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Force Feedback in Model Predictive Control:
A Soft Contact Approach

Sébastien Kleff'2, Armand Jordana!, Nicolas Mansard®?, Ludovic Righetti1

Abstract—Model-predictive control is an appealing framework
to control robots due to its ability to exploit both sensory
information and model predictions. But its performance re-
mains fundamentally limited in tasks involving contact with the
environment, in part because optimal control policies do not
reason over force measurements. In this article, we propose
a first complete answer to this issue by introducing a novel
approach that systematically includes measured efforts into the
optimal control loop. We propose to augment the state-space
with a visco-elastic model of the contact force in the task space.
We derive a complete predictive controller with an efficient
formulation whose implementation is released in open-source.
We conduct extensive comparisons with two other methods: the
classical model-predictive control formulation, which inherently
restricts the feedback to position and velocity information, and
our previous approach that enabled torque feedback in the
joint space. We demonstrate through simulation studies and
hardware experiments, the benefit of exploiting Cartesian force
measurements in the model-predictive control framework to
achieve challenging contact tasks.

I. INTRODUCTION

A. Model-Predictive Control in contact tasks

Over the past decade, nonlinear Model-Predictive Control
(MPC) has become increasingly practicable to address robot
motion generation problems, mainly thanks to efficient rigid-
body dynamics algorithms [1] and continuous progress in
numerical optimal control, as attested by numerous hardware
implementations on torque-controlled robots [2[]-[7]. But its
systematic deployment for tasks involving delicate contact
interactions (where quantified forces are expected to achieve
the task) remains to be achieved because optimal controllers
rely on simplifications that hinder their capability to predict
future interactions. In fact, existing MPC implementations
optimize contact forces as input variables [2]], [S]], control them
only in a feed-forward sense [3]], [4], [6]], [7]], or relax the rigid
contact assumption for control [8] or modeling [9]] purposes.

The difficulty of accounting for contact phenomena in an
optimal control formulation [10], [11] lead roboticists to the
rigid contact model [[12[|-[14]] which fundamentally limits the
ability to control contact forces. This limitation can be un-
derstood from a control-theoretic perspective: under the rigid
contact assumption, the contact force is an output with direct
input feedthrough, which means that the input torque affects
directly the value of the contact force without any dynamics in
between, making the system non-strictly proper [15]. In other
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words, the force can be written as a function of the state and
the control input.

While it is possible in some cases to achieve output
feedback control by exploiting the feedthrough as a feed-
forward action [16], it remains a challenge in the general
case [17], [18]. In particular, the feedback interconnection of
such a system with a non-linearity (e.g. a model-predictive
controller) is known to create an algebraic loop of which
the well-posedness is not guaranteed [15], [19]. Digital im-
plementations of MPC usually circumvent this pathology by
discarding the direct feedthrough terms as physical systems
have a finite bandwidth [20]]. One possible way is to augment
the state by introducing delay [21], for instance by treating
input as states [22], [[23] or by using output predictions in
the input computation [24]. The former approach was used
in [25] to derive contact-aware optimal policies, and in our
previous approach [26] to enable torque-feedback in MPC.
In this paper, we address this challenge by proposing a new
MPC formulation that introduces contact dynamics rather than
adding dynamics in the joint space.

B. Contributions

The combination of MPC and force control has already been
investigated in other works, either by using an explicit model
of the contact force [27]-[30] or in an impedance/admittance
control fashion [31]-[34]. In contrast to those approaches,
we propose to plan interaction forces based on an explicit
model while not requiring any other controller than the MPC.
To this end, the contact force is modeled as a linear spring-
damper and treated as a state inside the optimization problem.
This allows to make predictions about the future evolution
of the interaction and to optimize directly force-feedback
torque policies. This way we can inherit the benefits of MPC
(reactive planning and task conflict resolution through cost
optimization) while preserving good force tracking capabilities
as in direct force control.

In our preliminary work [26], we revealed the fundamental
limitation of classical MPC and proposed an original for-
mulation that allows to incorporate joint torque feedback in
optimal policies. While it confirmed the benefit of exploiting
joint space effort measurements in contact tasks, we found
that this approach is not the only way to endow robots with
force awareness. Pursuing that objective, we introduce in this
article a new MPC formulation that exploits contact force
measurements in Cartesian space. While it comes at the price
of relaxing the rigid contact assumption, it has the advantage of
using measurements directly in the task space. This benefit is
confirmed through experimental comparisons between the pro-
posed approach, classical MPC and the aforementioned torque-
feedback MPC [26]. Our contributions are the following:
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Fig. 1: Overview of the proposed MPC schemes. The generic MPC scheme (Section is agnostic to dynamics model
fr- The 3 MPC schemes presented in this paper are the result of a particular choice of state and input variables x,u: the
classical MPC with position-velocity state and perfect torque actuation (Section [[II-C), the torque-feedback MPC scheme with
position-velocity-torque state and low-pass actuation (Section and the force-feedback MPC with position-velocity-force

state and perfect torque actuation (Section [V-C).

We introduce a novel MPC scheme using a visco-elastic
force contact model and state augmentation (Section [V). A
reproduction of the experimental results of [26] on a torque-
driven manipulator (iiwa) and a quantitative assessment of
the force tracking capability of the torque-feedback MPC are
proposed (Section [VII). An experimental validation of the
proposed force-feedback MPC and a comparison with classical
and torque-feedback MPC are also presented. A detailed
discussion on modeling assumptions and practical aspects of
adding force in MPC on a real robot is offered (Section [VIII).
Finally, connections with existing force control literature and
perspectives for MPC are established (Sections [[I] [VIII).

II. RELATED WORK
A. Force control

The control of contact forces is a long-standing goal in
robotics, as reflected by the early work of Whitney [35]], and
has been continuously subject to a great amount of research.
This effervescence is due to the broad range of applications
that necessitate controlled physical interactions, but also to the
difficulty of designing reliable force control strategies [36].
Force control approaches can be broadly divided into 2 cate-
gories: indirect and direct approaches [37].

Direct force control techniques attempt to regulate the
contact force directly through explicit feedback control [38],
[39]] based on force sensor measurements. The force control

loop is generally combined with a motion controller in comple-
mentary task space directions as done in hybrid control [40],
[41], or in parallel as done in parallel control [42]. The
best basic force feedback control strategy has been shown -
theoretically and experimentally - to be the integral controller,
which enables accurate trajectory tracking [39]]. But the high
performance allowed by direct methods comes at the price
of having to arbitrate manually the conflicts that may exist
between the force and the motion tasks [43]. Besides, it
inherently hides the friction phenomena [44], the exchange of
mechanical work [45]], and has serious theoretical pitfalls [46].

Indirect force control on the other hand attempts to regulate
the dynamic relation between force and motion, a.k.a. the
impedance. These techniques include notably impedance con-
trol [47], [48]] and admittance control [35]], [49]. The contact
force is controlled indirectly through the specification of a
desired impedance. While those techniques are relatively easy
to implement and excel at realizing stable and compliant
contact behaviors, their force tracking performance is inher-
ently limited [50]]: force regulation is done indirectly through
impedance specification, which makes its quality depend on a
priori unknown environment parameters [S1]], [52].

In this work, we propose a novel MPC formulation affording
the explicit control of contact forces, akin direct methods.



Classical MPC
Section I-C
State el =1(q,9)
Control ey =r
Actuation model Perfect
Force A = A" (output (5B))
Contact model Rigid

Torque-feedback MPC | Force-feedback MPC
IV-C V-C|
Yz =(q,4,7) ffx%q‘,m
oy =w u="T
Low-pass filter Perfect
A = A" (output (T0B)) A = A8 (state (T8))
Rigid Soft

TABLE I: Variable definitions and notations for each MPC formulation. The ¢ superscript stands for the classical MPC of
Section [[II-C| ¥ for the torque-feedback MPC of Section and ¥ for the force-feedback MPC of Section The force
superscript " stands for the rigid contact model, while ® denotes the soft contact force model.

B. Fundamental challenges in force control

There is a fundamental trade-off between stability and
performance in force control. Colgate’s analysis of force feed-
back [53]] revealed that the contact instability observed by di-
rect force control practitioners [38]] is a special case of coupled
instability due to a combination of the inertia scaling effect of
force feedback [48|] and non-collocation between sensors and
actuators [54]]. Stability can be enforced using a sufficient pas-
sivity condition [49], [55]-[58]] that restricts the magnitude of
the force feedback gain, hence the force control performance.
Because some tasks may require precisely behaviors that are
stable but not passive (e.g. bending, grinding), passivity can
be regarded as a conservative criteria [59]], although recent
works suggest that it can be effectively accommodated in
direct force control to allow high-bandwidth control [60].
In our work, the stability/performance trade-off is indirectly
arbitrated through nonlinear optimization: the effective force
feedback gain results from the minimization of a cost function.

The question of what particular impedance must be emu-
lated to achieve a given task is very challenging. Impedance
control is by nature agnostic to that question: it only provides
tools to realize a given target impedance. Hence in practice,
target behaviors are hand-designed through empirical fine-
tuning to increase the task performance, which is tedious and
vulnerable to uncertainties. The impedance selection problem
was early recognized as a major challenge [[61]] to be overcome
by adaptive control strategies [S0]], [[62]-[|64]], environment
impedance estimation [51], [65], optimization [61]], [66] or
learning [67]], [68]].

C. Toward optimization in force control

We like to think of optimal control as a way to automatize
control gains synthesis, for instance by relating impedance
modulation during contacts to a trade-off between disturbance
rejection and measurement uncertainty [[69]]. This suggests that
incorporating force in the optimization may result in an opti-
mized impedance, trading off motion and force performance
to achieve a higher-level objective [70]. The present work is
in line with this interpretation.

As mentioned previously, the benefits of MPC and force
control can be combined. This is done for instance in a direct
force control fashion in [27], [28]] where the contact force is
treated explicitly as an output in the optimization using a linear
spring model. MPC can also be used to bound the magnitude
of contact forces generated by admittance control schemes in
stiff environments [31]]. The work in [32]] extends this idea
to nonlinear MPC with an emphasis on path-following. The

approach in [33] proposes a task-space admittance control
scheme that adds proportional-integral force term to the end-
effector position reference in the cost function. Adaptive con-
trol is used in [34] to estimate impedance model parameters
used in an MPC. Closer to our approach, the recent works
in [29], [30] model interaction forces as linear spring models
that are added directly into the state dynamics. In [29],
the contact force estimated from joint torques is fed-back
directly into the MPC that optimizes joint-space PD reference
trajectories. In [30], a Hertz contact model is used in the
trajectory optimization problem. A joint space impedance and
a Cartesian admittance control allow to control forces on a soft
tissue in MPC at 5H z. We propose instead to achieve high-
frequency predictive force feedback without any additional
stabilizing controller.

I1I. BACKGROUND

In this section we recall the classical MPC and the torque-
feedback MPC based on actuation modeling.

A. Model-predictive control
We consider the following Optimal Control Problem (OCP)

T
/0 C(z(t),u(t),t) dt + b7 (z(T))  (la)

u(),()
s.t. z(0) = &, (1b)
i(t) = f (x(t),u(t),t) (1c)

where 2 is the measured state, u the control input and f is
the dynamics model, ¢, {7 the running and terminal costs. The
OCP () is transcripted into the following Non-Linear Program
(NLP)

N-1
min Z Ce(2p, up) + In(2N) (22)
T0,.., TN
UQ,-e ey UN —1 k=0
s.t. Ty = I, (2b)
Try1 = fre(on, ur) (20)

where /, ¢ and fj denote the discretized costs and dynamics
with sampling step At (typically resulting from a semi-implicit
Euler integration scheme). The solution is a locally optimal
control sequence ug, ..., u3_; from which we only send the
first element u; to the robot low-level controllers. This NLP
can be solved efficiently using standard nonlinear optimiza-
tion such as Sequential Quadratic Programming (SQP) [71]]



provided that the sparsity induced by time is exploited in the
resolution [72]]

This generic numerical optimal control formulation encom-
passes the various MPC controllers derived in this paper.
We will propose alternative definitions of the state x and
control u variables, which will lead to specific definitions
of the continuous-time and discrete-time dynamics
constraints, hence to distinct model-predictive controllers. The
state and control variables definitions of all MPC schemes are
recapitulated in Table [I

B. Rigid contact dynamics

A rigid contact is a kinematic constraint between the robot
and the environment. The equations of motion of a fully-
actuated robot in rigid contact with the environment can be
derived from the Karush-Kuhn-Tucker (KKT) conditions of
the convex optimization problem corresponding to Gauss’ least
constraint principle [[73]]

R S
mqm iHQ*Qf”?\/I(q) 2)

st. J(@)d+ J(q)g =0

where ¢,¢ € R™ are the vectors of joint positions and
velocities, M(q) € ST is the generalized inertia matrix,
J(q) € R™*" is the Jacobian of the m-dimensional contact,
G = M(q)~*(t — h(g,¢)) € R™ is the free acceleration,
h(q,q) € R™ is the vector of centrifugal, Coriolis and gravity
forces and 7 € R"™ is the vector of joint torques. As explained
in [74], the KKT conditions of , namely

[M(Q) J(Q)T] { g ] _ [T—h(qm})

(3b)

r Iy “)
J@ 0 | [=A —J(q)q
reveal the generalized contact forces \™ € R™ as the Lagrange

multipliers associated with the rigid contact constraint (3b).

C. Classical MPC

In this formulation, the continuous-time dynamics constraint
f is defined from the solution map of the KKT conditions ().
It corresponds a controlled dynamical system with state 'z £
(¢,¢) and control input “u = 7 (we omit the dependency in
t for readibility)

i — f (clm7clu)
A=\ (clx’clu>

(5a)
(5b)

where f maps joint positions, velocities and torques to the
constrained joint accelerations ¢ (primal solution of (@)

7 (M) = leq) (r— M) +J <q>”>] ©

and A" is the rigid contact force (dual solution of ({@)). In this
formulation [75], the contact force A appears as an output of

'Note that nonlinear inequality constraints on the state and control input
can be easily be added to this formulation as shown in [72]

the system. Therefore, the cost function can include a force
task with the following form

14 (Clx, Clu) =||A" (Cl:c, Clu) — M|? + other terms  (7)

where ) is a reference force.
The discretized dynamics constraint f; can be obtained
using an Euler semi-implicit scheme with sampling time At

fr (clxk7cluk> ey 4 {%’5 AX;} f (clxk’cluk> (8a)

Ap = A (Clxk, duk) (8b)

At each MPC cycle, the NLP (2) is initialized with the latest
position-velocity state measurement °'i = ((j,(}) and solved
using as a dynamics constraint the discrete dynamics derived
in (8). The joint torque 7 sent to the robot is then selected as

the first optimal control “‘u¥ output by the NLP resolution.

IV. TORQUE-FEEDBACK MPC

We first recall the fundamental incapacity of classical MPC
to do force feedback and how the formulation proposed in our
previous work [26] allows to overcome this issue.

A. The limitation of classical MPC

The classical formulation of Section does not allow
force predictive feedback control because the contact force and
control torque are algebraically coupled. While X is used as
a prediction, it is possible to choose a control action u. But
if X is used as a measurement (like the state x), it can be
seen from (5B) (or Bb) in discrete time) that u is completely
determined and cannot be chosen. The force A appears as the
output of a nonlinear system in with instantaneous transfer
from the input since 22 = (JM~1JT)"1JM~! is non-
zero. Attempting to control A with some policy u(A) would
obviously create an algebraic loop as u and A would influence
each other instantaneously.

As previously mentioned, this corresponds in control theory
terms to a non-zero input-output feedthrough that makes the
system non-strictly proper. One way to render such a system
proper (and thus to allow force feedback) is to delay the
output with respect to the system input ( [21]], p. 37). This
approach was followed in [25] and in our previous work [26]]
by modeling an imperfect torque actuation. Another way is
to relax the rigid contact assumption, as done for instance
in [28]], which also produces the needed decoupling (the delay
then comes from the flexibility). We propose in this paper to
follow this second track and introduce the force feedback MPC
based on visco-elastic contact modeling. But first, let’s recall
our previously proposed MPC based on actuation dynamics,
which we will use as a basis of comparison.

B. Low-pass actuation dynamics

In our previous work [26], we proposed to model the
actuation dynamics as a first-order low-pass filter. The input



torque w is then related to the actuation torque 7 according
to the linear first-order differential equation

T =w(w—1) 9)

where w, > 0 is the cut-off angular frequency in rads™!,
ie. w. = 27 f. where f. is the ordinary cut-off frequency
in Hz. We like to think of this model as an abstraction of
the actuation, not an accurate model. It is simple yet generic
enough to capture the linear behavior of many actuators. More
complex models could be used without any changes to the rest
of the approach.

Note that this approach presents similarities to the one
proposed in [76] which enforces the limitation of the actuation
bandwidth limitation by using a frequency-dependent cost
function. In that sense, our approach resembles the special case
of a low-pass shaping function. But the conceptual difference
is that frequency-shaping leaves the relation between state
and control unchanged during the optimization, while our
controller reasons over higher dimensional dynamics, which
enables to naturally derive control policies that depend on
torque measurements.

C. Torque-feedback MPC formulation

The above actuation model allows to augment the classical
dynamics of Section We define the state of the system
as Y2 2 (q,q,7), which includes classical state “'z and the
Jjoint torques 7. The control input to be computed by the MPC
is defined as the unfiltered torque #u £ w. The rigid contact
model is however left unchanged. The full continuous-time
dynamics model then reads

i f (tfx7tfu)

A=A (tfx)

where the dynamics constraint f now contains the low-pass

filter (9):

(10a)

(10b)

q
f(Fa,7u) = | M7 o) (7= hlg,d) + T@TN) | (D)
we (W —7)

and \" (tf a:) is the same rigid contact force as the one defined
in the classical MPC (dual solution of the KKT system (@)).
Note that in this formulation, the algebraic coupling between
A and 7 still exists (we are still working under the rigid
contact model assumption) but it is no longer an issue since
the optimal control ¥u = w can be freely computed after a
contact force is measured. In this formulation, the cost function
of the OCP can include a contact force task similarly to

14 (tfx,tfu) = ||A" <tfx> — MJ? + other terms (12)

with the main difference that the rigid contact force no longer
depends on the system input ¥, but only on the state ¥ z.

The filter discretized under zero-order hold takes the form
of an exponential moving average

Te+1 = a1k + (1 — @)wg (13)

where o = e~“<2f. Note that a parameter provides an intu-
itive understanding of the asymptotic behavior of the actuation
model: when f. — oo, a — 0 and there is no filtering so w
goes entirely throug When f. — 0, @ — 1 and the filtering
is maximal so w is entirely blocked. However in practice,
the value of f. is upper bounded by the Nyquist frequency
% = ﬁ to avoid aliasing phenomena. The position-velocity
dynamics is then integrated using a semi-implicit Euler as in
the classical MPC case, while the torque dynamics uses

At A2 0
i (tfxmtfuk) =Yz, 4|0 At 0 |f (tkaatfuk)
0 o0 1=
‘ (14a)
Ap = A" (tka) (14b)

In practice, the torque sent to the robot at each MPC cycle
is not the optimal computed unfiltered torque u(y because it
may be too aggressive to be used when the optimizer over-
estimates the filtering effect of the actuation. It is safer to
use instead the optimal filtered torque predictions: hence we
send an interpolation 7 between the initial (measured) torque
75 = 7 and predicted (optimal) filtered torque 7y

T=1 +e(n —7) 5)

where € is the ratio between the OCP sampling step At and
the MPC re-planning step duration. The interpolation is used
because the prediction 7;° may lie too far in the future when the
OCP sampling frequency is lower than the MPC re-planning
frequency (which is usually the case in practical implementa-
tions). This MPC scheme has been shown to outperform the
classical MPC formulation in contact tasks thanks to its ability
to re-plan based on measured joint torques [26].

V. FORCE FEEDBACK MPC

In this section we introduce the soft contact model and our
new formulation of the OCP that allow direct force feedback
from Cartesian space measurements.

A. Visco-elastic contact dynamics

The visco-elastic contact dynamics models the contact force
by a linear spring-damper

N (q,4,pe) & —KAp(q,p.) — Bp(q,q)

where Ap(q,p.) = p(q) — pe is the end-effector deflection,
p(q) € R™ is the end-effector Cartesian pose given by
forward kinematics, p. € R™ is the contact anchor point, and
p(q,q) = J(q)q is the end-effector Cartesian velocity given by
differential forward kinematics. The matrices K, B € R™*™
are the stiffness and damping of the environment (diagonal and
positive definite), assumed to be fixed and known. Notice that
given joint positions, joint velocities and the anchor location,
the contact force is fully determined.

(16)

2This corresponds to a discrete system with pure delay Tht1l = Wk.



B. Naive approach to visco-elastic contact

The visco-elastic model immediately leads to a first MPC
with contact feedback, which we introduce now but that we
will explain not to be fully satisfactory. The rigid contact force
in (3) can be replaced by the visco-elastic contact force (I6)
which leads to the following continuous-time dynamics model
with classical state “‘z and input “u

g — ¢ (clzyclu)
A= \° (Clx,pc)

where f is the same as (6). The only difference between
and the classical formulation (3 is the output equation
describing the contact force evolution: contrary to (3b), the
contact force in does not depend on the control input
cly. Although this reformulation clearly breaks the algebraic
coupling with the control input, it still does not allow to take
into account the measured force: measuring the state fully
determines the contact force. In other words, (T6) acts as a
measurement model. One possibility to exploit it could use a
Kalman filter to estimate the state.

Yet we would rather like to be able to inject new information
into the optimizer at each measurement cycle, so that the
optimal trajectories are based on both visco-elastic predictions
and sensed efforts. For this, we propose another formulation
that consists in augmenting the classical state with the contact
forces.

(17a)

(17b)

C. Force feedback MPC formulation

We propose now to include the measured contact force
directly in the system state and to use the visco-elastic contact
equation (16) as a prediction model. The augmented state is
defined as /2 £ (g, ¢, \) which includes the classical state “'z
and the measured contact force A, while the control input is the
joint torque /v £ 7 like in the classical formulation. We will
assume that the anchor point is not moving, i.e. p. = 0. This
corresponds to a sticking contact model, which is reasonable
as long as there is no slipping. Under this assumption, the time
derivative of is given by

A (e, ) = —Kp - Bp (18)
where = J(q)§ + J(q)¢ is the end-effector Cartesian
acceleration, and the joint acceleration ¢ is computed using
the forward rigid-body dynamics. This reformulation leads to
the full continuous-time dynamics model

i=f (ff% ffu)

where f includes the classical forward rigid-body dynamics ¢
and the visco-elastic force dynamics defined in (I8)

f (ffx’ ffu) —

19)

q
M1 (T—h+JT)\)

‘ (20)
~KJi— B (IM (7= h+ JTA) + Jq)

where we dropped the dependencies in ¢, ¢ for readibility. This
model expresses the direct measure of A (which will be the
case in our experiments thanks to a F/T sensor attached to
the end-effector) and uses the visco-elastic interaction model
to predict its previewed evolution. Now the MPC is able to
take decisions based on the predicted whole-body behaviour
while being directly informed of the measured forces. In this
formulation, a contact force task is formulated as an integral
part of the state cost

L (ffx7 ffu) = ||IA = X\||® + other terms (1)

D. Model derivatives and transcription

The optimization algorithm requires the derivatives of the
dynamics model (20) w.r.t. state /' and control fu. The
rigid-body dynamics part requires g—g, Z—g, %, which are clas-
94

sically known in closed-form [77], and 7{ of which we

explicit the computation

i -
H=pM1J" (22)

Note that the forward rigid-body dynamics § is a function of
(¢,q,7,\). We insist here on the fact that unlike in classical
MPC case, ) is not a function of ¢, ¢ in the above expression:
as part of the state of the system /fz, the variables g, ¢, A
are simultaneously measured and therefore independent at
this stage. The visco-elastic force dynamics part requires
the derivatives \* w.r.t. state /2 and control //u. They are
computed using the chain rule with end-effector velocity and
acceleration

ok — k% - B (% +5%) (23a)
ok — —K% - B (% +35) (23b)
2 _ ~pgpoi (23¢)
9 = —pgrot (23d)
where the terms g—g,g—g,g—g are computed using recursive

algorithms [77].
The discretized dynamics model can be obtained using
a semi-implicit Euler integration scheme similarly to Sec-

tions

At A2 0
Hopr =a,+ 10 At 0 f(ff:vk,ffuk) (24)
0 0 At

At each MPC cycle, the NLP is re-solved based on the
measured state 7'z and the first optimal joint torque uy is
sent to the robot.

VI. SIMULATION STUDY

In this section we compare the performances of the 3 for-
mulations previously introduced in simulated polishing tasks.
The benefit of force feedback in the position and force tracking
accuracy becomes clear under imperfect actuation and contact
modeling. Further, we highlight the effect of the low-level
torque controller in the task performance by simulating the
polishing task with and without this module. This reveals the
weaknesses of both the classical MPC and the torque-feedback
MPC formulations.



A. Task formulation

1) Frame conventions and sliding contact: In order to
achieve the polishing task we need a 1D (i.e. pure sliding)
contact model in order to allow only forces in the table normal
direction and motions in the lateral directions. Moreover, this
normal force is expressed in the centered frame convention:
the origin of the reference frame coincides with the contact
point but its axes are aligned with the table axes at all
times. The derivatives of the forward dynamics must then be
expressed in these moving coordinates. Such a model can be
easily obtained from a 3D contact model by using projections
and the derivations described in our previous work [78].

2) Cost function: The task is to apply a constant vertical
force while drawing a circle on the horizontal plane. For the
sake of clarity we split the cost function in 2 parts: a common
part £ which is the same in all 3 controllers and a controller-
specific part which contains additional terms that are specific
to the controller. The common cost /° reads

O = cllg—al3, (25.1)
+ c2lgl1?, (25.2)
+esllT = 14(a, VI, (25.3)
+ callp(q) — D(DI1B, (25.4)
+esllp(e, ), (25.5)
+ oA = A [I5, (25.6)

where (c¢;,Q;)i=1..6 are positive scalar weights and positive
diagonal activation matrices, ¢ is a static reference joint
configuration, 7,4(g,A) is the gravity compensation torque
under external forces g(q) — J(q)TA, p(t), A(t) are time-
varying reference of end-effector position and contact force
respectively. The term is a joint configuration regular-
ization term, (25.2) a joint velocity regularization term, (25.3)
a torque regularization (around gravity torque), (25.4) an end-
effector position tracking term, (25.3) an end-effector velocity
regularization term, (25.6) a contact force tracking term. Note
that at this stage, we had to slightly abuse notation in the cost
function definition since ¢° can clearly be written in either one
of the following ways

0 (Clx,du) =/ (tfx,tfu) =/ (ffx, ffu) (26)
depending on the definition of the state and input variables. In
particular, the force cost term takes the form (7), or
(21) depending on the MPC formulation being considered. We
can now define each controller’s complete cost function based
on /°. The only changes in the cost function are regularization
terms on the new variables due to state augmentation. For the
classical MPC, the full cost function reads

i (clxyclu) — O (clx7clu)

For the torque-feedback MPC, the full cost function includes
an additional regularization term on the computed torque

27

/! (tfx,tfu) =/ (tfx,tfu) + cw||tfu — 14(q, /\)||éw (28)

For the force-feeback MPC, the cost function includes an
additional regularization term on the rate of change of the
contact force

(o) = (2, 500) + erlA,

3) Task phases management: The task is divided into
several phases with fixed time durations: stand still, reach the
surface of the table, apply a normal force, circle motion, stop.
The cost function weights and references are updated online
based on these time-based switches.

(29)

B. Simulation setup

The simulation scheme presented in Figure [2| is explained
here in details.

1) Software: Rigid-body dynamics computations are per-
formed using the Pinocchio library [77]. The OCPs
are formulated using the Crocoddyl optimal control li-
brary [[79] and solved using our efficient SQP solver available
in mim_solversﬂ [72]. The force-feedback and torque-
feedback OCPs described in this work are implemented in the
open-source library £ orce_feedback_mpcﬂ The bench-
marks and experiments can be reproduced using our dedicated
public repository force—feedbackﬂ We use PyBullet
as a physics simulator ("RBDS” in Figure [2).

2) Contact, sensing and actuation modeling: We assess the
performance of the controllers under a perturbed contact model
and imperfect actuation and sensing. The contact surface is
tilted by an angle # unknown to the controller. The sensing
model adds noise and delays to the measured joint positions
and velocities output by the physics simulator

q(t) = ¢"™(t = &) + v
q(t) = ¢ (t = 85) + v

(30a)
(30b)

while the actuation models adds an affine bias, noise, delay,
dry friction and stiction to the motor torques

() = ar™ (t — &) +b — pssign(q(t)) — pod(t) + v, 31

where ¢, q,7 are measured signals, ¢*™, ¢*™ are computed

by rigid-body dynamics simulation, 7™ is the motor torque
output by the robot low-level controller, v,, vy, v, are Gaus-
sian random variables with 0 mean and variances o4, 04,0,
respectively, d5 is the sensing delay, (a,b) is a bias uniformly
distributed over [a, @] x [b, b]. The coefficients i, 1, encode
respectively static and viscous friction in the joints. The con-
tact surface stiffness and damping coefficients of PyBullet
are set to 10* and 102 respectively, and the lateral friction
coefficient to 0.5. The surface tilt angle 6 is ranging from
—6° to +6°. The actuation bias (a,b) is uniformly drawn
from [0.8,1.2] x [—2,+2]. The sensing delay is selected as
d0s = 1 simulation cycle, the random noise parameters as
o, = o5 = 1073 and o, as a small percentage of the
joint torque limits provided by the manufacturer. The sign in
the static joint friction term is approximated by a hyperbolic

3https://github.com/machines-in-motion/mim_solvers
4https://github.com/machines-in-motion/force_feedback_mpc
Shttps://github.com/skleff1994/force-feedback
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Fig. 2: Schematic of the simulation setup used in Section for the classical MPC, including low-level torque control.
Gray arrows corresponds to zero-order holds (ascending) or anti-aliasing filters (descending). The torque controller is a PID
controller plus feedforward (t%). The actuation block simulates the combined effects of motor inertia, transmission, torque
sensing, etc. The RBDS block can be any rigid-body physics simulator. The sensing block simulates sensor dynamics and

noise.

tangent and we use ps = 1 and p,, = 0.5. In the case of the
force-feedback MPC, the contact force is also perturbed with
Gaussian noise and sensing delay

M) = Nt — 85) 4 vy (32)

with vy ~ N(0,03). The low-level torque control is simulated
by a torque PID controller with feedforward

() = Tt~ 5) (33a)
~ Kp (%(t) _ - 50)) (33b)
t
— KI/ (%(5) —7d(s — 50)) ds (33c¢)
Jo
— Kp7(t) (33d)
where 7¢ is the desired torque output by the MPC,

Kp, K7, Kp are PID gains (manually tuned by fine trials and
errors) and ¢, is the delay due to the OCP resolution set to
do = Hms.

3) MPC settings: The 3 MPC controllers run at 500H z.
The horizon is 5 nodes of 3 ms. The force-feedback MPC has
K =103 and B = 10%. The cutoff frequency of the low-pass
filter model in the torque-feedback MPC is set to f. = 50 Hz.
The same parameters are used on real hardware and discussed
in Section

C. Results

In order to compare the performances of the 3 controllers
and how they are affected by the low-level torque control, we
run batches of MPC simulations with and without the torque
PID controller. For each simulation, an actuation model bias
(a,b) and a tilt angle 6 are randomly selected. The desired end-
effector circle trajectory has a diameter of 14 cm and a velocity
of 3rads™!, and the force reference is 50 N. For each con-
troller, the cost function weights were selected independently

to achieve the best empirical performance. The performance
is assessed using 4 metrics: the tangential position and normal
force Mean Absolute Errors (MAE), namely Ep and F),
the maximum normal force error magnitude A, and the
maximum percentage of time spent not in contact tyreax. These
quantities are computed over all tilt angles and bias parameters

samples :
)\max = (lt,zr,ll%},(O HX(t)H (34)

# simulation cycles where A<~y
# simulation cycles

lbreak = Max (35)

(a,b),0
with v = 1073N.
1) With PID: The PID gains are set to the same values
for all 3 controllers. They were selected manually to achieve
the best torque tracking performance under the contact, sens-
ing and actuation models described previously. Table [I1If re-
ports the performance metrics. The torque-feedback MPC and
the force-feedback MPC both outperform the classical MPC
in terms of tracking performance. Furthermore, the force-
feedback MPC achieved lower force and position MAE and a
lower Apax than the torque-feedback MPC, thanks to its ability
to control directly the Cartesian force.

2) Without PID: When the low-level torque PID controller
is removed, the motor torque 7" is set to the feedforward
torque 7¢ (with delay d,) without any feedback from the
measured joint torque 7, so 7 can differ significantly from 7,
due to imperfect actuation, sensing and contact modeling. In
this case, the force tracking performances of all controllers are
degraded as shown in Table [lIl Among the three controllers,
the torque-feedback MPC appears to be the most impacted
as its force MAE becomes greater than the one of classical
MPC, and it breaks contact up to more than 32 % of the time.
Interestingly, the position tracking accuracy improved for the
classical and torque-feedback MPC. This trade-off in favor



TABLE II: MAE of the normal force and end-effector position
for polishing tasks for randomized table tilting angles and
actuation model parameters, without low-level torque control.

Classical Torque-feedback | Force-feedback
Ep (mm) 7.94+1.43 3.87 £0.65 3.07 £ 0.01
Ey (N) 15.21 £5.70 12.44 +4.16 2.04 £ 0.01
Amax (N) 185.75 211.00 111.97
threak (70) 0.00 0.00 0.00
TABLE III: MAE of the normal force and end-effector

position for polishing tasks for randomized table tilting angles
and actuation model parameters, with low-level torque control.

of position accuracy can be explained by the lower contact
friction which opposes less motion of the end-effector: while
the low-level torque control has the effect of generating the
friction inherently required by the polishing task, its absence
makes it easier to track a desired position by relaxing the force
task. This analysis is also consistent with the lower maximum
force observed for the torque-feedback and classical MPC: the
robot without torque PID is basically “pushing” less into the
table.

In order to analyze the performance degradation, Table [[V]
reports the changes in the force and torque tracking MAE
due to the removal of the low-level torque controller: we
computed AFE) and AFE,, where A makes the difference of
MAE between Table [l and Table [} The torque tracking
MAE E, was computed between the desired torque 7¢ and
the measured torque 7.

3) Discussion: In both cases (with and without torque PID),
increasing force gain in the classical MPC and torque feedback
did not improve the force tracking accuracy. This is a direct
consequence of the inability of the rigid contact model to
accept predictive feedback of measured efforts. Interestingly,
the torque-feedback MPC is the most negatively impacted by
the removal of the low-level torque PID, which suggests a
higher correlation between the torque tracking accuracy and
the task performance. This correlation is consistent with the
results reported in Table [[V]

In summary, our simulation study shows the superiority of
the force-feedback MPC in both position and force tracking.
This controller is also the least impacted by poor torque track-
ing accuracy. On the other hand, while the torque-feedback
MPC outperforms the classical MPC under good low-level
torque control, it becomes less performing when the measured
torque differs significantly from the desired torque.

VII. EXPERIMENTAL VALIDATION

We report here hardware experiments on a torque-controlled
manipulator that validate the proposed approach to achieve
dynamic contact tasks, and its superiority over the classical
MPC and the torque-feedback MPC. The accompanying video
contains recordings of the various experiments presented in

Classical Torque-feedback | Force-feedback Classical Torque-feedback | Force-feedback
Ep (mm) 5.75 + 0.06 2.44+£0.01 4.59 £ 0.01 AEy (N) 10.31 £ 6.85 21.55 £4.95 8.51 £1.87
Ey (N) 25.52 +4.09 33.98 +4.42 10.55 +4.40 AFE; (Nm) 2.24 £ 0.08 2.20 £0.07 1.95 +0.26
Amax (N) 59.36 105.57 110.95
toreak (%) 0.51 32.75 0.00 TABLE IV: Change in the force and torque tracking MAE

due to the removal of the low-level torque controller.

Fig. 3: Custom end-effector mount piece

this section and additionally illustrates the performance and
robustness of the proposed MPC formulation.

A. Experimental setup

1) Software: The same software as in the simulation study
(VI-BI)) was used for the robot experiments.

2) Hardware: We use the torque-controlled Kuka iiwa LBR
1480. The contact surface used in all experiments is a flat
wooden piece. The Cartesian wrenches are measured with an
FTD-Mini-45 SI-290-10 sensor at the robot end-effector. A
custom end-effector plastic piece is used to mount the FT
sensor and to protect it from hard impacts with a soft foam
ball taped to its tip acting as a damper (Figure [3).

3) Soft contact modeling: Let us recall that for the polishing
task, the force-feedback MPC uses a unidirectional (1.D) bilat-
eral model, i.e. force is not enforced to be strictly positive, and
the contact and stiffness parameters K, B scalars associated
with the stiffness and damping in the normal direction to
the table. We found that the location of the anchor point
P is not important, as Ap doesn’t affect the force dynamics
(only the contact point motion does, as seen from @)). We
experimentally determined K to be around 1.3e4 but this
approximation is most likely not accurate as K jumps abruptly
when the robot contacted part switches from the foam tip to
the plastic mount piece (e.g. when foam is fully compressed or
when the end-effector is tilting). Considering that increasing
K makes the OCP poorly conditioned and prone to numerical
instabilityﬂ and that we empirically found that keeping a low
K didn’t affect the force tracking performance, we chose to set
K = 1000. Note that the intuition that under-estimating K is
safer than over-estimating is also followed in other works [52].

61t requires small integration steps, or a good but computationally-expensive
integration scheme.
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Fig. 4: Experiment 1 : Normal force square signal tracking
performance for the 3 controllers.

The contact damping B should be kept high enough to pre-
vent oscillatory predictions (e.g. higher than critical damping
2v/K is a good heuristic). But we also noticed that too high B
can make the force time response “overshoot” and destabilize
the system. This can be understood by analogy with a first-
order linear system in the singular case of a pure damper
(K = 0). In that case, the force dynamics (I8) can be written
under the form

A+ Ba(g)A + B(g,¢,7) =0

which has a solution of the form A(t) = e~ 2 + \(B) (for
fixed ¢,q,7), so B acts as a time constant. We empirically
determined B = 100 to a suitable value throughout all our
experiments.

4) MPC parameter selection: There is a trade-off between
model accuracy (high K) and OCP discretization step (there-
fore horizon length). We found also that integrating the OCP
with smaller steps enables to select more finely the force
trajectories which is important for stability and tracking per-
formance. This also enables to penalize the time-derivative of
the force, A in the cost and to track aggressive force reference
without having to decrease substantially the force tracking
cost weight. Therefore we select At = 3ms and N = 5
nodes (I' = 15ms), for all 3 controllers. The importance
of the horizon length and computation complexity will be
further discussed in Section [VIIII We allow a maximum of 8
iterations of SQP in order to achieve a re-planning frequency
of 500 Hz. Note that we did not implement a real-time iteration
scheme [80]] as we observed in practice that letting the solver
converge to the desired KKT residual tolerance 10~ [71],
[72] resulted in a better performance than re-planning faster
without waiting for the full convergence.

(36)

B. Experiment 1 : Force signal tracking

In this experiment, the robot must track a time-varying force
reference signal as shown in Figure ] The MAE in the normal
force are 2.76 N, 2.70 N and 2.16 N for the classical, torque-
feedback and force-feedback MPC respectively. The overshoot
and oscillations observed in the case of the force-feedback
MPC can be avoided by reducing the force tracking cost
weight.

C. Experiment 2 : Polishing task with perfect model

In this experiment, the robot must exert 50N along the
vertical to the table while tracking a 14 cm-diameter circle
with its end-effector in the table plane at an angular velocity
of 3rads™!, as in Section Figure |5 shows snapshots of
the task. Figure [6] shows the normal force profiles and position
errors for the 3 controllers. We use the MAE over one circle
as a metric and report its mean and standard deviation over
10 circles in Table [V] We can see that the torque-feedback
and force-feedback MPC achieve a similar performance in
this case, both clearly outperforming the classical MPC in
position and force tracking. We were able to increase the
position gain of the force-feedback MPC without degrading
the force tracking capability. As a result, in this experiment,
the force-feedback MPC performed better than the torque-
feedback MPC.

Classical Torque-feedback | Force-feedback
Force (N) 9.31£0.79 4.28 £0.63 1.70+0.15
Position (mm) | 6.48 £ 0.21 3.23+0.12 3.10+0.11

TABLE V: MAE of the normal force and end-effector position
for the slow polishing task with perfect table model.

D. Experiment 3 : Polishing task with imperfect model

In this experiment, the task is the same as the one in Section
[VII-C| but the table is not perfectly horizontal anymore. It is
tilted by an unknown angle, as done in the simulation study.
The goal is to increase difficulty to distinguish the controllers
performance. We run 3 batches of trials under increased
difficulties (slow motion, then fast, then with pushes).

1) Experiment 3.1 : Slow circle: The unmodeled table
tilt degrades the performances of every controllers in both
position and force tracking. The torque-feedback MPC became
worse than the classical MPC in force tracking as shown in
Figure The force-feedback MPC still outperforms the 2
other controllers, as shown in Table m

Classical Torque-feedback | Force-feedback
Force (N) 9.49 +1.59 9.67 +£0.61 2.12+0.37
Position (mm) | 7.04 £0.43 3.37+£0.28 3.34+0.11

TABLE VI: Experiment 3.1 : MAE of the normal force and
end-effector position for the slow polishing task with imperfect
table model (unkwnown table tilt).

2) Experiment 3.2 : Fast circle: The task is the same except
that we increase the circle velocity to 6 rads~!. Surprisingly,
the torque-feedback MPC struggled to perform the task This

Classical Torque-feedback | Force-feedback
Force (N) 9.00 £ 1.61 11.40 £1.45 1.84 +0.32
Position (mm) | 10.85+ 0.12 5.41 +0.12 5.29 +0.03

TABLE VII: Experiment 3.2 : MAE of the normal force and
end-effector position for the fast polishing task with imperfect
table model (unknown table tilt)

could be due to the lack of accuracy of the joint torque
measurementsﬂ Instead, we found better results using an

7We used the signal joint TorqueMeasured from the FRI API



Fig. 5: Snapshots the polishing task.
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Fig. 6: Experiment 2: Tracking performance of the 3 con-
trollers on the slow polishing task (perfect table model)

estimate of the measured torques based on the external torque
estimation from the KUKA and our inverse dynamics model

7= RNEA(Qv (jy Q> — Text (37)

where 7., is given by getExternalTorques in the FRI
APIL, RNEA is computed by Pinocchio, § is estimated
by finite differences from ¢ and filtered with a 2"?-order
Butterworth. We verified that 7.,; matches our FT sensor
measurements JZ X\, which suggests that our sensor model
is accurate. The force tracking performance of the torque-
feedback MPC is still lower than that of the classical MPC,
while its position tracking performance is higher. The force
feedback MPC still outperforms both controllers and the
difference in performance appears clearly in force plots of
Figure [8] The overall performances are reported in Table [VII}
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(a) Normal force tracking error.
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Fig. 7: Experiment 3.1: Tracking performance of the 3 con-
trollers on the slow polishing task (unknown table tilt).

3) Experiment 3.3 : Fast circle with external pushes: In this
experiment, we run the fast polishing task (6rads~') on the
horizontal table (no tilt) but external pushes are applied by a
human operator as shown in the attached video. The position
and force performance plots in Figure [J]illustrate qualitatively
the superior robustness of the force-feedback MPC in face
of unknown disturbances: it is able to maintain both good
force and position tracking performances throughout the whole
task, while the tracking performances of the classical MPC and
torque-feedback MPC are highly affected by the pushes.

VIII. DISCUSSION
A. Computational considerations

1) Resolution complexity: Augmenting the classical MPC
state with additional variables naturally comes with an in-
creased computational cost. Assuming a fully-actuated robot
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Fig. 8: Experiment 3.2: Tracking performance of the 3 con-
trollers on the fast polishing task (unknown table tilt).

with n degrees-of-freedom, the classical MPC state contains
2n variables, so the NLP resolution is O ((2n)?). For the
torque-feedback MPC, the state includes n joint torques so the
complexity becomes O ((3n)?), and the force-feedback MPC
state includes an m-dimensional contact force so the complex-
ity becomes O ( (2n + m)3). In our polishing experiments, we
have m = 1 so the increase in complexity is moderate. For
higher dimensional contact models (e.g. a full 6D wrench,
i.e. m = 6) the increase of complexity would be much more
appreciable. Nevertheless we can see that in the case of a robot
with many degrees-of-freedom (n >> m) such as a humanoid,
the complexity increases much more for the torque-feedback
MPC than for the force-feedback MPC. This indicates that the
proposed approach is more efficient than the torque-feedback
MPC in the case of high-dimensional robots.

2) Importance of the horizon: The NLP resolution com-
plexity scales linearly with the MPC horizon N, which
imposes a trade-off between horizon length and re-planning
frequency. In our experiments, we found that keeping a small
number of nodes (N = 5) to allow a fast re-planning frequency
(500 Hz) allowed to increase the force task weight of the
force-feedback MPC and was thereby beneficial to the overall
control performance. One possible strategy to increase the
re-planning frequency without shortening the horizon is to
reduce the number of nodes in the horizon while increasing
the integration step At. However given the semi-implicit
integration scheme (249) used in our implementation, we found
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Fig. 9: Experiment 3.3: Tracking performance of the 3 con-
trollers on the fast polishing task (perfect table model) with
external pushes from a human operator.

empirically that a good compromise between force tracking
performance and stability was to keep a small integration step
(At = 15ms) while under-estimating the contact stiffness
(K = 10%). This trade-off between integration stability and
model accuracy could be alleviated by using more advanced
integrators that allow larger integration steps, such as expo-
nential integration [81]].

Despite these choices, keeping a horizon is important i.e. 5
nodes (1" = 15 ms) is always better than 1 node (1" = 3 ms).
Indeed, collapsing the horizon of the classical MPC to 1 node
(ie. T = 5ms) in the polishing task leads to a substantial
degradation in the position tracking performance (and a neg-
ligible improvement in force tracking). This poor trade-off
in favor of the force task is not surprising since the end-
effector trajectory tracking task requires more planning than
the “instantaneous” force task. The same horizon reduction
destabilized the force-feedback MPC. Decreasing its force
tracking weight led to a similar trade-off at the expense of
the motion task. Considering that a singular horizon MPC
(N = 1) is essentially equivalent to task-space inverse dy-
namics , this indicates that a short-sighted MPC is still
better performing than instantaneous control schemes thanks
to its planning capability. This also suggests that further
increasing the horizon would lead to better motion and force
performances. Here we have experimented rather simple tasks
where the planning capability was not fundamental (e.g. no



collision avoidance), so this observation is likely to become
more true for more complex tasks.

B. Modeling assumptions

1) Contact model: The stiffness and damping K, B pa-
rameters in were determined empirically under stability
and performance considerations, however they could be esti-
mated as proposed in [[52]] or in an indirect adaptive control
fashion [50]]. Besides, the location of the anchor point is
assumed to be perfectly known. Although it does not affect the
visco-elastic dynamics (only its velocity p appears in the soft
contact force evolution equation (T8))), measuring or estimating
the anchor point location would be useful to improve the
management of contact transitions. Note finally that the pure
sliding contact model (m = 1) used in the polishing task could
be improved by taking into the account the lateral forces using
e.g. feedback linearization or a Coulomb friction model [82],
or by adding directly a visco-elastic model in the MPC.

2) Contact switch: Furthermore, the proposed optimal con-
trol formulation assumes that the contact switching time
is perfectly known (i.e. the time-varying cost function and
robot dynamics are switched online at a pre-defined time
instant). This implies in practice tedious fine-tuning to stabilize
the contact transition. We could instead consider optimizing
the contact switching times or make the optimization time-
invariant.

C. Hardware limitations

1) Torque ripples due to gearing: Nonlinearities in the
transmission generates ripples in torques measurements, with
a frequency proportional to velocity. This phenomena is
described and thoroughly studied in [83]. These vibrations
impacted negatively the performance force-feedback MPC:
they reflect in the FT sensor measurements under the form
of 30 — 40H z oscillations with an amplitude that varies with
the force and velocity of the polishing. These oscillations can
be partly filtered out with a 2"%-order Butterworth filter, but it
still limits the magnitude of the force weight. This phenomena
is therefore a direct limitation on the performance of the
proposed approach, and is expected to be improved with better
hardware.

2) Mimatch between joint torque sensors and FT sensor:
As previously mentioned, the joint torque measurements read
from the FRI API do not align with the force sensor measure-
ments (37). This could explain why the torque-feedback MPC
did not work at first when using the measurements provided
by the KUKA torque sensors. This would also corroborate
the observation made in simulation that poor torque tracking
impacts torque-feedback MPC the most, although further anal-
ysis would be necessary to confirm this intuition. We used the
estimate to carry out the experiments, which enabled to
outperform performance of the classical in position tracking.
But despite this improvement, the force tracking is still worse
for the torque-feedback MPC than the classical MPC.

No proper explanation has been established by our exper-
imental setup, whether it could come from neglecting the
acceleration or from a significantly different robot (inertial)
model internally used by KUKA algorithms.

IX. CONCLUSION

In this article, we proposed a novel MPC formulation that
allows to reactively plan motions and contact forces. This
approach relies on a reformulation of the optimal control prob-
lem: a state augmentation with a linear visco-elastic contact
model allows to break the algebraic coupling that exist in the
rigid contact model between joint torques and contact forces.
The proposed approach was shown to outperform the clas-
sical MPC formulation, and the previously proposed torque-
feedback MPC formulation that models torque actuation as
a linear low-pass filter. In particular, we showed through a
simulation study that our MPC scheme was less sensitive to the
quality of the low-level torque control, and through hardware
experiments that it enables a high motion and force tracking
accuracy in challenging, dynamic contact tasks. In conclusion
our experiments demonstrate that using sensors that are co-
located with the task is beneficial to performance, and that
force control and MPC can complement each other.

Our approach provides a first complete answer to the
problem of achieving good control performance in contact
tasks with MPC, and addresses the challenge faced by force
control to achieve high-bandwidth force control without hav-
ing to explicitly plan impedance profiles. Future work includes
improving the contact modeling, adding constraints, and apply
the present methodology to floating-based robots and locomo-
tion problems.
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