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Abstract

We investigate mitochondrial (COI, 16S rDNA) and nuclear (ITS2, 28S rDNA) genetic structure

of North East Atlantic lineages of Terebellides, a genus of sedentary annelids mainly inhabiting

continental shelf and slope sediments. We demonstrate the presence of more than 25 species

of which only seven are formally described. Species boundaries are determined with molecular

data using a broad range of analytical methods. Many of the new species are common and

wide spread, and the majority of the species are found in sympatry with several other species

in the complex. Being one of the most regularly encountered annelid taxa in the North East

Atlantic, it is more likely to find an undescribed species of Terebellides than a described one.

Introduction

The revelation of cryptic species has increased exponentially since the use of molecular data in

taxonomic studies became common practise, but our understanding of the magnitude and

importance of this neglected biodiversity is still at an early stage [1–3]. To unravel, describe

and explain this hidden and unexplored dimension of life on earth is one of the major chal-

lenges to practising taxonomists [1].

This paper is a case study on the genus Terebellides Sars, 1835 (Annelida) based on speci-

mens collected from North East Atlantic waters, ranging from the British Isles in the south, to

the Polar Basin in the north. The genus and its first member, Terebellides stroemii Sars, 1835,

was described from the west coast of Norway near Bergen. Even though a few other species of
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Terebellides were described during the 19th and 20th century, T. stroemii has, as many of the

early described polychaetes, been considered to be a cosmopolitan species reported from all

over the world and from a wide variety of habitats [4–5]. About 150 years after its description,

Williams [6] revealed the existence of different morphotypes among members traditionally

considered as T. stroemii, and described a few of them as new species, and since then, the num-

ber of descriptions of new species of Terebellides has increased [7–13]. Recently, Parapar and

Hutchings [14] redescribed T. stroemii. The material used in the original description has been

lost, but they designated a neotype from museum specimens collected by Michael Sars from a

nearby locality [4, 14]. Today T. stroemii is considered to be restricted to the North East Atlan-

tic where it coexists with other species of Terebellides [11, 15].

Terebellides is the most species-rich of three genera in Trichobranchidae, with 52 species

considered valid [16]. Trichobranchidae is closely related to the more commonly known spa-

ghetti worms (Terebellidae), ice-cone worms (Pectinariidae) and Pompeii worms (Alvinelli-

dae) [17]. The genus Terebellides is morphologically a homogenous group characterized by its

unique branchiae with a single mid-dorsal stalk on segment 3. Differences between species are

mainly based on detailed branchial morphology, shape and size of anterior lobes, and on

details of chaetae [14, 18, 19] (Figs 1 and 2).

Members of Terebellides are tube-dwelling surface deposit feeders, and they occur predomi-

nantly in soft bottoms on continental shelfs and slopes. The information on reproductive biol-

ogy of the species is referred to T. stroemii exclusively. Terebellides stroemii spawns annually

from the age of one or two years for the rest of their life (until the age of three to five years).

Breeding season is reported to be in October–November in Greenland waters [20], in May in

the Kiel Bay [21], and in March–April in the Mediterranean [22]. Further, Terebellides stroemii
has been described to deposit their eggs in a compact, slimy mass, attached to pieces of decay-

ing seagrass, or at the entrance to their tube. Fertilization probably occurs before the eggs are

deposited, larvae emerge as trochophores, and the free-swimming larval stage is thought to be

very short and supposedly spent in near-bottom layers [21].

In the North East Atlantic, including the Arctic region but excluding the Mediterranean,

seven species have been described or reported to date based on morphology alone, and these are

T. stroemii with type locality in south-west Norway in 55–110 m, T. gracilisMalm, 1874 with

type locality in Skagerrak in 65–230 m, T. atlantis Williams, 1984 with type locality on the New

England slope in 400 m, T. williamsae Jirkov, 1989 with type locality in the Barents Sea between

northern Norway and Svalbard in 385–390 m, T. irinae Gagaev, 2009 with type locality in the

Canada Basin in Beaufort Sea off Alaska in 2570–2678 m, T. bigeniculatus Parapar, Moreira &

Helgason, 2011 with type locality north-west of Iceland in 333 m, and T. shetlandica Parapar,

Moreira & O’Reilly, 2016 with type locality between Shetland and the Norwegian coast in 160 m

(Fig 3). Among these, T.williamsae is considered a junior synonym to T. gracilis [15].

In this paper, we report on a series of molecular genetic analyses of Terebellides from North

East Atlantic waters using both mitochondrial (COI, 16S rDNA) and nuclear genes (ITS2, 28S
rDNA). The main aim of the study is to answer how many species of Terebellides that are

actually inhabiting the North East Atlantic. With species we mean separately evolving metapo-

pulation lineages sensu de Quieroz 2007 [23], identifiable as such using a combination of mito-

chondrial and nuclear markers, see also [2] for a discussion on the species concept we use in

this paper. Further, the study examines if the currently recognized species are to be considered

valid, and if there are additional species not yet reported in the area. We also want to investi-

gate the geographic and bathymetric distribution for the different Terebellides species, in order

to answer whether the species are predominantly sympatric or allopatric, and whether there

are any biogeographical and/or bathymetrical patterns. Finally, we also intend to explore the

population structure within the different species.
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Material and methods

Specimens, and study area

Specimens were collected between 2005 and 2014 on collecting trips, or by the following scien-

tific expeditions, monitoring programs or institutes: Survey of Utsjöbankarna, SAMARIN

(Marine surveys done by the Swedish Taxonomy Initiative), BIOICE (Benthic Invertebrates of

Fig 1. Live specimens of A) Terebellides williamsae (specimen 2181_2), in lateral view, with oocytes in the coelomic cavity and B) species 7 (specimen 2448_7), in lateral

view. Abbreviations: ab (abdomen), bl (branchial lamellae), br (branchiae), bs (branchial stalk), bt (buccal tentacles), gc (geniculate chaetae), ll (lateral lappets), tr

(thorax).

https://doi.org/10.1371/journal.pone.0198356.g001
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Icelandic waters), MAREANO (Marine Area database for Norwegian waters), POLYSKAG

(Marine bristle worms (Polychaeta) in coastal waters of Skagerrak), BIOSKAG 2 (Deep

Fig 2. Line drawings made from different Terebellides species showing main macroscopic body characters with taxonomic relevance. A. Ventro-lateral view of T.

gracilis or T.williamsae from Iceland showing most relevant taxonomic characters (e.g. position of anterior 1–5 thoracic chaetigers with whitish ventral colouration). B.

Ventral view of branchiae in T. shetlandica from the Shetland Islands showing branchial stalk, size and shape of dorsal and ventral lobes, branchial lamellae, and

branchial filaments. C. Left lateral view of anterior thoracic region of T. cf stroemii from Iceland showing lateral lappets in TC3 and TC4, position of geniculate chaetae

in TC6 and enlarged glandular area in TC3. D. Detail of thoracic chaetigers TC5 to TC7 of T. atlantis from Iceland showing position of geniculate chaetae in TC6 and

normal thoracic uncini in TC7. E. Detail of three geniculate chaetae. A, C, D, E redrawn from [11], B redrawn from [18]. Abbreviations: bf (branchial filament), bl

(branchial lamellae), br (branchiae), bs (branchial stalk), dbl (dorsal branchial lobe), ga (glandular area), gc (geniculate chaetae), ll (lateral lappets), TC (thoracic

chaetiger), tn (thoracic notopodium), tr (thorax), tu (thoracic uncini), vbl (ventral branchial lobe).

https://doi.org/10.1371/journal.pone.0198356.g002
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Skagerrak), IceAGE (Icelandic marine Animals: Genetics and Ecology), UNIS 2009 (Univer-

sity Centre in Svalbard), ACCESS (Arctic Climate Change, Economy and Society) expedition

Polarstern in 2012, UM/BIO (University Museum and Department of Biology, Bergen) sur-

veys, and Marbank (Biobank of Arctic Marine Organisms), Institute of Marine Research,

Tromsø. All samples were collected prior to that the Nagoya protocol entered into force, thus

there was no need for specific permissions. Sampling did not include endangered or protected

species.

Fig 3. Collecting sites, biogeographic regions, and type localities for Terebellides irinae (ir), T. atlantis (at), T. bigeniculatus (bi), T. shetlandica (sh), T. williamsae
(wi), T. stroemii (st), and T. gracilis (gr) indicated with an arrow. Type localities for T. irinae and T. atlantis are located outside the map’s area. Biogeographic regions

given by colours of samples (collecting sites) (see text for definitions): Kattegat (magenta); Skagerrak (dark green);North Sea (light green); Irish Sea, Celtic Sea (orange);

Norwegian coast and shelf (red);Norwegian Sea (brown); Barents Sea (dark blue); Arctic Ocean (rose red); Greenland Sea (yellow); South of Iceland (light blue).

https://doi.org/10.1371/journal.pone.0198356.g003
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We analyzed 513 specimens from 133 collecting sites, in the depth range 8–4380 m (Figs 3

and 4), with the majority of the samples and specimens coming from the continental shelf

along the Swedish and Norwegian coasts.

The study area was divided into the following biogeographic regions according to topo-

graphic and oceanographic features [24–26] (Fig 3). Kattegat (magenta dots in Fig 3), is a

rather shallow area dominated by water masses from the North Sea, and heavily influenced by

the Baltic Stream; Skagerrak (dark green), also a shallow shelf area, technically a part of the

eastern part of the North Sea; North Sea (light green), shallow shelf area dominated by warm

North Atlantic water masses; Irish Sea, Celtic Sea (orange), shelf areas, western UK and Ireland;

Norwegian coast and shelf (red), north of Egersund to Loppa, areas <600 m except in the

fjords, dominated by North Atlantic water with a mix of the less saline Norwegian coastal cur-

rent; Norwegian Sea (brown), off the shelf break at approximately 600 m and deeper waters.

Deeper areas below 800 m with permanent sub zero temperatures with Norwegian Sea deep

water; Barents Sea (dark blue), separated from the Norwegian Sea by the shelf break between

Norway and Svalbard, shelf sea dominated by cold water areas, but with a strong influence of

North Atlantic water in the western areas and along the Troms and Finnmark coast [27]; Arctic
Ocean (rose red), proper Polar Basin with permanent sub zero temperatures; Greenland Sea
(yellow), with cold water areas with inflow of water from the Arctic Ocean by the East Green-

land current; South of Iceland (light blue), area south of the Scotland-Faroe-Greenland ridge.

Collecting data for specimens, together with voucher and GenBank accession numbers can be

found in S36 Appendix and Table 1. Specimens are deposited in one of the following muse-

ums: Department of Natural History, University Museum of Bergen (ZMBN 116171–116514,

344 specimens), The Gothenburg Museum of Natural History (GNM 14625–15137, 74 speci-

mens), Norwegian University of Science and Technology, NTNU University Museum, Trond-

heim (NTNU-VM 59990–72567, 36 specimens), and Senckenberg Museum Frankfurt (SMF

24368–24693, 59 specimens). All specimens are publicly deposited and accessible in a perma-

nent repository.

Data retrieval

We extracted DNA with QuickExtract DNA Extraction (Epicentre). A small piece, usually

one or two parapodia, were put in 50–100 μl QuickExtract, and treated with 65˚C for 45 min

followed by 2 min in 95˚C in a dry block thermostat. We used the primers 16SANNF
(GCGGTATCCTGACCGTRCWAAGGTA) [28] or 16SARL (CGCCTGTTTATCAAAAA
CAT), together with 16SBRH (CCGGTCTGAACTCAGATCACGT) [29])
for 16S rDNA; LCO1490 (GGTCAACAAATCATAAAGATATTGG) and HCO2198
(TAAACTTCAGGGTGACCAAAAAATCA) [30], or COIE (TATACTTCTGGGTGTCC
GAAGAATCA) [31] for COI; 28SC1 (ACCCGCTGAATTTAAGCAT) and 28SD2
(TCCGTGTTTCAAGACGG) [32] for 28S rDNA (D1-D2 region); and
ITS58SF (GAATTGCAGGACACATTGAAC) and ITS28SR (ATGCTTAAATTCAGC
GGGT) [33] for ITS2.

PCR mixtures contained 0.33 μl of each primer (10μM), 1 μl of DNA template, and 10 μl of

RedTaq 1.1x MasterMix 2.0 mM MgCl2 (VWR). Temperature profile was as follows: a dena-

turation step at 96˚C for 1 minute, 29 cycles (95˚C for 30 seconds– 52˚C (for COI and 16S

rDNA) or 62˚C (for ITS2 and 28S rDNA) for 30 seconds– 72˚C for 60 seconds), and a final

step at 72˚C for 7 minutes. PCR products were run for c. 15 minutes on a 1% agarose gel elec-

trophoresis, containing GelRed Nuclear Acid Stain (Bioticum), and then visualized under UV-

light. PCR products were purified using ExoSAP-IT PCR Product Cleanup protocol (Thermo-

Scientific). Sanger sequencing was performed on both strands at Eurofins Genomics, DNA
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Sequencing Department in Ebersberg, Germany. Overlapping complementary strands were

merged into consensus sequences using Geneious version 7.0.6 [34].

Sequence data

In total, we amplified and sequenced the mitochondrial COI (up to 658bp) and 16S rDNA (c.

440 bp), and the nuclear ITS2 (290–419 bp) and 28S rDNA (c. 760 bp) from 513 specimens of

Terebellides spp from the North East Atlantic. Final data coverage was as follows: COI, 462

spms (90%) (GenBank accession numbers: MG024894–MG025355), 16S rDNA, 75 spms

(15%) (GenBank accession numbers: MG025443–MG025517), ITS2, 402 spms (90%)

Fig 4. Depth distribution for collecting sites, including number of sites and specimens for each biogeographic region. Scale is logarithmic.

https://doi.org/10.1371/journal.pone.0198356.g004
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Table 1. Locality and collecting data, including sample size, and species sampled.

SiteID Geograhic area Locality Sample

size

Clades

sampled

Latitud, longitud

(DD)

Depth

(m)

Collecting

date

Habitat Gear

KA1 Kattegat NE Hallands Väderö 11 4 56.44998,

12.60042

18–20 2007-05-25 Sand, fine

gravel

Warén sledge

KA2 Kattegat NE Hallands Väderö 2 4 56.451, 12.59828 18–20 2007-05-25 Sand, fine

gravel

Rectangular

dredge

KA3 Kattegat W Laholmsbukten 5 12 56.49483,

12.64515

21–22 2007-05-25 Fine mud,

shells

Rectangular

dredge

KA4 Kattegat E Anholt 1 1 56.68285, 12.107 30–33 2007-05-23 Clay, sand Rectangular

dredge

KA5 Kattegat E Anholt 2 1 56.68452, 12.1096 29–32 2007-05-23 Clay, sand Rectangular

dredge

KA6 Kattegat Fladen 4 6 57.19717,

11.82517

38 2005-06-17 Silt, sand Van Veen grab

SK1 Skagerrak W Kungälv 1 6 57.80798,

11.56585

20–28 2008-06-09 Shell, gravel, Rectangular

dredge

SK2 Skagerrak W Kungälv 1 6 57.81822,

11.40038

39–67 2008-06-09 Shell, gravel Rectangular

dredge

SK3 Skagerrak 1 1 58.0081, 11.20107 85–98 2006-08-23 Sand, mud,

gravel

Warén sledge

SK4 Skagerrak 4 1, 2, 5 58.14457,

10.71923

245–297 2008-06-12 Mud Warén sledge

SK5 Skagerrak 2 2, 3 58.19173, 10.6648 237–277 2008-06-12 Mud, silt Warén sledge

SK6 Skagerrak Bonden 2 6 58.21947,

11.38658

8–18 2006-04-26 Mud, shells Circular dredge

SK7 Skagerrak 7 8, 13 58.2237, 9.9267 453–477 2009-05-13 Mud Sneli sledge

SK8 Skagerrak Gullmarsfjorden 1 12 58.29163,

11.51393

53–105 2006-04-27 Mixed bottom Agassiz trawl

SK9 Skagerrak Gullmarsfjorden 9 12 58.29293,

11.51555

44–101 2006-04-27 Mixed bottom Warén sledge

SK10 Skagerrak Byfjorden 1 4 58.3255, 11.86183 13,5 2012-09-18 Sandy silty

clay

Grab

SK11 Skagerrak 2 3, 13 58.3532, 10.3300 390–406 2009-05-13 Fine mud Agassiz trawl

SK12 Skagerrak 2 8, 13 58.36037,

10.24012

429–445 2006-05-29 Soft bottom Agassiz trawl

SK13 Skagerrak Aust-Agder, Ryvingdypet 4 1, 8 58.36978, 8.72617 190 2011-05-28 Mud RP sledge

SK14 Skagerrak 1 13 58.40322,

10.51548

273–365 2006-08-21 Mixed bottom Rectangular

dredge

SK15 Skagerrak Aust-Agder, Ærøydypet 4 1 58.4066, 8.77758 90–100 2011-05-26 Mud RP sledge

SK16 Skagerrak Aust-Agder, Utnes 3 6 58.41023, 8.74602 22–32 2011-06-25 Algae,

ascidians

Triangular

dredge

SK17 Skagerrak 1 2 58.43017, 10.5800 248–335 2006-08-22 Soft clay Agassiz trawl

SK18 Skagerrak 1 2 58.45702,

10.54635

224–286 2008-06-14 Hard bottom,

mud

Rectangular

dredge

SK19 Skagerrak 1 8 58.48285,

10.13443

491–531 2006-06-06 Soft bottom Agassiz trawl

SK20 Skagerrak E Väderöarna 4 6 58.58353,

11.08332

55–121 2008-06-15 Mixed bottom Rectangular

dredge

SK21 Skagerrak W Grebbestad 1 1 58.68122,

11.11432

53–54 2008-06-16 Mixed bottom Rectangular

dredge

SK22 Skagerrak W Tanum 2 6 58.73875,

10.73752

102–173 2008-06-15 Clay, mud Rectangular

dredge

SK23 Skagerrak W Tanum 8 6, 12 58.7398, 10.73842 98–148 2008-06-15 Mixed bottom Rectangular

dredge

(Continued)
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Table 1. (Continued)

SiteID Geograhic area Locality Sample

size

Clades

sampled

Latitud, longitud

(DD)

Depth

(m)

Collecting

date

Habitat Gear

SK24 Skagerrak Koster Area 25 1, 6 58.86667, 11.1 60–80 2005–04 Mud Warén sledge

SK25 Skagerrak SW Yttre Vattenholmen 13 1, 7 58.87417,

11.09472

62–71 2008-04-08 Mud Rectangular

dredge

SK26 Skagerrak Vestfold, Sandefjord 7 1 59.05485,

10.25047

63–75 2011-05-29 Mud RP sledge

NS1 North Sea 1 1 56.75, 3 111 2008-02-07 Soft bottom Van Veen grab

NS2 North Sea 3 1 57.98075,

-2.83516

76 2008–07 Sand, fine

gravel

Grab

NS3 North Sea E Orkney Island 1 9 58.87267, -2.19 85 2008–07 Sandy clay,

gravel

Grab

NS4 North Sea E Orkney Island 1 6 59.18933,

-1.91867

85 2008–07 Sand, shell

gravel

Grab

NS5 North Sea W Shetland Islands 1 9 60.0675, -1.54467 111 2008–07 Silty clay,

gravel

Grab

NS6 North Sea S Shetland Islands 1 9 60.17983,

-1.38883

48 2008–07 Sandy clay,

gravel

Grab

NS7 North Sea 3 1 61.34553, 2.06935 246 2014-05-31 - Grab

ISCS1 Irish Sea, Celtic

Sea

S Isle of Man 1 6 53.60867,

-4.38783

50 2010–07 Sand, gravel Grab

ISCS2 Irish Sea, Celtic

Sea

S Isle of Man 2 6 53.626, -4.46967 43 2010–07 Sand, gravel Grab

ISCS3 Irish Sea, Celtic

Sea

S Isle of Man 2 6 53.72067,

-4.28283

46 2010–07 Sand, gravel Grab

ISCS4 Irish Sea, Celtic

Sea

S Isle of Man 1 6 53.73567,

-4.83767

54 2010–07 Sand, gravel Grab

ISCS5 Irish Sea, Celtic

Sea

S Isle of Man 1 6 53.952, -4.27867 42 2010–07 Gravel Grab

NCS1 Norwegian

coast, shelf

Rogaland, S Kvitsøy 1 1 59.02712, 5.45419 64 2014-06-10 Sand, mud Grab

NCS2 Norwegian

coast, shelf

Rogaland, S Kvitsøy 11 1 59.02985, 5.44881 58–60 2014-06-10 Stones, gravel,

sand

Triangular

dredge

NCS3 Norwegian

coast, shelf

Rogaland 4 8, 13 59.20548, 5.78051 226–242 2014-06-11 - -

NCS4 Norwegian

coast, shelf

Rogaland, Karmøysundet 3 1 59.28789, 5.32506 74–79 2014-06-08 Mud RP sledge

NCS5 Norwegian

coast, shelf

Hordaland, Langenuen 7 3, 5, 8 59.99, 5.35 250 2007-06-26 - Warén sledge

NCS6 Norwegian

coast, shelf

Hordaland, St Kalsøy 8 5 60.12, 5.07 119 2005-04-15 - -

NCS7 Norwegian

coast, shelf

Hordaland, Lysefjord 5 1, 7 60.21465, 5.3472 25–47 2007-06-28 - -

NCS8 Norwegian

coast, shelf

Hordaland, Fanafjord 1 1 60.2333, 5.28042 103 2014-05-19 Clay Grab

NCS9 Norwegian

coast, shelf

Hordaland, Skogsvåg 3 1 60.2691, 5.1157 98 2006-05-02 - -

NCS10 Norwegian

coast, shelf

Hordaland, Skogsvåg 3 1 60.26915, 5.11583 102 2008-03-17 - -

NCS11 Norwegian

coast, shelf

Hordaland, Herdlafjord 2 5, 28 60.51018, 5.19228 375 2007-04-20 - -

NCS12 Norwegian

coast, shelf

Hordaland, Mangerfjord 1 11 60.62360, 4.94120 325 2006-02-07 - -
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Table 1. (Continued)

SiteID Geograhic area Locality Sample

size

Clades

sampled

Latitud, longitud

(DD)

Depth

(m)

Collecting

date

Habitat Gear

NCS13 Norwegian

coast, shelf

Hordaland, Toskasundet 1 6 60.65862, 4.94718 13 2014-06-04 - -

NCS14 Norwegian

coast, shelf

Sogn & Fjordane,

Aurlandsfjord

2 5, 11 60.90389, 7.16813 115 12-11-17 - -

NCS15 Norwegian

coast, shelf

Sogn & Fjordane, slope S

Nesholmen

2 3, 13 61.08952, 5.21063 300–619 2012-11-15 - Rectangular

dredge

NCS16 Norwegian

coast, shelf

Sogn & Fjordane—Møre &

Romsdal

4 3 61.13339, 5.16632 631–644 2012-07-22 - RP sledge

NCS17 Norwegian

coast, shelf

Sogn & Fjordane,

Sognefjorden

10 3, 8 61.14484, 5.91575 1259–

1268

2012-11-16 - RP sledge

NCS18 Norwegian

coast, shelf

Sogn & Fjordane, Lustra-

Nattropefjorden

20 3, 28 61.43212, 7.47763 327–337 2012-11-18 - RP sledge

NCS19 Norwegian

coast, shelf

Sogn & Fjordane—Møre &

Romsdal

12 1, 3, 5, 8 61.80178, 5.08135 370–375 2012-07-20 - RP sledge

NCS20 Norwegian

coast, shelf

Sogn & Fjordane—Møre &

Romsdal

5 3, 8, 13 61.82371, 5.21031 446–453 2012-07-20 - RP sledge

NCS21 Norwegian

coast, shelf

Sogn & Fjordane—Møre &

Romsdal

1 7 62.27842, 5.45413 169–188 2012-07-21 - -

NCS22 Norwegian

coast, shelf

Møre & Romsdal, Harøyfjord 1 13 62.71988, 6.58989 126 2012-05-20 - -

NCS23 Norwegian

coast, shelf

Sør-Trøndelag,

Trondheimsfjord

2 1 63.44500,

10.17010

30–51 2013-01-17 Sand, clay Triangular

dredge

NCS24 Norwegian

coast, shelf

Sør-Trøndelag,

Trondheimsfjord

8 2, 3, 5, 8, 13 63.47672, 9.92872 534 2013-01-17 Mud Sneli sledge

NCS25 Norwegian

coast, shelf

Sør-Trøndelag,

Trondheimsfjord

6 5, 8, 13 63.47903,

10.21283

502–505 2013-01-17 Mud Sneli sledge

NCS26 Norwegian

coast, shelf

Sør-Trøndelag,

Trondheimsfjord

2 8, 11 63.48733,

10.37383

271–334 2002-01-15 Mud Triangular

dredge

NCS27 Norwegian

coast, shelf

Sør-Trøndelag,

Trondheimsfjord

1 8 63.71208,

10.89915

420 2012-05-27 - -

NCS28 Norwegian

coast, shelf

Sør-Trøndelag,

Trondheimsfjord

2 8 63.73615,

10.97631

419 2012-05-27 - -

NCS29 Norwegian

coast, shelf

Sør-Trøndelag, Frohavet 7 8, 13 63.75767, 9.20882 350–357 2010-05-10 Mud Agassiz trawl

NCS30 Norwegian

coast, shelf

Sør-Trøndelag, Åfjord 2 10 63.99012,

10.04445

102–110 2007-07-11 - -

NCS31 Norwegian

coast, shelf

Storegga 2 11, 28 64.19888, 6.06965 387–388 2013-06-26 Muddy sand RP sledge

NCS32 Norwegian

coast, shelf

Skjoldryggen 1 2 65.28217, 6.28326 357–369 2013-06-24 Sandy mud RP sledge

NCS33 Norwegian

coast, shelf

Skjoldryggen 3 11, 20, 28 65.50056, 6.26848 397–420 2013-06-23 Sandy mud RP sledge

NCS34 Norwegian

coast, shelf

Nordland, Holmsund 1 13 67.039251,

13.85357

259 2012-05-13 - -

NCS35 Norwegian

coast, shelf

Nordland, Skjærstadfjord 2 8 67.21783,

15.27833

476 2010-10-14 - -

NCS36 Norwegian

coast, shelf

Nordland, Skjærstadfjord 1 8 67.26417,

14.86983

513 2010-10-13 - -

NCS37 Norwegian

coast, shelf

Nordland, Hellemofjord 1 8 67.86733,

16.37033

461 2008-03-04 - -

NCS38 Norwegian

coast, shelf

Nordland, Hellemofjord 1 8 67.87383, 16.353 466 2008-03-04 - -
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Table 1. (Continued)

SiteID Geograhic area Locality Sample

size

Clades

sampled

Latitud, longitud

(DD)

Depth

(m)

Collecting

date

Habitat Gear

NCS39 Norwegian

coast, shelf

Sør-Trøndelag,

Trondheimsfjord

1 13 68.47672, 9.92872 534 2013-01-17 Mud Sneli sledge

NCS40 Norwegian

coast, shelf

Nordland, Gullesfjord 1 15 68.59100,

15.80474

131 2008-11-05 - -

NCS41 Norwegian

coast, shelf

Nordland, Sortlandssundet 1 10 68.62817,

15.34959

128 2008-11-07 - -

NCS42 Norwegian

coast, shelf

Nordland, Sortlandssundet 2 10, 15 68.62856,

15.35318

122 2008-11-07 - -

NCS43 Norwegian

coast, shelf

Nordland, Gullesfjord 6 15 68.63708,

15.82157

165 2008-11-05 - -

NCS44 Norwegian

coast, shelf

Nordland, Gullesfjord 3 15 68.64117,

15.83652

139 2008-11-05 - -

NCS45 Norwegian

coast, shelf

Nordland, Gullesfjord 7 8, 15 68.71076,

16.01100

209 2008-11-06 - -

NCS46 Norwegian

coast, shelf

Nordland, Sortlandssundet 4 10, 13, 15 68.79015,

15.41222

108 2008-11-08 - -

NCS47 Norwegian

coast, shelf

Nordland, Sortlandssundet 4 10 68.79663,

15.41033

119 2008-11-08 - -

NCS48 Norwegian

coast, shelf

Troms, Balsfjord 14 14, 15 69.37333,

19.06167

187 2014-10-27 - Sledge

NWS1 Norwegian Sea Storegga 1 16 64.39374, 5.57426 814–819 2013-06-26 Sandy mud RP sledge

NW2 Norwegian Sea Skjoldryggen 3 2, 3 65.94317, 5.83320 610–612 2013-06-17 Sandy mud RP sledge

BS1 Barents Sea Finnmark, Varangerfjord 3 2 69.91217, 30.888 351 2014-04-15 Mud RP sledge

BS2 Barents Sea Troms, Ullsfjorden, S

Karlsøya

3 8, 10 69.95333,

20.07183

243 2009-12-07 - -

BS3 Barents Sea Finnmark, Altafjord 2 8 70.1165, 23.07533 392 2009-12-09 - -

BS4 Barents Sea Finnmark 1 2 70.11767,

31.35033

303–304 2013-08-19 Mud RP sledge

BS5 Barents Sea Finnmark, Porsangerfjord 7 14, 15 70.12002,

25.18625

109 2011-10-08 Mud Van Veen grab

BS6 Barents Sea Finnmark, Porsangerfjord 2 2, 13 70.35324,

25.26369

178 2009-05-30 - -

BS7 Barents Sea Finnmark 2 2, 10 70.77383,

30.78117

377–378 2013-08-17 Mud Beam traw

BS8 Barents Sea Finnmark 1 13 71.056, 29.65567 337 2014-04-21 Muddy sand Large Van Veen

grab

BS9 Barents Sea Finnmark 3 2, 13 71.321, 29.1965 362 2014-04-24 Mud Beam traw

BS10 Barents Sea Finnmark, TOO 6 2, 16, 21 71.61416, 33.0041 305 2013-08-09 Mud, clay Beam traw

BS11 Barents Sea Finnmark, TOO 8 2, 13, 16, 21 71.61527,

32.99719

305–306 2013-08-09 Mud, clay RP sledge

BS12 Barents Sea Finnmark, TOO 4 2, 16, 21 71.61817,

32.23133

297–298 2013-08-08 Sandy mud RP sledge

BS13 Barents Sea Finnmark, TOO 2 2, 16 71.9085, 33.44717 219–220 2013-08-06 Muddy sand,

gravel

RP sledge

BS14 Barents Sea Finnmark, TOO 26 2, 16, 28 72.57905,

32.38726

271–272 2013-08-03 Sandy mud RP sledge

BS15 Barents Sea Svalbard 10 12, 14, 25,

26, 27

79.8195, 12.0876 55 2009-09-01 - RP sledge

BS16 Barents Sea Svalbard 18 12, 21 80.1010, 22.2006 171 2009-09-01 - RP sledge

BS17 Barents Sea Svalbard 1 21 80.1086, 22.1414 216 2009-09-01 - RP sledge

BS18 Barents Sea Svalbard 1 21 80.1524, 16.9354 340 2009-09-01 - RP sledge
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(GenBank accession numbers: MG024492–MG024893), and 28S rDNA, 86 spms (17%) (Gen-

Bank accession numbers: MG025356–MG025441) (S36 Appendix and Table 2).

Sequences from individual specimens can be identified by the extraction number and an

appended clade-number (S36 Appendix), preliminary circumscribed from statistical parsi-

mony haplotype networks [35], also known as TCS-analyses, of COI-data (see below). One

other member of Trichobranchidae, Trichobranchus roseus (Malm, 1874), and two representa-

tives of Terebellidae, Polycirrus Grube, 1850 and Pista cristata (Müller, 1776) were selected to

root the tree [17]. Outgroups were used when assessing the general phylogeny of the Terebel-
lides lineages, but not in the species delimitation analyses. Molecular data for outgroups were

either retrieved as above (Trichobranchus roseus: COI (GenBank accession number MH1139

Table 1. (Continued)

SiteID Geograhic area Locality Sample

size

Clades

sampled

Latitud, longitud

(DD)

Depth

(m)

Collecting

date

Habitat Gear

AO1 Arctic Ocean 2 24 81.927, 130.91666 4038 2012-09-04 - Multi grab

AO2 Arctic Ocean 1 24 87.92683,

61.01217

4380 2012-09-19 - Multi grab

AO3 Arctic Ocean 3 24 88.7865, 56.372 4373 2012-09-23 - Multi grab

GS1 Greenland Sea NE Iceland 2 16 66.53817,

-12.86483

316–317 2011-09-22 Silty mud RP sledge

GS2 Greenland Sea NE Iceland 2 2 66.54383,

-12.87467

315–317 2011-09-22 Silty mud RP sledge

GS3 Greenland Sea NE Iceland 1 13 66.55483,

-12.86483

316–317 2011-09-22 Silty mud RP sledge

GS4 Greenland Sea NE Iceland 5 16 67.07867,

-13.06383

1575–

1581

2011-09-21 Silty mud RP sledge

GS5 Greenland Sea Denmark Strait 1 16 67.63583,

-26.7665

315–316 2011-09-14 Silty mud RP sledge

GS6 Greenland Sea Denmark Strait 4 16 67.8465, -23.696 1249–

1250

2011-09-15 Silty mud RP sledge

GS7 Greenland Sea Denmark Strait 9 10, 16 67.86783,

-23.69633

1267–

2181

2011-09-15 Silty mud RP sledge

GS8 Greenland Sea Jan Mayen 1 16 71.29733,

-5.77350

528 2011-06-15 - -

SI1 South of Iceland Iceland Basin 1 16 60.0455,

-21.46767

2747–

2749

2011-08-28 Silty mud RP sledge

SI2 South of Iceland Iceland Basin 9 16 60.04617,

-21.47567

2747–

2750

2011-08-29 Silty mud RP sledge

SI3 South of Iceland Iceland Basin 2 16 60.35733,

-18.13567

2568–

2569

2011-08-30 Silty mud RP sledge

SI4 South of Iceland Iceland Basin 3 16 60.35733,

-18.13567

2568–

2572

2011-08-30 Silty mud RP sledge

SI5 South of Iceland Iceland Basin 3 18 62.55167,

-20.39517

1385–

1389

2011-09-02 Silty mud RP sledge

SI6 South of Iceland Irminger Basin 4 16, 19, 23 63.00767,

-28.06817

1569–

1594

2011-09-08 Silty mud RP sledge

SI7 South of Iceland Reykjanes Ridge 3 3, 17, 22 63.3085,

-23.15767

285–289 2011-09-04 Silty mud RP sledge

SI8 South of Iceland Reykjanes Ridge 3 3 63.31467,

-23.16017

288–294 2011-09-04 Silty mud RP sledge

SI9 South of Iceland Reykjanes Ridge 3 3 63.33333,

-23.16667

305 2011-09-04 Silty mud RP sledge

SI10 South of Iceland Irminger Basin 4 3, 16, 20 63.70883,

-26.38417

678–698 2011-09-09 Silty mud RP sledge

https://doi.org/10.1371/journal.pone.0198356.t001
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23), and 16S rDNA (GenBank accession number MG025442), specimen voucher ZMBN

120609), or downloaded from GenBank (Polycirrus: COI = JX423769, 16S rDNA = JX423681,

28S rDNA = JN936481, and Pista cristata: COI = EU239688, 16S rDNA = NC011011, 28S
rDNA = DQ790057).

Alignments

We used MAFFT version 7.017 [36] within Geneious version 7.0.6 with the following settings:

algorithm = E-INS-i, scoring matrix = 200PAM / k = 2, gap open penalty = 1.53, to align 16S
rDNA and 28S rDNA. Aligning was unproblematic since the sequences were of similar length

and resulting alignments had a moderate number of indels. The ITS2-region was challenging to

align due to a high number of indels, and we proceeded with aligning using two approaches. In

the first approach, we removed identical haplotypes with the uniqhaplo.pl script (S35 Appendix)

leaving a data set with 136 unique ITS2-sequences. As we experienced problems with two

sequences that were shorter due to incomplete 3’-end, these sequences were first removed

(1999_13 and 2865_24), and the remaining 134 complete, or nearly complete, sequences were

aligned with the X-INS-i algorithm in MAFFT that takes into account the secondary structure

of the sequence. Subsequently the short excluded sequences were reincluded with the mafft-add

command. The resulting alignment is referred to as ITS2x-unique. In the second approach, the

sequences in the ITS2x-unique alignment were realigned using the software RNAsalsa [37],

using the secondary structure of ITS2modeled for Eumida ockelmanni Eibye-Jacobsen, 1987

(GenBank accession number HM358782) [38] as a constraint, and implementing default

parameters. The resulting alignment is referred to as ITS2s-unique. Identical sequences

removed in the first step with the uniqhaplo.pl script were then added back to the two align-

ments by hand in Geneious version 7.0.6 mimicking the gaps present in those identical

sequences aligned. The two resulting alignments with all 402 ITS2-sequences are referred to as

ITS2x-all, and ITS2s-all. Finally, we used the MUSCLE alignment option in Geneious version

7.0.6 to align all 462 COI-sequences (COI-all) which was trivial due to the absence of indels.

Identical COI-sequences were removed using uniqhaplo.pl script creating an alignment with

271 unique COI-sequences (COI-unique). Where relevant, aligned gene partitions were

concatenated using Mesquite v. 2.75 (Maddison and Maddison 2008) [39]. For the statistical

parsimony haplotype analyses, we used COI-all, and the two ITS2-all alignments as a starting

point. Sequences of each haplotype network were extracted separately, and subsequently these

clade data sets were pruned to remove gaps in flanking positions that was caused by incomplete

sequencing. The purpose of this was to obtain the same data coverage for all included specimens

in each haplotype network, and allowing for an unambiguous assessment of haplotypes. In a

few instances, one, or a few of the shortest sequences were removed prior to pruning the

sequence ends (Tables 3 and 4). In the choice between removing short sequences or pruning we

chose the method that kept the maximum number of haplotypes. As there were a few ambigui-

ties assessing number of haplotypes between the two ITS2-alignments, although based on the

same data, we decided to realign the ITS2-data from each network separately, using the E-INS-i

algorithm in MAFFT, with scoring matrix = 200PAM / k = 2, and gap open penalty = 1.53. The

rational behind this is that aligning more similar sequences will result in a more accurate align-

ment. For the distance calculations we used COI-all, and ITS2s-all alignments. All different

alignments, and data set combinations described above are available as S1–S9 Appendixes.

Data set combinations

For a robust assessment of the evolutionary relationships of the Terebellides lineages, speci-

mens for which three or four of the genetic markers were present (i.e. COI, 16S rDNA, ITS2,
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28S rDNA), were combined into a data set comprising 91 Terebellides specimens (S36 Appen-

dix and Table 2, last column) plus three outgroups. This was done by combining COI-all

with either ITS2x-all or ITS2s-all, concatenating 16S rDNA and 28S rDNA, but excluding

specimens that did not meet the criteria having three or four genetic markers. This resulted in

two data set combinations, referred to as concatenated-xinsi-alignment (CONCATx) and

concatenated-salsa-alignment (CONCATs).

For the three types of species delimitation analyses, we used the following data sets: COI-all,

ITS2x-all, and ITS2s-all for TCS; COI-unique, ITS2s-unique, and ITS2x-unique for GMYC [40,

41]; the concatenated alignment of COI-all and ITS2s-all, keeping all specimens with both COI
and ITS2 data present, resulting in a data set with 351 Terebellides specimens (Table 2, 5th col-

umn) for STACEY [42].

Model selection

Best-fit models for phylogenetic analyses were selected using the Akaike information criterion

in JModel [43]. The protein coding gene COIwas divided into two partitions, one with the

first and second codon positions, and one with the third codon positions. In the general

Table 2. Overview of sequence coverage for each genetic marker (COI, ITS2, 16S rDNA, 28S rDNA) and respective clade, as well as the combination of COI and ITS2
(used in the STACEY analysis), and the combination including specimens with at least three out of the four genetic markers (CONCAT).

Clade number Number of specimens COI ITS2 COI and ITS2 16S rDNA 28S rDNA CONCAT

1 82 63 63 44 3 5 5

2 36 32 28 24 3 4 4

3 57 50 55 48 4 5 5

4 14 14 13 13 4 4 4

5 19 19 18 18 4 4 4

6 36 33 25 22 2 4 4

7 12 12 6 6 4 5 5

8 41 40 29 28 3 3 3

9 3 2 2 1 2 2 2

10 12 12 7 7 3 3 3

11 5 5 3 3 3 3 3

12 23 23 17 17 3 6 6

13 27 26 25 24 3 5 5

14 20 18 19 17 3 4 4

15 18 15 16 13 3 4 4

16 62 55 50 43 6 6 8

17 1 1 1 1 1 1 1

18 3 3 2 2 2 2 2

19 1 1 1 1 1 1 1

20 2 2 2 2 2 2 2

21 18 18 2 2 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 6 5 4 3 4 3 4

25 4 4 3 3 2 2 2

26 3 1 3 1 2 2 2

27 1 1 1 1 1 1 1

28 5 5 5 5 4 2 4

513 462 402 351 75 86 91

https://doi.org/10.1371/journal.pone.0198356.t002
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phylogeny of Terebellides, ITS2 and the neighboring 28S rDNA were combined into a single

partition.

Phylogenetic analyses

Mitochondrial (COI and 16S rDNA) and nuclear data sets (ITS2 and 28S rDNA) were analyzed

separately and combined using Bayesian inference (BI), and Maximum Likelihood (ML). This

means five different analyses per method; 1) mitochondrial data alone, 2) nuclear data alone

with 28S rDNA combined with xinsi-, or 3) salsa-aligned ITS2 sequences, and 4) mitochondrial

data combined with nuclear data with 28S rDNA combined with xinsi-, or 5) salsa-aligned

ITS2 sequences (S8 and S9 Appendixes). Bayesian analyses of separate and combined data sets

were run in MrBayes version 3.2 [44]. Partitions were unlinked for the parameters statefreq,

revmat, shape and pinvar. Rateprior for the partition rate multiplier was set to be variable.

Two independent analyses were run for 10 million generations, with four parallel chains (three

hot, one cold), that were sampled every 1000th generation. One fourth of the samples was dis-

carded as burn-in. Maximum likelihood analyses were performed in raxmlGUI [45]. In

Table 3. Summary of haplotype and distance analyses for COI, with specification of excluded sequences, alignment length, number of haplotypes, and uncorrected

intra- and interspecific distances. Species number to which the species is compared with, for the minimum and maximum interspecific distances, in parentheses.

Species

number

Number of

specimens

Removed

sequences in

haplotype analysis

Original

alignment

length

Pruned

alignment

length

Number of

haplotypes

Uncorrected

intraspecific

distance

Minimum uncorrected

interspecific distance

(%)

Maximum

uncorrected

interspecific distance

(%)

1 63 658 555 12 0–1.9 15.6–17.7 (7) 17.4–20.3 (8)

2 32 658 569 25 0–2.4 13.9–16.0 (3) 19.6–21.5 (21)

3 50 658 615 44 0–2.3 13.9–16.0 (2) 20.1–22.4 (21)

4 14 658 615 7 0–1.0 9.9–10,7 (26) 20.9–22.7 (10)

5 19 658 600 10 0–1.1 12.3–14.0 (16) 19.6–21.6 (15)

6 33 1314_6 658 609 10 0–0.8 8.8–10.8 (7) 19.2–20.4 (27)

7 12 658 627 8 0–0.6 8.8–10.8 (6) 19.2–20.9 (4)

8 40 1203_8 658 612 33 0–3.1 10.5–12.8 (7) 19.1–21.5 (15)

9 2 649 603 2 0.2 11.2–12.1 (7) 20.5–21.9 (4)

10 12 658 593 4 0–1.9 11.5–12.9 (11) 20.9–22.7 (4)

11 5 630 615 4 0–1.1 11.5–12.9 (10) 19.5–19.7 (26)

12 23 658 606 16 0–1.3 8.2–9.7 (13) 19.1–20.5 (2)

13 26 1959_13 658 597 14 0–1.9 8.2–9.7 (12) 19.5–21.3 (15)

14 18 658 615 5 0–0.3 16.0–17.4 (1) 20.1–21.1 (24)

15 15 658 567 4 0–0.5 17.2–18.6 (6) 19.5–21.8 (16)

16 55 2325_16 658 579 48 0–2.4 12.3–14.0 (5) 19.5–21.8 (15)

17 1 NA NA 1 NA 14.6–15.6 (6) 20.6–21.4 (20)

18 3 627 624 3 0.5–0.6 13.0–14.3 (10) 20.7–21.4 (4)

19 1 NA NA 1 NA 12.1–12.5 (10) 19.6–20.8 (3)

20/28 7 630 621 2 0–3.4 12.1–13.2 (21) 20.4–22.0 (22)

21 18 658 585 2 0–0.3 12.0–13.2 (20) 20.1–22.4 (3)

22 1 NA NA 1 NA 13.1–13.6 (25) 20.4–22.0 (20)

23 1 NA NA 1 NA 17.4–18.9 (16) 22.9 (24)

24 5 618 510 2 0–0.02 16.0–17.1 (25) 22.9 (23)

25 4 624 567 2 0–0.8 13.1–13.6 (22) 20.7–21.7 (23)

26 1 NA NA 1 NA 9.9–10.7 (4) 22.1 (23)

27 1 NA NA 1 NA 11.1–12.3 (4) 20.7–21.8 (10)

https://doi.org/10.1371/journal.pone.0198356.t003
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RAxML, we used the same partitioning as in MrBayes, and node support was assessed with

1000 bootstrap replicates.

Species delimitation analyses

Minimum spanning haplotype networks were constructed with the software program TCS

1.2.1, using a 95% connection limit with gaps = missing. The General Mixed Yule Coalescent

model (GMYC) uses a likelihood ratio test to compare a null model assuming a single coales-

cent branching rate across a clock-like tree (i.e. intraspecific population events) with a complex

model including both coalescent and Yule (interspecific diversification events) branching rate

models. The later also estimates the threshold time that maximizes the transition between coa-

lescent and Yule branching models, and hence delimiting species boundaries. Species delimita-

tion with the GMYC algorithm was performed with the R library splits v.1.0–19 [46] using a

single threshold and the required R packages ape, paran, and MASS. Ultrametric trees for spe-

cies delimitation using GMYC algorithm were built in BEAST v1.8.2 [47] setting a nucleotide

Table 4. Summary of haplotype and distance analyses for ITS2, with specification of excluded sequences, alignment length, number of haplotypes, and uncorrected

intra- and interspecific distances. Species number to which the species is compared with, for the minimum and maximum interspecific distances, in parentheses.

Species

number

Number of

specimens

Removed

sequences in

haplotype analysis

Original

alignment

length

Pruned

alignment

length

Number of

haplotypes

Uncorrected

intraspecific

distance (%)

Minimum

uncorrected

interspecific distance

(%)

Maximum

uncorrected

interspecific distance

(%)

1 63 856, 858, 1941,

1955, 2860, 2789,

2909

316 274 18 0–2.6 13.2–19.9 (26) 24.7–28.9 (15)

2 28 291 257 8 0–1.7 3.9–6.7 (3) 26.9–31.2 (25)

3 55 303 8 0–3.4 3.9–6.7 (2) 30.7–31.8 (23)

4 13 369 1 0 0.56–0.85 (26) 32.3–33.7 (15)

5 18 343 4 0–1.5 1.8–3.2 (16) 28.5–31.9 (21)

6 25 335 268 8 0–2.8 4.4–9.2 (10) 23.6–30.3 (14)

7 6 322 4 0–2.2 6.2–10.5 (8) 25.0–29.7 (14)

8 29 2896 327 292 5 0–1.2 6.2–10.5 (7) 29.6–33.0 (25)

9 2 317 1 0 6.7–10.7 (8) 26.3–30.4 (14)

10 7 326 295 1 0–0.33 4.9–6.6 (12) 26.2–28.5 (27)

11 3 350 323 2 0–0.31 9.8–12.4 (12) 30.2–32.9 (4)

12 17 2818 368 347 10 0–1.7 2.6–4.2 (13) 26.7–30.6 (14)

13 25 357 288 3 0–0.64 2.6–4.2 (12) 28.1–31.6 (14)

14 19 2477, 2479, 2852 361 332 6 0–1.5 9.4–13.9 (5) 30.6–35.3 (15)

15 16 305 273 1 0 16.9–18.4 (2) 30.6–35.3 (14)

16 50 348 4 0–0.87 1.8–3.2 (5) 28.9–32.2 (21)

17 1 315 1 NA 14.4–17.1 (1) 27.2–29.4 (21)

18 2 344 1 0 8.5–8.9 (10) 24.2–26.9 (14)

19 1 312 1 NA 6.4–11.9 (8) 23.5–27.5 (14)

20/28 7 410 1 0 3.0–3.3 (21) 30.2–31.9 (15)

21 2 419 391 1 0 3.0–3.3 (20) 32.1–33.4 (15)

22 1 303 1 NA 19.7–22.0 (24) 30.0–31.1 (21)

23 1 305 1 NA 8.8–9.7 (10) 24.3–28.0 (14)

24 4 324 223 1 0 9.9 (25) 30.2–33.4 (21)

25 3 309 1 0 9.9 (24) 32.6–34.4 (14)

26 3 365 184 1 0 0.56–0.85 (4) 22.3–33.9 (15)

27 1 375 1 NA 1.6 (4) 32.3–33.8 (15)

https://doi.org/10.1371/journal.pone.0198356.t004
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substitution rate for COI with a prior with log-normal distribution (log mean -4.466, standard

deviation 0.075). This rate of 2.2% per my (95% interval 2.0–2.6%) is close the rate of 2.3% esti-

mated by Brower [48] and widely implemented by many studies. Alternation of the GMYC

algorithm permit to assess whether the branch leading to a node contains a threshold from

coalescence to speciation under different coalescent models [41]. A node support value of 1

means that all coalescent models tested support the existence of a speciation event on that

branch, and lower supports indicate that fewer coalescent models support such a speciation

event. The number of species and so species limits would be influenced by the support cut-off

selected. With lower cut-off value, the number of species will be more similar to the raw spe-

cies delimitation estimated by GMYC algorithm without taking into account the support. On

the other hand, higher cut-off values would reduce the number of species, generally merging

closely related GMYC entities (species). We selected an arbitrary, but high, GMYC support

value cut-off (0.9) to ensure that remaining species are discovered by GMYC algorithms (i.e.

supported) under most of the different coalescent models tested (90%). The optimal cut-off

value should be validated by simulation studies and with several empirical datasets but this is

beyond the scope of our study. STACEY is a phylogenetic and a species delimitation method

under a multispecies coalescent method (i.e. find the species tree and delimit species but allow-

ing different coalescent gene trees and coalescent times). STACEY v. 1.2.0 analyses were run in

BEAST2 v2.4.3 [49].

Haplotype analyses, genetic distances, maps and distribution analysis

Haplotype networks were constructed using the TCS network inference method with a 95%

connection limit, and gaps treated as uninformative. Each individual network was plotted in

PopART [50] including distribution information according to the geographic areas desig-

nated. Uncorrected p-distances, with gaps treated as uninformative, were calculated in

PAUP�4.0b10 [51], and Microsoft Excel v. 14.7.3. Distribution maps were compiled using Arc-

GIS 10.4.1 software package [52]. The geographic coordinate system GCS Sphere with Azi-

muthal Equidistant projection is used. Seafloor topography is accounted by the layer Etopo2.

This is based on a global two minute gridded relief of ocean areas (ETOPO2v2, 2006) and pro-

vided by the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Depart-

ment of Commerce [53]. Bathymetric range, and clade composition for each biogeographic

area, were analyzed and visualized using Microsoft Excel and Powerpoint for Mac 2011, ver-

sion 14.7.3. Final design was completed in Adobe Photoshops Elements 12.0.

Morphological analysis

The aim of the morphological work in the present study was primarily to identify our species

to available species names, and to allocate these available names to the correct clade circum-

scribed by the molecular analysis. The detailed morphological analyses of new species derived

from this study will appear in forthcoming papers.

Results

Model selection

The selected best-fit models were a general time reversible model with a proportion of invari-

able sites and gamma distributed rate across sites (GTR+I+G) for the partitions 16S rDNA,

ITS2, and ITS2 combined with 28S rDNA, and COI-partition with third codon sites only, while

a general time reversible model with a proportion of the sites invariable (GTR+I) was selected

for the COI-partition including first and second codon positions. In RAxML, the analyses were
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run with an independent GTRGAMMAI model for each partition, as the program do not

allow the assignment of more than one model to different partitions.

Phylogenetic analyses

The combined data set of the two different combinations of COI, 16S rDNA, ITS2 and 28S
rDNA (CONCATx and CONCATs) consisted of 2574/2474 aligned positions, of which 993/

1023 were parsimony-informative, and 172/171 were variable but not parsimony-informative.

The results from the separate and combined analyses are summarized on the ML-tree from

CONCATx (Fig 5). The phylogenetic tree is arbitrarily divided into four major groups, A–D,

to make the presentation of the results more perspicuous. The results from each analysis (S10–

S19 Appendixes), are presented in pie diagrams next to each node (Fig 5). The different analy-

ses show high level of congruence between methods (ML or BI), alignment treatment (CON-

CATx or CONCATs), and data set combinations (mitochondrial, nuclear or combined). Out

of the 49 nodes in Fig 5, 35 are identical among all five different analyses. There are few con-

flicting nodes between the topologies, most of them are related to the arrangement within

group A, and most of them have low node support and therefore cannot be interpreted as

incongruences. However, the analyses have recovered four well supported clades different to

the topology illustrated in Fig 5: 1) clades 11 and 19 (group A) are sister taxa with BI-support

of 0.97, in the separate nuclear data set with salsa-aligned ITS2 sequences (S13 Appendix); 2)

clade 18 (group A) is sister taxa to a clade with 11, 12, 13, 19, 20, and 21 with BI-support of

0.95 in the separate nuclear data set with salsa-aligned ITS2 sequences (S13 Appendix); 3)

clade 17 (group B) is sister taxa to a clade with 1, 4, 5, 14, 16, 26, and 27, with 0.98 in BI-sup-

port and 78 in ML-support, in the separate nuclear data set with xinsi-aligned ITS2 sequences

(S14 and S15 Appendixes); 4) clades 24 and 25 (group C) are sister taxa, with 0.93/1.0 in BI-

support, and 70/95 in ML-support in both separate nuclear data sets (with xinsi- or salsa-

aligned ITS2 sequences) (S12–S15 Appendixes).

Species delimitation analyses: TCS, GMYC and STACEY

The statistical parsimony analysis of the COI data set, rendered 28 separate haplotype net-

works, while TCS analyses of ITS2x and ITS2s resulted in 24 and 23 networks respectively

(S20–S22 Appendixes). GMYC analysis of the COI data set rendered 28 putative species, and

GMYC of ITS2x and ITS2s resulted both in 24 putative species (S23–S31 Appendixes). In STA-

CEY we treated the 28 haplotype networks from the COI data as the species to be tested, and in

98.8% of the resulting trees, all of these 28 clades were recovered and in 1.2% of the trees,

clades 20 and 28 were lumped together (S32 Appendix) (see Fig 5). We used the most inclusive

data sets for each species delimitation analyses, and in TCS all sequences of COI (n = 462) and

ITS2 (n = 402) were included, in GMYC all unique sequences of COI (n = 271) and ITS2
(n = 136) were included, while all terminals with both COI and ITS2-data (n = 351) were

included in STACEY.

The outcomes from the TCS, GMYC and STACEY analyses are identical for 17 of the 28

putative species, namely clades 1, 2, 3, 6, 7, 9, 10, 11, 14, 15, 17, 18, 19, 22, 23, 24, and 25. Look-

ing at the instances where there is disagreement among methods, and starting with group A,

clades 12 and 13 are separate in all analyses except for TCS on ITSs, where the haplotypes are

connected into a single haplotype network, with the closest haplotypes for clades 12 and 13

separated by eight mutations (connection limit = nine). Clade 8 is further divided in the

GMYC-analysis of COI where a group with six haplotypes (1197_8, 1198_8, 1999_5, 2013_8,

2014_8, 2214_8) is found as a separate putative species. The closest haplotype of this group is

seven mutations from the closest haplotype in the main group of clade 8 in the minimum-
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spanning haplotype network from the TCS-analysis on the same data. Clades 20 and 28 are

connected in the GMYC-analysis of COI. The closest haplotypes for these clades are separated

by 16 mutations in the minimum-spanning haplotype network from the TCS-analysis (using a

fixed connection limit) on the same data. Clades 20 and 28 share the same haplotype in ITS2,

and are thus connected in all analyses on ITS2; this haplotype is also connected to clade 21 in

the GMYC-analysis of ITS2s. Haplotypes of clades 21 and 20/28 are separated by 11 mutations

in the minimum-spanning haplotype network from the TCS-analysis (using a fixed connection

limit) on the same data. Continuing with group B, clades 5 and 16 are connected in the TCS-

analyses of ITS2x and ITS2s (where the closest haplotypes of clades 5 and 16 are separated by 6

and 5 mutations; connection limit = 9), as well as in the GMYC-analysis of ITSx. Clades 4, 26

and 27, all represented by single haplotypes in ITS2, are connected in all four analyses of the

ITS2-data. The haplotypes are separated by between three and eight mutations in the mini-

mum-spanning haplotype network in the two TCS-analyses.

In summary, we suggest that clades 12 and 13 represent different species even though they

are connected in one of the ITS2-analyses. The two clades do not share any ITS2-haplotypes

(Fig 6), and both lineages are fairly well sampled with 23 (clade 12) and 27 specimens (clade

13). There are also insertion/deletion events in the ITS2-sequence alignments that support the

two clades, however, in the analyses presented here, we treated indels as missing data. We fur-

ther conclude that the separate putative species in clade 8 found in the GMYC-analysis of COI-
data could be ignored as intraspecific genetic variation (only seven mutations in the TCS-anal-

ysis), and there is neither any differences in the ITS2-data to support such a conclusion. We do

think that there is evidence that clades 20 and 28 should be regarded as the same species even

though they have separate haplotype networks in the TCS-analysis on the COI-data, both line-

ages are under-sampled with only two (clade 20) and five specimens (clade 28), and the differ-

ence between the lineages is within the variation that is found in better sampled clades

(compare clades 20 and 28 in Fig 6 with clade 8 in Fig 7, and clade 16 in Fig 8), and there is a

good chance that the haplotypes would be connected given a larger sample size. ITS2-data also

support this conclusion as clades 20 and 28 share the same ITS2-haplotype (Fig 6). Results

from STACEY also give some support to this deduction. In contrast, we believe that it is likely

that clade 21 represents a separate species even though it is connected with clade 20/28 in the

GMYC of the ITS2s, differences in COI between 20/28 and 21 is substantial (12.1–13.2%)

(Table 3), and there is also additional indel events in the ITS2-data alignment that suggests that

they do represent different species. As was the case for clades 12 and 13, we also strongly argue

Fig 5. Results from the phylogenetic analyses, summarized on the ML estimate of the combined data set with xinsi-aligned ITS2-sequences

including 91 terminals. Specimens are named according to the extraction-number and the appended clade-number. The phylogenetic tree is

arbitrarily divided into four colour-coded groups, A–D. These colours are used as background colour in the distribution and haplotype network

figures (Figs 6–8). Specimens with at least three of the genetic markers were included in the phylogenetic analyses, outgroups are not shown. Pie

diagrams indicate support values for the node, left pie shows results from ML analyses, and right pie diagram results from Bayesian analyses. Upper

two slices of a pie illustrate results from the combined data sets’ two different alignments, with xinsi-aligned ITS2-sequences to the left, and salsa-

aligned ITS2-sequences to the right. The three remaining slices illustrate results from the combined mitochondrial data (lower left slice), and the

combined nuclear data sets’ two different alignments, where lower median slice has xinsi-aligned ITS2-sequences, and lower right slice has salsa-

aligned ITS2-sequences. Yellow, blue and red colour indicate low, moderate and strong support, which equals ML support in the intervals 50–74, 75–

89, and 90–100, or BI posterior probabilities in the intervals 0.50–0.84, 0.85–0.94 and 0.95–1.0 respectively. White means support<50/0.50 for the

node. Columns show clustering of terminals according to different methodologies performed on more inclusive data sets where all specimens with

COI or ITS2 data, or specimens with both COI and ITS2 data, were included. The first columns under the headings COI, ITSx and ITSs represent the

results from TCS, and the second columns represent the results from GMYC. The columns under the heading STACEY show the two different

outcomes from this analysis. White means that the network or species recovered is identical to the initial haplotype network found in COI including

all COI-sequences, light grey means that less inclusive networks or putative species were recovered, and dark grey means that a more inclusive

network or putative species was recovered. Double-headed arrows to the right of the columns show our final judgement of species delimitation. The

two small letters to the right indicate our designation of described species, st = T. stroemii, bi = T. bigeniculatus, at = T. atlantis, sh = T. shetlandica, ir

= T. irinae, wi = T. williamsae, and gr = T. gracilis.

https://doi.org/10.1371/journal.pone.0198356.g005
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that clades 5 and 16 represent different species, even though they are connected in three of the

four ITS-analyses. The two clades do not share any ITS2-haplotypes (Fig 8), and there are also

indel events and morphological data (see below) supporting their separation. Finally, clades 4,

26, and 27 is suggested to represent different species, but the lineages are poorly sampled both

in numbers and in geographic distribution, and more specimens are needed. However, COI-
differences (13,3%) as well as ITS2-differences (Fig 7) in the two sympatric clades 26, 27 is

comparable to the differences found between other closely related species pairs in the species

complex, but as only 1 (clade 26) and 2 specimens (clade 27) were found of these clades, we are

less certain in this case.

To conclude, we think we have strong evidence that we have between 25 and 27 different

species of Terebellides among the sequenced specimens. In the analyses and discussion below

we will proceed with the 27 species hypothesis, and the species will be referred to as species 1, 2

etc. following the original clade numbering, until the available names can be allocated to their

proper clades. The clades 20 and 28 will be referred to as species 20/28.

Biogeographic and bathymetric analyses

The number of species varied rather much between the biogeographic regions (Figs 9–11).

However, as the study was not designed to assess the differences in diversity for different areas,

we cannot answer if certain areas are more diverse than others. Instead, the number of species

strongly correlates with how many specimens that are sequenced (Fig 9), and this probably

explain much of the differences found in diversity among areas. Some sort of saturation in dis-

covering new species seems to be reached at about 100 sequenced specimens for a biogeo-

graphic area. We found more than one species in all biogeographic regions except for the two

most poorly sampled regions, Arctic Ocean, and Irish and Celtic Seas (Fig 11), while the high-

est diversity was found in the best sampled regions with 13 species among 192 specimens in

the Norwegian coast and shelf area, 13 species among 100 specimens in Barents Sea, and 10

species among 108 specimens in Skagerrak (Figs 9 and 10).

With regard to similarity in shared Terebellides species between the different biogeographic

regions the following may be assumed (Fig 10), Kattegat is most similar to Skagerrak, with

four out of its four species in common; Skagerrak is most similar to Norwegian coast and

shelf, with eight out of its 10 species in common; North Sea is most similar to either Skagerrak,

or Norwegian coast and shelf, with two out of its three species in common; the single species

found in Irish and Celtic Sea is also present at the Norwegian coast and shelf, North Sea, Skag-

errak and Kattegat; Norwegian coast and shelf is most similar to Skagerrak, with eight out of

its 14 species in common; Norwegian Sea is most similar to either Skagerrak, Norwegian coast

and shelf, Barents Sea, or Greenland Sea, with two out of its three species in common; the sin-

gle species found in the Arctic Ocean is endemic for the area; Greenland Sea is most similar to

Barents Sea, with four out of its four species in common; and the area South of Iceland is most

similar to either Norwegian Sea, or Norwegian coast and shelf, with two out of its eight species

in common. Endemic species are found in the Arctic Ocean (species 24), North Sea (species

9), Norwegian coast and shelf (species 11), Barents Sea (species 21, 25, 26, and 27), and in the

area South of Iceland (species 17, 18, 19, 22 and 23).

Many of the species that that were found in the same biogeographic regions also overlapped

in their bathymetric distribution (Fig 12). Yet, there is some sort of division between some of

Fig 6. Distribution maps, depth distribution in meters, and haplotype networks for group A, species 10, 11, 18, 19, 23, 21, 12, 13, and 20/28. All

species except for species 20/28 that we refer to T. bigeniculatus (bi) are undescribed. Sites are colour coded as in Fig 3. Type locality for T.

bigeniculatus indicated with yellow arrow.

https://doi.org/10.1371/journal.pone.0198356.g006
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the species, e.g. species 6 and 7 are found down to about 200 meters depth, while the closely

related species 8 is found below 200 meters depth. Within the same biogeographic area, up to

eight different species can be found in a depth span of 100 meters, and even in the same sample

from a supposedly homogenous environment from a mud bottom from 534 meters depth, in

the Trondheimsfjord in Norway, using a Sneli sledge, up to five different species were found

(see Table 1, siteID NCS24). We can safely conclude that a majority of the species live in sym-

patry with several other species in the complex.

Haplotype and distance analyses

Distance calculations (S33–S34 Appendixes), uncorrected, are summarized in Tables 3 and 4,

as are the results from the haplotype analyses. The latter are also visualized in Figs 6–8 for all

different species. For most species, haplotypes, or group of closely related haplotypes, are gen-

erally not restricted to a certain area. A few species show a week tendency towards geographic

sorting, e.g. in species 16 (Fig 8), the haplotypes from the area South of Iceland (light blue)

may to some extent be interpreted in this way. Haplotype diversity is generally high, and in a

few of the well sampled species it is extreme. In species 2 there are 25 haplotypes among 32

specimens, in species 3 there are 44 haplotypes among 50 specimens, in species 8 there are 33

haplotypes among 40 specimens, and in species 16 there are 48 haplotypes among 55

specimens.

Morphological analyses

Group A comprises 13 species. For the time being we are not able to find any morphological

character that unites the group, but two of the known species, T. bigeniculatus and T. stroemii,
can be attributed to two of the clades found. Terebellides bigeniculatus is identified by the pres-

ence of geniculate chaetae (Figs 1B, 2A and 2C–2E) in both chaetigers 5 and 6, and this condi-

tion is found in species 21 and species 20/28, and as the latter of these two species is the only

one found among our Icelandic specimens we suggest that the name T. bigeniculatus, that has

its type locality north-west of Iceland, may be used for species 20/28. Terebellides stroemii on

the other hand is characterized by a robust body, and relatively small branchiae, with partially

fused lobes (Fig 1B) instead of unfused ones (Figs 1A and 2B). From the available diagnosis,

any of the clades 6, 7, 8 and 9 are possible candidates for representing the true T. stroemii. Tere-
bellides stroemii has a type locality from between 55–110 meters depth near Bergen in SW Nor-

way, and species 8 is only found deeper than 200 meters and is thus excluded for being the

nominal species, and with the same reasoning, we also exclude species 9 due to that it is only

found in the North Sea region. However in the choice between species 6 and 7 we cannot say

right now which one is more likely to be the correct T. stroemii, but our suggestion is that

clade 6 could be used for the name, because in our samples it seems to be the most common

and widely spread species of the two.

Group B comprises eight species. A possible morphological identifier for this group of spe-

cies is that they all have small to medium sized, elongated bodies. In this group, two clades, 16

and 1, could be identified as already described taxa. Species 16 is characterized by having

unfused branchial lobes, with a low number of lamellae. Due to this, and because of its distri-

bution, found at great depths in Greenland Sea and in the area South of Iceland, congruent

with the species original depth distribution, we suggest that the name T. atlantis might be

Fig 7. Distribution maps, depth distribution in meters, and haplotype networks for group A, species 6, 7, 8, and 9, and for group B, species 1, 17,

14, 4, 26, and 27. All species except for species 6 that we refer to as T. stroemii (st), and clade 1 that we refer to as T. shetlandica (sh) are

undescribed. Sites are colour coded as in Fig 3. Type localities for T. stroemii, and T. shetlandica indicated with yellow arrows.

https://doi.org/10.1371/journal.pone.0198356.g007
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applicable for this species. Species 1 should be referred to T. shetlandica, it is the only species

we have found that have the characteristic gills with branchial lobes of different sizes, and pro-

vided with a long posterior filament (Fig 2B), diagnostic features for T. shetlandica. Moreover,

in some specimens a parasitic copepod was found, as was also described for several specimens

of T. shetlandica in the original description.

Group C comprises three species, with no apparent morphological identifier. We attribute

the name T. irinae to the deep-water species 24 found only in the Arctic Ocean in our analysis.

It fits the original description well, and even if our collecting sites are not near the type locality

we think a distribution from Beaufort Sea to the Arctic Basin is likely.

Group D also comprises three species. The group is characterized by white ventral coloura-

tion in anterior thoracic chaetigers (1 to 4) (Fig 1A). Species 2 and 3 are further characterized

by having branchiae with ventral and dorsal lobes of similar shape (Fig 2A). The combination

of these characters fits the diagnosis of two already described species of Terebellides, T. gracilis
and T. williamsae. Terebellides williamsae is considered to be a junior synonym to T. gracilis
but we prefer to withdraw it from synonymy even though, at this moment, we do not have any

morphological characters that separates them. Species 2 is suggested to represent T. williamsae
as it is the only one of the two occurring in the Barents Sea (the type locality for T. williamsae),
and thus species 3 is suggested to represent T. gracilis even though both species 2 and 3 are

found in sympatry at the type locality for T. gracilis, the Swedish coast of Skagerrak.

Fig 8. Distribution maps, depth distribution in meters, and haplotype networks for group B, species 5 and 16, group C, species 22, 24, and 25, and

group D, species 2, 3, and 15. Species 5, 22, 25, and 15 are undescribed, while we refer species 16 to T. atlantis (at), species 24 to T. irinae (ir),

species 2 to T.williamsae (wi), and species 3 to T. gracilis (gr). Sites are colour coded as in Fig 3. Type localities for T. atlantis, T. irinae, T.

williamsae, and T. gracilis indicated with yellow arrows.

https://doi.org/10.1371/journal.pone.0198356.g008

Fig 9. Accumulation curve showing the relationship between sampling size (number of specimens) and number of species found among the different

biogeographic regions.

https://doi.org/10.1371/journal.pone.0198356.g009
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Discussion

Cryptic species are of paramount importance because of their commonality, and they are rou-

tinely found in genetic surveys, also in well-known taxa in well-studied areas [2, 54]. It is clear

that the small fraction of morphological species that has been investigated so far still only rep-

resents the tip of the iceberg as Knowlton stated in her visionary paper on sibling species

almost 25 years ago [55]. Considering that cryptic species literally are everywhere, in a taxo-

nomic as well as in a geographic context, they can in no way be neglected if we want to cor-

rectly assess species diversity, understand biogeographic patterns or keep track of natural or

man-made induced changes in the marine environment.

Terebellides is one of the most regularly encountered annelid taxa in environmental moni-

toring programs in the North East Atlantic [56], and it is normally reported under the species

names T. gracilis, and T. stroemii, and in recent years T. shetlandica and T. bigeniculatus have

been added to the list. Prior to this study, we suspected there might be cryptic species hiding

among Terebellides, but it came as an overwhelming surprise to find so many of them, and that

in cases some of them were so common.

Having a closer look at the best sampled areas (Fig 12), starting with Kattegat and Skager-

rak, a very small part of the North East Atlantic. There are so far three different species

reported from this area, and we have identified these in our sequenced specimens; T. stroemii
(species 6), T. gracilis (species 3), and T. shetlandica (species 1). In addition we have a new

record of T. williamsae (species 2), but the remainder, that is species 4, 5, 7, 8, 12 and 13 are

unknown and undescribed. Out of the 133 specimens sampled and sequenced from the area,

about roughly 1/3 (47 specimens) belong to this latter category of undescribed species.

Fig 10. Diagram showing the distribution of different Terebellides species in the ten biogeographic regions.

https://doi.org/10.1371/journal.pone.0198356.g010
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Continuing with the Norwegian coast and shelf, we find the same four described species pres-

ent in Kattegat/Skagerrak, and in addition T. bigeniculatus (species 20/28), but species 5, 7, 8,

10, 11, 13, 14, and 15 are all undescribed. These unnamed species gather more than half of the

specimens sequenced (117 out of 192 = 61%), and that means in short, that the current proba-

bility of finding an undescribed species of Terebellides is larger than finding a described one!

This is indeed astonishing given that we are dealing with one of the best investigated marine

environments in the world, the relatively shallow waters just outside the coasts of Sweden and

Norway, and one of the most frequently encountered annelid taxa in the area. The situation in

the Barents Sea is similar, and we find T. williamsae (species 2), T. atlantis (species 16) and T.

bigeniculatus (species 20/28), but neither T. stroemii (species 6) nor T. gracilis (species 3)

Fig 11. Overview of the diversity found in the ten biogeographic regions. Pie diagrams show the relative proportions of the different species found where all

species have their own colour, sampling size (N) indicated next to the pie diagrams.

https://doi.org/10.1371/journal.pone.0198356.g011
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Fig 12. Pie diagrams from Fig 11 for the six best sampled biogeographic regions with bathymetric results in meters. Species number

next to its slice in the pie diagrams, species number in red when the species is a described species, where species 1 = T. shetlandica, species

2 = T. williamsae, species 3 = T. gracilis, species 6 = T. stroemii, species 16 = T. atlantis, and species 20/28 = T. bigeniculatus.

https://doi.org/10.1371/journal.pone.0198356.g012
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among our sequenced specimens; in addition we also find the undescribed species 8, 10, 12,

13, 14, 15, 21, 25, 26, and 27, and together these undescribed species represent c. 50% of the

sequenced specimens. Greenland Sea and the area South of Iceland are dominated by speci-

mens of T. atlantis (species 16), T. gracilis (species 3), and T. williamsae (species 2), but there

are also quite a few undescribed species present here as well, but as the sample size is not as

large as in Skagerrak, Norwegian coast and shelf, and Barents Sea the results are not really

comparable.

Looking at the depth distribution for the different species in a given geographic area, we

can see that most species overlap in depth, and there is, in most cases, no clear sorting of spe-

cies at different depths (Fig 12). In the depth range 150–250 meters in the Norwegian coast

and shelf region, we have nine species present, and they all more or less overlap and are present

at most of the localities that we have been able to sample, e.g. in the area from Trondheim in

the north to Bergen in the south, 11 species are found (Figs 6–8), indicating that they do not

inhabit specific habitats like fjords or the open ocean. For most of our samples we have used a

sledge, a dredge or a beam trawl, all these gears sample material from an unspecified area of

the sea floor. But often, at least when a sledge is used, the area sampled is an apparently flat

uniform habitat of mud. In 49 out of the 89 sites from where we have sequenced more than

one specimen, we found more than one species (Table 1), and in the most species-rich sam-

ples, five different species of Terebellides were found, e.g. site NCS24, a sample from a flat mud

bottom from 534 meters depth in the Trondheimsfjord. There are few samples taken with a

grab, but in one of them (BS5) we found two species co-occurring. Anyway, as we did not

sequence all specimens from all samples, it is difficult to assess how many species of Terebel-
lides that do co-occur at the same site. For many of the sites only one or a few specimens were

sequenced, thus it is likely that diversity for each separate site is underestimated, but when

looking at a slightly larger scale this should not be the case.

Apart from the fact that so many species of Terebellides still go under the radar, and that

these unknown and undescribed species are so common, and even constitute a major part of

the diversity both in number of species and specimens, one other thing struck us: the extreme

diversity of haplotypes found in COI among some species. The most note-worthy are T. gracilis
(species 3), T. williamsae (species 2), T. atlantis (species 16), and species 8, where almost all

specimens sampled and sequenced have their own unique haplotype (Figs 7 and 8, Table 3).

This variation rarely has led to an amino-acid substitution within the species, and in T. atlantis
(species 16) all 48 haplotypes found among the 55 specimens produce the same exact amino-

acid sequence. As the sample size varies a lot between different species, it is difficult to make a

direct comparison in haplotype diversity, but one thing to note is that all those four species

mentioned above are found at greater depths than a couple of 100 meters (Figs 7 and 8), in

contrast with two other species that also are well represented in the material, i.e. T. shetlandica
(species 1), and T. stroemii (species 6), that are found at more shallow depths (Fig 7). The rela-

tively low genetic diversity among these shallow water species may be explained by that they

have been more affected by the recurrent ice ages that have occurred during the last 1.8 million

years [57], than the species living at greater depths have been. Even so it is hard to understand

and explain the extremely high diversity of haplotypes, and how it is maintained, in these

deeper-living species, but see [58] that also reported high haplotype diversity in Aonidella cf
dayi, for possible explanations to this phenomenon.

Our angle on this study has been a molecular one, in order to find out how many species that

occur in North East Atlantic waters, and the full morphological investigation has to await forth-

coming studies. The main purpose of the morphological examination conducted in this paper

has been to connect the described and known morphological species to the correct, or at least

the best, molecularly recognized species. It is our hope that we in the future will be able to find
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morphological characters that will help in standard morphological identification down to at least a

group of possible species, and in the best of worlds also down to species level. Molecular data from

this study will be vital to help us to sort out when this latter task is obtainable and when it is not.

Much water has passed under the bridge since Holthe [59] published his book on Terebello-

morpha in the North East Atlantic, when he discussed the supposed cosmopolitan distribution

of T. stroemii. He acknowledged that the worldwide reports were due to a confusion of closely

related species, but nevertheless stated that ‘I do not suspect that there are more than one spe-

cies in the Norwegian material’. Still in these days, most Terebellides in the North East Atlantic

are routinely identified as T. stroemii, and our comprehensive study make it clear that this is a

severe underestimation of the true diversity among Terebellides. We do not think that Terebel-
lides is an unusual example of cryptic species, on the contrary, when morphospecies are prop-

erly assessed molecularly, in terms of sampling strategy and number of specimens analyzed

(e.g. [60]), it is commonplace to find more than one species, sometimes several, in the material.

Already Grassle [61] asked the question ‘How common are cryptic polychaetes’ when she and

her husband had discovered six cryptic species of Capitella capitata after an oil spill in West

Falmouth, Massachusetts in September 1969 [62]; we think we now have taken a small step

further towards the answer to this long-held question.
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