of scalings as above for the Bismut hypoelliptic Lapla-

cian. Actually we will start from the expression (2.5.7)(2.5.8)(@.5.9)(2.5.10) of the operator B, ; v which is
actually determined by the data (Q, g, %, b) where (Q, g) is the base riemannian manifold, V' € C*(Q;R) is the
potential function and b, h > 0 are the two parameters:

1 1
Bipx =B (Qu¥n = 2% @9 T 381@e%) T 1o 1) -

By mimicking what we observed for the Witten Laplacian, we firstly want to establish a simple relation between
By Q.. % and Bi,(Q,hng,%,*) . We notice

(%g) ® (%g)‘1 = (%g) @ (h?g™)

while the Christoffel symbols Ffj(q) are the same for the metric g and the rescaled metric %g and the Levi-
Civita connection is not changed. If local orthonormal frames given by (Z2Z2) and (Z2Z3]) are denoted by
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(fig)1<i<a( Agi)lgigd (fi)i<i<a and (fi,g)lgigd for the metric g, orthonormal frames for the metric %g are
given by

i 1 £
fi,%g:hfi,g ) fh%gzgfg 9

h
. 1 . A A
and f%g = Ef; v fig = hfig-

Other simple relations for the kinetic energy and the hamiltonian vector field ) are:

2
|P|3,g gij (q)pipj 1 1 |P|q1%g 1
P R e e O e

while the symplectic form o = dp A dg on T*Q is not changed.
Although B, (g , v ;) preserves the total degree |I| 4 |J|, it mixes the horizontal degree || and vertical degree

|J| for sections si(z)f! f 7. The different homogeneities in the conformal change of metric from g to %g must
be considered carefully as well.
Because X = T*Q is a vector bundle on @, while £1 = 7*(AT*Q ® ATQ ® Fy), we define the mapping
Uy S(X;E4) = S(X;E4) by

\%
9w

el
2

~ _d _ _ ~ _ _ ~
\Ph(sl(q5p)‘]f%gf]7h%g) - h 2+‘I‘ ‘J‘S{(q7h’ lp)f%gf.]ﬁh%g - h S{(th lp)fglfJ,g .

We obtain
_ 1 _ P
U, aw 0,9)¥n = 3 (7;1 AV +R2pl, £ (inyglf; - d)) =04 Q4o
=1 _ £r _ 1 ey 1o el Viee, | 1
and \Ifh (ﬁi,(Q,g,%))\ph = —(ihvyg — ﬁ(wa)Vf; ) = _E(ivyh%y - (fz’h%gﬁ)vflg) = Eﬁi’(Q’ng’%) .
h2

For W, 'y 0,4 ¥y firstly notice that the Riemann curvature tensors are compared according to

RI? = n*R"?

h2

while the coefficient f‘fj (9) = fk(V?iij) satisfies
~ 1
Ffj,g(q) = _Ff'7 1
The definition of the mapping ¥; ensures the identity of the tensorial operations
i LA if ifi .
v, (ng>‘Ph T | v <f> v= |
fi g/ fi’h%g/\ i i

We deduce )
—1 _
Uh V@0 ) Yh = 72740, 560.) -

We have proved

1 [h? h 1
—1 _ _
Vi By @ ¥n¥n=13 [b—z%,@,h%g) t 305 @k 0 +7i7(Q7h1297‘§)] = 2B ma k)

Let us consider now what happens on the functional spaces.
The linear map ¥y, is actually a unitary transform from Lig(X, dqdp; E1) to Lg(X, dgdp; E1) .
h2

The h-dependent norms for the W*2(X;E4), were not studied in [NSW] but we follow the dilatation trick
presented for the Witten Laplacian in order to reduce the problem to uniform estimates in the case h = 1.

Definition 2.6.1. On the cotangent space X = T*Q where Q) is endowed with the riemannian metric g, the
h-dependent norm, h €]0,1], of W*+52(X; EL) is given by

lullyenee = 1O 2(WE )™ Pull 2 x e

where

J
Win=>_05(q)(Cy — h* Ay + C,0%)0;(q) -
=1
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Remember that the operator W, is an elliptic self-adjoint operator for any fixed (Q, g, h) with h €]0, 1] when
Cy > 1 is chosen large enough. However the uniformity of the subelliptic estimates for B 9. Y b) with these
h-dependent norms requires some explanation.
We keep track of the change of riemannian metrics with subscripts like before and write Ay = Ap,, and
Wi, =Wg, g - Actually the definition of AH 1 glves AH = h?Ap 4 and

Uy W h g Un = (Co = Apg g+ Cg(oh%gf) = W;Lh%g

After the riemannian embedding @ — R9@ and the identfication of X = T*Q as a subbundle of (T*R% )‘ the

dilatation @5, : ¢+ ¢ in Rée with <I)h1* X =T*Q — X" = T*Q" is a symplectic map, and an isometry from
(X, (79) & (h2g71)) to (X", g" @ (g") 1) We obtain

O U (WG ) WR®) = W3 o,
and
el (o) = 1052 (Wi o) Pull 2 xien) = ||Ozi/2(W92,1,gh)SQ/Q@hv*‘I’Zlquih<Xh;<1>h,*5i>
— ||<I>h,*\11;1u||vvf}g’,jz (Xn:®p oEx)

The above discussion can be summarized by the following statement.

Proposition 2.6.2. With the above notation ®5, .V, ' is a unitary map from Whl 2(X,E4)g to VVSl 2 (XN @y L En)
for all s1,s2 € R with

1
—1 *
Cno¥y By (@.g.% 0)Ynh = 15 By (@ngn ity

DUy s (Q,0) YnP = it (h g

B .1 1
Pne Wy B (0,0, Un P = 7B gr v Pne W e (0,0, URDE = 7575 (@1 gh V)
and  Op WG 00h = Wi oy

with V' (q) = £V (hq) , 0;(h.)(q) = 0;(hq) for g € Q". Additionally VgV and g" and (g")~1, e:L’pressed in the
coordinates associated wzth the atlas Qh = Uj 1 hQ (or + . times the coordmates associated with @ = UJ 195)
have uniformly bounded derivatives.

This result and what we recalled just above for the semiclassical Witten Laplacian, allow to eliminate the
parameter h €]0, 1] in the analysis. Actually it suffices to make the analysis for (Q", ", V") and (Q", ", V", %)

where the parameter b is replaced by % and to use the uniform control of all the norm estimates with respect to
h €]0,1] on the dilated manifolds Q" and X" = T*Q" .

2.7 The Hypoelliptic Laplacian as a perturbed Geometric Kramers-Fokker-Planck
operator
Although we are ultimately interested in Bismut’s hypoelliptic Laplacian B, , v = By (g.g.v 1) - Proposition2.6.2]
with 1
—1 *
Cn Wy B (00,3 0) Y0 ®h = 75 B @ngnvn )

allows to reduce the analysis to By v yn = By gn gn yn by With uniform controls of the local derivatives (in
coordinate charts) of V u VP, ghand (g")~!. For the sake of simplicity we replace % by b > 0 and we write

B:t,b,vh == B:‘:,(Qh,gh,vh,b) .
We will use the short notations Ej’; = @, &4 for the vector bundle above X" = T*Q" and the connection VE&+-"
will be the connection on £} associated with the metric g” on Q" .

With these modifications, Bismut’s hypoelliptic Laplacian can be written as

1
By yyvr =Pyp+ Rop+ Rop + ERLL,;L, (2.7.1)
where the principal part is
1 £,
Py = 02 S0y gh F Vyih (2.7.2)
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and the three lower order corrections are

Ron = _i<RgThQ(fi,ghafj,gh)fk,ghafe,gh>(f;h - fi,gh)(fjh — figmi kygﬁfkwa’”if,zwthrf""gh + (i (V")
ATE g V(i — fig)i n)i; sah 0
Riin = R = (fi,ghvh)vt;f;};
Ry = 3F<RgThQ(Pa Fi g )Py fi.9n) (fign ~fi 9" ) gn+fie"

where we have neglected the £ sign in the notations Ro p, Ri 1 n, o -
These notations are motivated by the following conditions indexed by ¢ = 0,1,2 :

Vs € R, HCSJ >0, HAHC(WW;LZ) + HA”L(LZ;VV*Z\U) + |‘(W02)é/2A(W02)—5/2 _ AHC(LZ;LZ) < Cs,i, (273)
7T07:|:A7T01:t =0. (274)

The collection of operators Ry, Rin = Ri 1 n, R are differential operators in the class OpSy, (Q"; End(£}))
introduced in [NSW] while (W7?)® € OpS%(Q"; End(£%)) has a scalar principal symbol. We recall that actually
Wi = We » and that, because of the uniform bounds of Proposition 2.6.2] all of the local seminorms of symbols
are umformly controlled with respect to h €]0,1]. Therefore Ron, Ri,1.n, Ropn all satisfy, uniformly with
respect to h €]0,1], [(W§)*/2Rin(W7)™*/* = Rinllc2izy < Csi, while the inequality |[Rinllzopio.z2) +
[ Rinllz(r2 10y < Ci according to the index i = 0,1,2 is straigthforward.

Finally the index L in Ry j recalls that Ry p = Ry 1 p satisfies the condition [27.4).

The following result allows to reduce the analysis of Bismut’s hypoelliptic Laplacians in any WO’S(X he Ej‘:) space
to the case s =0.

Proposition 2.7.1. The conditions (Z13) and @A) are left invariant by a conjugation by (W(,Q)S,/2 for any
s’ € R, or by taking the formal adjoint for the L?-scalar product.
The conjugation of Bismut’s hypoelliptic Laplacian by (VVBQ)S,/2 , s €R, equals

s _s s s’ 1 s
(Wg) /QBi,b,vh(Wez) /2= Pyy+ Rgp + R5 ), + ERI,L,h

with Ry, = (W) PRop(W3)™/2 | Ry, = (W2)"2Rop(W)~*/?

s/ s/ s/ _s/ s/ S 7h _s/ g 1h
and  RY, = Riy = (W) PRy (WE) 2 5 (W) Ve (W)~ 12 - v
where Rg’:h, Rf:h, R;:h satisfy the condition (2Z203)), uniformly with respect to h €]0,1], for the respective values
ofi=0,1,2 and Ry | }, = Rf:h satisfies the condition (Z4). Additionally (Ro, =0 and Ry p = 0) = (RS:h =
0 and Rslh =0).

Finally the formal adjoint B® for the WOs' (X1 €Y scalar product, according to Definition [2-4.3 satisfies

4,0,V
’ N s/ 1 S/
(Wg)? /QBi pvn (Wg)~* /2= = (Pep)"’ + + (R,) + (R3 ) + E( T (2.7.5)
1
with — (Pep) = mougn £ 7 vfi’ o LA(XM dgdp; ) — S'(xMER). (2.7.6)

Proof. The invariance of (ZZ73) actually comes from the continuous imbeddings W* < L? ¢ W0 for
i1=0,1,2.

The invariance of (2774 is due to the commutation of (Wg)s//2 with mo + = 1oy (ag gn): Actually Wg strongly
commutes with Ogn and preserves the vertical degree. It therefore commutes with a ,» and with any functions
of Oéi7gh .

For the last property it suffices to check that Ay = [(WQ) /QVgi h(WOQ)*S//Q - Vii’;h satisfies the two condi-

tions (273) for ¢ =1 and 274).
The estimate o , o
I (W) VSR W2 = 955 leginoe) < Co 2.1.7)

was proved in [NSW|-Proposition 3.8, where the uniform constant C! with respect to h €]0,1] is made possible
by the uniform control of the derivatives of g" and (g")~! recalled in Proposition By duality and because
A3 + Ay € L(L?) we deduce as well

s’ Ex,h —s’ Ex,
I {3y 2SR W) =2 =I5 o) < Cr
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Because Vijbh € OpSf’I,/Q(Qh; ENY, while (W2)* € OpSy(Q"; ER) with a scalar principal symbol, we deduce that
Ay € OpSl/2(Qh &MY, with local seminorm of symbols uniformly bounded with respect to h €]0,1]. Therefore
(W2)s Ay, L (W2)=s — Ay, € OpSy 1/2(Qh End(€%)) is a bounded operator in L2(X", dqdp; L) with norm
uniformly bounded with respect to h €]0,1].

The condition (Z74) is due to the identity WoﬁiV§;§};h7‘r07i = 0 as continuous operator on S'(X"; ER).

For the formal adjoint B® Lpyno it suffices to apply (2.2.5) ([2.7.6) after noticing that B, ;, y» is continuous as an
operator S(X"; EL) — S(Xh &MY and S'(XM; ER) — S'(XM;ER). The expression of P, ;, comes from the fact

that a gn is self-adjoint and Vii;bh is anti-adjoint because the connection V&+" is unitary. O
g9

Proposition 2.7.2. There exists a constant Cy > 1 determined by the metric g and, for any s € R, a constant
Cyv,s > 1 determined by s € R, the metric g and the potential function V' € C*(Q;R) such that the following
properties hold when 0 < b < L and ke > Cy v :

9

The operator 75 + By yn, as an unbounded operator in Wo: S(XMER) | is essentially mazimal accretive on
Cee (XM Ei) (or on S(Xh EM).
If Biybﬁvh denotes its closure according to Definition[2.4.3, the inequalities

1
Re(u, (35 + B Julypos 2 e [l + mellulfo.] (2.7.8)

_—s A
| (e -5)

2'“55 1 Et,h .
JRE TR (Y G T
Al

/
1
+ m [||u||wo,s+§ + H (E) UHWO,S+

Wo,s WO,s

|)\|1/2
+ (55 )t

(2.7.9)

hold for every u € D(Bj:,b7vhs> and every A € R.
The formal adjoint B;’Esb v and adjoint Bi’sb v of Definition [2.4.3 satisfy (B
the formal adjoint Bﬁ: pvh = = (W)~ Bl ynl Wg)e satisfies [7.5) Z7.6).

Remark 2.7.1. It will be checked after Proposition [3.1.1] that Cy v s + Biybﬁvhs is maximal accretive with

S

1,8 . *,8 -
:t,b,Vh|S(Xh;£i)) = By, while

Yu € D(B:bbﬁvhs) N Re <’LL, Bi7bﬁvhu>woys > 0.
Proof. By Proposition 271l the problem is reduced to the case s = 0 for the operator

Ei,

1
Pi,b+R87h+R§7h+ER§7L7h O o FVy, + Mo,s(b, h) + My s(b, h) + Ra

with
+(2fignip —d)+d
' gl s s Vo,s
Mo,s(b, h) = 252 + RO,h + R2,h —Rap y [[Mos(b, h)llL(L2;L2) = b2
1 s Vis Cg + 87/0,5 2
M s(b, h) = L M1 (b, B)l| a0, 2y < 57 o = W(l +b%),
RQ,h = :F<R§,1Q(p, fi,gh)p; fj,gh>(fgh fl 9" ) h+f] g ||R2||L(V~V210;L2) < Vg .
Actually

Ry}, — Rap = (W3)*/*Ro(W§)™*/* — Ry, € OpSy '(Q"; End(EL)) € L(L* L?)

and the above inequalities hold true for suitably well chosen s-dependent values of vy s > 0 and v; > 0 when
0 < b <1, uniformly with respect to h €]0,1]. The last result concerned with the equality of the minimal
and maximal extension of the formal adjoint results from the essential maximal accretivity, as it is recalled after
Definition

When the final term Rp, is replaced by 0, the result is actually given by Proposition 7.2 in [NSW| with the
following changes:

e the lower bound gz [||u||$/~v10 + ksllul|2,| in ZT])
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o the coefficient m in the right-hand side of ([Z77.9)), under the sufficient condition ks > (Cy+1610 ) (1+
g
b%);

e the term (‘;\l—if) ||u||z2 in the right-hand side of ([Z.7.9]) which is not written in [NSW].

1/2
For the last term of ('2‘3‘—/2) |||z in @Z9), it suffices to notice the interpolation inequality

P B
(57 ) Iudze <3[l yulae + o]
B

< 12{b4/3|\< »

ull 2 + 2||oghu|\L2} .

Because 0 < b < 1, it suffices to replace the constant Cy o4 of Proposition 7.2 in [NSW] by Cy = Cy new2® ¥
13Cy,o1a and then to choose Cy s = 2(Cy new + 16105) .

Let us consider now the case with the final term Ry, = :F<R§}LQ(p, Ji.gn )P, fjﬁgh>(f;h fi g )ig ot . We set
As(byh) = Pyp + Mo s(b,h) + My 5(b, h) and we now consider A,(b, h) + Rz by perturbative arguments. The
accretivity of Ags(b, h) 4+ R is due to

[Re(u, Ropu)rz| < Cgllullf,n

while we know

1
Re(u, Ags(b,h)u)r2 > — e [l

L = - The second inequality (2.7.9) for As(b, h) implies
9

[l 30 + fsllulZ2] -

It thus suffices to assume 0 < b < 1

1
Vue DGR, A ulze + 2o ulls > o |0l > o Ifenloe.

Therefore Ry p, is a relatively bounded perturbation of A4 (b, h) with relative bound Cyr,b* < 1/4 < 1 provided
that 0 < b < 2\/(1;— . By [ReSi]-Theorem X.50, As(b, h) + Rz is maximal accretive with the same domain as
Vg

As(b, h) . This relative boundedness also implies

2K

b2|

2K

b2|

_ 3[ ——
I(Bxpvr = iNullez + Z5llullzz = 7 [I(As(b h) = iNull 2 + =5 [[ull 2

and the subelliptic estimate (Z79), with the coefficient % in the right-hand side follows.
We end the proof by adjusting a new value of C, according to Cy new = max(4/3Cy, \/4C),2,/Cyry) .

Let us recall a few consequences of Proposition [2.7.2]

1. Forany s € Rand z € C, the compact imbedding;: WO’S+2/3(Xh; &l c WO’S(Xh; &N implies Biﬁbyvhs—z :
D(Biybﬁvhs) — W3(X": €l) is a Fredholm operator with index 0. Therefore the spectrum of Biﬁbyvhs is
discrete.

2. By a bootstrap argument when z ¢ SpeC(Bi1b7vhs) the resolvent (B:bbﬁvhs — 2)7! sends continuously

S(XM; Er) to S(X; &N and the same holds for (Bi"sb v — )71 Hence for two different s,s" € R the
resolvent (B vi —z)"!and (By pyn ¥ 2)~! coincide as L(S(X"; EL); S'(X"; ER))-valued meromophic

functions and Spec(By ; y» *) does not depend on s € R as well.

3. The subelliptic estimate (2Z°7.9) ensures that Bi,bJ/hs is cuspidal according to the terminology of [Nie] (see
also [HerNi| [HeNi] [EcHal [BiLe]) and the integral representation

_ s 1 _ -
e Bapvr = — e tz(z—Bibh ) L dz
2im Jp,

is a convergent integral for ¢ > 0 when

1
Iy = {z € C,Rez > —(Im2z)'/? —Cb}
Cy
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and e~ Peovh’ L /(XN EL) s (XN ERY .
This implies that the poles of the resolvent (z — Bi,byh)*l are continuous finite rank operators from
S/(XM; ER) to S(XM; ER).

4. Changing the contour I', above allows to isolate the main contribution to e Brovn associated with

eigenvalues with small real part from the others with exponentially smaller remainder as t — +oc .

5. With the scaling and Proposition 2.6.2] all these functional properties can be transferred to the operator
B~i,b7% associated with (Q, g, %N, b) after replacing the condition 0 < b < CLg by 0 < % < CL_E,’ the spaces
Wensz(Xh; €h) by the spaces W™ (X; €4 ) according to Definition ZL6.1] and by multiplying the spectral
parameter by ;5 or the time by h%.

3 Improved lower bounds for modified operators

In this whole section we work with the rescaled Bismut Laplacian B, jy» associated with the scaled data
(Q", g", V", b) and the Sobolev spaces W52 (X" gl) = W52 (Xh: €Y Although the connection, the vector
field ), the terms o, B+, v+, and some other related quantities depend on h or the metric ¢g" , we will drop
the corresponding subscript notations for the sake of simplicity. This is especially relevant owing to the uniform
estimates Proposition and of Proposition For further comparisons, we keep the memory of the h-
parameter only via the notations V", Q" X", Ei and V&=

For the accurate spectral asymptotic analysis we need subelliptic estimates for the operator By ; yn * itself without
adding the constant 73 in order to study the spectrum around 0. Because a+ and possibly Biybﬁvhs have a
non trivial kernel, resolvent estimates must be given for operators modified in such a way that the singularity
of the resolvent at z = 0 is removed with a good control as the parameter b tends to 0 (uniform with respect
to h €]0,1]). The first modification consists in adding A%my + with A = A(b) suitably chosen according to b,

the second modification consists in looking at ﬂ'J_d:Bi,b’V}zsﬂ'J_d: with 7, + = 1 — mp + . Finally the third one
2
consists in adding AQWO,:I:X(é_%_z)WO,:I: with x € C§°(R; [0, 1]) instead of A%mg 4 .

3.1 The first modified operator B,y + A%+

The main result of this paragraph is about a subelliptic estimate for By ; y» +A%mg 4+ without adding a remainder
Kb,h

term =" and where the lower bound has coefficients which can be fixed large, independently of b — 0%. With
this aim, the maximal subelliptic exponent 2/3 is replaced by the lower value 2/5 as a result of interpolation.

Proposition 3.1.1. There exist two constants C,Cs > 1, which are respectively uniform and s-dependent, s € R,

.. _ . . S . h
such that tisle confhtwn Cs max(Ab,b, A=1) < 1 implies that By , yn + A?mg+ with D(By p yn + A%mo + — ATQ ) =
D(Byyyn ) C WO (XM €LY is mazimal accretive with

C H(B:I:,b,Vh + A27T07i — z)uHV\/O’S Z A2 HUHWU,S + A2 HO’U’”WU’S + A2b HviijhunO,s

2 8

bA2[Im |2 ullypo.. + AR ull oy + Al oy (311)
for all w € S(X";ER) and all z € C such that Re z < ATQ , and where we recall that the operators O, and the
Sobolev spaces W*152 depend on the metric g".

Remark 3.1.1. The constants C,Cs > 1 in Proposition [T 1.1 are obtained after several steps, and at every step
the values of the constants C, Cs are suitably tuned. We will often conclude such an intermediate analysis at step
n with the sentence “Choose (Cpew, Cr,snew) = Expression of (Coids Cr,s,01d)”, where o4 refers to the values
obtained at step n — 1 and new to the conclusion for the step n.

Before starting a proof let us verify the maximal accretivity announced in Remark 22711

Corollary 3.1.2. For all s € R there exists Cs > 1 such that Cs + Biybﬁvhs is mazximal accretive when Cgb < 1
and h €]0,1]:
Yu S D(Bi,b,Vh ) y Re <’LL, (CS + Btb,vh)u)};\}u,s Z 0.

Proof. Tt suffices to notice

Re (u, (A* + By pyvn)u)io. > Re (u, (Bypyn + AQWo,i)U>WU,s >0

when Cj o1q max(Ab, b, %) <1, to choose A =Cjs g4, b < L and to take Cs new = Cf,old. O

2
C: ota
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We start the proof of Proposition B.I.1] with the simpler operator
1

A + APmo 1 (3.1.2)

Py +

where A is a positive number and Py, and R; | 5, are defined as in (Z77.I). Remember that the conjugated
operator (WZ)2 [Py p+3Ri 1 n+A%mo+](WE) ™% with (Wg)2 = (ngh)% , takes the same form Py p+ 7 R1s, 1 n+
A27r07i with a new s-dependent remainder term %Rl, 1,n with the same uniform estimates. After this we will

consider )

By yyn = [Pep+ 5

Ri,1pn]+ Ron+ Rop

by a simple perturbative argument.
We use the notations ug = mo +(u) and u; = 7, tu = u — ug for u € §'(X";EL). The following properties

are obvious

e The equality Oug = Ognug = guo holds and therefore
d 1
Chuollz > 51

[uoll1,0 = JuolZ--

e With ay = O+ (N, —d/2) we have O+ d/2 > ay > O —d/2 and

d d
sl + Sludlze > (wrs acur) > flurlGo = 5llucliz: (3.1.3)
while we know (uy, aguy) > |jug|?e . (3.1.4)
We begin with the following integration by parts.
Proposition 3.1.3. For all A,b € RY, the inequality

2

2
Re {(Pap + Ao Ju, ) 2 (|

[uL %510 + A?Juol L2 (3.1.5)

holds for all u € S(Xh; EL).
Proof. Just use Re (Py pu, u) = (uy , azuy) and BL3)BEI17). O
Proposition 3.1.4. There is a positive constant cr > 0, such that for all € > 0, the inequality
1
erlRe (R, )| < < luols + (14 2) s o
holds for all u € S(X"; EL).
Proof. From conditions (Z73), (Z74) we deduce
Riin=mo+Rypmi++mi 2R pymox +m s R 70 4,
with Ry ,, RY },, RY!), € LOWV0: [2). The triangular and Cauchy-Schwarz inequalities yield

[Re (R, 1 nu,u)| | (Ripus,uo) |+ | (R puo,ur) |+ | (R jpur,ur)|

<
< Cr(lurlhyro luollz + uoll 2 lurllze + llurllypo lurllze)

where 0 < t = Cr = supyeo ] maX(”R/LhHﬁ(Wl’O;LZP\/g”R/l/,hHg(VvLU;LZ)?||R/1/7/h||£(v~vlv0;L2)) < o0 by our

hypothesis on Ry | -

crlRe (Ripu,u)| < Jlurlhpolluolge + Jurlypo

The result follows when we apply the inequality
1
Va,b,e € Ry, 2ab< ca® + —b%,
€

with a = |Jug| 2 and b= [luL||yi.0- =

The following proposition is a consequence of Proposition B.I.3] and Proposition B.1.4
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Proposition 3.1.5. There is a constant Cr s > 1, which depends s € R, such that the condition max(Ab, b, %) <

c;: implies the inequalities

1 9 342 9
Re <(Pi,b + %Rl,L,h + AQWO,i)U,U>Wo,S > m HULHV‘VLS + T ||U0Hy”\;o,s (3-1-6)
1 2 : 34°
|(Pep+ $ R0 + A’mos — M)”HWO,S > e lullypo.s (3.1.7)
342 9 9A4*

and ||(Pep+ LRy 1 g+ Amos — il (3.1.8)

2
> ~ el a
- 4(d+2)b2 HUJ-”WLS + 16 ||u0||W0u5
for allu € S(X"; &) and all X € R. Moreover under the above condtion, (Py ,+ %R17J_7h+142ﬂ'01i> is essentially
mazimal accretive on S(X™; EL) in WO (XP; L),

Proof. We begin with the case s = 0, Proposition B.1.4] gives

1 2 1
Re <(P:|:,b + A27r01:t + —R17L7h>u,u>L2 > (m — E

1 €
- (1 D) lluslpno + (42 = =) luoll3

bCR

for all € > 0. Choosing € = Abv/d + 2 and the sufficient conditions

4/d¥2
bgciR and LSA
2(d+2) CR
imply
2 1 1 1 € 3A2?
- . = - = V> —— d (A2 - —)>=—"—
((d+2)b2 ber bere )—(d+2)b2 and (AT =57 > =
~—~ ——

< 1 < 1
= 2(d+2)b2 = 2(d+2)b2

This proves (B1.6) under the condition max(Ab, b, %) < ﬁ, with Cro = max(2(i:2) Ad+2, 4«/Ccll?+2) .

With [lup ][, 0 > §llur?. and

1 1 .
Re <(P:i:,b + A27T07:|: + ERLJ-JI)U?’LOLZ = Re <(P:|:71, + A27T01:t + ER17J_7h — ’L/\)’U,,’LL>L2

the Cauchy-Schwarz inequality combined with [B.I.6]) gives

1(Pro+ 2R+ A2mos —iNulellullze = = s 2+ S e = S a2 (3.09)
+.b b 1,1,h T0,+ 7 ’U,L2’U,L2_2(d+2)b2 U] L2 4 Uollr2 = 4 Ul 7,2 A
as soon as (d+2)b2 > A? | which is implied by v/d + 24b < Cr0Ab < 1. This yields (1.7).

The inequality (BIJ) is a consequence of BILT) and (EI1.9).

For the maximal accretivity property, the decomposition
1 o1 C’
Pep+ R+ A’mgs = 2T =O0F gi’ + le 1 h} + [AQWO i) (Nv —d/2)

shows that (Pyp + $R1,1n + A?mo,1) is a bounded perturbation of

! !

C
b2+P:|:bM b2+ O Sih+M1

where M; = %Rl,L,h fulfills the assumptions of Proposition 7.2 in [NSW] when Cr b < 1. Then Proposition 7.2
in [NSW]| says that % + Py p.ar is essentially maximal accretive on S(X"; ER) for €' > 0 chosen large enough.

Finally, the case with a general s € R amounts to the case s = 0 owing to

s 1 s 1
W)z (Pep+ ~Rin+ APmon )(W3) ™2 = Py + —

b bRiL,h—i_AQﬂ-O,i‘

Below we give a first global subelliptic estimate without remainder for Py j + %Rl, 1h+ A2my.
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Proposition 3.1.6. There exist two constants C,Cr s > 1, which are respectively uniform and s-dependent,
s € R, such that the inequality

1 ik 2
c H(Pﬂ:,b + ERl,J_,h + A’mo . — 2)u > A? [Jullypo.s + A% || Oull 0. + A%D Hv;’ qu"vo,s + A%b3 [l 0,042

WU,S
+ ANV |ullz0..  (3.1.10)

holds for all u € S(X"; EL) and all z € R, such that Re z < ATZ as soon as Cg s max(Ab,b, A7) < 1.

Proof. Owing to the accretivity of Proposition B.I.5], the case of a general z € C, Re z < ATQ , is reduced to the
case z =i\, A € R. Actually the accretivity of Py + $R1, 15+ A%+ — A; implies

[[(Pyp+ %Rlﬁj_’h + Ao 4+ — 2)ullyio.s > |[(Pep + %Rlﬁj_’h + A%y 4 — A?Q — iIm 2)ul[30.-
when Re z < 4~ . But the inequality (L) also says
1 ) A 1 0 , A?
[(Pep + pRLLn Afmo — = — iNullyios > [[(Pep + pRLLn Ao+ — iA)ully50,0 — 7||U||wo,s
2 1||(Pﬂ:,b + lRLL,h + Ao+ — iA)ullyi0.s -

-3 b
So we focus on the case z =i\, A € R.
In the case s = 0 we refer again to Proposition 7.2 in [NSW]. Actually with Ry 1, = 0, we set My =

A27T0ii (Nv—d/2 and
1
Pj:yb + A27T07:|: O + - Vgi h |:A27T01:t + b_Q(NV — d/2>:| = Pj:,b,Mo

where the right-hand side refers to the notation introduced in [NSW]. The operator My = A%mq,+ & 75 (Nv —d/2)
fulfills the assumptions of Proposition 7.2 in [NSW]| with 1 = 0 and a uniform vy > 0. It provides us the
subelliptic estimate

A c! ! 1| oesn A2
ci(H(Pi,b,Mo =il Rl 2 s + L N o el o3 + gl e
or after replacmg by A,

. C} C| Eih 1 )\1/2
CLIPe sty = M)+ T2 l12) 2 S8 ol + 35 10uls + 7 [[95 ], + 5 g + BE= e,

(3.1.11)
for fixed uniform constants C] > 1 and C§ > 1 when b < 1. Interpolation or the functional calculus tells us
1/2 1/2 1/2 1/2 —

lllyir,e < llullyfo ullifa . = lullin 1Oull 2 . < dllullyyo.. + 0~ [Oullyp,. (3.1.12)

Applied here with s =0 and § = /C{, this implies
Cr  Clb? c!

C
Ry 1 pullp2 < TRH“HWLU <

0
<=5 \/C—,é(llpi,b,MoUHLz + b—2||u||L2)

I
CrClb /

C} ) C
+ 2 ull) = € (1 = ) (N(Pety = Nl + G2 lullz2).

By assuming Cr o max(Ab, b, %) < 1 the inequality (BLT) implies

H Piy+ - Rth‘i‘A o+ — IA)U

20(/) 1 2 . CRCib . C(/)
C{ (1 + b2A2) H(Pi’b + gRl’L’h + A T, + — M)u L > Ci 1-— Céh (”(Pi,b,Mo — Z)‘)UHLZ + b—QHuHLz)

With b < 20—”%, after a multiplication by 2A4%b? we obtain
RYq

!

) C,
C{ (2A2b2 + 406) > A2b201( H(Pi,b,]\/fo — ’L)\)’LLHL2 + b_gllu”LQ)

1
‘(Pi,b + ERLL,}L + A’mo 4 — iA)u

> ChA? ful 2 + A | Oull 2 + A% || V5 "u|| |+ A% ull 15+ DAZINM 2] 2

LZ
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Because A%b? < m < ¢} we deduce

1

6C.C!, ;

(Pea+ 2R0 e A2 | 42l + 42 Ol %[5

L2

L
+ A2 [ul 0.3 + DA 2 ful 2.

We have proved the result for s = 0 if we take C' = 6C|C}, after replacing the initial value of Cr o = CRr,0,01a by
QC{CR

/%)

Let us now consider the case of a general s € R. We apply the inequality (BII1]) in the case s = 0 to the
operator Py + A%m 4 + %Rij_,h = W)z (Pryp + A?mo 1 + %RlyLyh)(Wg)ig and the function v = (W2)2u,
with the constant C' = 6C]C}. Because R | , satisfies the same estimates uniform with respect to h €]0,1] as

Ri1, 1 n, there exists a constant C'r s > 1 such that when max(Ab, b, %) < % we have

s

CR,O,new = ma’X(CR,O,Oldv

601C} > A2 [ull 0. + A2 Oullyipo.. + A2V 0] 12

1 )
(Pep+ A?mo 6 + —Ri1p —i\)u
b WU,S

+ A2b2/3||u||wo,s+% + A2 Y2 ullyi0. - (3.1.13)
We use again (Z7.7)) which gives the uniform bound || [Vii’h, (W2)e|(W2)~2 | oAr0,12) < Cs. Thus the decom-
position Vii’hv = (Wg)%vi,i’hu + [V%’h, (W2)2](W2)~ 20 entails

Ex.h Ex,h
IV ullypo.e < IV 0llze + Callullgn s -

The interpolation inequality (BLIZ) used with § = 1 tells us [|ul\i1.. < [[ullyi0. + [|Oull )50, while (BII3) gives

/ 7
lullyiprs < 123%01 [(Psp + Amo+ + R Ln)ullyio.s-

We finally obtain

2 A%l + A2Oullype. + A2Vl 0.

1
6060{(1 + 20517) H(Pj;b + A27T01:t + ERLJ_’h — z/\)u
WO,s

+ A2b2/3||u||w0’5+% + ANl o -
It now suffices to take C' = 18C(C} , while Cr s new = max(CR, s, o1d, 2Cs) for the result concerned with z = i\,
and to take C' = 3 % 18C{C for a general z € C such that Re z < ATZ . O

The subelliptic estimate (B.LI0) is not yet satisfactory because the norm ||u||}30..12/s appears in the right-
hand side with the factor A2b%/3 which is too small as b — 0. By possibly reducing the 2 /3-gain of regularity,
we seek a factor of the form A% o > 0. In order to do this we write for u € S(X"; ER)

1

(P + 5

Ry p+ A27T0,i — i)\)u =f
where we focus again on the case Re z = ¢\ and decompose u and the right-hand side f according to
u=ug+uL =mo+u+mL+u , f=fo+fLr=mo+f+TL4f.

Lemma 3.1.7. There is a constant Cr s > 1, which depends on s € R, such that the inequality

2(d + 2)b?
lusliyprs < === /lhio.. +¢ ol , (3.1.14)

holds true for all u € S(X"; &R and all € €]0,1] as soon as Cr s max(Ab,b, A71) < 1.

Proof. In this case inequality ([B.1.6) and orthogonality give

1 2
Iz lurlli5ee < [(fo, wo)yioe + (fL, ui)yios | < I follypo.s lwollyios + [1FLIEA0.e JuLllio.s -

(d+2

By using af < <22 with (@, 5) = (Ll follypo..» % luolly.) and (@, 8) = (VTF IS yporrs g et lypons)

we obtain

1

(d + 2)b?
(d +2)b2

2
EO 2 1 2
2 Hflllwﬂ,s + 2(d+ 2)b2 HuLllwo,s .

2
22 l[wollyio.. +

b2

2 2

ur [y, < 52 Il folliz0.« +
0
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Multiplied by 2(d + 2)b?, it becomes
1
s [0 < 2(d +2)b* maX(%, d+2) || flIy0.- +5(d+2) [[woll3io.s -
By choosing g = ﬁ, ¢ €]0, 1], we obtain

2(d + 2)%b*
2 2 2
lurllyo.s < = Il fl150.« + g2 luol30.: <

A

2(d + 2)b? 2
(— 1l + ¢ |uo|y~vo,s) .

O
Lemma 3.1.8. There exist two constants C, CRr,s > 1, which are respectively uniform and s-dependent, s € R,
such that Cr s max(Ab,b, A=1) < 1 implies

1 1
& lluollwo.oer < (04 ) [1flhwo. + 0 ot (3.1.15)

for allu € S(X" ER).

Proof. We start with the proof in the s = 0 case.
Let m; + denote the spectral projection on the eigenspace of the operator a. associated with the eigenvalue
i € {0,1,2}. By projecting the equation f = (Ps + 3 R1, 1,5 + A?7o,+)u on Ran(my, +), we obtain

1

1 1
b—2u1 F gmvii”‘(uo + uz2) + gﬂ'lRl,L,hU = f1,

where u; = m; ru and f; = m; 1 f for i € {0,1,2}. By isolating 771V§)i’huo = Vii’huo, it gives:

h 1 h
V§i7 ug = bf1 — gul - 7T1V§}i’ ug — 7T1R11J_’U,.

An upper bound of HV;i’huoH , is thus given by
L

Eih 1
V5 o], < BlAlle + 7 Nutlle + luzllygon + 1Ry, cell (3.1.16)

We now use the inequality (B.1.14]) with the two regularity exponents s = 0 and s = 1 and with different values
of € €]0,1]. It makes sense under the following constraints

max(Cr.o, Cr,1) max(Ab,b, A7) < 1.
We obtain

4(d+2)b?
€0

o [lurllpe < ZIOurllze < 2[lurllyno < 112 + 20 lluoll >

4(d+2)b*
€1

o flualypor < 2furlhy, < 1o + 281 [luollypor

2(d+2)b> 2
o IRy ull,2 < Cho lulhino < Choluslypo + /% ol z2) < Chio(E22 7o + (/4 + ) uol32)

where Cf, o = supyejo,1) [ R1, 1,0l £ 410,12y < 00. The upper bound (B.LI€) becomes

Md+2)b  Cho2(d+ 2)b?
HViﬁ’huoHHS(b—i- W2, Zho 1711

€0 €2
9% d 4(d + 2)b*
+ <TO + O;z,o<\[§ + 52>> Jluoll > + (7) 1£1lio.s + 221 [fuollypo.

On S(X"; €M) NRanmy + = S(X"; €M) Nker ax, Lemma 5.2 provides the equivalence

1 -
& lolhgon < V5" o], + luoll s < Co llwollypo.
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for some uniform Cy > 1 so that

1 4d+2)b  Cho2(d+2)b?
(07—251) |uo|v~vo,1g<b+ @+2)b | Cro 1£12

0 €o €2

d d+2)
+ (1 +— b +CRO(\/;+52)> l[uoll 2 + (7 £l -

The integration by parts inequality (BT of Proposition 315l says

luollpe < llullze = —5 [1fllL- -

We have proved

1 4(d+2)b  2(d+2)Cxrob* 2 20 d
(CTO — 2e1)|[uollyon < (b + - + o + E(l T T Chryol 5T e2)) | IIfllz2
4(d + 2)b?
+ 7||f||wm ;
and we choose )
50162:\/d+2bA§CR70Ab§1 , ea=—=X<X1.
4Cy

This implies

L” T 2V/d+ 2 . 2Vd+20R0b 2 . 2V/d+ 2 N V2dCh . 2/d + 2C7 ob "

2C, e = A A A2 A A2 A L2

+16Co(d + 2)0° (| f | 0.

4/d+2 AWAd+20h0 2 V2dCh, - )
< <b+ 1 1 toet 0 [ fllzz +16Co(d + 2)b%( fll150.1 -
The condition Cf , max(b, A~') < 1 ensures

1

1 2 -
—lluollyos < (b+ g (6VAT2+ 5+ V2D) |2 +16Co(d + 2] fllypo. -
0

We conclude the proof of the case s = 0 by choosing new values of the constants Cr ¢ and C according to

!
CRromew = max(Ckg,CRo.01d,CR1)

VG = max(2Co,6v/d+ 2+ V2d +2,16C5(d + 2)) > 1

For general s € R, writing (Wg)*/2f = (W2)*/?(Pyrp + $R1,1n + A%mo,+ ) (WZ)~%/2(W2)*/?u in the form

1 5 S
—RY |+ A27T0,i) (W5) 2y

(W) 2 f = (Pey+ ;

reduces the problem to the case s = 0 with Ry | j replaced again by
RS = (W3) 2Ry L n(W3) ™2 4 (W) 20 (W) =/ = v
O

Lemma 3.1.9. There exist two constants C, CRr,s > 1, which are respectively uniform and s-dependent, s € R,
such that Cr s max(Ab,b, A=1) < 1 implies

1
2 ulbinns < (54 5 ) Wl + 8 U hgons @.117)

for allu € S(XM; EL).
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Proof. Apply the inequality B.I.I4) with s replaced by s+ 1 and ¢ = 1:

[urllypraer < 20d+2)6% [ fllypo.eor + uollypo.eer -

With B.II5) we deduce
) . (1
s lypran < 82 (2d+2) +C) I hgours +C (b+ 5 ) 1y -

Finally choose Cpew = 2(d+2)+ Cy1q and CR,smew > max(C’Rs,Lemma 17 CR,&Lemma m) . ([

We now decompose the equation
1 5 )
f=Prp+ ERLJ_,h + Ao+ —iANu

into terms which adapt the low and high-frequency analysis of [ReTa]: The frequency truncations are actually
replaced by spectral truncations associated with (W}7).
Let us set:

o f1 = ]l{Wng%}f the orthogonal projection of f on the low lying spectral part of (W}2);

o fy= ]1{W92>l%2}f the spectral projection of f corresponding to high energies of (Wg)j;

o up = (Pyy+ $Ri 1 n+ A*mo s —iX) 71 f, the preimage of f by Py p+ $R1, 1 n + Ao+ ;
o uy = (Pry+ %RLL,h + A%mg 1 —i\) 7! fy the preimage of fy by Py + %RLL,h + A%mo 4+ .

Lemma 3.1.10. Under the condition Cr s max(Ab,b, A=1) < 1 with constants C, CRr,s > 1, which are respectively
uniform and s-dependent, s € R, the inequalities

Ch

||UH||W0,5+1 < IHfHHv"vo,sHv (3.1.18)
C

lurlhposs < llfzlo. - (3.1.19)

hold for all w € S(X"; EN).

Proof. By the triangular inequality and the continuity of the inclusion W15+l s WO+l e know

2
||’u||W0,s+1 < ||U0||Wo,s+1 + E HULHV\/LSJA .

Let us fix

c Z OLemma m + \/gCLemma 1.9 > CR,S Z ma‘X(CR,s+1,Lemma M’ CR,erl,Lemma B"’] .

We can now apply inequality (E.II5) to [[uollyi0..41 and inequality (BIIT) to |Juil[j1,.+1 With

1 1
& lelhpossr < (04 ) 1 lhios + O [ fllyo.ees - (3.1.20)
The functional calculus gives
Ifelposss < 5 1fElhios s
Ifrllpo. < bllfulpo.s -

By combining BI.20) for u = ug and u = uy, respectively, we deduce

(
b+ ) 1Ll -

lurllpoen < 2Cb(b+ %) [ fllypo.os
||UL||V”V0,S+1 < 2C

Since we assumed Cg ;Ab < 1 it suffices to take C’new = 4C‘Old. [l
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Lemma 3.1.11. Under the condition Cr s max(Ab,b, A=1) < 1 with constants C, CR,s > 1, which are respectively
uniform and s-dependent, s € R, the inequalities

IN

lurll zo.+2 e fellype.s

Au
o

IN

w5 Wos+2
hold for all w € S(X"; EN).

Proof. When we interpolate between integration by parts inequality (BT

luzllyio.s < =5 Ifzlio.s

and (FII9)

| Qu

||UL||W0,5+1 < ||fL||W0,s .

We obtain

U‘\w

C’%

lurll ;o.0+2 <? 1/ lpo.s -

By doing the same with the subelliptic estimate (B:DIII), we get

sl o3 < oy Il
and (BII8) i
Jurrlhpo < 5 Ifrlhin.
and thus
sl oo < CHCH sl
Take Chew = max(25,C3)C5. The result follows for some large enough constants Cs, Crs>1. O

Proposition 3.1.12. There exist two constants C,Cr s > 1, which are respectively uniform and s-dependent,
s € R, such that Cr s max(Ab,b, A1) <1 implies

1
C H(P:t,b + ERl,J_,h + APmo 4 — 2)u

> A fullypo + A% [Oullygor + A% V5 a4 A% ful] ez
WU s WO,s

+ AR [[ull £z + APBIAM .0 (3.1.21)
for allu € S(X";EL) and all z € C such that Re z < ATZ

Proof. When z = i) the result follows from Proposition [3.1.6] and the inequality

V2Ce

(L P P P T

Qe

flull - WostE = < lucrll; Woss+2 +lJumll Woss+2 <

e
For a general z € C, Re z < ATZ , we use again the inequality

1
g“(Pib+bR1Lh+A mo,+ — ilmz)u

)

1
H(P:I:,b + —Ry i p+ Ao s — 2)u
WU,S

b

WU,S

which is a consequence of Proposition [3.1.51
Taking Crew = 3v2(Cog + 1)C', the inequality BIL21)) is proved. O

End of the proof of Proposition [31.1l. We use

1
By yyn =[Prp+ ERl,J_,h] + Ron + Ron,

where Proposition B (resp. Proposition BI.T2) provides the result about the maximal accretivity (resp. the
desired subelliptic estimate) with some constants C,Cgr s > 1 when Rgp =0 and Ry =0.
The property (7.3 of Ry and Rsj implies the uniform inequality

||R0,h||[:(W0,s;W0,s) + ||R27h||£(w2,s;wo,s) + ||R2,h||l;(1]\;1,s;y”\;71,s) S Cgl)
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For the accretivity of By, 4 yn + A?mo 4+ — %2 we write

2

A 1 3A? A?
Re (1, (Bypyo + A% — ulins 2 gl o + =7 ol — 268l = 5 e,
1 A? A2
> [ — 200 — Zjluy A = _ac® 0. >0
= [(d+ 2)b2 s 4 ]”uinl,s + [ 4 s ]HUOHWU, =

where the inequality A% > 4dC§1) holds when Cs > 1 is large enough , and where the inequality 0 — 2051) >

1
(=
2
4~ holds as soon as C max(Ab, b, £) < 1.
For the subelliptic estimate, (3121 implies

N

IR0+ Ran)ullypo.. < C (lullypo.. + llullype.) <

(Pyp + Rth+A 0,4 — IA)Ulypo.s

b
200 1> 1
< T|\(Pib+ bRu_thA 7o+ — iA)ull )30,

when

CR smax(Ab, b, A7) < 1

We conclude by choosing A such that 2CC S % < %, which is ensured by the new value
C, = max(Cg.., \/4CC)
and provides the result of Proposition B.I.1] with the new value C),¢,, = 2C'. O

3.2 Second modified operator 7, LB, ,ynmy 4+

Another lower bound without the term 3% can be obtained after considering the block diagonal restriction of
By 4 yn to Ranmy 4 = ker(a+). Actually it is not a subelliptic estimate because there is no gain of regularity.
But the strong accretivity inequality with a lower bound b% will be strong enough for our applications. Because
W commutes with 7 + and 7, 1 the same notions of closure, formal adjoint and adjoint, as in Definition

can be considered with Wos(X"; &) S(X"; &) and S'(X"; ER) replaced respectively by
T aWOS(XMERY | w2 S(XMER) and w1 S'(XMER).

All the discussion after Definition 2.4.3] and the properties of Proposition 2.7.1] can be adapted with

_ 1
Biyyn, =m14Biyynmi s, (W3 ?Byyyn \(WE) ™2 =m1 4 [P:t,b + R+ <

bRiJ_,thRg,h T+

1
B;S,b,vh,L = WL,i(B;fb,vh)”Lyi =T+ Pj/z,b + (R(SJ,h>/ + E(Ri,L,hY =+ (Rg,hY} T+ -

Proposition 3.2.1. There exists a constant Cs > 1 which depends on s € R such that the condition Csb < 1
guaranties the following results.

The densely defined operator By jvn | = 1 + By ynmL + in ﬂlinO’S(Xh;Si) with domain m, +S(X"; ER)
is essentially mazimal accretive with the inequality

1
Yu € WL,iS(Xh;gi), Re (u, [mL+By p ynTl +]U) 0. > WH“H\Q/X;OS . (3.2.1)
. . Ty, WOs .

Addtionally the resolvent of its closure By pyn | = 11 +By pynmi +] satisfies

1 S5 S5\—1 2

VZ S (C RGZ S 24b2 N ||(Z — B:I:,b,Vh,J_ ) ||L(V~VU’S;WO’S) S 24b .

Finally the closure of the ﬂLﬁiWO*S(Xh;Ei) formal adjoint Bj’[sb vhoL satisfies

1,5 ° 1%

By yn L’S(X’I;E:’{:) =B yn -

For the proof, we check firstly the accretivity in Proposition B.2.2 and secondly the injectivity of the adjoint
Bi"sb Vi1 = (By p.yn,1)*® in Proposition B.23l The final statement above is just a consequence of the essential
maximal accretivity.
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Proposition 3.2.2. There exists a constant Cs > 1 which depends on s € R such that, under the assumption
Csb < 1, the operator By yyn | =71 +Byyyami 4 is accretive in wi WO (X" EL), with

1 , d
Re (u, By pyvn 1)y > m”“”wl,s > m” ||W05 > 12b2H HWO,S-
(3.2.2)

Yu € WL,iS(Xh;gi),

. e S— T .
Hence its closure By, yn | 18 one to one with a closed range.

Proof. Take u = u,, since m | tmo +71 + = 0 the inequality (B.1.0) holds at least with an arbitrary A > 0 that
satisfies the required condition. Integration by parts gives

1 1
Re <Bi1byvhu, ’UJ>V~V0,5 = b—2Re <(P:i:,b + 3R17L7h>u, U>V~V“’S + Re <(R01h + ngh)u, U>V~V“’S
1

m”“”%m = [1Ro,nll £y yo.s)

ull o = B2l copne gl -

The condition [Z73) ensures Ro; € L(WV%*; W) and by interpolation Ry € L(ONV*;W~15). Remember

that %HUHWOS < HUHWLS. Finally

Y]

1 1 2||Ro,n ~,54",sb2
]Re <Bi,b,thau>W0,s <( || 0 ||L(W0 ,WO )

- ~ 2 2
?\([@d+2) d = B2 pll commenp-1.e)b ) l[ell33 .«
1 1 2 ~
> — (= 1 C b2 -
b2 (d+2 (d +1)Cr ) l[wllyin.

with Cp = SUPpe]0,1] [HRO wll coposaposy  1R2nll £oane i1, s)]
Taking Cy > Y=—£ QCR (d+ 2) and Cg s as in Proposition B0, we have
2

1 2| Ro,nll coypo.yio.eyb 1
- ’ ’ —|IR e 1e b > ————
d+2 d IRz nllcomnm-nb” 2 375

as soon as Csb < 1. [l

Proposition 3.2.3. There is a constant Cs > 1 which depends on s € R, such that the adjoint BjE bvh L =

(Bi,b,vh,J_ )*% is one to one and therefore B:‘:ﬁbyvh7J_ is maximal accretive, as soon as Csb < 1.

Proof. Assume w € ker(B lsb vk J_) and let us prove w = 0. By setting w = (WGQ)*S/%, the assumption is
equivalent to (We)s/QBi’sb - J_(W6,2)_5/2v = (Wg)~ ‘S/QB; bV J_(W92)S/2v =0 and v € L} X" dqdp; EL). The
problem is reduced to

7o [PLy+ (Ry,) + (B L) + (BS,) | miav =0 i S'(x%eh)
v e L*(X", dgdp; EL)

=0v=0.

We set Bopyn | 4= LT (R )+ %(Rf,L,h)’ + (3 ;)" which has the same form as B j y» with a changed sign
before Vii’h and remainder terms Ro p, 1, 1,1, B2, replaced by the s-dependent versions (Rg ,,)", (R] | )", (15,,)".

In particular ﬂ'J_d:Bi,b’V}z’sﬂ'J_d: is accretive on m +S(X"; ER) for the L2(X", dgdp; E}) scalar product, with the
same lower bounds as in [B.2.2), as soon as Clb < 1 for some C! > 1.
We take two cut-off functions x, x € C§°(R, [0, 1]) such that

e y and Y is equal to 1 near 0

e supp(Y) € x'({1}) ,

and we recall that f(WeQ) is continuous from S'(X";EL) to S(X";ER) and commutes with 7, + and more
generally with any function of ay for all f € C°(R;C). For € > 0 we set v. = x(eWZ)v € S(X"&r). A
straightforward computation shows

WL,iBi,b,Vh,sﬂl,i'Ua =T i[B:I: b,Vh. s X(EWOQ)]TFL,i’U
S 1 S S
(Ro.0)" + 5 (BT Lp) + (B2, X(EWFm L s, (3.2.3)

=D

*WLi[ibvgih
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where D is a differential operator in OpSi,/ 2(Qh; End £%). The Helffer-Sjostrand formula for the commutator
gives

(D, x(eW§)] = [D, WFIWg X' (eW; )Wy + e,

where )
re = —5— [ B:X(2)e(s — eWR) (1D, WRL WEI(z — eWE) 2 da A dz
1T C

By pseudo differential calculus in OpS% (Q"; End £}), the commutator [[D, W2],W7] is a pseudo differential
operator of order 3 + (2 — 1) + (2 — 1) = I. This implies that [[D, W7], W2](Wg)~% is bounded. The inequality

7/8 |2 1+ 212 2
/42N —T 0, 2\ —2 [ + } (%)
€ Wi) " 4(z —eW, < su < (C |su <C
[ 2 (Wg) 3 ( 0) ”_»% o SO TN S
yields
7l cer2;r2) < OR,851/43 (3.2.4)

where again the constant Cr s is uniform with respect to h €]0,1].
The obvious equality x'(t) = (1 — x(¢))x/(¢) for all ¢ € R implies

[D, x(eW§)] = [D, WEIW, X' (eW;)eW5 (1 — X(eW§)) + . (3.2.5)
Let us consider the following scalar product by using 3.2.3) and B.2.0)
Re (ve,m1 4 By yyn (w1 40:)2 = Re (ve, [D,WFIW, X (eW5)eWg (1 — X(eW§))v)r2 + Re (ve, 7o) 2
= Re (eWgX (eWHW, 2[W§,D've, (1 — X(eWg))v) 2 + Re (ve, rov) pe.
Applying the Cauchy-Schwarz inequality to the right-hand side of this equality yields
w1 ave) e < [eWEX (eWFH Wy (Wi, D'lve 2 | (1= x(eW§))vll 2 + [[ve | 2 [l 2. (3.2.6)

%
Re (ve, LB yn

By functional calculus the operator eWgx'(eW}2) is a bounded operator

W2 W) lowons < M= sup |6 ()] < oo,
te[0,4o0[

while [Z77) and [Z73) ensure

_ _ 1 _ . 1
Wy W3, D) = F Wy (W3, V3" + W P W3 RS o+ 4

€L(OWL0;L2) €L(L%;L?)

Ri |, + R3] -

The left-hand side of ([B.2.6) is thus bounded by

1/4

Re (ve, w1 4By pyn om1 20e)2S MORY,sl|vellypooll(1 = X(EWZ))wllzz + Crose'/ o]l

1 MCgr b -
< §€/MCR,y,s,b||Us||$;vl,o + Tysn(l — X(EVV@Q))UH%Z + CR,551/4||U||%2
where 1
_ Et,h W2 W
Cry,sp =7 sup max(||[[ 0 2[W92, Vyi ]||£(W1,U;L2)’ 0 2[ 92’ Rf:0,172§h]||£(L2;L2)) ’

b he]o,1]

By Proposition B:22 and ([(2:2) applied now to w1 + By yn (71 + , the left hand-side is bounded from below
by 2(d-&2)b2 ||Ue||$,1;1,o when Csb < 1.

1

: ! __
By choosing ¢’ = AT My s

, we obtain

d 1 -
WH%H%Z < m”%”f/yl,o <2(d+2)V°M>Ch y (1 = X(EW)0l|7> + Crose[v]|7 -

When ¢ goes to 0, the spectral theorem and the dominated convergence Theorem imply

tim [loe[2 = Joll3> and T |1~ £(W3))l = 0.
We have proved v = 0 and Bl,sb,vh,L is one to one.
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3.3 Final modifications with a frequency or spectral truncation

For x € C3°(R, [0, 1]) such that
Supp(x) € [-2,2] and x(t)=1 for te[-1,1].

let Qar = A2ﬁ01ix(%)ﬂoyi for L, A > 1, where we drop subscript ; although it depends on h €]0,1], and
consider the operator

By pvr +Qar.
Remember that the operator Ut g = Ut gy : L2(Q",dVolyn; AT*Q" ® Fy) — ker(as) = ker(ag ), with
Fi =@ xCand F_ =Q x C x org, introduced in Z517)@Z5I8) (Z519) @25.20) , is unitary and satisfies
2 d? -1
27T01:t(W9 )7T07:|: = U:I:,@(2C + C? +H0)Ui,9

—_————
Cq

where Hy = Hy, is the non negative elliptic, Laplace type operator, Hy = — ijl 0;(hq)(Ag g»)sclj(hg) and
where Ag ,n is the Laplace Beltrami operator, with a scalar realization in the orthonormal frame (uigh) 1c{1,....d}
for every j € {1,...,J}.

Owing to the uniform estimates of g" and V" stated in Proposition 2.6.2] the operators (th + thV*gh )2 and the
Witten Laplacian Ayn ; = (th + 49" =" )2+ |VVi(9)|? + (Lgvr + LE4) are elliptic operators in the classical
space OpSQ(Qh;Si) with the same scalar principal symbol as Hy and with uniformly controlled lower order
corrections.

By choosing the above constant C' > Cy v > 1 large enough and by setting again Cq = 2C +C d; , we deduce for
every s € R the equivalence of norms

+1
u@+mwwm> <.

(Cd + Avh,1)5/2U||L2

+1
H? h.AT* h F HUHHS =
Vue H*(QU AT Q" © Fy), <||(cd+Avh,1)s/QUI|L2 I

V\/l‘h ‘he Opera or bi,g we a.lSO haVe
L i,@u WS1:52 i79u L

AN
— () 1Ca+ H 2l

dsl 3
G>|whwxu@+AwﬂW%hk

Because we aim at clarifying the relations between Spec(By ;) and Spec (Ayn 1) = Spec (Agr ghvny1) =
Spec (A(,q,v,h)) (see Subsection 2.6]) , we consider the two perturbations of By j yn

w2 Cy+ Hy

2 _
Qa,r = A’mo 4 0 X(ﬁ) omo+ = A*Usgo X(W) oULy (3.3.1)

LA
Cd + Avh71

and QA,L,V}L = A2U:|:79 @) X( (LA)2

JoUsLy- (3.3.2)

The comparison of Q4,1 and Q4 j, y» is easier to understant while staying on the base manifold Q" and we also
use the following notations.

Definition 3.3.1.  The operators Qa : E(QMAT*Q" ® Fi.) — C®(Q"AT*Q" @ Fi) and QA7L7V;1 :
ENQMAT*Q" @ F1) — C®(Q"; AT*Q" @ Fy) are defined by
Caq+ Hy

QA,L = AQX(w) and QA,L,vh = AQX(

Caq+ Avh,1)
(LA?

These two operators are bounded as well as A%mg + — Q4. and A%m + —Q A.L,vh - We will prove the following
result.

Proposition 3.3.2. There are constants L > 1, Cs > 1 and Cy s > 1 respectively uniform, s € R-dependent
and (x, 8)-dependent, such that inequality

1 s 9 s
ZH(B:I:,ZJ,V’I + A2mo,+ — 2) ullyjo.. < N(Bypvn +Qan,vn — 2) ullyjo. < ZH(B:t,b,V’I + Ao+ — 2) ullyio.
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holds for all u € D(B:tﬁbyvhs) and all z € C, such that Re z < ATZ , s S00M GS

1
Cs max(b, Ab, Z) <1. (3.3.3)
Therefore the subelliptic estimate [B.II]) holds true with By ,yn + A%mg 1 replaced by By pyn +Qarvn and
the constant C' > 1 replaced by 4C'.

Proof. 1) We start with the simpler perturbation Q4,1 instead of Q4  y» and we write:

2W2
Biyvi +Qar—2 = Byyyn+ Amos — 24 (A%mo+(1 — X)((LT;)WO,Q

2

2W, _
= (1-A’moa(1— X)(ﬁ)ﬂo,i(Bi,b,vh + Ao+ — 2) ) (B pvn + A’mo e — 2).

According to Proposition BT and under the conditionB3:3.3] the resolvent (B j, yn + A%+ —2) ™! is continuous

from W% to W9+3 with norm less than -5 . Because y = 1 on [—1, 1], the operator (1 fx)(%) is a bounded

5

operator from WOs+3 to WO with norm less than (L:x)g . When L > (20)% we obtain
5

A2 2W92 A2 —1 C 1
Ao, (1 — X)((LT)Q)WO,:E(Bi,b,Vh + Ao+ = 2) 7 oo ppos) < I < >
Therefore the operator
2 20§ 2 -1
- 0,4 (1 = X)) 7575 )70,£ (D4 p vr 0,4+ —
1— A%mp,+(1 X)((LA)Q)W (B + A*m z)

is invertible by Neumann series and the norm of its inverse is less than 2, while its norm is bounded by 3/2. We
have proved

1 s 3 s
§H(Bi,b,vh + A%+ — 2) ullyjos < (Bipvr +Qar — 2) ullio. < §||(Bi,b,v’1 + A%mo 1+ — 2) ullyi0.s

(3.3.4)
for all u € D(B:tﬁbyvhs) and all z € C such that Re z < ATQ .
2) We now use the similar perturbative argument for
Byiyvn +Qapvr —2=DBypyr +Qar—2—(Qar—Qarvn)
The inequality (3.3.8) of Lemma below gives
9 9 CX,SA2
1Qa,L — Qa,Lvullcoposaposy = 1Qar — Qarvellews s < (LA (3.3.5)

when L, A > 1, uniformly with respect to h €]0,1].
The subelliptic inequality (BII]) combined with (334), leads to

A2

WHUHWO,S
200, s

= (LAY

< Cx,s

’H(Bi,b,vh + QA,L,V*L - Z)“Hwo,s - H(Bi,b,vh +Qa,L — Z)“Hwo,s

|(Bypvn +Qa,r)ul o -

By taking Cjs pew > 1 such that Cs pew max(b,Ab,%) < 1 implies A > /4CC, ; and (LA)? > 4CC, ,, the
right-hand side is less than 1 |/(By yvr + Qa,z)ullyo.: -

We conclude by stating the result with Cs = Cjs new = max(1/4CCYy s, Cs oid)- O
Lemma 3.3.3. For all s,s" € R there exists Cy 5.5 > 1 such that
Cd + AVh,l C'd + Hy s’ —s
||X(W)||L(HS;HS/) + ||X((LT)2>H5(HS;HS/) < Cyaw (LA (3.3.6)
A? 1 ~ 2 4
Re z < —, [|=(A —2)7! oy < < 3.
VZE(Cv €2z 9 ||2( Vh,1+QA,L,Vh Z) Hl:(H JHe) = AQ—Rez—HIm Z| = A2+2|Imz| (337)
and o A
Cq+ H + 7z Cyss
@+ Mo N el 40 X0, (3.3.8)

||X( (LA)2 )7 X( (LA)Q )Hﬁ(HS;HS) < (LA)Q
hold as soon as C%,L > 1 and for all h €]0,1].
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Proof. The two first inequalities (33.0) and (3371) are straightforward applications of the functional calculus,
because the H*-norm is equivalently evaluated with ||(Cy + Ho)*/?ul| 12 or with ||(Cq + Ayn 1) ?ul| 1z .
For (33.8)), the difference

Rapn=Cq+Ayny —Cqg+Ho+ Ran (3.3.9)

satisfies || Ra,z,nllcme ey < C’Sg uniformly with respect to h €]0, 1].
The Helffer-Sjostrand formula gives

(Cd+Avh,1)7 (C'd+H0 _ 1 1
ML)z MTTAR ) T 2 Jo (LA)2

(9:%)( (L’Z)Q )(z = Ca— Ay )" Rapn(z — Ca— Ho) ™' dz A dZ,

where x € C3°(C; C) is an almost analytic extension of x with
02X(2)| < Oy [Tm, 2|
while d;x = 0 in a neighborhood of 0. The £(H?*; H*)-norm of this difference in given by the £(L?; L?)-norm of

CdJFAVh,l) _ (Cd + Hy
(A N (Lay

(Cart )" i V] (Cu+ Hoy 2

or, by setting RA,L,h =(Cq+ Avh,1)75/2RA,L,h(Cd + Ho)®/2, of

1 1 N z 1= _ _
/C (LA)2(62X)((LA)2)(Z—C(1—Avhyl) 1RA,L,h(z—Cd—HO) LdzNdz.

2
With ~
IRaLwllerzney < CEUNRA L core e

and the inequalities

_ _ 1
1(z = Ca — Avr 1) Hleeo)ll(z — Ca — Ho) " Hlorzine) < Tm 2
oz |Tm 2|2
d 0= < yaanvl
an X((LA)Q) =2 Ay
a simple integration yields the result. [l
4 The Grushin problem
4.1 Functional analysis of the Grushin problem
We consider the operators
p, = (Brovr T Qarvr =2 o)y g — (Brawr TQaryr =7 Uso) (4.1.1)
: U:Eleﬂ'o 0 i U:Eleﬂ'o 0

Remember that By, yn € OpS{O’I,/Q(Qh, End(&l)) while Qapyn @ S'(X™ER) — S(XM;EL) and Uyp is an
isomorphism from H*(Q"; AT*Q"® Fy4) to WO’S(Xh; EMYforalls € R, with Fy = QxCand F_ = (@xC)®orgn .
In particular, the operators P, P, are bounded

P, PLWS (XM EL) @ HO(QMATQ" @ Fr) — WO 32(XM el o HU(QMAT Q" @ Fy)  (412)

for all s € R. With

QRVVO*S(Xh;Ei) O H(QMAT* Q" Fr) = S(X™EM @ Cc® QAT Q" ® Fy), (4.1.3)
gRVvaS(Xh;ej;)@HS(Qh;AT*Qh@)Fi) = SXMENH QAT Q" @ Fy) (4.1.4)

the continuity also holds with these spaces endowed with their usual topology.
We will use the following abbreviations

WO HY = WONXMER) @ HY(QMATQ" @ Fy),
Sac™® = SXMheh) oM AT* Q" Fy),
BQ,Z = B:i:,b,Vh + QA,L,Vh —Z and Bég7z = B/i,b,Vh + QA,L,Vh —Z.
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We recall
1 1
By yyr = 20t T gﬁi + 7+
. 1
with To,+Bg, T+ = WO,i(gBi + )T+,

1
T +Bg o+ = WL,i(gﬁi + Y4 )70+,
and 70,+BQ.2mo,+ = To,+ (Y + QA L.vr — 2)T0,+ -

We check that P, and P, are invertible in a weak sense under suitable conditions and then we deduce via the Schur

complement formula an explicit expression of (By yn + Q4 ryn —2)” " as an operator from W5 (X" L) —

WOs=3(Xh: £h) . Because the condition b < CL , which ensures the invertibility of m, (B ,yn — z)m_dcé in
Proposition B2l depends on s, there is no choice of parameters which guarantees the meaning of some formulas
simultaneously for all s € R, but only for all s in a fixed interval [Spmin, Smax] C R. Therefore not all the
compositions of operators in what follows make sense with the topologies of (£13]) and (ZI4) and products or
inverses must be handled carefully. In particular, although we make product of continuous operators between
different spaces, they do not necessarily have a closed range and we must distinguish clearly left-inverses and
right-inverses. Alternatively it is better handled by the separate studies of the uniqueness and of the existence
of solutions for linear systems.

Proposition 4.1.1. Assume that the condition b < CL of Proposition[Z21] holds true for all s € [—Smazs Smaz) »
for some Smay €]3,+00].

1) When |s| < Smaz and Rez < ﬁ , the operator P, : S @ C® — W*s @ HET! admits a left-inverse

E E - -
gz _ (E - + ) c K(Wo,is e His—i—l;WO,is e His_l).
- -+

The same result holds of P, : S & C>® — WFs @ HF5H1 with the left inverse

g, = T e LOVOFE @ HETLWOFS @ el
!/ /
E. E.,

2) For |s| < Smas — 3/2 and Rez < i ,, the relations

G.oP.= iwo,is@His%wo,isfS/QeaHisfS/Q

/ / -
and gz o PZ = ZWO,;S®H¥s_>WO,¥s—3/2@H;s—5/2

make sense as the products Ao B, with A € LOWOES=3/2 @ HEs—1/2))0.£5-3/2 g g+5-5/2) gnd A €
E(WO,:&S ® H:I:s; WO,:I:S*B/2 ® H:I:s) C E(WO,:&S ® H:I:s; W07i573/2 o H:tsfl/Q) )

3) For|s| < Smas—3/2, 2 € C\o(Byyyn+Qa pyvr) and Rez < 51 | the operator E_y € L(H*Y/%, H*=5/2) C
L(C=;E") admits a right-inverse (E_;)7t € L(C®;C*®) and a left-inverse (E_4);' € L(E';E") with
(E_4);' € LH;H+2/3) for all s' € R and (E—_y); | oo = (E—4);7t .

T

4) For |s| < Smaz — 4 the equality

B T Qag —2) ' = B— By (B ); ' B (4.1.5)
holds in the sense of E(V\/O’S; WO’ng)—valued meromorphic functions in {z e C,Rez < ﬁ} .

f

Proof. 1) The range of PZ|S€9C°° is included in § & C*. Let us check that for <
Jr

) € § @ C*™ the equation

u .

P, ( ) = ( / ) admits at most one solution in W%* & H*~! when |s| < sz -
U— +

By applying 7| + to the first line of the system

BQﬁZU + U:tﬁgu, =f
Uy gmo,+u = f+
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we must have

1
1 +Bg T +u+ WL,:t(gﬂ:t +v:)Usofr =712 f-
When 7, +Bq .71+ =71 +(Bypyn — 2)mL + is invertible
_ 1
w=my su+moru=[ry(Beyyr —2)m] (e f — WL,i(gﬂ:ﬁ: +7:)Us0f+) +Usof+

With the conditions b < Ci and Rez < 5= and by noticing 71 4+ ($6+ +v4)Ux 9 € L(HSTY W) | Proposi-
tion B.2.1] actually says

u=Ef+Efy
with  E=(Byyyn. —2) 'mia € LV W09, (4.1.6)
S — 1 s 210,s
and  Ey=Utg— (Byipyn, —2) 17u,¢(55i +v£)Us 9 € LHTH, W) (4.1.7)

By applying the projection mg + on the first line of the system, we must have
1 1
o+ f = Wo,i(gﬁi-i-%-i-QA,L,vh—Z)U+Ui,BU— = WO,i(gﬁi+'7i)WL,iU+7TO,i(’7i+QA,L,Vh_Z)Ui,9f++Ui,9U—

and Fo,i(%ﬁi +9+ +Qaryvr —2) € E(WO’S; H*~1) now gives
u-=E_f+E_fy,
. _ _ 1 — _ ~ 05 Tre—
with E_ = U:t1197'('07i - Ui,bﬂo,i(gﬁi +92)(Bryyny —z) tmie € LV HSTY), (4.1.8)

_ _ 1 . _ 1
E_y =ULgmo(z = Qap,vn — 7)o+ Uiylgﬂ'o(gﬁi +y:)(Brpyrl —2) 177L,i(gﬁi +7£)U+0,
and  E_, € L(H*T, H ). (4.1.9)

The result for P, is straightforward because

P Bl yyn+Qarvn =% Usp
i U;ﬁleﬂ'o 0

—S

and (B;;bﬁvhﬁj_ - E) = (WGQ)S(Bi,b,Vh,LS - Z)*ﬁs(W92>7S .
2) By 1) and |s| < Spae — 3/2, we know that G, € LOVO=3/2 @ H5=1/2,W05=3/2 @ {5-5/2) is a left-inverse

on S ®C* and we deduce
V<U>GS@C‘X’, gzopz<“>:<“>.
U_ U_ U_

The density of S&C> in W®*& H* , combined with P, € L(SHC>; SHC®)NLINVS & H3; WO=—3/2g H1/2)
and G, € LONV?*=3/2 @ H*~1/2) | yields the result.

3) Let us prove firstly that for u_ € C* C H*~%/? the equation F_, f; = u_ admits at least one solution in
fr €C® C H*"Y/2 when |s| < Smax — 3/2, 2 € 0(Byyyn + Qapyn) and Rez < % . Take w = (Bi1b7vhs +
Qa.pvr — 2) U pu_ which belongs to D(Biybﬁvhs ) C WOs'+2/3 according to Proposition 2272 where the
condition 0 < b < h < CL does not depend on s’ € R. Set u = mprw € 7o+ (ﬂsreR Wo,s’) = U4 4C> and

9

V=T 4w E T4 (HS/E]R WO,S’) = 1, +8. By projecting the equation (By pyn + Q4 pyvr — 2)w = Ut gu_
written in S with the projections 7y + and 7, 1, we obtain:

1
T0,+(Qarvr +7+ —2)u+ Wo(gﬁi + 74 )v =Us gu_,
1
and ﬂli(gﬁi +y)u+ 7L +(Bypyn —2)v=0.

By taking fy = —Ui_ﬁleu and by noticing (8+ + v+ )u € WOs=3/2 with |s| < Spmas — 3/2, we deduce

s—3/2

1 - 4,1
70,+(Qa, L,y + 7+ — 2)u — Wo,i(gﬂi +y+)(Bypvn 1 —z) 1(3@: +y+)u=Us pu_ .

This means exactly that f, = Ul yu € C>* C H* /2 satisfies E_, f, = u_ in H*"*2. But the formula

’

fo = (E_ ) tu_ = U;ﬁleﬂo(Biﬁbyvh +QA7L7VhS — 2)7WU4ipu_ for all & € R, proves that this right-inverse
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(E_4) ! actually belongs to £(C>;C>).

With the dual statements of 1) and 2) this means also that the formal adjoint £’ |, € L(H~5~Y/2; H=575/2) C
L(C>;&") admits the right-inverse (E” ) u_ = Uz gm0(B , yn + Qa,L,vn * — %)Wy for all 8 € R and
(B )7t € £(C*>;C>). Duality implies that (E_4);" = [(E/_+);1]’ € L(E5E) is a left-inverse of E_; €
L(C>;D"). With the formula

, /

(E_ )7 = |Uzh(B yyn + Qaryr —2) Wep| =Usp(Bipyvn T Qapve = —2) 'Usg, (41.10)

the regularizing property of (E_.);* € L(H®;H¥*+%/3) and the identification (B—); o = (Bx);t are
straightforward.
4) When |s| < sjar — 3/2 and Re 2z < 51 , the first formula of 2) implies

2402 >
(EBq.. + E{Upymo)u =u in W32, (4.1.11)
(B_Bg. + E_ Ul ym)u=0 in H*"%/2, (4.1.12)

for all uw € W05 . With [s —5/2| <|s|4+5/2 < Smaz — 3/2, and 3), the equality (LI.I2) becomes
U;leﬂ‘ou = _(E—+);1E_BQ7ZU in Hs—5/2+2/3 -

for 2 € o(Bypve +Qa,r,ve)-
Put in the equality (ZITII]) we obtain

E—E (E_ )7 E_)(Bo.)u=u in W0Os—5/2+2/3-1
+ +/e Q,

—2/3

when z € o(By pyn +Qapyn) and u € WOs - Applied to u = (Bipvr +Qarvn — 2)"lw € WO for

v e WOs=2/3 e obtain

s—2/3
—Z

(B~ B (B ) E) = (Brpur + Qapyr )hin LOAOS2/3 52109

and we know that the right-hand side is a meromorphic function of z in C.
The condition |s| < $maz—4 < Smaxz—5/2—2/3 allows to replace s—2/3 by s, by noticing s+2/3-5/2—1/3 > s—3,
with

(E—E(BE_1)'"E_)=Bypvr +Qapyr —2) "

as an L(W%*; W95=3)_valued meromorphic function in {z€C,Rez < 555 }. O

4.2 Quantitative comparisons of truncated resolvents
After setting
_ 1 = P
6p.az=(Beyyvn+Qaryn —2)"" — Ui,9(§AVh,1 +Quarvn —2) ULy (4.2.1)

we consider the finite rank operators

0B,A,z © QA,L',Vh and CQA,L’,V’L 00B,Az;
where L' > L > 1 will be fixed later.

Proposition 4.2.1. Let L > 1 be the uniform constant of Proposition[3.3.9 and fix L’ > 1. For all s € R, there
exist constants Cs > 1, determined by s such that the condition Cs max(b, Ab, A=1) < 1 implies the inequalities

bA3
SB A O , R G 6 N e — 4.2.2
|| B,A, QA,L ,V’IHﬁ(WO ;W0ss) 1+A71\/m ( )
bA3
- (4.2.3)

/hO5A 50,5 .00, < Comn——M
||QA,L vV B, ,z|‘£(w0 VYCIED 51+A*1\/m

for all z € C such that |Re z| < ATQ .

Proof. For a given s € R we fix Smax > || + 10 so that the estimates of Proposition LTl and the expressions
of E,E_,E; and E_, given in the proof make sense for the Sobolev exponent s replaced by s3 € [s,s + 6].

Actually for |s2| < $max — 4 and Re z < ATZ < min(A;, ﬁ) , the equality ([LI13) gives
_ 1 ~ 1y
0B.Az0Qa v =(E—E(E_y), 1E—)QA,L’,V’1 —Uso(5Ayn 1 +Qarvn —2) 1Ui 10QA,L’,V’1 ;
2 )
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as an equality of £(W?52:4%52=3)_valued meromorphic functions. Actually because Q AL ve € L(S';S) while
dB.A,z € L(S,S) when Re z < ATQ, z & Spec(By pyn +Qar yn *?), the left-hand side as well as the final term
belong to £(S';S). The above equality can therefore be extended to an equality of LONV52; W052)_yalued
meromorphic function. Actually with Re z < A?/2, z is not in Spec(Ayn ; + Qa1 v») and the final term is
holomorphic. Owing to EQ 1 v» = Emy+ = 0 and with the expressions ([LLT) of £, and ({I18) of E_, we
obtain

_ 1 ~ P
5B,A,z (¢] QA,L/,Vh = 7E+(E7+>é lE*QA,L/,Vh - Uiﬁ(iAVh,l + QA,L,V’I - Z) 1Uij9QA,L/,Vh
= (H)+ 1),
where
_ 1 ~ yr—
(I) = —Uszgl(B—4); ' + (§Av'1,1 +Qarvr —2) UL gQa,Lr v

1 ~ 1 ~ e
= —Uig(E_1), 1[§Av'1,1 +Qarpyvr— 2+ E—+](§Avh,1 +QarLyvr —2) 1Ui,19QA,L/,Vh ;

(I1)

—_— _ 1 I
(Bipyny  —2) 177L,i(gﬁi +y:)Us0(E_1), 1U:|:719QA,L’,V’L-

and s} is any other exponent such that [s5] < spax -
By combining Bismut’s formula (2.5.23]), recalled here,

_ _ 1
U:I:,le[ﬂ'o,i(’Yi — Brai'Be)mo1|Us g = §Avh,1a

with the expression [@I9) of E_, , (I) becomes

1y 1 ~ -
(1) =Uso(E-+), 1Ui,l(ﬂO,i(HI)Ui,H%AvM +QaLvr —2) 1U:|:710QA,L’,Vh )

where
S//

_ 1 S _ 1
(IIT) = Brai'Be — (Eﬂi +y+)(Bypvn, 1 - —2) 17TJ_,:t(gﬂj: +7+),

and |s5] < Smax - The above operator can be rewritten

1"

1 e 1
(I1I) = (gﬁi +ye)m s bait — (Biyye, = 2) 1]7TL,i(Eﬁi +7+)

—b(Bx 4+ bys)aitmi 1ve — byrai' e

" "
S

1 — 752 D °2
(gﬁi typ)ai'mi [V (Byyyn > —2) —ax](Biyyn L

1
- Z)_lﬂl,i(gﬁi +9+)

—b(Bx 4+ bys)aiimi 1ve — byrai' e

1 _ Y _ 1
(gﬁi +ys)aztml 1B + 0¥ (ve — 2)(Brpvr i © — 2) 17u,¢(55¢ +7+)

(I11")
—b(Bx 4+ byL)at Tl 4+ — byrai By

—(II1.3)

Let’s rewrite (I1I') as the sum of (I71.1) and (I11.2) where

1 _ I _ 1
(II1.1) = (Eﬂi +yp)ait T e bBe + 02y (Biyyn - —2) 17&,1(351 +7+)

1"
S

1 [ — B 1
(111.2) = *ZbQ(gﬂi +y1)az (Byyyn | ° —2) 17TJ_,:t(gﬂj: ++) .

The operator (I11.1) can be depicted by

~ ~ ~ ~ 5 ~ 5 ~ 7
WO,S ; W2,s+1 — WO,erl - WO,5+§ — WO,5+§ ) W2’3+§
sB++v+ ay T+ bB++b v+ (By pvh 1 —2) 7L+ Br+v+

and “ — (I11.2)/2b*" is depicted by

70,8 A12,5+1 A70,s5+1 A10,5+1 A12,5+2
PP v v XY PR v R PR S S— e XS )
sB++v+ Qg T+ (Bj:,b‘Vh‘Liz) T+ pBE+7+
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Combining the previous decomposition with

3 ~ ~
Vsi,s2 €R, B +bys € opg,(Xh ELY N LV ot Y2
and Vs eR, [(Bepyn —z) " tmo A 2opo.s oy < 24b*

due to Proposition 3.2.1] as soon as Re z < b2 implies

I(ZIL.1)]], <Cs and  [(TT1.2)[| cypesragiosy < Cslz[b?.

LOV 2s+2 I0,s) =

We claim that
||(III.3)|‘£(W2,5+1;WU,S) S Csb

Now we decompose (I) as
(I)=(I.1)+(1.2) — (1.3)
With (I.x) depicted by

0,s 0,s 2,8’ A)0,s
W S— WO e W R =TT Woss | (4.2.4)
U, 0(E-+), UL gm0, : Us,0(Ayn 1 +Qa ,vh=2) Ui gQa 1 vh

where the choice of s’ will depend on the cases for indexed by *.

. d -
HUi,G(_AV’I,l +Quarvn —2)” 'U Uy, 9QA L',Vh ||L(Wo shzey = ||( Ayn g+ QA Lvh —2) 1QA,L/,Vh||L(Hs;HS’) :

Ca+A
With Q4 17y = AX(“(pet) , the inequality (338) gives

||QA7L,,VW||HS, < CL,ﬁsys,AzA(s;sH||u||H5;

The inequality B.3.1 gives

4

1 = -1
1GAvr s+ Qarvr =) llewrasms) € mgma

when and Cy > 1 large enough, and

1 A -1, s'—s
||(§Avh,1 +Qarvr —2)  Qar vrull ppre. ey < Cy o A ™9

We conclude that
A =)+

1 2 —177—1
IUs0GAV: +Qarve =27 UroQarveleovepyae < Cow Tpma=s

For the left arrow, the expression (£II0) of E:Jlr combined with the subelliptic estimate of Proposition [3.3.2)
(and Proposition BIT)) gives

B et S Sy Ty
We can now conclude for the norm estimate of I.x decomposed as ([£24):
e For (I.x) = (I.1), we take s’ = s + £ and we obtain
A3

LD 000005 T 2Tz A2

1.1 ooy < Cs
1D 2w po.0 140 /—|I
(1 + by/|Imz 1+2|Imz|A 2)

e For (I,%) = (1.2), we take s’ = s + 2 and we obtain

bAS .

il
I2 A0,5.0)0,8) >
Il( )Hz:(wov oy S (1+ b\/|I— 1+ 2|Imz| A~ )

e For (I,%) = (1.3), we take s’ = s + 1 and we obtain

||(I.3)||L(WU,S;WU,S) < CSA72||(III'3)|‘£(WUvS;W°*3+1)A <C

b
= AL + by/[Imz]) (1 + 2|Imz| A2
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we proved ‘
(Dl o bAZ + b2z + 4
LOVESWE) =7 (1 4 by/[Tmz|)(1 + 2|Tmz|A~2)
The operator (I7) is depicted by

- (B T—z)7! - 1 - E_p);turl - ~
WO’S( +pvh 1 77 WL&VVO’S 5B+ +7+ W2+l Ut,o(E—1), ULy W2is+1 Qa,Lr,vh Woss

The same arguments as above lead to

Ab
ID)| £ o aioey < Cs '
D 2 o5 v0.0 (14 by/[imz])(1 + 2[Imz|A~2)

bAS 4022
(14b4/Imz[) (1+2|Imz|A—2)
Under the condition |Re z| < A% we have the inequaity

The largest upper bound is Cj ) obtained for the term (I).

|Z|b2 A2b2 4 \Y [Tmz|b

< _— .
(14 |Imz|A=2)(1 + by/[Imz|) — 1+ 2|lmz|A—2

This leads to 5 5
15 0 ” <c bAz + by/Im(z) < bA?:
2z © ’ A)0,s-IN0,5) s T T T 5 > P
Bz SR ALV LOhoe o) 1+ [fmz[A-2 1+ A=1y/ime]

Finally the estimate (£.2.3)) for Q 4 - vr0B,A,- is obtained by taking the adjoints with z replaced by Z and By j, y»
replaced by its formal adjoint B!, , |, which has the same properties as By j yn . O

Let us define the intermediate operators
Mp.. =Io. — (Beyyn +Qarve —2) ' Qap vn

1 ~ R
Mn,z = Ij0.: — Ui,9(§Avh,1 +QarLvr —2) 1ch,leQ,ax,L,vh

. 1 . .
M, = Igs — (§Avh,1 +Qarve —2) 'Qaryn

while the other ordered products are recovered by taking the formal adjoints

Mp: > = Lo —Qapvr(Bepve +Qapvn — z)7!
1 ~ C1g—
MA = L. — QA,L,vhUi,9(§Avh,1 +Qua,Lvr —2) 1Ui710
. - 1 - B
Mp 5= Ins — QA,L,Vh(gAVM +Qarve —2) "
Lemma 4.2.2. For s € R, there is a constant Cs > 1 depending on s and for all z € C the inequality holds
A2
+ = T )
dist(z, Spec(5Ayn 1))

IR ey < Cs(

A2
M coioenios < Cs(1 4.2.5
IME egmmemnn < O (14 g moy) (1.25)

fO’f’ all z ¢ SpeC(%AvhJ) M SpeC(%AvhJ =+ QA,L,Vh) .
The more accurate conditions

2

A 1 1
[Re z] < 5 bAYdist (z, §Spec (Aynq) <

FS )
C,max(b, Ab,A™1) < 1,

suffice for the uniform estimates

_ _ 1
1M5205,8,:Qu vl conosvosy + M5 L08a,:Qa Lyl copospos < 5 (4.2.6)
1 A?
Moo < Cu (14— 427
[ B,zHC(WO’ W) = ( + dlst(z,SpeC(AVh,l))) ( )
, 1 A?
My )™ noenin e < Cs (14 — . 4238
H( B ,z) Hﬁ(WO, WO, ) = ( + dlSt(Z,SpeC(Avh,l))) ( )
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Proof. A straightforward computation gives
i 1 . 1
M, = (§Avh,1 +QarLvr —2) (§Avh,1 —z).
We deduce that the operator M. A,z is invertible when z ¢ Spec(%AvhJ) and the inverse is given by

~ 1 1 -
MA,lz = (§Avh,1 —-z) 1(§Av'1,1 +Qa,L, v — 2)

_ 1 -
I+QA,L,Vh(§AVh,1 —z)7 .

The functional calculus for the self adjoint operator %Avh,l yields

~ A2
Mt ey <05 (1 .
b e <0 (14 )

The operator M . is actually invertible when z ¢ Spec(%AvhJ) for the following reason:

1 ~ 1y
Ma: =71+ + 70+ [ Lier(as) — Ui,9(§Avh,1 +Qa v —2) 1Ui719QA,L,Vh]7TO,:I:

y -1
=m1++UsoMa ULy
and its inverse equals

—1 r—1 —1
MA T+ +Us oMy Ul

12:
1

= L. +Uxp [QA,L,vh(§AVh,1 - Z)_l]U;le-

The estimate [@25) of M ! follows.
Another computation gives
Mp.=Mna(I—- M;}Z(SB,A,ZQA,L,V*L)
we deduce that it is invertible as soon as ||M£12537A,ZQA1L1V;L||L(V~VU,S‘WO,S) < 1 and the norm of its inverse is
given by
-1
||MA,Z||L(W0vS;W°vS)

1ML i oy < '
B2 llLWossWoe) = 17 ||MA,1ZCSB,A,ZQA,L,V"|‘£(V~\/°v3;wo’s)

Applying inequality (£22)) yields

A? bA?
My'op .. poeaposy < Cs 14
IMa20m8:Qa vt leovosins < ( dist(z,Spec(%Avh,l))> <1+A1\/W>

c, dist(?spbeféAW)) if [Tmz| < A2
B Cs\/b“?m% if [Imz| > A?
Conditions [Imz| > A? and |Re z| < ATQ ensure
dist(z,Spec(%AVhﬁl)) > |Imz| > %|z| > %dist(z,Spec(%Avhyl)). (4.2.9)

The condition C max(A4b,b, A™1) < 1 and EEZ.9 allow us to give a sufficient condition for

HME,I,Z(SB,A,zQA,L,VhHz:(wo,s;wo,s) <1

which is bdist(Z,Spej?:EL%Avhyl)) < C% . Finally the estimate M} 1 5 is obtained by taking the adjoints with z replaced
by Z and By j, y» replaced by its formal adjoint B’, , |, which has the same properties as By , yn . [l
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4.3 Quantitative comparison of resolvents

When Re z < ATZ , Proposition B3:2 and the subelliptic estimate BII) for By v + A?mo,+ — 2z say that z

belongs to the resolvent set of By , yn + QA,L,V;LS and

Biyyn—2 = (I —=Qarpvn(Bypyr +Qarynr — Z)_l)(Bi,b,vh +Qar v —2)
= M%f,z(Bi,b,vh + QA,L,vh —-z) in E(D(Bi,b,\/hs); WO’S) (4.3.1)

and By,yn—z = (Bypyr+Qaryr —2) (I = (Bepyn +Qaryn —2) 'Qaryn)
= (Bipyr +Qapyr —2)Mp.. in LV D((BY50)) - (4:3.2)

Because Corollary B.1.2] says that By j yn + C,’ is maximal accretive, we focus on the case |Re z| < ATZ under
the condition A > C, > 1.

Proposition 4.3.1. For s € R there exists Cs > 1 such that the conditions Cs max(Ab,b, A=) <1 and

2
IRe z| < A? : dist(z,Spec(%Avh,l)) > C.bAY,

imply the inequalities

_ 1 1y—
”((Bi,b,vh —2)7h - Ui,e(EAvh,l - z) 1Ui,19)”5(wo,s;wo,s)

A2 2 1 2
1 bA™2 + A™
< + dist(z, SpeC(%Avh,l))) "

Proof. Let us decompose u € WOS as u = wjow + Unigh With

4.3.3)

C.
14 by/|Tmz| (

Ca+A _ .
{ Ulow = Ui,@X(ﬁ)Ui}OU = %QAﬁLlﬁvh’u with L' =2L

Uhigh = U — Ulow

The upper bound on the norm of the operator ® = ((By pyn —2) " = Uy g(3Ayn ; —2)71UL ) will be obtained
by considering separately its action on the two pieces upign and wjoy .
For upign we have

_ 1 _
1Dunignllypo.s < I(Bapvn = 2) ™ tnighllyio. + U o(5 801 — 2)UZL yunighllypo.s -

The second term of the right-hand side is bounded by

1 _ _ 1 _ Cd + Avh71 —
HUi,G(gAvh,l —z) 1Ui,1euhigh||v~\;o,s = HUi,G(gAvh,l —z) 1(1 - X(w))UﬁeuHVvows

1 _ Ca+Ayny
I(GAv, = 2) H(1- X(W))HL(HS;HS)HUHWOvS :

IN

~ Ca+A
The choice of the cut-off function x and Q4 1 y» = A%y (%) ensure the equality

Cyq+ Avhﬁl
(2LA)?

Ca+Ayn g

)= (GAvna+ Qe =27 o (L= X(ZGEE)

(58v —2)7 (1 x(

where the two factors satisfy

1 ~ 4

A — )1 sogs)y K ——————
H(2 Vi1 +QA,L,Vh Z) ||£(H JHe) = A2+2|Imz|
Cat Avry

W zas;mey < Cs

respectively according to inequality ([B.3.6) and inequality (33.7). We have proved

1 -~ Ca+Ayny Cs Cs 1
A _ 11— - sogs) X ———— < L
H(2 vr = 2)7 (1= x( (2LA)2 Megeme < A? +2[Imz| = A% 1 4 by/|Imz]
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According to the formula (£3.1]), the inverse of By ; y» — 2 equals

(Bypyn —2)"" = (Bypyn +Qaryve —2) "MgL

= Bupyr +Qurye =27 (M + Mgl - ML)
= (Bypyr +Qaryr — z)71 (I + ng,lg [QA,L,Vh5B,A,z]) Mg—1 _

Therefore, the subelliptic estimate given in Proposition B3 2 for By ; yn + Q4 1, v» — 2 when |Re z| < A;,

C
B + —Z -1 20,5 .I4)0,s S - )
H( +,b,Vh QA,L,V’L ) HL(WU JW0,8) A2(1+b\/m)

and the inequality (A2.6]) imply

ML unigh|| oo

1
B — 2) Yup R O
B =) wian e A0+ byl

1
Cs Uh; A)0,s -
A2(1+b\/m)” hthWO

C, 1
Dunighllyios < 53————F7—="
A% 1+ by/|Imz]|

Ca+A Ca+A
The last inequality comes from the fact that Q. r yrunigh = Uiﬁx(%)(l - x(%))U;}eu =0

Lo -1 1 —177—1y—1

implies Mz " unigh = (I — Qa,L,vnUs,0(58vn1 — 2+ Qa,L,vr)” UL )™ Unigh = Unigh-

For the o, -component, u, = %QAL/,V;IU, the formula (£3.2) for B, ; y» and the analogous one for %Av;ﬂ
give

We have proved

_ _ ~ 1,1 ~ S
D = MB,lz(Bi,b,Vh +Qaryn—2)" " = Ui,eMA,lngvm +Qa,L,vn —2) lUi,le

_ _ ~ 1 1 ~ gy
(MB,z) 1<SB,A,z + (MB,z) b Ui,GMA,lei,le Ui,9(§Avh,1 + QA,L,vh - Z) 1U:t,16 (4-3-4)

Owing to
_ 1 _
(MB,Z) 15B,A,zulow = F(MB,Z) 15B,A,ZQA,L/,V’1U‘7
the inequality (Z2) combined with the inequality (£2])) imply that the first term of (X34 applied to ujey, is
bounded by

C A2 bA2
M2715 zow"s<_S 1+ 10,5 -
i) b < G (14 G i) (1 F A Tne] ) i
On ker(at) = Ran(Ux g) , we know
Us oMy Uy = M3,
The second term of (£34]) thus equals

_ ~ g 1 ~ 1y
|:(MB,Z) T Ui,eMA,lei}G] Ui,9(§Avh,1 +Qa,Lvr —2) 1U¢719

- — 1 ~ R
= |:(MB,Z) 1 _MA,lz Ui,9(§Avh11 +QA1L1V}'L _Z) 1U:|:710.
Further computations show that the right-hand side is

_ _ 1 = S
[(MB,Z) t— MA}Z] Ui,6(§Avh,1 +QaLyr —2) lUi,le

_ _ 1 ~ 1p—
= MB,lz MAyz — MB,z] MA71ZU:|:79(§AV}L71 + QA,L,Vh — Z) 1U:t,16

_ ~ 1,1 ~ Cp—
MB,IZ M. — MB,Z:| Ui,GMA}Z(EAVh,l +QaLvr —2) 1Ui,19

_ 1 y—
Mg, 5B,A,ZQA,L,Vh:| (Ui,9(§Avh,1 —2) lUi,le)) :
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By using again inequality [@27) and Proposition E.2ZT] for the right-hand side, the above operator is estimated
by

H|:(MB,Z) _UiGMAZUie]U (Avh1+QALVh—Z) 1Ui0

L(WO’S;WO’S)

A? bA> 1
< (14— . .
dist(z, Spec(5Ayn 1)) 1+ A-1/[Imz| ) dist(z, Spec(3 Ay 1))

By adding the two terms we obtain

A? 2 bA~3
33uo’w ~U,sgcvs 1+ - .
Punlin. <C: d1st<z,Spec<%Aw,1>>) <1+A—1\/—|Imz|>

By summing the two upper bounds for ||Dunignllj0.. and ||Duiow || 50.. , We get

|‘©||L(WU,5;W0,5) S Cs

(1+ A? )2 bA3 R
dist(z, Spec(2 Ay 1)) 1+ A1 /|Imz] ) A214by/Imz| |’

which can be simplifed into [@3.3]) owing to b < A~L. O

5 Spectral consequences

This final section actually ends the proof of Theorem [[L2Z.3] and its various statements are picked from Proposi-
tion B.I.1] Proposition B.1.3] and Proposition .21l A simple translation is obtained after recalling the unitary
equivalences

1 b

/
Bipy = Biu¥n 72 Bx@nr g vrp) = 13 Brpvn U=,

Avn = AQ,g,v,n) Agrgnvniy = Ay

z b
— € Spec(BLb,%) 7

h S SPeC(Bi,b’,Vh> b/ =

1111

Wb (X, Ex) WS (X gh).

Once this is fixed the first statement a) of Theorem [[.2.3]is a corollary of Proposition[5.I.Jl The second statement
b) of Theorem[[.2.3is a rewriting of Proposition 5.2 of which the proof strongly relies on the Hodge structure of

restricted operator By j yn and where the hermitian form ( , >T’ , is positive definite by the PT-

|Ei,b,Vh (Bypyh
symmetry argument checked in the proof of Proposition [E.I.Jl Finally the third statement ¢) of Theorem [[2.3]
about the semigroup expansion is a transcription of Proposition [5.1.3]

5.1 Rough estimates

The data of our problem are the spectrum of the semiclassical Witten Laplacian Spec(Avy,,) = Spec(Ayn ;) and
the parameters b, h €]0,1]. We introduced the additional parameter A > 1 and recall the condition

C,max(Ab,b, A7) <1

We recall, according to Definition [[.Z21] that the parameter g5, €]0, 1] measures a spectral gap for Ay, according
to

spec(%Am N[0, 01] € [0,¢7%] € [0, 2] (5.1.1)
and  Spec(s Ava)lon, +oo[C [on, +o0] (5.1.2)
for all h €]0,1]. Remember as well the notations
Nj(tp)(V) = rank 1[07%](%A§f)h) and Ni(V ZN(p)

where the =+ sign refers to the choice of the line bundle F. =@ x Cor F_ = (Q xC) ®org .

Making an accurate use of the quantitative comparison of the resolvents in Proposition [£.3.1] requires the iden-
tification of different areas in the complex plane, presented in the picture below, and of which the accurate
definitions are given just after.
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Figure 2: The right-hand side summarizes the spectral localization and the shape of contours deduced from the
analysis in |Re z| < %2 . In this picture %Avhﬂl = Spec(%Avyh) is represented by the black circle around 0 and
the thick real half-line [2gp, +00].

The picture on the left-hand side is zoomed into the region |Re z| < gp, and |Im z| < 1. The small circles represent
the eignvalues of B, ; y» in the region |Re z| < gy .

In both pictures the gray area represents a part of the resolvent set of By j yn .

The curves 'y are defined by
Iy ={zeC, =£[1+ Rez—on)°]=0Imz}. (5.1.3)

The points M, N, @, R are on the line Re z = g, with the respective imaginary parts b%, 1,-1, —b% . The points

0,0’ (resp. P, P’) have an imaginary part equal to 1 (resp. —1) and real part equal to 7%2 and —op, .
We will use the oriented contours I' = T'y +T'g + ' with Ty = {2 €C,[z—op| = . Re 2 < op}, Ty +
[MNOPQR]|+T_, T+ [MNO'P'QR]|+T_, T+ [MR]+T_ and [NO'P'Q].

The main results of this section are gathered in the two following propositions.

Proposition 5.1.1. There exists Coy > 1 such that A = Cy and 2C3b < oy, implies the following properties.

a) The sets {Re z < %2 and |Im z| > 1} , {Re z < —pp}, [N,Q] = {Re z = gp, |Im z| < 1} and the one partly

delimited by I'+ , {Re 2> op and 1+ (Re z — 05)? < b?|Im z|} , are all contained in the resolvent set of
By pyn . The union of these sets (the gray area in the left-hand side picture of Figure[2) contains all the
oriented contours listed above.

b) If Eip)b v 18 the characteristic space, which is the range of

1 @ ) 1 -
= — — B p 1d _ _B p 1 d
ﬂ-Eg)b’Vh 2im NOPQ(Z i’b’vh) * 2 NO/P/Q(z i,b,Vh) z

then ./\/'_(Fp) = dim Eip.az,vh = ./\/'_(Fp) (V) and NP = dim E(f,)l;,vh = NEp_d)(V) .

c) Whenr: X" — X" is the involution defined by r(q,p) = (q,—p) and r* denotes its action on S(X";ER)
according to Definition [Z01), then v* is a unitary involution of L*(X";ER) such that r* By gy (r) 71

/
T*Bi7b,vh7’* = Bi,b,Vh .

d) The hermitian form (u,v) — (u, v), = (u, r*v)12, of Definition [2.5.1] is positive definite on E ,yn and
Bi,byh‘E . is self-adjoint and positive for the scalar product ( , ), . The eigenvalues of By p, vn in the
+,b,V

disc {z € C, |z| < on} actually belong to [0, o[ . Additionally on EL j,yn we have the equivalence of norms

Yu € Eypyn, V1— Cob?llullze < llullr < g2 (5.1.4)
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Definition 5.1.2. The eigenvalues of Bip)b v lying in [0, o(h)] will be denoted by ()\gf)j)KjQ\/(p) with the asso-
b, JIISGSNG
(p)

ciated ( , )r-orthonormal basis of eigenvectors (ui,j)1<j<Nép) .

Proposition 5.1.3. For every s € R there exists Cs > 1 such that taking A = Cs with the condition g, > bC®
tmplies that the semigroup (e_tBi’V")DO admits for every t > 0 the following convergent integral representation

() 1 e—tz 1 e—tz 1 e—tz
e tBi,b,Vh — 2_ W dz = 2—/ — o dz + 2— — o dz .
mJr 2z — Bi,b,vh T JNO'PQ 2z — Bi,b,Vh T Jry+[MR4T_ z — Bi,b,Vh

) (1)

In the above formula the first term equals

Nip)
—_a\@ «

(D)= e M) )
i=1

th (P) - — x_(p) - < C

wi luxjlhpo.s = llr*ug;llypo.. < Cs,
and the second term satisfies
1+ t71 e*tgh .

||(II)||L(W3,WS) < b2

The proofs of Proposition B.I.T] and Proposition B.1.3] actually rely on the two following lemmas. The first
one is an application of Proposition 3.1l with the specific geometric partition of C represented in Figure

Lemma 5.1.4. For any s € R, there exists Cs > 1 such that A > C, and % > CbA* imply that the norms of
-1 -1 1 —177—1
(Bipynr —2) s D= (Bipyr —2) — U:‘:,G(EAV’IJ —2)" Uiy,

have upper bounds given by the following table. Because By j,yn and ULQ%AWLJU;}G preserve the total degree
p€{0,...,2d}, (Byyyn —2)" " and D. can be respectively replaced by

- - 1 p-gxd) g -
(Bg)b,vh - 2) b @gp) = (Bﬁf)b,w —z) 1 Ui,9(§Axfh,1 —z) 1Ui,19.
Sets ||©ZH1:(W0’S;V~VU,5) H(Bﬁ:,b,vh - Z)_1||L(Wo,s;wo,s) Label
{Re z < -4} 2 for s =0 (1)
{|Re z| < ATZ and [Im z| > 1} CS(bA% +A7?) Cs(lhr} 2] +bAT + A72) (2)
Re z < —pp ( d z
and [Im 2| <1 C, A2+ ZLQQ O, [ A2 4 LtbA2 _ 3
{ ( or Re z = Oh ) | | } 03 /4+|Im z| 07 /4+|Im z| ( )
_ 1 ATP4bATS 1 1 1 1
{Re z 0 and |III1 Z| Z b2} Cs b\/‘lm Z‘ >~ 81)\/‘11‘11 Z‘ Tm z| + 8b\/|1m o S 4b\/|1m 2| (4)

Table 2: Resolvent norm estimates

Proof. The conditions A > C and 4 > C,bA* with g, < 1 ensure the validity of the hypotheses of Proposi-
tion 3Tk )
C,max(Ab,b,A71) <1 and dist(z,Spec(§Avh,1)) > C,hA*
as soon as dist(z, Spec(3Ayn 1)) > 2.
(1) This line is only concerned with the case s = 0. By Corollary 312 there is constant Cy > 1 such that
Co + Biybﬁvh
is accretive as soon as Cob < 1 and h €]0,1]. Take z € {Re z < 7%2},
(B pve — 2)ull7
= [[(Bepyr —ilm 2)ullzz + [Re z|*ullZ> +2(—Re 2) Re (B vnu,u)
= |(Bypvr —im 2)ul7. + [[Re 2> —2Co|Re z|][|ull72 + 2[Re z| Re ((Co+ By pyn)u,u)

>0
> [|Re z|*> —2Co[Re z|]|ul3-
A2 A2
> 7(7—200)|‘U|‘%2
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When %2 > (Y, we obtain
2

A
1B,y = 2)ullz 2 —=lullrz.
(2) For z € {|Re z| < ATQ and [Im z| > 1} we know

1
dist(z,Spec(gAvhJ)) > |Imz| > 1> %

and
U (1A 2)TtUL Ll < L < L o (5.1.5)
- h - 2)0.5.34070, s . B o
OBV £,01LVO=W02) = dist(z, Spec($Ayn 1)) — [Tm z| —
Proposition [£.3.1] gives for a proper choice of Cs > 1 the inequality
C A? 1
Dl coposgposy < ——eee—— |[AT2 4 (1 + — *bA™>
H ||L(WU sWO0.s) 1+ b /|IIn Z| ( dlSt(Z, SpeC(%AvhJ)))
< AC[ATZ4+pAT?). (5.1.6)

The upper bound for (B, yn — 2)~1 is deduced at once from (E.L5) and (E.L8).

(3) The following inequality holds for z € {(Re z < —gp, or Re z = gp,) and |[Im z| < 1}

1 2
dist(z, Spec(iAvh,l))Q >y IIm 2|2,

— 4
with the detailed cases:

e if Re z < —pj, then dist(z, Spec(3Ayn 1))? > |2]? > 07 + [Imz|? > %12“ + [Imz|?;
e if Re z = g, then the hypothesis (E.1.1) ensure that dist(z, Spec(3Ayns 1))* > (%) + [Im z|2.

Applying Proposition [4.3.1] gives

bA7/2

ZDZ A ERYY s < OS A72 o 4 T 19
H HL(WOv Woe) = + gi/4+ [Im z|2

(4) If z € {Re z = and |Im z| > 5} the distance to the spectrum is bounded by
. 1 1
dist(z, §Avh71) > |Im z| > R
Proposition 3.1}, with Ab < 1, implies

A2+ bA e 1

< )
by/[Im z| — 8by/|Im 2|

HQZHL(WU,S;WU,S) S Cs

by choosing again A and % large enough. Finally

1 1 b2 4 1 1
(B p,vn —Z)_lﬂc(wo,swo,s) < + < 8 < )
” * Tmz| * 8by/[Tm z[ ~ by/[Tm 2] ~ 4by/[Tm 2|

O

The second lemma is a variation of |[Nie|-Proposition 2.15, which was itself inspired from the article of Hérau-
Hitrik-Sjéstrand [HHS].

Lemma 5.1.5. Let (B, D(B)) be a closed densely defined operator in a separable Hilbert space H, such that (1+
B)~! is compact, so that Spec (B) is discrete, and D(B) = D(B*). Assume that there exists a unitary involution
U* =U~! = U such that U*BU = B*. Then the spectrum Spec (B) is invariant by complex conjugation.

If additionally there existy > 0, € €]0, i[ , an orthogonal projection 11y = II§ and a bounded contourl', symmetric
w.r.t z = Z, such that:

L HOU:UH0:H0,'

e the real part Re B = BJFTB* is non negative and Re B > ~(1 — IIy) — eyIdy ;
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o with Iy = 5= [.(z — B)~! dz,

Re Tr [i / B(z—B)™! dz] = Tr [BIr] < ev; (5.1.7)
2mt Jr

then the following properties hold:
o The form (u,v)y = (u,Uv) is a hermitian positive definite form on Er = RanIlp .

o The norms ||ulluv = v/(u, Uu) and ||u|| are equivalent
Vu € Er, V1—de|ul <|ullv < |ull. (5.1.8)

e The restricted operator B|EF = BHF|EF = HpB|EF is self-adjoint and non negative for the scalar product
< ) >U .

o The vector space Er admits a basis of eigenvectors of B, (e1,...,en), orthonormal for the scalar product

<a>U-

e For all z € C inside the contour I' | the inequality
Iz = B) " gl ey < ! ;
Er ' V1 —dedist(z, {A1,..., AN })

holds with the initial norm || || on Er .

e The “distance” d(Ep,RanTly) = ||(1 — Ho)IIr|| £ (%) is bounded by v/2e and Iy is an isomorphism from Er
to HoEF .

Proof. The PT-symmetry property B* = U*BU implies
(=B '=(-UBU)'=U"(2-B)"'U
whenever one of the resolvent exists, so that
Spec (B) = Spec (B*) = Spec (B)

and the spectrum Spec (B) is symmetric with respect to the real axis. The accretivity of B gives Spec (B) C
{z € C, Re z > 0}. Another consequence is that if the integration contour I' is symmetric w.r.t the real axis and
if z — f(z) is a holomorphic function satisfying f(Z) = f(z) then

fr(B)" = %/F% dz =U* [ﬁ/ (Zf(’z])g> dz] U =U*fr(B)U

and in particular
T [fe(B)] = 5 (T [fe(B)] + Tr [0 fe(B)U]) = Re Tr [fn(B)] € R

Therefore the condition (B.I7) makes sense (take f(z) = z) when there are eigenvalues of B with small real parts
and multiplicities that are not too large. On the space Er = RanIIp, the form (u,v) — (u, v)y = (u, Uv) is a
hermitian form and it is a scalar product when (u, u)y > 0 for any nonzero u € Ep .

When v € Er with |Jul| = 1, it can be completed into an orthonormal basis (e1 = u,es,...,en) of Er for the
scalar product { , ). We have

N

Re Z<€j s B€j>

j=1

ey > Tr (BIIy)

N
> (e, Re Bej) > (u, Re Bu) > ~]|(1 - o)ul|® — e,

j=1
and
(1 —Tp)ul|? < 2 = 2¢||ul?. (5.1.9)
Now compute
(u, Uu)y = (u,oUu)+ (u, (1 —TIo)Uu)
Moul[? + (1 = To)u, U(1 — Ip)u)
Mo — (11 = To)u|* = [Jul|* — 2/|(1 — To)u|* > (1 — 4e)||ul|* > 0.

Y
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This proves that the hermitian form ( , )y is positive definite on Er and the equivalence of norms comes at once.
Let Br be the restriction of B to Er, which is a finite dimensional Hilbert space with the scalar product { )y
(and ( , )). For u,v € Er, the series of equalities

(u, Brv)y = (u, U(BUr)v) = {(u,(Blr)*Uv) = ((BlIr)u, Uv)
= <BF’U,, ’U>U.

says that Br is self-adjoint on (Er,( , )y). The two statements follow for the scalar product {( , Yy and the
norm || ||, are consequences.
The equivalence of the norms || || and || || gives the upper bound on ||(z — B)_l‘EF | 2(BriEr) -

—

Finally the estimate on d(Ep; RanIlp) is due to (19 O

Proof of Proposition[5.1.1l This is concerned essentially with the localization of the spectrum, which does not
depend on s € R for the closed realization Bsi,b,vh in WOVS(X;Ei). Therefore we focus on the case s = 0 in
particular while applying Lemma B.T.4

The conditions A = Cy and g5, > 2C8b, for Cp > 1, large enough, imply the conditions

A>C, and % > CpbA

of Lemma [5.1.4]

a) The first three complex domains considered in a) are covered by unions of (1), (2) and (3) in Lemma [T
For the last domain {Re z > g, and 1+ (Re z — g5,)? < b?|Im 2|} we start with

[(Bepvr —2)ullezrzy 2 [[(Bepye —ilm 2)uf 2 — [Re 2|[ul[ 12
(4by/[Im 2| — |Re z[)|ul| Lz .

V

We conclude by noticing that by/|Im z| > /1 + (Re z — g5,)2 implies

by/|Im z| > |Re z — gp| > |Re z| — 1
and [Re z| <14 by/[Im 2| < 2b4/Im z].

We have actually proved ||(By v — Z)_1||L(L2;L2) < ﬁ\/ﬁ in this domain.

b) Let us consider now the operator

w — L / 20 s
20T NO'P'Q

which is the difference between the projection m and the orthogonal projection 7T}(lp ) = Uiﬂﬁ',(f ) U;le with

(p)
Ei,b,Vh

1 1 _dyd
il = — (z— AU EFE) -1
2Z7T NO'P'Q

The following bounds are consequences of Table 2 of Lemma [ET.4 for s = 0:

I O dz| p2rsy < 8Coon(A™2 +bAT/?) < 8CHAT2 44712 (5.1.10)
NO'UP'Q
. 8.4
= CO /—CO )
1
1
OP) dz| 2y < 2C0A72 420 bA7/2/ ———dt 5.1.11
oo = Flewsnn =26 A e R
< 200(A72 + 24729 1) <200 A2 + A7V 22r
< 2 2

_+—,
Co V(o

where we used CpbA?* < & < % , and finally A = Cj for the last upper bounds. With Cy > 1 large enough we
have proved

H7TE(p) *W}(LP)HL(L%Lz) <1.
+,b,Vh
With [|7” || £(p2:02) < 1,we obtain

| (p)

(1=mpw TP c@oesy = 1Tpw = m)mP | e <1,
+,0,vh +,0,vh
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d

5@ Ranﬂ'(p) — E(ip)b vn is one to one and Ni = dim E® > /\/‘(pfiiz (V).

+,b,Vh

With ||(1 — 7Th ||£(L2 ;£2) < 1, we obtain

and 7 ibvh

(p) _ (p)
(1=, )FE(f,)b,vh 2z = [I(1—m, )ﬂEf,)b,vh(ﬂEf,)b,vh — ez <1,
_dgd)
and 7T](1p) : E(ip,)b,vh — Ranﬂ}(lp) is one to one and Nf = dlmE(i n < N —a¥e) (V), which is finite and

independent of h €]0, ho .
c) It comes from Bismut identification of By j, y» as a Hodge type operator for the (, ), hermitian form, recalled

. : B =92(5 5 ) S(X M gl S'(Xh: gh
+.0,Vh = (iavath :I:th) (S(XMEL) = SI(XMEL),

which implies r* By yu (r*) ™! = r* By yur* = BjE by
d) We apply LemmaB.THwith B = Co+By j yn, U = r*, 11y = 1o, + and the translated contour I = Co+NO'P'Q
. Let us check the assumption of Lemma [B.T.5 while specifying the values of v > 0 and ¢ €]0, i[:

e The equality IIoU = Ully = Iy comes from the fact that r*a4(r*)~! = ag.

e The real part Re B = Cy + b%ai + Re 4 y» is non negative owing to the accretivity of Co + By p y» in
Corollary B2l The inequality Re B > ~(1 — IIy) — eyId is obtained by the same integration by parts
computations as in Proposition 3.1.3] and for the accretivity of Proposition [3.1.1l Let us compute

v

1
(u,Re Bu)p> Collullzz + 33 (s ) = [7evnl comopp-ro 4o

1 d
> Collullzz + 35w exw) = [Ivevel comogp-ro) (G 1 ToullZe + [1(1 = Tho)ul3;,.0)
1
> (Co = dllvevrll comonp-ro)llullzz + (3 = rzvellcppmopp-10) (1 = To)ul72

C
> Dl + 5z 0 - ToJulla,

5l

by fixing Cy larger than 2d||7iyh||£(W1,g;W,1,g) and by using
> 2CVOA4 > 2CVO > 2||'Yi7vh ”L(VVLO;W*LO) .
With this constraint on Cy > 1, we have proved

. 1
(u,Re Bu) > v[|(1 = Ip)u gz with v= 22

e For the upper bound of the trace Tr [BIIr| we use the notations
2d d ,
dim By pyn = Ne = Y NP = 3" NP(V) = dim Ran 7, .
p=0 p’=0

We write:

1
Re Tr {—/ B(Z—B)_1 dz}
27 Co+NO'P'Q

1
- C’0~/\/':ﬁ: + Re Tr |: / Z(Z — Bi7ijh)71 dZ:|
m NO'P'Q
1
= CoNi +Re Tr [—/ 29, dz] + Re Tr 7]
NO'P'Q

C
< CoN + N (2472 + 8bA7/2@,;1g) + Nig—;
< SCoNi

<ev,

with v = 515 like above and ¢ = 6CoN.b* which belongs to ]0, $[ when b? < m . Remember that
N = dim Ran 7, does not depends on h €]0, hy) .
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The three above points ensure that all the hypotheses of Lemma are fulfilled. Therefore (, ), is hermitian
positive definite form on Ran IIr = E ;, y» and the equivalence of norms (5.1.4) is a straightforward consequence
of (EI8).

The space £, y» is a finite dimensional subspace of S(X h. &) endowed with the positive definite hermitian form
(, )r. Additionally because 8. j va By pyn = By yyndy v on S(X"; L) and the same holds when 84 j, v is
replaced by 5ﬂ: by » we deduce that 6 5 v and 51’;1‘,,1 send E, j,vn into itself. Thus formula (2.5.14) implies

that By p, yn ’E:{:,b,v = [0 pyn + 517Tb,V’1>’Ei,bwvh]2 is the square of a self-adjoint operator on (Ey ; yn,{, )r).

Therefore By p, yn is a self-ajoint non negative operator for (, ), and its eigenvalues are non-negative. [

|Ei,b,V’1

Proof of Proposition [51.3. The expression of (I) is a consequence of Proposition Bl because it says that

B(i)b vh ’Ef)b " is diagonalizable. Additionally the L? dual basis of (u$72)1S3<N(p) in Ei )b vh is (T*ugé))j)1<]<N(p)
because

<(P) (P)> :<*(P) (1’)>275”7

uil’ +,5/T Tuil’ui]

(p)/ (p)/
+,b,Vh +.b,Vh "

Let us check the uniform bound of ||u(p) li0.« - For s = 0 it comes from (G.I.4) with

x, (P)

while r* By j, ynr* = B implies that r*u ; is an eigenvector of B

1
[l = === < 2.

2l < = Neronds

For s > 0 we use the equation
[Be g + A27r07 Julf (p) _ )\(p) s + A27r0 jEu(p)
where the subelliptic estimate of Proposition B.1.] implies
o8/s
Co P [uPL o2 = A0l lyg0.002/5 < COPL + A2) [0l o < CA+C3) [0 .-
by choosing A = Cj like in Proposition [E.1.1]. A bootstrap argument leads to
2/5 2/5
L llypo.me < [C(L+ )M lu ]l 2= < 2[C(1 + )]
for every k € N and the general result for s > 0 follows by interpolation.
The integral
1 eftz
il —" o a— dz
2im Jp 5 — B:t,b,Vh

converges if and only if the two integrals [;. e tRe 2||(z — B(f,)byh

of 'y given by z = u+ gp £ (55 (1 + u?)) for u € [0, +00[, we obtain

)71 |dz| converge. With the parametrization

—tz

/ e ez (= BP) T |dz] < /+OO B 1+ 2i—| du
+,b,Vh = () L b2
Tt 0 z— Bi,b,vh LONVO:50.5)
+oo —t(uton) 2
/ S — i— | du
o 4by/b2(1 4+ u?) b
e~ton [Foo tu
S W/O e du
e~ten 1
< —_-.
- 202 t
The integral over the line segment M R is estimated by
=+ —tz
eton /b2 B du
_l%z zZ — Bi b,Vh L:(WO,S;WU,S)
14 bA"/?
<, / (Ju| ™t +bA™/2 + A=2) du + C (A‘2+2+72) u
1<ful< Y u|<1 op/4+u
oy, 1 1 1
< 20,(—2Inb+ (26A7/% 4+ A 2)(b—2 —1)) + C,2(A72 + —(1+bA7/%)Z )<
by using ObA* < & < L, OpbAT? = S < L for A > 1 large enough, b|In(b)| < 1o and Ca < pm <
1 7 < 10b2 forb>0 small enough
By conclude by adding the two upper bound for fF+ + fr, and f[MR] . [l
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5.2 Hodge type structure and accurate spectral estimates

We prove now the accurate comparison of Spec(By 1) N{z € C, |z] < on} C [0, on[ and Spec(3 Ay 1)N[0, 04] =
Spec(%Avﬁ) N[0,e #].

Proposition 5.2.1.

Let (/\gp))1<j<N(p) be the eigenvalues of By j vn contained in [0, on[ and let (:\;p) (V))1<j<N<p)(V) be the eigen-
0<p<sd “o<p<d
values of %AVh,l contained in [0,e~#]. There evists Co > 1 such that for all A > Cy and with the additional

condition 1 > o, > CoA*b > Cg’b, the eigenvalues are compared according to

(p_did d
Vp e {0,...,2d}, Y5 € {1,... ., NP}, (14 Coa 2 AP (1) <A < (14 gua 122D (|
(») _ AfPm5E8) _dgd
where we recall that NJ*7 = N vanishes when p — § + 5 € {0,...,d}.
This result relies on the Hodge type structure of 2Bi7b,vh|Ei . and Avh,1|Ran1[U (A ) and the iden-
30y 1@Qh vh

tification of eigenvalues of those operators with the squares of singular values by following the strategy of
[HKN]|[Lep] [LNV2] and other related works. We start with three lemmas.

Lemma 5.2.2. Let E be a finite dimensional Hilbert space with the hermitian positive definite form ( , ). Let
d be an operator such that dod = 0 and set A = (d + d*)? = dd* + d*d, where d* is the adjoint of d for the
scalar product (, ). The E admits the orthogonal decomposition

L i 1 L
E = ker(A) @ Rand @ Rand* = ker(d) & Rand* = ker(d*) @ Rand.

The eigenvalues of A are the squares of the singular values of d and equivalently d* . More precisely there exists
an orthonormal basis (u;)1<j<dim £ Such that (uj)1<j<n (resp. (uj)N+1<j<an) is an orthonormal basis of Rand*
(resp. Rand) and (uj)an+1<j<dim E 5 an orthonormal basis of ker A and

Vje{l,...,N}, du]':Mj’U,jJrN [L]>O

We will set pj = 0 for j & {1,...,N} and write, with an abuse of notation du; = pjujrn for all j €
{1,...,dim E}.

Proof. Tt suffices to notice A = 0 @+ dd* @+ d*d in the decomposition E = ker(A) &+ Rand @+ Rand*. Then

one takes for (u;)1<;j<n an orthonormal eigenbasis of d*d|Ramd with d*du; = u?uj and to set uj 4§ = %jduj . O

Definition 5.2.3. In a finite dimensional Hilbert space (E,( , )), a basis B = (v;j)1<j<dim E @S €-orthonormal
for e €]0, 1[if [[((vj; vr) 1<) k<dim 5 — Idgam s || <&
The function 7 : U21]0, 1[*—]0, +o0| is defined by 7(e1,...,n) = [ [, T52£ .

1—ep

The following lemma is extracted from Proposition 5.4 in [LNV2].

Lemma 5.2.4. Let B = (uj)i<j<dim £ (resp. B’ = (vj)1<j<dim ) be an €1- (resp. ea—) orthonormal basis of the

Hilbert space (E,( , )) for e1,e2 €]0,1[. For B € L(E), let (1;(B))1<j<aim e (resp. (uj(B))i<j<dim £) denote
the singular values of B (resp. of the matriz B = ((vi , Buj))i<j,k<dim &), in the usual decreasing order. Then

V_j S {1, Ceey dlmE} , T(El, 62)_1/2,[7,]‘ < g < T(El,Eg)l/Qﬂj .

Proof of Proposition [2. 21l We start the proof for B j, y» and the case of B_  y» will be recovered in the end
by a Poincaré duality argument.
We do not distinguish the form degree here and recall that the number of eigenvalues of %AvhJ in [0,e~%] and
of By pyn in [0, op] are equal to

2d d
Ne =Y NP =S NL(V) =Ny (V).
p=0 p=0

Let us set 7, = 1[0767%](%Avh,1) = 1[07267%](Avh71) and 7, = Uy gmpUS 5 - Because Ayn g = (dyn g + d;h11)2 ,
Lemma [5.2.2 tells us that there is an orthonormal basis (7;)1<;j<ar, such that @; belongs to Ran (d,, , ’Ran frh)
(resp. Ran (dyn ;|p, - ) for 1 <j <N (vesp. N+1<j<2N)and

d ~ pjujen f1<j<N
hll =
Vi 0 otherwise,
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where fi;,1 < j < N, are the non zero singular values of dyn ; |Ram e With the abuse of notation of LemmaB.2.4]
it is summarized by dyn 10, = fi;t;4n for all j € {1,..., N4} with fi; =0 for j > N.
Let TE, , be the spectral projector associated with B, ; y» given by

1
—1
B = — z— B h dz
+uVvh o Q4 NO/P/Q( +ovn)

like in Proposition .11l
We consider B’ = (v;)1<j<ar, With

vy =7e,, i Us0ls),
o Pl
et pl;
and Uy pu; = W[Uj](Q) , H= 5
Let us compute the scalar products (v, , vj/),:
. . E’J:,b,vh TTEL bvh . .
(vj, vj)r = <7TE+,b,Vh(U+70uj)a TE, yvh (Ut 0t ))r = (Uq oty , 7TE+7bYVh(U+,0Uj’)>r
~ - ’I‘*U ,9:U N ~ -
= (Ut oty r*mm, , o (Upety)) = (Us oty m, L (Ut o)

=0jj0 + (Ut 0ty , [T — ) (Uq 0Ti50)) -

+,b,Vh

But from (5.1.10) and (E.I.I1)) we deduce

178, , yn = Thll S10CoA™? 4 (4+2m)A™1/2 < 30A71/2.

We deduce that B’ is an e-orthonormal basis of E,  y» with e = 30N A71/2 €]0,1[ for A > Cp large enough.
Remember pg = f; A ifi introduced in Definition 2.5.11 We now consider the basis B = (u;)1<j<a;, with

uj =g, e U ot = v+ e, (€7 = 1)Uy pty] .

From (e #0 — 1) = 22:1 (7]€—1,)k(f; Aifi)* and RanUy g = Ranmo 4 we deduce
(e =1Usp=(1—m)(e " —=1)Utp.
We write now

e, , ol =m0l = [I(1—mo4)"7p =1 =m0 )r*mm, , W7l

+.b,vh +,b,Vh

= |r*(1 = mo,+)7E | = (1 = 7o+ )7E

+,b, VI +,6,vh ”

but we proved in Proposition 5.1l after Lemma [E.1.5] the upper bound

-

[[(1— 7r01+)7rE+’b,Vh | =d(Es pvn,Ranmg ;) < /200N b2

Remember also the equivalence of norms 3 ||ul| < [ull, < 2||ul| for u € Ey ;v . Therefore there exists a constant
Co.n, > 1 such that B (and B') are e-orthornormal bases of (Ey j yn,( , )r) with e = Con, A7¥/2 €]0,1[ for
A> 208y, -

We now apply Lemma to

*,7

*,7
2B pyn ‘EH,V,I = (5+7b,V’1 ‘E+’b,vh)(5+,b,vh |E )+ (5+,b,Vh ‘E+’b,vh)(6+ab7vh |E )

+,b,vh +,b,vh
where we recall [2.5.15])
_ —po,—H-V" X pr—1y +H+V"
Oppyn =€ e (Kpd® K e eto

Because 0, ynBy pyn = By yyndypye on S(XMEM) and Ey j, yn C S(X";ER) we know actually

5+,b7Vh7TE+,b,vh =TE, vn 5+,b,vh =TE, yyn 5+vbvvh7TE+,b,Vh
*,7 _ *,7 _ *,7
and 5+,b,Vh7TE+,b,Vh - 7TE+,b,Vh 6+,b,Vh - 7TEJr,b,vh 5+,b,Vh7TE+,b,Vh :
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We now compute (vjr, d4 p yntts)r:
1) 04 VATE \ vn (e7HUt01;))r
Uy ptie) 0y pvn (€U o),
)

e e VN (K dX K e PRV UL giig),

(vjrs S pvrug)r = (7B, L0

Uy gty ), e Uy, B[dvh 1“3])

i\TE Ut otiyr), e Uy pltjpN])r

(e, , on

= (Ut gty , re U pltjeN]) + i1 Rj 0 n
MJ<U+ oty , re U plUjen]) + i R o n

fie”r Uy oty , Uy gltjn]) + i Rjjr.n

= [0 j+N + iR n

where we used e r*U, g = e~ 2r*my Uy g = Uy g in the last identity, where ji; = 0 for j > N and where

|Rj ol = ’<[7TE ) (Uy ptij) , e Uy gtijyN)r| < 2||[7E ) (Us0tiyr)|| < 60A7Y/2.

+,b, VI +,b,V I

By Gaussian elimination like in [Lep|] or equivalently by changing the basis B’ into an other e-orthonormal basis
of (B4 pyn,(, )r) with e = CO,N+A’1/2 , we deduce with a possibly enlarged constant Co a7, that the singular
values, p; of 5+7b,vh|E+,b’Vh satisfy:
Vj € {1’ cee aN—i-} ; (1 + CO7N+A_1/2)_1/]j < Hj < (1 + CO,N+A_1/2)[1’j

We deduce the comparison between eigenvalues (\;)1<j<ar, of By pn and (Aj)1<j<n, or 3Ayn ; is deduced from
Aj = %,u? and 5\j = %ﬁ? , by doubling the constant Cy > 1.

Finally, still in the case of B j v, the degree can be followed by splitting the orthonormal basis (i;)1<j<a,
according to the degree p € {0,...,d} with {g;,1 < j <Ny} = ngo{ﬁgz) 1<k < ./\/'J(rp)(V)}. In particular

(p) implies that the total degree of u; and v; equals p (in this +-case).

we notice that u; = u;

Let us give some details for the Poincaré duality argument which gives the result in the — case. Attention
must be paid on the choice of the Thom form, the unitary map U_ g, when @ is not orientable and F' = @ x C #
(Q x C)®org. Let us split the basis @; » constructed in the 4 case according to the degree p € {0,...,d},
for the potential and let *g (resp. *x) denote the Hodge star operator on @ (resp X which is orientable). We
construct the basis B (resp. B’) with the vectors

d — ~(d— — ~(d—
u; +P) FE(dﬁﬁhe ’\OU—,B[*Q U’_g‘,_g)h] = ”E“t”‘j *x € “°U+,9[U;_5)h],
d d d
resp. vj(., +p) _ Tparn U—plxq u( 5%] = Tpusn %X Us ola; ( ";)h]
—b,Vh —,b,Vh
The Aq72—orthonormality of B and B’ is easily deduced from the + case. Then we must compute
5in th(der) — e—koe—H+Vthd*,XK;1€H—Vh6A0u§d+p)
= xx e*llOe*H+VhK *—1 X wx K—167H+VhU+7 o (d 5)’1]
= (1)U o eHoem H+V" pe dNK M vh U, [ (d 5)’1]

(=D P sy eTHOUL gd_yn U(d ]
NP, ax et far

(d

By taking the ( , ), scalar product with Vg ) Jike in the + case, we obtain

<,U](_fi+}’) 5*th §d+p)>T :( 1)d p+16p o 16/k ()i (d P) +:U/d D) O(A_1/2)

We deduce that the singular values of 6™, || .+» are comparable, with an (1 + O(A~'/2)) factor, with the
—.b,Vh

b,V

d—p+1
D) ARV

acts on C*(Q,AT*Q ® C). The eigenvalues of Bﬂdj’")h are thus comparable with an (1 + O(A~1/2)) factor,

with the eigenvalues of A(d p)vh L

where we recall that Ap yn g acts on C°(Q,AT*Q ® C® org). O

singular values of d_y» ; : Ran 1[0,29,1](A%d+ — Ran 1jg,2,,( ), where we recall that Ap, _yn y

which by Poincaré duality for the Witten Laplacian are the eigenvalues of

1A(P)
Azf AVED
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