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Figure 1: Our parameterized 3D anisotropic Physarum polycephalum model is able to generate foam-like cells and filaments ranging from
coarse to dense cells (left side), to varying orientation and elongation magnitude (right side).

Abstract
Biological shapes possess facinating properties and behaviors that are the result of emergent mechanisms: they can evolve over
time, dynamically adapt to changes in their environment, while also exhibiting interesting mechanical properties and aesthetic
appeal. In this work, we bring and extend an existing biological-inspired model of the Physarum polycephalum, aka the blob, to
the field of computer graphics, in order to design porous organic-like microstructures that resemble natural foam-like cells or
filament-like patterns with variable local properties. In contrast to approaches based on static global optimization that provides
only limited expressivity over the result, our method allows precise control over the local orientation of 3D patterns, relative
cell extension, and precise infill of shapes with well defined boundaries. To this end, we extend the classical agent-based model
for Physarum to fill an arbitrary domain with local anisotropic behavior. We further provide a detailed analysis of the model
parameters, contributing to the understanding of the system behavior. The method is fast, parallelizable and scalable to large
volumes, and compatible with user interaction, allowing a designer to guide the structure, erase parts, and observe its evolution
in real-time. Overall, our method provides a versatile and efficient means of generating intricate organic microstructures that
have potential applications in fields such as additive manufacturing, design, or biological representation and engineering.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction1

Microstructure-made synthetic materials, which refer to small-2

scale structures filling the interior domain of a larger shape, have3

become increasingly popular in shape design. These materials offer4

desirable mechanical properties, including local stiffness, lightness,5

and porosity [WWG21], that can be tailored by varying the type6

of infill patterns. Furthermore, these microstructures exhibit visu-7

ally compelling appearances, mimicking complex organic materi-8

als that may interest art-based design [MSDL17]. In this work, we9

focus on microstructure exhibiting foam-looking patterns made of10

oriented foam-like cells, or long filament organizations (see Fig. 1)11

and relate their parameters to mechanical and visually appealing12

characteristics.13

In recent years, the study of complex shapes filled with mi-14

crostructures has gained significant attention due to the efficiency15

of additive manufacturing to build them, in particular along the so-16

called topological optimization methods. However, designing these17

materials still presents several challenges. Firstly, creating intri-18

cate and delicate micro-structures that occupy relatively large vol-19

umes can result in laborious modeling, massive data structures, and20

prohibitively high computational costs associated with global op-21

timization. Secondly, microstructure shapes can be highly diverse,22

which adds significant complexity to the design process and re-23

quires meticulous tailoring and parameterization for each object to24

achieve the expected behavior and appearance.25

Through this work, we wish to highlight the power of adapted26

bioinspired morphogenesis approach to tackle such challenges. In-27

deed, real biological systems have evolved to optimize their struc-28
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tures and functions through a variety of mechanisms, including29

self-assembly, growth, and adaptation. Morphogenesis models in-30

spired by biological systems typically rely on local rules from31

which global characteristics emerge from an iterative process, pos-32

sibly representing time evolution. A key interest of such a local33

and time-evolving process relies upon its inherent adaptation to lo-34

cal conditions and its ability to generate organic-like microstruc-35

tures that follow a general pattern while exhibiting irregular local36

variations. One may note that disordered porous structures found37

in nature are neither fully random nor perfectly ordered. Inter-38

estingly this structural disorder in organic architectured cellular39

materials has been found to be beneficial for their damage toler-40

ance [vEYC∗21]. These remarks led to our main motivation for41

exploring biological-inspired microstructure generation. Instead of42

aiming at a globally optimized shape model that would be hard to43

control, we rather target locally adaptable behaviors that can give44

rise to a global emerging structure, which remains controllable by45

the end user at any time of the evolution, and provide a visual ap-46

pealing organic-looking disorder that enhances strength.47

In this work, we show that the biological system designated as48

Physarum polycephalum, also known as the blob [How31] can be49

adapted to model our target microstructure for 3D shapes in a con-50

trollable way. This slime mold is a unicellular organism that has51

gained attention in recent years as it has been found to exhibit re-52

markable capabilities for optimizing transport networks, and adapt-53

ing to changing environments. The Physarum polycephalum can54

be represented by an agent-based models [Jon09] simulating vari-55

ous aspects of the organism behavior including its growth, forag-56

ing, and decision-making processes. Existing simulations of this57

model already showed the natural emergence of global structures in58

2D [Jon10] and in 3D [Jon15, EBPF20a, EBPF22] but were never59

explored for oriented microstructures generation. We describe sev-60

eral adaptations and/or simplifications to the existing models to ex-61

tend it to oriented organic-foam-looking emerging microstructure,62

and provide insights into the choice of the model and simulation63

parameters to converge toward the expected shape characteristics64

effectively. Our technical contributions are twofolds. First, we ex-65

tend the existing agent-based physarum models toward anisotropic66

emerging infilled-pattern generation, and describe its efficient im-67

plementation. Second, we provide a comprehensive study on the68

effect of the parameters in such an anisotropic context with a spe-69

cific focus on providing explicit control over the averaged size and70

elongation of microstructure cells. We demonstrate the applicabil-71

ity of our approach to various shape-design applications such as72

mechanical design and biology. Overall, we hope that such an ap-73

proach simulating the emergence of natural forms will help and74

inspire designers from various domains in their process of creating75

more complex and organic-looking shapes.76

The rest of the article is organized as follows. We start with a re-77

view of the related work (Sect. 2) and background on the particle-78

based model of the Physarum (Sect. 3). Section 4 presents an79

overview of our generative method, followed by our technical con-80

tributions for 3D oriented emerging patterns (Sect. 5) and parame-81

ter analysis (Sect. 6). We then present our results (Sect. 7) before82

concluding.83

2. Related Work84

In Section 2.1, we delve into the topic of microstructure infill for85

material design, as our method is closely tied to this field, particu-86

larly in terms of efficient fabrication using Additive Manufacturing.87

Furthermore, in Section 2.2, we address Bio-inspired Modeling and88

specifically focus on the Physarum polycephalum as a compelling89

model for our intended purpose.90

2.1. Microstructures and shape infill for AM91

The importance of internal fill patterns in additive manufacturing92

has a long research history in mechanical engineering [AAD98].93

By avoiding dense interior fills, both printing time and material us-94

age can be significantly reduced. As a result, the initial infill pat-95

terns were developed with the primary goal of reducing material96

density while also being quick to generate and effective in produc-97

tion.98

Topology optimization, allowing the optimization of the distri-99

bution of material within a given domain subject to a set of con-100

straints, has been successfully used in a large range of applica-101

tions as described in these reviews [BS03, WSG21]. Porous mate-102

rial generation [WAWS18, SPG19] can, in particular, benefit from103

high resolution topology optimization [AALS17], but remain com-104

putationally prohibitive. Additional flexibility in the generated pat-105

tern has been proposed by the use of post-process applied on top of106

topology optimization result, such as the use of procedural func-107

tions [PT08, AGDP19], or reaction-diffusion [GSR22].108

Periodic structures, originally proposed by Sigmund [Sig95],109

have also been widely explored to generate complex structures110

featuring, for instance, targeted rigidity [ZSCM17], deforma-111

tion [TTZ∗20], or balance [WWZW16]. Gradation of microstruc-112

ture design can be achieved via the use of different tiles [PZM∗15,113

GKW∗19], or regularized deformation [GDAP20]. Although peri-114

odic microstructures are highly efficient, they depend on underly-115

ing regular grids, which make them challenging to apply to mi-116

crostructure with spatially varying orientation and curved bound-117

aries. Moreover, graded or oriented periodic microstructures sel-118

dom produce patterns with smooth connectivity at the interface be-119

tween neighboring cells. This connectivity must thus be enforced120

by introducing additional geometrical constraints onto the gener-121

ated patterns.122

Close to our approach, stochastic processes provide design123

flexibility and progressive gradation since they are not restricted124

by a grid or subdivision rule. They have been recently used125

for foam-like microstructures [MDL16], and extended toward126

anisotropic [MSDL17] shapes, polyhedral cells [MHSL18], or127

lamellar structures [KTZK20]. Compared to fully periodic mi-128

crostructures, the lack of a perfectly symmetric structure of129

stochastic process has been reported to exhibit greater resistance to130

fabrication imperfections [PVK∗20,vEYC∗21]. While 2D Voronoi131

cells [LS03, LCL∗21] can relate to physarum cell look, the direct132

use of 3D Voronoi cells results in surfaces, generating membranes133

instead of filaments as observed in our case. Voronoi cell edges134

have been employed for foam modeling in previous works by Mar-135

tinez et al. [MDL16, MSDL17], but we emphasize that these ap-136
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proaches exhibit polygonal structures with straight edges, lacking137

the organic, curved shapes that our method generates natively.138

Our approach can be described as a stochastic morphogenetic139

process and relies on the local emergence of non-periodic mi-140

crostructures spatially graded by orientation and density fields.141

Compared to other stochastic approaches, it has the advantage of142

relying only on local computation, thus avoiding computationally143

expensive global optimization steps. In addition, the underlying144

emerging process allows for generating flexible patterns that align145

well with curved boundaries and can dynamically adapt to local146

user modifications.147

2.2. Bio-Inspired Modeling and Physarum polycephalum148

Multi-scale structures are abundant in nature and can be observed149

in various plant and animal organisms [Lak93, FW07]. Despite the150

fact that their underlying conception processes are not always com-151

pletely understood, they typically possess remarkable mechanical152

properties. This has recently given rise to a new field known as153

"Bio-Inspired Modeling" or "Bio-Inspired Design," which is com-154

monly employed in the context of structural design for Additive155

Manufacturing [DPBY∗19, PMNWW19, ZWZ∗20]. In contrast to156

mathematical optimization, Bio-Inspired Modeling has its origins157

in the field of morphogenesis and seeks to employ natural processes158

to create optimized designs. Due to its interdisciplinary nature, it159

is challenging to consider it as a singular design process. Rather,160

it comprises various approaches that use different representations161

and operate at different scales [CHK∗05].162

The "many-headed" slime mold, known as Physarum poly-163

cephalum or "blob", was initially misclassified as a fungus, but164

is actually a giant unicellular protist with multiple nuclei. First165

described by [How31], this organism has been extensively stud-166

ied in various fields including cell biology, biochemistry, genet-167

ics, and more recently, physics. In recent years, it has gained in-168

terest due to its remarkable properties. Hence, despite lacking a169

brain, the unicellular organism is capable of decision-making and170

spatial memory of its environment [RLDB12,BL15]. Furthermore,171

akin to other self-organizing systems, the slime mold exhibits self-172

repairing abilities [Ada13]. A seminal experiment conducted by173

Japanese researcher Toshiyuki Nakagaki [NYT00] demonstrated174

that the slime mold can find the shortest route through a maze.175

Since then, many studies have investigated its maze-solving ca-176

pability [NYT01, Nak01, ZZD11, NVSA17], and it has even been177

shown to solve the Towers of Hanoi problem [RB13]. Its ability178

to solve the Steiner tree problem [TNT∗10] and thus to repro-179

duce real-world infrastructure networks [TTS∗10] has also been180

explored.181

While several models have been proposed to explain the182

Physarum behavior such as mathematical equations on flux183

[TKN07] or Cellular Automaton [TS12], we direct our attention184

to a particle-based model introduced by Jeff Jones [Jon09, Jon10],185

described more precisely in Section 3, due to its ability to gener-186

ate intricate organic-looking structures. To the best of our knowl-187

edge, only a few works extended this concept to three dimen-188

sions. Jones [Jon15] himself described a brief exploration of three-189

dimensional environments, followed by applications toward design190

and architectures [MX17, DMM18], as well as for artistic appli-191

cation in the BioArt concepts [Sch13, Que20, Bar09, Seb23]. These192

approaches, however, provide only limited analysis of their model’s193

parameters. Additionally, this early 3D variant [Jon15] relies on194

five samples for directional sensing (1 central, and 4 peripherals)195

which leads to artifacts when applied to the anisotropic case, as196

explained in Sect. 5.1.197

The most recent extension of Jones’ model in 3D, the so-called198

Monte Carlo Physarum Machine (MCPM), tailored for reconstruct-199

ing and visualizing the cosmic web [BET∗20,EBPF20a,EBPF20b,200

EBPF22], introduces stochastic updates helping to produce highly201

connected networks that align with cosmological data. This proba-202

bilistic model offers an elegant and robust formalization, and con-203

tains the deterministic Jones’ model (called Max-PM by the au-204

thors, and relying on 1 central and 8 peripheral sensing directions)205

as its limit case. As stated in [EBPF22], Max-PM yields a clean,206

well-defined structure, which however does not consistently cover207

all the input cosmological data compared to the MCPM variant. Yet208

in our case, the property of providing clean and well-defined struc-209

ture is very well suited for shape modeling, in contrast with the pa-210

rameterized fuziness introduced by the MCPM variant. Nonethe-211

less, we note that Ehrlich et al. [Ehr21, EHE22] have proposed212

an application to additive fabrication based on the MCPM model.213

If [Ehr21] limits the emergence of the pattern to a guiding mesh’s214

surface, [EHE22] demonstrates the infilling of a 3D helmet, close215

to our volume-based pattern generation, but without the possibility216

to control the local orientation. We propose to build on the simple217

Max-PM model, with the addition of (i) rotation-invariant particles’218

sensor sampling for a fully 3D consistent model; (ii) a more com-219

prehensive control over the local infill structure using anisotropic220

diffusion weights for precise oriented propagation behavior; (iii)221

associated to a pattern cells size analysis, suitable for both aesthetic222

application and additive manufacturing.223

3. Background on Physarum Agent Based Model224

Our methodology relies on an agent-based model of Physarum225

polycephalum, originally proposed by [Jon10] for 2D simulation.226

For the sake of clarity, we describe this existing model in this sec-227

tion.228

As illustrated in Figure 2, the model represents the Physarum as229

a collection of agents A = {ak}k∈J1,NK that interact with a density230

grid T through a deposit/sensory behavior. Each agent ak possesses231

a location pk, a heading direction uk, and three front sensors, each232

positioned at a distance r (Sensor Offset, denoted SO in the original233

paper) from the particle. The front sensor is oriented in the heading234

direction, and the positions of the left and right sensors are ob-235

tained through a rotation of ±ϕ (Sensor Angle or SA) around pk. T236

is stored as a 2D array of scalar values representing the marker (in237

biological contexts usually referred to as chemoattractant) emitted238

by the agents and is called the trail map as the density will evolve239

toward showing the trajectory trails of the agents through the sim-240

ulation. By using its sensors, each agent can read the trail map T241

and adjust its movement accordingly. The simulated evolution of242

the model is obtained via discrete-time iterations, where both A243

and T are updated according to a six-step rule (see Fig. 2):244

1. Sense. Each agent starts by reading the density in the cells of245
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+δ

Figure 2: Jones’ Physarum model.

T corresponding to the positions of its three sensors. The agent246

turns toward the direction of the sensor with the highest density247

and takes a random one in case of equality. As a consequence,248

the agents are sensible to the gradients of trail. During this sen-249

sor reading step only, T can be weighted with another density250

array, allowing to incorporate input data such as fixed attractive251

areas.252

2. Rotate. In case of change of direction, the heading vector of the253

agent is then rotated from an angle α (Rotation Angle or RA).254

Note that in general α ̸= ϕ.255

3. Move. The agent moves along its updated heading direction of256

a distance h (Step Size or SS).257

4. Deposit. The agent located in pk adds a small amount of density258

δ in the corresponding grid square of T .259

5. Diffuse. The trail diffuses according to the diffusion equation260
∂T
∂t = d ∆T during a short time frame.261

6. Decay. A temporal decay is modeled by damping the diffusing262

values of T by µ (typically 0.1) : T → (1−µ)T .263

Jones’s original paper includes a collision detection step that guar-264

antees the presence of at most one particle within each grid square.265

Measures of space availability (growth of the population of agents)266

and overcrowding (adaptation by population reduction) are also in-267

troduced later [Jon15]. These steps are essential for faithfully emu-268

lating the behavior of Physarum polycephalum, yet they do not cru-269

cially affect the patterns produced and we don’t implement them in270

our approach. Additionally, avoiding this collision detection conve-271

niently eliminates any sequential dependence, enabling enhanced272

computational parallelism. In practice, starting from a random dis-273

tribution of agents, the emergence of patterns is observed after274

about a few hundred steps and leads to a relatively stable configura-275

tion around a few hundred steps. An exhaustive study of the effect276

of the different parameters (r, h, α, ϕ, agents population size s, de-277

cay value µ,...) on the pattern formation can be found in the found-278

ing paper [Jon10]. According to Jones, the transition from 2D to 3D279

sensors can be conceptualized as a shift from a flat anchor shape to280

a three-dimensional "grappling hook" shapes with four hooks. In281

our work, we expand upon this concept by adopting a 3D grappling282

hook shape with more hooks. Furthermore, we introduce the capa-283

bility to confine pattern formation within a specific area and modify284

the diffusion equation to account for anisotropy. This modification285

enables the generation of oriented microstructures.286

4. Method Overview287

Given a set of initial parameters (Fig. 3-left), the agent-based sim-288

ulation updates the set of particles A= {ak}= {pk,uk}, where pk289

represents their positions and uk denotes their heading directions.290

Each particle can move and deposit a small amount of material den-291

sity on the trail map T , creating a network of patterns over time292

(Fig. 3-middle). The final shape surface is obtained by computing293

an isovalue of the trail T (Fig. 3-right), typically using techniques294

such as marching cubes or dual contouring when a triangular mesh295

is required for visualization and manufacturing purposes.296

In order to generate oriented microstructures that infill a guiding297

shape defined as a boundary surface B, we introduce three specific298

input fields defined on a rectangular domain Ω ⊂ R3, namely, an299

infill space field I, a tensor field D, and a guiding trail T ∗.300

Infill Space Field I. The scalar field I(x ∈ Ω) is used to im-301

plicitly define the space where the microstructures grow as DI =302

{x ∈ Ω |I(x) > 0}. In practice, we consider I to be a simple bi-303

nary field (1 inside and 0 outside) or a signed distance function to304

the boundary surface.305

Tensor field D. The tensor field D(x ∈ Ω) indicates the desired306

local orientation and local anisotropy of the microstructures. It can307

be derived from specific data available to mechanical engineering308

such as desired stress, or from a direct user’s defined orientation309

field. D is used as a diffusion tensor in the Diffuse step and tends310

to align the cell-like and filament-like patterns with its principal311

direction, and its parameterization will be described in Sect. 6.1.312
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Figure 3: Overview of our approach. [1] User defined constraints: Global shape domain with cell’s local orientation and characteristics. [2]
Expression of the constraints as models parameters: Infill domain (I), anisotropic behavior (D), and boundary conditions (T ∗), that can be
associated to spatially varying parameters to generate different local pattern aspects. Other simulation parameters are fixed. [3] The physarum
simulation evolves through iterations leading to the emergence of microstructure patterns on the output Trail map T stored in a grid structure.
Interactive modifications from the user can be applied at any time, either via the change of the model parameters, or on the evolving Trail
map. [4] A final mesh surface representing a porous structure can be extracted from the trail map using marching cube. Grid size for the Trail
map T : 370×306×534.

Guiding Trail T ∗. The scalar field T ∗(x) ∈ [0,1] is used to en-313

force the pattern formation in specific areas. The guiding trail op-314

erates during the Sense step, we set the sensors to read an effective315

density field316

T γ = (1− γ)T 0 + γ T ∗ , (1)

given as a linear interpolation between the normalized trail T 0 =317
T −minT

maxT −minT in [0,1], and T ∗. The weight γ is a fixed value cho-318

sen in [0,1] which controls the influence of T ∗. Because of their319

sensing behaviour, the agents are sensible to the local variations320

of the trail, which means that attractive areas of T ∗ are indicated321

by its gradient toward its high value. Note that unlike T , the guid-322

ing trail T ∗ does not evolve during the simulation, therefore fa-323

cilitating consistent pattern formation in specific areas. While we324

can not give a general formulation for T ∗ since it is provided325

by the user as input, we can define it within a specific use case.326

ε

T ∗(x) = 0

T ∗(x) = 1

Figure 4: Typical T ∗.

A common use of T ∗ is327

the creation of an outer328

shell of thickness ε en-329

couraging pattern forma-330

tion along the curved331

boundary. Let us call332

d(x,B) the closest Eu-333

clidian distance between334

x to the boundary B, in335

that case T ∗ can typically be defined as a characteristic function336

T ∗(x) = 1{x,d(x,B)<ε} (2)

which creates a gradient of trail toward this area, illustrated Fig. 4.337

While we call these three fields inputs, other parameters involved338

in the model (sensor values, guiding influence, decay factor, etc)339

can also vary spatially. We will call them grading parameters and340

provide a guideline in Sect. 6 to set their values depending on the341

expected pattern appearance.342

5. Efficient 3D oriented Physarum Model343

We describe in the following the specific modification we apply in344

the Physarum model in order to efficiently simulate its emergence345

in a 3D spatial environment in the anisotropic case.346

5.1. Spatial sensing347

The first essential element for 3D Physarum growth is to extend348

the agents’ sensors into a 3D structure. Figure 5 showcases differ-349

ent possible layout for this. A natural extension consists in adding350

sensors associated with the rotation of the 2D basic layout around351

its heading direction. This leads to these n-legs grappling hook-352

looking shapes with 1 central sensor and n peripheral, that we call353

{1+n} layout. Fig. 5 shows that n has to be sufficiently high (typ-354

ically ≥ 8) to consistently sample the circle produced with the sen-355

sors and avoid any artifacts in the anisotropic case. Increasing n356

beyond 10 has no real impact on the generated structures. Previ-357

ous early attempts on 3D Physarum models [Jon15, MX17] (re-358

spectively {1+4}, {1+4×2} layouts Fig. 5) used only four sam-359

pling directions which leads to directional artifacts in anisotropic360

representations due to the lack of angular sampling. Uniform sam-361

pling on a hemisphere could also be considered, but comparing362

the results given by the {1+ 8} and the Unif. {9} layouts shows363

that uniform distribution does not generate better aligned and clean364

cells. Moreover when the number of uniformly distributed sen-365

sors increases (Unif. {40} Fig. 5), the model changes of behav-366

ior and tend to always keep their heading direction aligned with367

the anisotropy direction leading to filament structures. As a result,368

the non-continuous sampling offset allows to form stable oriented369
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Figure 5: Resulting anisotropic structures for different 3D sensors layout, with parameters r = 3 and ξ = 4 (parameter introduced Section 6.1)
generated on a 200×200×70 grid. From left to right, the five first layouts {1+n} are n-legs grappling hook-looking shape with increasing
n, n = 4 being the layout proposed by [Jon15]. {1+ 4× 2} layout comes from [MX17]. In the last two layouts Unif. {n}, n sensors are
uniformly distributed on the hemisphere using the Fibonacci Sphere.

Figure 6: Agent and its sensors in 3D.

foam-cell structures, which is also why we do not rely on continu-370

ous probabilistic distribution sampling such as in [EBPF20a]. In all371

our examples we used the {1+10} layout showed Figure 6.372

5.2. Infill Space Restriction373

To confine the pattern generation within a 3D shape described by374

the infill space DI , we add a positional constraint after the step375

Move. In practice, we check at each frame the value of I(pk) for376

each agent’s position pk. If I(pk)≤ 0, the position is outside of the377

shape, then we project it back along its backward heading direction378

pk − uk ∆t, where ∆t is the simulation time step. This yet simple379

approach proved to be sufficient to deal with boundaries without380

accumulation as the trail is diffused and is mixed with the guide381

T ∗ near the border B.382

5.3. Anisotropic patterns383

The local pattern orientation can be controlled by the anisotropic384

tensor D given as input. In the Diffuse step, the trail is diffused385

according to the anisotropic diffusion equation386

∂T
∂t

=∇· (D∇T ) . (3)

This modified equation results in patterns that align with the in-387

put tensor field. Specifically, the cells/filaments tend to follow the388

direction indicated by the eigenvector of D corresponding to the389

highest eigenvalue.390

Care has to be taken when integrating anisotropic diffusion using391

discrete finite differences. Indeed, the use of the classical centered392

differences on a regular grid has greater accuracy along the main393

directions. While hardly visible for isotropic diffusion, this leads to394

strong artifacts when oriented patterns need to be generated in non-395

axis-aligned directions. To address this issue, we propose a solution396

by generating at each frame a 3D rotation R randomly oriented on397

the unit sphere, and applied to both the trail map and the tensor398

field D before computing the Diffuse step. Once computed, the up-399

dated trail map is transformed back in applying the inverse rotation400

R−1. By doing so, we can effectively handle any direction in a con-401

sistent manner while still utilizing the simplicity of a regular grid.402

It is important to note that this approach does not aim at improv-403

ing numerical accuracy for the diffusion process but provides an404

orientation-invariant one, which is sufficient for our purpose.405

5.4. Local block-based synthesis406

Generating microstructures on a large-scale domain at once can be407

memory intensive. To avoid memory shortage in such case, we pro-408

pose a per-block synthesis approach leveraging the local behavior409

of the physarum coupled with the guiding-trail input T ∗. As illus-410

trated in Fig. 7, the global domain Ω can be split into blocks Ωi411

with small overlapping areas on their boundary. The interior of the412

blocks is filled independently, one after the other, while ensuring a413

coherent boundary condition. This condition is ensured by copying414

the value of the trail of the filled neighbors block (Ω1 in Fig. 7)415

on the overlapping domain into the guiding trail map T ∗ of the416

block to be filled (Ω2 in Fig. 7). This technique can scale to an417

arbitrary range and level of subdivision as long as the block size418

is sufficiently large compared to the typical length of a cell pat-419

tern. Therefore physarum structures can be generated on grids of420

any size using this approach. As shown Fig. 8, visual artifacts in-421

troduced by this process are minor if non-existent, as long as the422
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Ω1

Ω2

T1

T2

T ∗
2

Ω = Ω1 ∪Ω2
T1 ∈ Ω1 ∩Ω2

max(T1,T2)

T

Physarum generation 2

generation 1
Physarum

Figure 7: Per-block synthesis allows locally synthesizing a physarum structure and coupling it to nearby blocks via their common boundary.

(a) Direct generation. (b) Per-block generation.

Figure 8: Physarum structure generated directly on the whole grid
(a) and using the local block approach shown Fig. 7 (b). Grid size :
400×200×70.

fields vary continuously and infill structures are small compared to423

the size of the blocks.424

6. Parameters Study425

Emerging morphogenesis models, similarly to Cellular Automata426

or Reaction/Diffusion systems, often require a laborious process of427

parameter selection in order to observe effective pattern formation.428

This section proposes a comprehensive guideline describing how429

to choose the main parameters depending on the expected pattern430

formation. While we refer the reader to Jones [Jon10] for a general431

study of the main behaviors generated using such Physarum simu-432

lation, we concentrate our analysis on the Anisotropic-Voronoi-like433

behavior, which is more suitable for Additive Manufacturing. It is434

worth noting that the introduction of anisotropy in the physarum435

simulation increases its sensitivity to the parameters, resulting in a436

narrower range of values where the patterns are consistently gen-437

erated. Additionally, a distinct behavior emerges with significant438

relative anisotropy, as the microstructure patterns transition from439

Voronoi-like cells to elongated filaments.440

We focus on defining the parameter domain where cell or441

filament patterns can be expected. And, for cell-like structure,442

to be able to control their appearance via a notion of averaged443

cell elongation ω, and a notion of cell area (2D) or cell volume444

(3D) σ (measured in pixel/voxel) using an adapted parameter-445

ization of the inputs. We define these average cell characteristics as:446

447

ω =
l∥
l⊥

, σ = l∥ l
d−1
⊥ , (4)

448

with d = 2 or 3 according to the dimension, and where l∥ and l⊥449

are the averaged cell lengths in the most elongated, and least elon-450

gated directions.451

While l∥ and l⊥, and thus of ω and σ, can be directly com-452

puted by direct minimal and maximal length measurement over453

closed cells in 2D, their computation is not straightforward in 3D454

as the cells are not associated to bounded sub-domains. We pro-455

pose a common computation methodology that can be applied to456

both two-dimensional and three-dimensional structures in relying457

on the apparent frequencies of the trail map.458

Let us call459

f∥ =
L
l∥

, and f⊥ =
L
l⊥

, (5)

the frequencies corresponding to the averaged cell length in the460

respective most and least elongated directions. Here, L designates461

the total length of the square/cubic domain. These two frequencies462

are the most apparent and, therefore, correspond to local peaks of463

magnitude in the spectrum of the trail map. To compute f∥ and464

f⊥, we perform a Fast Fourier Transform on the output trail and465

consider a frequency as being locally dominant if its magnitude in466

the Fourier spectrum is higher than a certain percentage p of the467

local maximum magnitude. For values of p chosen between 25%468

and 75%, values of f∥ and f⊥ are translated by a similar offset,469

but their behavior remains the same. In all of our experiments, we470

chose p = 37% as this value gives elongation values that match a471

direct elongation computation in the 2D case for closed cells.472

In the following, all numerical values are obtained using the pa-473

rameters provided in the summary Table 1.474

6.1. Diffusion ratio ξ and tensor parameterization475

The diffusion tensor field D can be defined from specific data pro-476

vided by the designer, such as desired mechanical properties, ori-477
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(a) 2D simulation on a 1500×1500 grid.
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(b) 3D simulation on a 1000×1000×30 grid.

Figure 9: Patterns obtained for varying values of ξ and r.

Param. Designation Pattern affect Values
ξ Diffusion ratio Elongation ω [1,2.5]

Fil. behavior (r ≤ 2.5) [2.5,4]
r Sensor Offset (ω,σ) [2.5,6]

Fil. behavior (ξ ≥ 2.5) [1.5,2.5]
ϕ Sensor Angle Pattern aspect 27◦

α Rotation Angle Pattern aspect 70◦

h Step Size Pattern formation 1
µ Decay Scaling, edge thickn. 0.1
δ Deposit Trail scaling 0.01
γ Guid. influence Influence of T ∗ [0,1]
s Pop. size Pattern formation [2,4]

Table 1: Summary of the Physarum parameters, respective in-
fluence, and typical values. The values of r and h are given in
pixel/voxel.

entation, stress, and so on, resulting in a generated structure in ac-478

cordance with these properties. We propose to parameterize this479

diffusion tensor using, first, a normalized vector field o(x),x ∈ Ω,480

with ∥o(x)∥= 1 describing this main direction of diffusivity, and481

thus the principal direction of the elongation of cells; and second,482

a diffusion ratio ξ(x),x ∈ Ω, guiding how much the cells should be483

elongated along this principle direction. In the following, we will484

assume that we restrict our model to elongated cells in a single di-485

rection in space, while assuming a transversal isotropy in the two486

remaining orthogonal directions487

The 3× 3 diffusion tensor matrix D can be decomposed at any488

position x ∈ Ω as489

D(x) = RT
o (x) ΛΛΛ

T
ξ (x) ΛΛΛξ(x) Ro(x) , (6)

where Ro(x) is a rotation matrix defining a local orientation frame490

for the diffusion, and ΛΛΛξ(x) is a diagonal matrix whose entries are491

the eigenvalues of D(x). The matrix Ro(x) can be defined from492

the directional vector o(x) as Ro(x) = (o(x), o⊥1 (x), o⊥2 (x)), where493

(o⊥1 ,o⊥2 ) can be arbitrarily oriented as long as they form an or-494

thonormal frame. The matrix ΛΛΛξ(x) can be defined as495

ΛΛΛξ(x) = d0 diag(ξ(x),1,1) , (7)

where d0 ∈R is a diffusion magnitude, and ξ(x)≥ 1 is the diffusion496

ratio.497

ξ has a direct influence on ω as increasing the diffusion ratio498

leads to longer cells in the principal direction provided by o. Both ξ499

and o are then considered as input parameters to control the result of500

the simulation. The value d0 has a direct influence over the cell size501
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Figure 10: Plots of (l∥,l⊥,ω,σ) as a function of (ξ,r), in 2D and in 3D. Dashed color curves are the fitting curves for l∥ and l⊥, and the
resulting ones for ω and σ, at the extreme values where our proposed numerical model is valid for cells patterns (i.e. where l∥ is defined,
for ξ ∈ [1,4], r ∈ [3,6]). Values outside these intervals (darker blue curve of columns 1 and 3, leftmost part of columns 2 and 4) represent
filament patterns. Black dotted curves for ω and σ are fitting curves with a more simple model provided equation 16.

since a large diffusivity leads to larger cells. However, the range502

of possible values of d0 is limited by the stability of the numerical503

scheme to solve Eq. (3). Using an explicit scheme and a maximal504

diffusion ratio ξ ≃ 4 leads to a value d0 that cannot exceed 0.2505

(assuming a discrete time step and spatial discretization set to 1).506

Based on this limitation, we consider d0 to be a constant and set it507

to 0.1375.508

6.2. Controlling cells characteristics509

The second parameter to influence the cell size is the sensor offset510

r. At the opposite of d0, r is not restricted by numerical stability511

condition, and we therefore use it as a varying input variable. In the512

following, we analyze the influence of the two inputs (ξ, r) toward513

the cell characteristics (l∥, l⊥, ω, σ).514

We first illustrate in Fig. 9 the typical patterns obtained for vary-515

ing values of ξ and r. While ξ acts primarily on the elongation of516

the patterns, r directly controls their global size. The dotted red line517
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delimits the two domains with different behaviors: the filament-like518

pattern in the bottom-right, and foam-like patterns. The foam-like519

patterns are obtained for moderate anisotropy relative to the cell520

size. In this configuration, the cells are characterized by long edges521

oriented along the main direction that increase with ξ, and a few522

orthogonal edges which lead to this typical foam-cell appearance.523

When the anisotropy becomes large (ξ ≥ 2.5) while keeping a nar-524

row cell (r ≤ 2.5), the edges orthogonal to the main anisotropic525

direction are not able to emerge persistently anymore. As a result,526

the generated patterns are then dominated by long edges propagat-527

ing along the principal direction that doesn’t appear to be made of528

cells but look like long filaments instead.529

In Fig. 10, we provide a finer analysis of the relation between530

(l∥, l⊥, ω, σ) plotted as functions of (r,ξ). These curves can be531

used as an abacus to finely set a prescribed cell size and elonga-532

tion. Let us first consider the parametric subdomain where r ∈ [3,6],533

ξ ∈ [1,4]. This domain corresponds to foam-cell patterns where the534

characteristic cell lengths can be well predicted by our inputs using535

simple model. As we can see on the first line of the plots Fig. 10,536

at the first order, the elongation length l∥ can be approximated by537

having a linear dependence to ξ and to r independently. The trans-538

verse length l⊥ can be approximated by having a linear dependance539

to r, with a slope value that linearly decreases with ξ. We propose540

the following numerical model that approximate this behavior as541 {
l∥(ξ,r) = a∥ ξ +b∥ r + c∥
l⊥(ξ,r) = a⊥ ξ r +b⊥ r + c⊥ ,

(8)

with an additional condition on the elongation:542

∀r, ω(1,r) =
l∥(1,r)
l⊥(1,r)

= 1 , (9)

describing the fact that the cells are not elongated in the isotropic543

case. This gives a relation between the previous coefficients:544 {
a∥+ c∥ = c⊥

b∥ = a⊥+b⊥ ,
(10)

which allows to eliminate two coefficients to re-write the expres-545

sions under the form:546 {
l∥(ξ,r) = a0 ξ +(a1 +a2) r +a3
l⊥(ξ,r) = (a1 ξ +a2) r +(a0 +a3) .

(11)

with values fitted using simple regression, for the 2D and the 3D547

cases,548 {
2D : a0 = 2.0, a1 =−0.35, a2 = 5.4, a3 = 0
3D : a0 = 2.0, a1 =−0.30, a2 = 4.2, a3 = 1.5 .

(12)

The behavior is similar in 2D and 3D but the fitting coefficients549

slightly differs between the dimension. Still, they remain close550

enough to assimilate these numerical differences to the fact that551

2D cells and 3D cells are not completely comparable as they define552

slightly different structures and the 3D case exhibits wider degree553

of freedom to measure l∥ and l⊥.554

Overall, characteristic lengths of foam cells behave in the same555

way in 2D and 3D. l∥ increases with ξ (a0 > 0) and with r (a1 +556

a2 > 0) which is to be expected. l⊥ also increases with r (a1 ξ+557

a2 > 0) but it decreases with ξ (a1 < 0) meaning the anisotropy558

tends to bring the pattern closer in the transverse direction. For r ≤559

3 and ξ ≥ 2.5, the behavior changes to filament-like patterns. This560

change of behavior is also visualized on the plots, with a sudden561

increase of l∥ values. Our model is still valid for l⊥ because this562

length is still well defined in the filament behavior. These simple563

linear models are only first order approximation, and we may note564

for instance consistent local maxima for low ξ values (for l∥), that565

we neglect in such fitting.566

ω and σ can also be well approximated using our proposed567

model for l∥ and l⊥ (dashed color curves Fig. 10). To really under-568

stand how ξ and r influence these characteristics, we re-write their569

expressions differently:570

ω(ξ,r) = 1+
ξ−1

r
f (ξ,r) , (13)

with571

f (ξ,r) =
a0 −a1r

a1ξ+a2 +
a0+a3

r
, (14)

and572

σ(ξ,r) = (a1 +a2)a
d−1
2 rd +g(ξ,r) , (15)

with g(ξ,r) a rational polynomial that we do not fully develop and573

d ∈ {2,3} corresponding to the dimension (2D or 3D).574

In practice we observe that we can approximate f (ξ,r) to be575

linearly varying with ξ and with r independently, and that g(ξ,r)576

can be approximated by a constant σ0 as its variation is negligi-577

ble in front of (a1 + a2)a
d−1
2 rd . Finally the cell elongation and578

area/volume can be approximated by:579 
ω(ξ,r) = 1+ ξ−1

r (α0ξ+α1r+α2)

σ(ξ,r) = (a1 +a2)a
d−1
2 rd +σ0 ,

(16)

with values fitted using simple regression, for the 2D and the 3D580

cases,581 {
2D : α0 = 0.045, α1 = 0.08, α2 = 0.24, σ0 = 50
3D : α0 = 0.040, α1 = 0.11, α2 = 0.20, σ0 = 1600 .

(17)

582

This corresponds to the plots of the black dotted curves for ω583

and σ Fig. 10. Under this form, this shows clearly that the elon-584

gation can be approximated by having a quadratic relation to ξ,585

which can be linked to the square of ξ found in the expression of586

D(x). The influence of ξ tends to diminish while r increases, as the587

invert of r appears in the expression, with the other coefficients be-588

ing positive. This is also to be expected because as r increases, the589

size of pattern increases, but not the radius of diffusion, therefore590

anisotropic diffusion is less likely to affect larger patterns. The cell591

area/volume is governed by the quadratic/cubic term rd in σ, which592

is also coherent with the expected influence of r.593

6.3. Fixed parameters for patterns formation594

Beyond ξ and r used as grading parameters, other simulation pa-595

rameters may influence how well patterns are defined. We briefly596

review in the following the influence of these additional parame-597

ters and propose the appropriate values we have been considering598

in addition to their summary in Table 1.599
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Figure 11: Physarum 2D pattern with α continuously varying along the x axis and ϕ continuously varying along the y axis, for isotropic (left)
and anisotropic cases (right).

Rotation angle α and Sensor Angle ϕ have a significant influ-600

ence on the appearance and formation of patterns. Jones [Jon10]601

proposed the general rule of α = 2ϕ, with typical value α = 45◦,602

ϕ = 22.5◦. We, however, note that the region where the foam-cell603

pattern appears consistently is narrower in the anisotropic case, and604

can lead to a mix of filament patterns when using α = 2ϕ. This be-605

havior can be seen in Fig. 11 illustrating the patterns obtained along606

a continuous variation of ϕ and α between [0,π/2] in both isotropic607

(ξ = 1, left), and anisotropic case (ξ = 4, right). The square illus-608

trates the typical area providing foam-cells generation with con-609

sistent density in isotropic and anisotropic cases. This area corre-610

sponds to the ratio α = 2.6ϕ and the typical considered values in611

our case are respectively α = 70◦, ϕ = 27◦.612

Pattern formation: Agent population, Step Size. In all our613

simulation, the agents are initially uniformly distributed. The num-614

ber of agents as well as the step size both impact the possibility of615

the microstructure being generated. Too low or high-value results616

in either non-connected structure or dense infill. We note that the617

sensibility of the simulation is higher when using large anisotropy,618

and normalized them as follows. First, the total agent population619

N is normalized by the ratio s = N/V , where V is the volume of620

the infill space. We found that values between s = 2 and s = 4 give621

satisfying results in all our cases. In fact, in 3D, satisfying results622

can be obtained with lower values i.e. for s ≥ 0.5, which is very623

convenient from a computational cost. We assume that s does not624

need to be as high in 3D than in 2D because 3D shapes are much625

more porous than 2D shapes, while similarly connected. Second,626

the Step Size h is set to 1 pixel of the trail map image T .627

Scaling factors: Decay µ, Deposit δ. These two parameters do628

not change the type of pattern, but only act as scaling factors. While629

deposit δ simply scale the trail density value T uniformly, the decay630

µ slightly change at the extreme values near 0 and 1 the thickness631

of the edges on the trail map. We consider in all our experiment632

µ = 0.1 and δ = 0.01.633

Grid size. As parameters such as r, h and the diffusion radius634

are defined in pixels or voxels, the resolution of the underlying grid635

used for T has a significant impact on the result. For a same set636

of parameters, if L designates the maximum length of the domain637

space Ω measured in pixel/voxel i.e. the resolution of the grid, the638

characteristic lengths of microstructures are equal to l∥
L and l⊥

L .639

Hence a grid of higher resolution λL will return smaller microstruc-640

tures by a factor 1/λ, because the characteristics lengths do not vary641

in pixel/voxel.642

Structure thickness. The thickness of cell edges/filaments can643

be slightly controlled in the final structure mesh by slightly shifting644

the isosurface used for the Marching Cube algorithm.645

7. Results and Applications646

We present the results of our pattern generation method using647

PhysOM. All the models are generated on a PC workstation with648

an Intel Xeon Gold 6148 CPU running at 2.40GHz, 128GB RAM649

and a GPU Nvidia Quadro RTX6000 with 24 GB memory. Our im-650

plementation is based on CuPy library in Python to store the 2D651

and 3D grids with operations performed in parallel on the GPU.652

The dimension of the voxel grid and the computational time asso-653

ciated with the full generation of our 3D examples are reported in654

Table 2. At the exception of Fig. 8, the examples were created from655

a single grid structure without the per-block optimization. The total656

time reported corresponds to the simulation for 200 steps. The core657

of the method relies on uncoupled particle simulation, where each658

particle update (steps Sense, Rotate, Move, Deposit) is "embarrass-659

ingly parallel". The diffusion step and the handling of the 3D tex-660

ture and its rotation are implemented using trivial and non-optimal661
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Figure 12: Physarum 2D pattern on a 200×200 grid at several steps on a simulation with the associated curves of porosity P, amount added
∆T+, amount removed ∆T− and variation ∆T . These last three quantities are scaled by a factor that allows them to be visualized on a single
plot.

algorithms in our case. A very detailed breakdown and fine com-662

parison of timings with other approaches would not be relevant.663

For instance, [EBPF22] reported measures implemented in C++664

with compute shader, while our 3D implementation uses Python.665

The timings are indeed very different, and our approach could be666

highly optimized with dedicated developments that are beyond the667

scope of the current contribution. However, we have developed a668

real-time 2D prototype relying on WebGL for the entire simula-669

tion. This 2D version is obtained as an extension of a standard670

physarum implementation proposed by Ghassaei [Gha22]. Please671

refer to the attached video for a visual demonstration of the ani-672

mated outcomes.673

Grid size (voxels) Total time
Teaser (Fig. 1) 64×64×768 (3M) 2 min
Owl (Fig. 3) 369×306×534 (60M) 20 min
Eiffel Tow. (Fig. 17a) 666×247×247 (40M) 15 min
Chair (Fig. 17b) 256×256×256 (16M) 6 min
Femur (Fig. 17c) 400×210×265 (22M) 8 min

Table 2: Grid dimension and timings of our 3D examples, for 200
steps of simulation.

7.1. Simulation convergence674

The physarum simulation remains in permanent evolution over the675

simulation steps which allows a designer to interact with the struc-676

ture by modifying the grading parameters locally or modifying the677

trail map by erasing/adding some parts and letting the system adapt678

at any time. However, for structure generation purposes, we may679

consider that the system has reached a stable state when the general680

type of patterns remains consistent over time. We defined this state681

when the average density of the trail map reaches a stable state. Let682

us call ∆T+ the total amount of density added from Step 3 to Step683

4, and ∆T− removed by the decay process from Step 4 to Step 6.684

We call ∆T = |∆T+ −∆T−|, the net change of density. We con-685

sider that the simulation has converged when the relative variation686

of ∆T /VΩ remains below a threshold during several steps. The evo-687

lution of these parameters along the simulation steps are illustrated688

in Fig. 12-right.689

7.2. Structural Design for Additive Manufacturing690

A classical application of microstructure infill is the generation of691

porous material that can be 3D printed. We show in the follow-692

ing that our approach allows designing materials with varying stiff-693

ness and density/porosity in adapting the anisotropy, orientation,694

and cell area.695

We introduce the material porosity P, i.e. the reverse of its aver-696

aged density, as697

P = 1− 1
VI

∑
x∈Ω

T (x) , (18)

where VI is the volume of the infill shape domain DI . The poros-698

ity tends to converge towards a constant value, as depicted in Fig-699

ure 12-right, also confirming the attainment of a stable state.700

To confirm the suitability of our generated structure for mate-701

rial design, we propose a study of its anisotropy-dependence de-702

formation using the methodology used in density-based topology703

optimization [ACS∗11]. We apply a continuous vertical compres-704

sive stress on generated structure, then simulate and measure the705

displacement of the global structure using an isotropic linear con-706

stitutive stress-strain relation. Each element of the grid x ∈ Ω is707

associated to a Young’s modulus:708

E(x) = Emin +T 0(x)(E0 −Emin) . (19)

Here, E0 represents the material’s stiffness, and Emin is a small stiff-709

ness assigned to void regions to prevent the stiffness matrix from710

becoming singular. T 0 is the normalized trail in [0,1]. The global711

stiffness matrix is denoted as K = (E(x)k0)x∈Ω, where k0 corre-712

sponds to the stiffness matrix for an element with a unit Young’s713

modulus. The global displacement and force vectors at the grid714

nodes are represented by U and F, respectively. Computing the re-715

sulting displacement U caused by an applied force F involves solv-716

ing the equation KU = F, which can be expressed as U = K−1F.717

Figure 13-a illustrates the results obtained in applying such con-718

straint while varying the direction and magnitude of the anisotropy.719

From the isotropic case in the center, we increase the anisotropy, re-720

spectively, in the vertical direction on the left-side, and in the hor-721

izontal direction on the right-side. This experiment is performed722

at constant porosity value by selecting tailored values for (ξ,r).723

To achieve this, the porosity is computed on small grid samples724

(200× 200) for varying combinations of (ξ,r), resulting in a den-725

sity grid representation P(ξ,r). By selecting an iso value of P, the726
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ξ⊥ξ∥
1

(isotropic)
(a) Deformation and displacement for a compression along y axis with varying anisotropy.

− π

2
θ0

(b) Deformation and displacement for a compression along y axis with varying angle, ξ = 4.

ξ

(c) Deformation and displacement for a constant compressive stress along
the vertical axis for varying anisotropy.

ξ = 1,r = 2.5 ξ = 4,r = 2.5 ξ = 1,r = 4.5 ξ = 4,r = 4.5
(d) Deformation and displacement for a compression along the vertical
axis for varying anisotropy and varying porosity.

Figure 13: Structural simulations.

desired values for (ξ,r) can be obtained. As expected, an increase727

of anisotropy in the vertical direction provides stiffer material resis-728

tance, while a horizontal one will lead to a more deformable struc-729

ture. A similar test is conducted in 3D, as shown in Figure 13-c, us-730

ing a cubic infill that demonstrates the same property. In Figure 13-731

b, the anisotropy is held constant while progressively changing the732

angle from vertical to horizontal, once again reinforcing the same733

conclusion. Finally, Figure 13-d illustrates the significant influence734

of material porosity on the resulting displacement. Note that our735

simulations on 2D quad-meshes and 3D hex-meshes did not con-736

sider material nonlinearities, and the large displacement factor in737

visualization is deliberate. We found these simplifications accept-738

able for the purpose of validating the effects of the porosity and739

anisotropy parameters. Indeed, to truly capture such large defor-740

mations, a simulation would need to consider geometrical nonlin-741

earities (e.g. buckling), material nonlinearities (e.g. plasticity), as742

well as internal contacts.743

Being able to link the parameters of the Physarum to the lo-744

cal porosity and anisotropy of the microstructures generated al-745

lows for tailored design for deformable shapes. A more in-depth746

study could allow to map these parameters to material properties747

or mechanical parameters such as the Young’s modulus, similarly748

to [MSDL17]. More generally, the effective constitutive law for any749

set of Physarum parameters could be evaluated through homoge-750

nization, thus compiling a reverse mapping from desired mechani-751

cal properties to their appropriate generation parameters.752

(a) (1,3.5) (b) (4,3.5) (c) (1,6) (d) (4,6)

Figure 14: Printed cubic samples with respective varying (ξ,r) val-
ues. The numerical models were generated on a 200× 200× 200
grid.

Based on these observations, our approach is particularly well-753

suited for printing deformable structures. Figure 14 shows real pic-754

tures of printed cubic samples of 3D structures, illustrating both755

isotropic and anisotropic cases with various r values. These mod-756

els, along with those showcased in Fig. 17, were generated using757

the most affordable SLA 3D printer available (Geeetech Alkaid) at758

the time of writing this paper, demonstrating the printability of such759

structures.760

Using a flexible material, Fig. 15 demonstrates that the deforma-761

tion of the structure is highly influenced by its anisotropy and the762
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alignment of the applied force. For a comparable applied pressure,763

an anisotropic structure aligned with the force experiences less de-764

formation than its isotropic counterpart. Additionally, the isotropic765

structure deforms less than the anisotropic structure perpendicular766

to the applied force direction, aligning with our numerical simula-767

tions.

(a) Isotropic (b) Anisotropic, F∥ (c) Anisotropic, F⊥

Figure 15: Pressure applied on cubic samples (r = 6) for (a)
the isotropic case, (b) the anisotropic case with anisotropy direc-
tion aligned with pressure direction, (c) the anisotropic case with
anisotropy direction orthogonal to pressure direction.

768

In Figure 16, we showcase a comparison of chairs where the top-769

left chair is generated from Martinez et al. [MSDL17], designed770

using orthotropic k-nearest foams and inspired by the designs of771

Lilian van Daal [vD14]. The top-right chair in Figure 16 is obtained772

through our PhysOM approach in 2D, employing a similar underly-773

ing orientation field. Note that our approach provides aesthetically774

pleasing homogeneous organic features and well-defined borders775

thanks to the use of the guiding trail T ∗. In Figure 16 (bottom row)776

we show pictures of a 3D-printed model with deformation behav-777

ior also similar to the one shown in [MSDL17]. These models were778

printed using an inexpensive FDM printer (Creality CR-10).779

7.3. Art and Design780

Our approach can also find relevant applications in art, design, and781

animation. The natural and organic aesthetic of the shapes produced782

by PhysOM can be of interest to creative designers and artists. Fig-783

ure 17a and 17b showcase our version of the Eiffel Tower and the784

biomimicry chair inspired by Lilian van Daal [vD14]. The result-785

ing prints are presented Fig. 17e and 17f. It is worth noting that786

these structures are dynamic and "alive" as long as the simulation787

is running. This characteristic opens up various possibilities, such788

as animation or the creation of unique designs. Two structures ex-789

tracted from the same simulation but at slightly different time steps790

will appear very similar yet distinct, offering opportunities for pro-791

ducing diverse and individualized designs.792

7.4. Biological representation793

The organic pattern generated by our method can also be desir-794

able for representing biological structures. It can be utilized to de-795

sign organic textures in 2D, as demonstrated by the dragonfly wing796

showcased in Figure 18. Designers can sketch inputs such as the797

infill space field or the orientation, specifying labeled areas for798

anisotropy. Our method then automatically generates a coherent,799

Figure 16: Top-left: Chair from Martinez et al. [MSDL17]. Top-
right: chair designed by PhysOM. Bottom Real 3D printed struc-
ture. Finger pressure is applied to the chair similarly to [MSDL17].

biologically-inspired texture that accurately represents the desired800

design.801

This process can also be applied to 3D application, where, for802

instance, the patterns formed by Physarum organisms bear resem-803

blance to the intricate network of trabeculae found in spongy bones,804

as illustrated in Figure 17c and Figure 17d.805

8. Conclusion and Future Work806

In this work, we have presented a novel approach for generat-807

ing intricate organic microstructures inspired by the behavior of808

the Physarum polycephalum slime mold. By extending the clas-809

sical agent-based model of Physarum to a 3D domain with lo-810

cal anisotropic behavior, we have enabled the design of porous811

organic-like microstructures that resemble natural foam-like cells812

or filament-like patterns with variable local properties. Our method813

offers precise control over the local orientation of 3D patterns, rel-814

ative cell extension and size (in 2D), and precise infill of 3D forms,815

all with well-defined boundaries.816

The versatility and efficiency of our method make it suitable817

for a wide range of applications, including additive manufacturing,818

design, and biological representation and engineering. These mi-819

crostructures, with their locally stiff or elastic, lighter, and porous820

properties, provide interesting mechanical characteristics that can821

be adjusted by varying the type of infill patterns. By leveraging822

the local rules and time-evolving processes inherent in biological823

systems, we have achieved locally adaptable behaviors that give824

rise to global emerging structures. This approach allows the end825

user to retain control over the evolution of the structure, ensuring826

a controllable and visually appealing organic-looking disorder that827

enhances strength. This visually appealing appearance of these mi-828
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(a) Eiffel Tower (digital) (b) Biomimicry Chair (digital) (c) Femur (digital) (d) Owl (digital)

(e) Eiffel Tower (print) (f) Biomimicry Chair (print) (g) Femur (print) (h) Owl (print)

Figure 17: Examples of PhysOM model (first line), with their associated prints (second line).

Graded AnisotropyInfill space + sketched guiding
and orientation

Figure 18: Synthesis of a Dragonfly wing patterns using our ap-
proach.

crostructures, mimicking complex organic materials, offer potential829

for art-based design. We believe that our approach will inspire and830

assist designers across diverse domains in their pursuit of creating831

more complex and visually appealing shapes. Future research di-832

rections may involve exploring additional biological systems and833

further refining the control mechanisms to enhance the capabilities834

and versatility of our method.835

While our approach for generating intricate organic microstruc-836

tures using the Physarum polycephalum-inspired model shows837

promising results, there are certain limitations that should be ac-838

knowledged. Firstly, the current implementation focuses on infill-839

ing 3D domains with local anisotropic behavior, but it does not840

take into account external constraints or specific material proper-841

ties. Future work could explore the integration of mechanical and842

material considerations to optimize the microstructures for specific843

applications. Additionally, the computational costs associated with844

simulating large-scale volumes and complex shapes could be a lim-845

itation, especially when real-time interactivity is desired. Develop-846

ing more efficient algorithms or exploring parallel computing tech-847

niques could help address this issue. Furthermore, while our ap-848

proach provides control over the evolving structure, there is still849

room for improvement in terms of providing intuitive and user-850

friendly design interfaces. Future research could investigate inter-851

active design tools that enable users to manipulate and guide the852

evolution of the microstructures more effectively.853
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