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Isotropic turbulence of variable-density incompressible flows

L. Reynier,∗ B. Di Pierro, and F. Alizard
Université Claude Bernard Lyon 1, LMFA, UMR5509, 69622 Villeurbanne, France

In the present study, the effects of density variations on structures developing in an isotropic
incompressible turbulent flow are investigated. Statistical analyses are carried out on datasets
obtained from direct numerical simulations of forced turbulence. The discretized variable-density
incompressible Navier–Stokes equations are time-advanced with a Fourier–Fourier spectral solver
coupled with a semi-implicit second-order in time Runge–Kutta scheme. Turbulence is forced using
an extension of the Lundgren method to the variable-density equations including mass diffusion
effects. Numerical evidence shows that the introduction of a variable-density field into a turbulent
field modifies the coherent structures and the energy spectrum in the inertial range. The analysis of
probability density functions of velocity gradients and Lagrangian acceleration suggests an increase
in time- and space-intermittency beyond a threshold density ratio associated with the two-fluid
mixture. These modifications are not captured by the classical scaling laws of skewness and flatness
factors given in the literature for the constant-density flow case. The energy spectra preserve the
Kolmogorov slope while exhibiting an energy level alteration within the smallest scales of the inertial
range. This region corresponds to the range of modes where the energy levels of the Rayleigh–
Taylor instability criterion are the highest, giving some physical arguments that the aforementioned
structural modifications may be attributed to Rayleigh–Taylor-like instabilities.

Keywords: Variable-density flows; isotropic turbulence; incompressible Navier–Stokes equations; direct nu-
merical simulation

I. INTRODUCTION

Flows characterized by large spatial density variations play a crucial role in various industrial and environmental
applications, such as releases of pollutants to the environment. It is therefore of fundamental importance to investigate
transport properties of gas mixtures into the atmosphere. In this context, the study of isotropic turbulent structures
that may emerge from such flows can provide a preliminary understanding of how to more efficiently predict the
dispersion of pollutants in the atmosphere.

In this vein, intensive pioneering work carried out by Livescu and Ristorcelli [1], Livescu et al. [2], Rao et al. [3], and
Nomura and Elghobashi [4], among a few others, was devoted to exploring the properties of variable-density turbulence
and its interactions with other physical phenomena. These authors deeply explore the energy transfer and the
mixing process of variable-density turbulence in buoyancy-driven flows, and nonpremixed flames flow configurations.
Mohaghar et al. [5] focus on the interactions between variable-density isotropic turbulence and shock waves in a mixing
process, and Tian et al. [6] investigate the density effects on the structure and dynamics of post-shock turbulence.

Although the above findings constitute an important step forward, the understanding of the small-scale statistics
of variable-density isotropic turbulence is still lacking. Motivated to overcoming this blind spot, the main objective
of the present work is to address this problem using direct numerical simulations (DNS) and statistical analyses.

Following the initial research by Kolmogorov [7], which states that small-scale statistics of turbulence are unaffected
by forcing and boundary conditions at larger scales, numerous numerical studies devoted to constant density incom-
pressible flows have been conducted based on triply-periodic DNSs [8–12]. Within this framework, computational
costs are reduced, making possible the investigation of small-scales turbulence. Recently it also highlights the poten-
tial universality of turbulence small-scale statistics. Especially, recent progress in supercomputing facilities has led to
a rapid increase in the resolution level of DNSs (e.g. see Ishihara et al. [13]). This achievement has enabled statistical
analyses of small-scale isotropic turbulence in constant-density flows. Sreenivasan and Antonia [14] and more recently
Dubrulle [15] undertake a comprehensive review of the recent progress made. Notably, Kerr [8], Jiménez et al. [10],
and Ishihara et al. [13], conduct studies on the one-point statistics and energy spectra of small-scale turbulence. Their
works clearly show the effect of the microscale Reynolds number on temporal and spatial intermittency which are also
strongly connected to the statistics of velocity gradients.

As mentioned above, the behavior of small-scale turbulence is mainly investigated through statistical analysis.
Since the turbulent fields have random features, statistics are computed using the time average of datasets to reduce
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statistical variance. It then requires that processes are statistically stationary in time. However, isotropic turbulence
is not stationary, and energy must be injected into the flow continuously, which is the so-called forced isotropic
turbulence. This technique allows achieving higher Reynolds number and longer statistics than its possible with
isotropic decaying turbulence. This has been widely used since the early works of Siggia and Patterson [16], Overholt
and Pope [17], Kerr [8] and Eswaran and Pope [18]. The forcing technique developed by the aforementioned authors
prevents the decay of turbulence by injecting energy into the large turbulent structures through a narrow region in the
spectral space. These forcing methods rely on the cascade notion of Kolmogorov [7] which states that the small scales
of turbulence are independent of the behavior of the large-scale motions. More recently, Lundgren [19] introduces a
forcing term in the physical space, where the corresponding source term takes the form f = qu, which is analogous to
the kinetic energy production term that appears in shear flows. One of the advantages of this approach is its simple
extension to variable-density — compressible or incompressible — flows [20, 21]. Carroll and Blanquart [20] and
Janin et al. [22] propose modifications to the latter method to reduce statistics oscillations and control integral length
scale. Despite the benefits, it also adds some extra control parameters not present in our initial dataset. Especially,
for inhomogeneous density flows, these improvements would require additional control parameters which should be
a function of the Schmidt Sc numbers, density ratio s, and initial condition ρ0(x) for the density field. Hence, the
present study will rely upon the Lundgren’s method that will be extended to incompressible equations with mass
diffusion.

While Lundgren’s method enables simulations of forced variable-density isotropic turbulence, the development of
specific numerical methods [23, 24] and analyses of mass diffusion effect on turbulence small-scale statistics are still
lightly explored topics. From the above discussion, it seems that a comprehensive understanding of the development
of isotropic turbulent structures in incompressible flow within inhomogeneous density fields is still lacking.

The purpose of this paper is to extend the studies of small-scale flow structures that emerge in forced isotropic
turbulence to the variable-density flow case. In the next section, following a brief presentation of the system of
equations and numerical schemes, the forcing method based upon Lundgren’s technique is introduced. The following
section presents two studies of variable-density flow simulations. The first study offers a statistical analysis of small-
scale structures by examining the probability density functions (PDF) and moments of velocity field gradients, as
well as their dependence on the microscale Reynolds number. The second study focuses on providing some physical
insights from a structural perspective through the use of Fourier spectral analyses and visualization of flow fields to
draw a complete picture. Finally, the conclusions are summarized in the last section and prospects are given.

II. GOVERNING EQUATIONS AND NUMERICAL METHODS

A. Mathematical model

We consider the isotropic turbulent motion of a viscous fluid in an inhomogeneous medium that takes places in
a bounded cubic domain Ω of volume V — where the Cartesian coordinate system is defined by the x, y and z
axes — and in time interval t ∈ [0, tf]. The turbulence fields are assumed to be periodic in each direction of the
Cartesian coordinates within the periodic box Ω of size 2π, so it can be expressed as a Fourier series with both the
minimum wavenumber kmin and the wavenumber increment being 1. The mathematical model for the variable-density
incompressible Navier–Stokes equations (VDINSEs) used in the present contribution is detailed by Frank-Kamenetskii
[25], Kazhikhov and Smagulov [26], Antontsev et al. [27], and Guillén-González et al. [28]. Within this framework,
mass diffusion is modeled according to Fick’s diffusion law and large density variations are considered — where the
Boussinesq approximation is no longer verified — while being sufficiently smooth to be accurately projected onto a
spectral basis. In regard to the above-mentioned references, we introduce the mean density ρ(x, t) and the mean-
volume velocities u = (u, v, w)T(x, t). The dimensionless equations of motion read

∂u

∂t
+ (u ·∇)u +

∇p

ρ
= ζ(ρ,u) + f , (1a)

∂ρ

∂t
+ (u ·∇)ρ =

1

Re Sc
∇2ρ, (1b)

∇ · u = 0, (1c)

ζ(ρ,u) =
1

ρRe
∇2u +

1

ρRe Sc
((u ·∇)∇ρ+ (∇ρ ·∇)u) , (1d)

where ζ(ρ,u) represents the — viscous and mass — momentum diffusion terms. In the momentum equation (1a), p
is a potential function analogous to the pressure and f represents an external volumetric body force. In equations
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(1b) and (1d), Re and Sc are the Reynolds and Schmidt numbers respectively, defined as

Re =
ρcvcLc

η
, Sc =

η

ρcD
, (2)

with η and D the dynamic viscosity and mass diffusivity of the fluid, respectively, and ρc, vc, Lc being characteristic
density, velocity and length scales.

It is essential to note that the incompressible formulation arises from the selection of the mean-volume velocity
u for representing the velocity field of the variable-density flow. Conventionally, the Navier–Stokes equations are
written in terms of the barycentric mean-mass velocity ū, which does not lead to a divergence-free velocity field.
Equations (1a) and (1b) are derived by initially formulating the Navier–Stokes equations on the mass-averaged velocity
and subsequently substituting the latter with the mean-volume velocity using Fick’s diffusion law

ū = u − D

ρ
∇ρ, (3)

which relates the velocity ū with nonzero divergence to the divergence-free velocity u. Additional details are provided
by Guillén-González et al. [28].

The initial conditions of the system (1) are

u(x, 0) = u0(x), p(x, 0) = p0(x), ρ(x, 0) = ρ0(x), ∀x ∈ Ω (4)

where u0 and p0 are the initial turbulent velocity and pressure fields obtained from a preliminary constant-density
forced isotropic turbulence simulation and ρ0 is the smooth initial density profile. We then introduce an additional
control parameter which characterizes the density ratio:

s =
max ρ0(x)

min ρ0(x)
. (5)

B. Numerical methods

VDINSE (1) are solved using a Fourier–Fourier spectral numerical scheme. Turbulence fields are expressed as Fourier
series where aliasing errors are removed by phase-shifting that keeps all the Fourier modes satisfying |k| < kmax = N/3,
where k is the wavenumber and N the number of grid points along each spatial Cartesian direction. The time-
stepping procedure is a second-order Runge–Kutta method for the nonlinear terms with semi-implicit Crank–Nicholson
treatment for the momentum diffusion terms (RK2CN). This is based on the work of Reynier et al. [24], which is an
extension of Peyret [29], Bell and Marcus [30], Tadjeran [31], Di Pierro and Abid [32], and which is briefly outlined
below:

un+1 − un

δt
= −[(u ·∇)u]n+1/2 − ∇pn+1/2

ρn+1/2
(6a)

+
1

2

(
ζ(ρn+1/2,un+1) + ζ(ρn+1/2,un)

)
+ fn,

ρn+1 − ρn

δt
= −[(u ·∇)ρ]n+1/2 +

1

2

1

Re Sc

(
∇2ρn+1 +∇2ρn

)
, (6b)

∇ · un+1 = 0. (6c)

The n superscript symbolizes the solution at time tn = nδt and the n + 1/2 superscript refers to the second-order
sub-step solution at time tn+1/2 = (n+ 1

2 )δt, where δt is the integration time-step. Advection terms [(u ·∇)u]n+1/2

and [(u ·∇)ρ]n+1/2 are estimated through a Runge–Kutta 2 (RK2) scheme. The momentum diffusion term ζ(ρ,u)
is computed with the sub-step density ρn+1/2 = 1

2 (ρ
n+1 + ρn) following Tadjeran [31] for stability considerations. In

order to preserve the second-order accuracy in time and to ensure incompressibility, the pressure — and the update
pressure pn+1/2 — is computed with the projection technique proposed by Reynier et al. [24], by solving

∇ ·
(

1

ρn+1/2
∇pn+1/2

)
= f(u) (7)

through the inversion of the pressure operator. This is performed using a Generalized Minimal Residual (GMRES)
algorithm preconditioned with the inverse of the discrete Laplacian operator. The semi-implicit treatment of the
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equations of motion also requires the inversion of the momentum diffusion operator. These computations are performed
with a GMRES method preconditioned with the inverse operator associated with constant-density flow as suggested
by Reynier et al. [24]. These preconditioning techniques greatly improve the convergence properties of the iterative
solver by reducing the condition number of the aforementioned operators.

Finally, to prevent the emergence of steep structures that are challenging to capture with the spectral scheme, the
density field is filtered after each time step when deemed necessary with a spectral Gaussian filter

ρnf = F−1
(
ρ̂n(k) exp (−σ(k/kf)

p)
)

(8)

where ρnf is the filtered density field after the nth time-advancement. In eq. (8) and following, the spectral representa-
tion of ϕn is noted ϕ̂n and the Fourier transform of a given function is symbolized F(·). The filter parameters are set
to kf = 0.55kmax, σ = 18 and p = 16, hereafter. Specifically, the filter is applied at the beginning of the simulations,
spanning 100 iterations. This is done to prevent the emergence of problematic steep structures following the injection
of the density field, as elaborated upon in section III A.

C. Turbulence forcing

Stationary isotropic turbulence is studied numerically by injecting energy through the forcing term f in the mo-
mentum equation (1a). We recall that for the constant-density case, the rate of change of the turbulent kinetic energy
per unit of mass reads ∫

Ω

∂

∂t
( 12u2) dV =

∫
Ω

1

Re
u ·∇2u dV +

∫
Ω

f · u dV. (9)

The forcing term is adjusted to achieve a statistically stationary state which guarantees that the integrated kinetic
energy is conserved. In that regard, we should verify∫

Ω

f · udV = −
∫
Ω

1

Re
u ·∇2udV. (10)

Lundgren [19] proposes a linear method in the physical space where f = qu injects energy proportionally to the
velocity field fluctuations. This approach injects energy over all scales of the flow unlike the spectral forcing methods
— such as the method of Kerr [8] — which excite only a narrow region of the spectral space. As the largest scales
are subjects to the largest fluctuations, these scales are the most impacted ones by the source term and the smallest
scales are essentially unaffected [19, 20]. This method has the advantage of being conveniently extendable to variable-
density simulations. The forcing coefficient q is computed from eq. (9) to verify the stationarity condition of eq. (10)
and reads

q(u) = − 1

Re

∫
Ω

u ·∇2u dV∫
Ω

u · u dV
. (11)

The forcing term being proportional to the velocity field, the latter must be initialized. To ensure that small structures
are not affected by the initial condition, we adopt an initial condition u0 similar to the forcing term of Kerr’s method
which forces the Fourier modes associated to the smallest wavenumbers to a constant amplitude:

u0 = F−1(f̂), f̂(k) = f0, ‖k‖2 = 1. (12)

with f0 = 1
4 so that the initial velocity amplitude is unity. This initial velocity condition is finally projected into the

divergence-free space.
For variable-density flows, the integrated turbulent kinetic energy per unit of volume 1

2ρu2 is now considered. The
latter is driven by

d

dt

(
1
2ρu2

)
= ρ

d

dt

(
1
2u2

)
+ 1

2u2 dρ

dt

= −u ·∇p+ ρu · ζ(ρ,u) + ρu · f +
1

2Re Sc
u2∇2ρ. (13)

Following the same line of thought as in the constant-density case, the forcing term should verify∫
Ω

ρf · u dV = −
∫
Ω

ρu · ζ(ρ,u) dV −
∫
Ω

1

2Re Sc
u2∇2ρ dV. (14)
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Run N Re s d Sc tf Γ 〈Reλ〉Γ 〈T 〉Γ 〈L〉Γ 〈λ〉Γ 103〈η〉Γ kmax〈η〉Γ 〈λ〉Γ /〈η〉Γ −〈S〉Γ 〈F 〉Γ
256-0.25 256 103 0.25 10 1 6.0 [2, 6] 249 1.43 0.81 0.20 6.41 1.1 31.0 0.51 4.92
256-0.5 256 103 0.5 10 1 10.0 [2, 6] 246 1.43 0.81 0.20 6.41 1.1 31.0 0.51 4.92
256-1 256 103 1 – 1 70.0 [40, 70] 214 1.44 0.78 0.17 5.85 1.0 28.8 0.48 4.97
256-2 256 103 2 10 1 6.0 [2, 6] 172 1.42 0.81 0.14 5.39 0.92 25.9 0.43 4.82
256-4 256 103 4 10 1 10.0 [2, 6] 143 1.39 0.80 0.12 4.86 0.83 23.7 0.30 4.37
256-6 256 103 6 10 1 6.0 [2, 6] 120 1.39 0.80 0.09 4.19 0.72 20.0 0.18 4.03
256-8 256 103 8 10 1 10.0 [2, 6] 108 1.36 0.80 0.08 4.19 0.72 20.5 0.18 4.03

TABLE I: DNS parameters of variable-density forced turbulence simulations, and turbulence characteristics at the
final time t = tf and averaged 〈·〉Γ over the study time interval Γ . N represents both the number of Fourier modes
(prior to aliasing) and the number of mesh points in each direction of physical space. To enhance readability, the

notation 〈·〉Γ is omitted in the text. Final velocity and pressure fields from the constant-density simulation 256-1are
used as initial conditions along with the sphere density profile from eq. (18) for the variable-density simulations.

Run N Re tf Reλ T L λ 103η kmaxη λ/η −S F

256-1 256 103 40 210 1.56 0.89 0.19 6.54 1.1 28.6 0.48 5.36

TABLE II: DNS parameters and turbulence characteristics at the final time t = tf of the constant-density HIT
simulation employed to generate the turbulent initial conditions for the variable-density HIT simulations.

Within this framework, the forcing coefficient q reads

q(ρ,u) = −
∫
Ω

u ·
(
ρζ(ρ,u) + (2Re Sc)−1u∇2ρ

)
dV∫

Ω
ρu · u dV

, (15)

which is now a function of both ρ and u.

III. RESULTS

A. Simulation methodology

Table I summarizes simulation parameters and some key turbulent parameters values characterizing the simulation
runs. The integral length scale L and the Taylor microscale λ are computed from the one-dimensional energy spectrum
E(k) such as

L =
3π

4

∫ kmax

0

k−1E(k) dk

/∫ kmax

0

E(k) dk, (16)

and

λ =

(
5

∫ kmax

0

E(k) dk

/∫ kmax

0

k2E(k) dk

) 1
2

. (17)

The microscale Reynolds number Reλ is defined as Reλ = (λ/L)Re. The eddy turnover time T is given by T = L/u′,
where 3

2u
′2 is the total turbulent kinetic energy per unit of mass.

A preliminary simulation is carried out with constant-density using Lundgren’s method described by eqs. (10)
to (12). Turbulent parameters of this specific run can be found in table I under the label 256-1. The (turbulent)
resulting velocity field is used as the initial condition for variable-density simulations. Table II presents the turbulent
characteristics of this initial condition and fig. 1 displays its energy spectra.

In this work, the density field is initialized with a smooth profile ρ0(x) in which a sphere of volume 1
2V is located

at the center of the computational box

ρ0(r) = 1 +
s− 1

2

(
1− tanh

r − r0
d

)
(18)
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E
(k
)

256-1

FIG. 1: Energy spectra at final time t = tf of constant-density HIT run 256-1 used as initial condition for the
variable-density HIT simulations. The vertical line delimits the mode associated with the aliasing filter. Simulation

parameters for the constant-density HIT DNS are listed in table II page 5.

where r = ‖x‖2 and r0 = (3π2)1/3. The parameter d is the length of the transition region between the interior of the
sphere and the surrounding fluid, and is fixed to 10 mesh cells. One may recall that the parameter s represents the
density ratio between the fluid filling the sphere and the fluid surrounding it.

In simpler terms, simulations are initialized by the injection of an inhomogeneous density field into a turbulent flow.
The abrupt injection of the density field is mitigated by applying the filter described in eq. (8) during the initial 100
iterations of the simulation. This filtering process spans a time interval equivalent to one-tenth of an eddy turnover
time.

One can specify that using a turbulent field as initial condition is necessary since injecting the variable-density
field before forced turbulence is fully developed will result in complete mixing of the mass field before reaching a
statistically stationary turbulent state.

In addition, it is also essential to select a specific time window for the study that encompasses mass diffusion effects
while ensuring that the turbulent fields can reach an almost statistically stationary state.

For illustration purposes, the run 256-4 is now considered. Figure 2 shows the initial density field and its time
evolution.

Data statistics are plotted in fig. 3 where the time evolution of integrated kinetic energy per unit of volume,
isotropy degree [33] (see appendix B), microscale Reynolds number, density field standard deviation in space, velocity
longitudinal-derivative skewness (the expression of the skewness is recalled in the next section), and eddy turnover
time are displayed. The standard deviation of the density field σ(ρ) is computed as the square root of the average of
the squared deviations from the mean of the density field. On one hand, the figure shows that the adjusted forcing in
time is able to guarantee integrated kinetic energy conservation and isotropy. On the other hand, the figure shows that
we are able to select a specific time interval of approximately 2 eddy turnover times, where the turbulent Reynolds
number as well as the skewness factor keep an almost constant value while mass diffusion effects are still significant.
In the following, this time interval used for the statistical study is noted Γ .

B. Density field mixing

The introduction of an inhomogeneous density field into a turbulent flow initiates its mixing, facilitated by the
turbulent eddies. PDFs can be employed to characterize the state of mixing and its evolution. fig. 4 displays the
PDFs of the density field at various selected times for different simulations with distinct initial density ratio s.
The PDFs initially manifest as a symmetric double peak, corresponding to two initially pure fluids connected by a
transition region. As the fluids begin to mix during the simulation, the PDFs become asymmetrical. A progressive
stretching of the bell curve towards the left is evident, indicating a positive asymmetry. This implies that the denser
fluid component mixes more rapidly than the less dense component. This behavior is also observed in turbulence
simulations driven by buoyancy effects conducted by Livescu and Ristorcelli [1].

It is also noteworthy that the differences between the various density ratios s, are minimal, Especially concerning
the asymmetry, which does not intensify with the increasing in s. This asymmetry is substantiated by the skewness
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(c) t = 2T (d) t = 3T

FIG. 2: xz-Cross-section plot of the density field at different times during simulation run 256-4. Re = 1000, s = 4,
Sc = 1, N = 256.

coefficient of the density fluctuations

Sρ =
〈(ρ− ρ̄)3〉Ω
〈(ρ− ρ̄)2〉3/2Ω

, (19)

which remains positive throughout the simulation as depicted in fig. 5. The evolution of Sρ reveals that the asymmetry
diminishes as mixing progresses. However, towards the end of the simulation, it appears to reach a plateau, with
a skewness coefficient of approximately 1, which remains far from a Gaussian behavior, characterized by a zero
coefficient.

The evolution of the flatness coefficient of the density fluctuations,

Fρ =
〈(ρ− ρ̄)4〉Ω
〈(ρ− ρ̄)2〉2Ω

, (20)

also presented in fig. 5, demonstrate a gradual convergence towards Gaussian behavior (F = 3) as mixing proceeds.
The mixing can also be characterized by the PDFs of the gradient of the density field. Figures 6 and 7 illustrate the

PDFs of the longitudinal ∂ρ/∂x and transversal ∂ρ/∂y derivatives of the density field. Initially, the inhomogeneous
density field comprises regions of pure fluids where the directional density derivatives are zero, except for the transition
zone between the two regions. This results in a PDF where values close to zero have the highest frequency, while the
high-amplitude values occur with low frequency.

During the initial moments of the simulation, the PDF broadens due to the emergence of multiple smaller-scale
mixing zones. This widening suggests that variable-density effects are rapidly transported to smaller scales during
mixing. Subsequently, over time, the PDFs narrow as gradients gradually dissipate due to diffusion.
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FIG. 3: Evolution of the volumetric total kinetic energy, isotropy degree [33] (calculation detailed in appendix B),
microscale Reynolds number Reλ, density field standard deviation in space σ(ρ), velocity longitudinal-derivative
skewness S, and eddy turnover time T during simulation run 256-4. Vertical lines delimit a time interval Γ of 2

eddy turnover times, where turbulent parameters do not fluctuate much, and where mass diffusion effects are still
significant. Re = 1000, s = 4, Sc = 1, N = 256.
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FIG. 4: Density field PDF evolution during DNSs of variable-density HIT. Simulation parameters for
variable-density HIT DNSs are listed in table I page 5.
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FIG. 5: Density field moments evolution during DNSs of variable-density HIT: (left) skewness defined in eq. (19) ;
(right) flatness defined in eq. (20). Simulation parameters for variable-density HIT DNSs are listed in table I page 5.

It is important to note that the distribution of gradients is symmetrical. This fully isotropic dynamics contrast
with that observed by Livescu and Ristorcelli [1], where the PDFs of derivatives in the buoyancy direction exhibit
asymmetry. It is also important to highlight that the density ratio s does not influence the distribution of gradients,
except for the production of more intense gradients.

C. Statistical analysis

Small-scale turbulence intermittency requires that the PDFs exhibit flared-out tails [14]. In particular, Jiménez
et al. [10], Gotoh et al. [34] and Ishihara et al. [13] demonstrate that in constant-density flows, the PDFs of the velocity
gradients ∂u/∂x , ∂v/∂x and of the vorticity components ωx and ωy become increasingly non-Gaussian, and feature
wide tails as the turbulent Reynolds number Reλ increases. In the variable-density flows, the inhomogeneity of the
density field has a direct influence onto the turbulence scales and dynamics as reported in fig. 8, where the temporal
evolutions of Reλ are displayed for various initial density ratios. The figure shows that for all flow cases, Reλ reaches
a nearly constant value for 2 < t < 6, which corresponds to a time interval of 2 to 3 eddy turnover times. We also
observe that the microscale Reynolds number is decreasing with s.

Figure 9 shows PDFs of the longitudinal velocity-derivative ∂u/∂x , the transversal velocity-derivative ∂v/∂x ,
vorticity components ωx and ωy, and Lagrangian acceleration component Ax ≡ (∂/∂t + (u ·∇))u for the different
values of s that are considered in this study. Following the discussion in section III A, quantities are averaged over
the 500 time-steps corresponding to the time interval Γ . In fig. 9(a) and 9(b) the PDFs of ∂u/∂x are depicted
with and without normalization by the standard deviation, respectively. In panel (b), we observe that the PDFs
for variable-density flows have wide tails, that become wider for larger s-values. This suggests, that as s increases,
energy is transferred to smaller-scale eddies with high velocity gradients. In panel (a), the normalized PDFs do not
exhibit increasingly flare-out tails for s ≤ 4. In this case, the observed differences for the smallest scales, i.e. high
velocity gradients, should be mainly attributed to a Reynolds number effect. For s = 8, the PDF becomes symmetrical
and presents a flare-out tail. Hence, it seems to indicate that small-case intermittency remains unaffected by mass
diffusion effects until a threshold value of s between 4 and 8, given our control parameters. Beyond this threshold,
the widening of the PDFs describes an increase in ∂u/∂x small-case intermittency. Intermittency of the transverse
velocity-derivative and vorticity components remains unchanged regardless of the density ratio as shown in fig. 9(c)
to 9(e).

As mentioned by Ishihara et al. [13], turbulence intermittency occurs not only in space but also in time. Therefore,
it is observed not only in velocity gradients but also in the time-derivatives of turbulent velocities. In fig. 9(f), a
similar behavior to that of ∂u/∂x is seen in the PDF of the Ax component of the Lagrangian acceleration: for s ≤ 4,
the PDF do not exhibit increasing flare-out tails, and for s = 8, the PDF becomes wider and more symmetrical. Thus,
both the space- and time-intermittency remains unaffected by variable-density effects until a specific threshold value
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statistical computations.

of the density ratio. Beyond this limit, an increase in intermittency is observed.
The non-Gaussian statistics of the velocity increments may also be characterized quantitatively by the third- and

fourth-order moments of the longitudinal velocity-derivative, the skewness S and flatness F factors, respectively
defined as

S =
〈(∂u/∂x )3〉

〈(∂u/∂x )2〉
3
2

, (21)

and

F =
〈(∂u/∂x )4〉
〈(∂u/∂x )2〉2

. (22)

For constant-density flows, Ishihara et al. [13] and Gylfason et al. [35] show that S remains constant for Reλ < 200,
and decreases slowly for larger Reλ. The authors propose the scaling law

−S ≈ (0.32∓ 0.02)Re0.11±0.01
λ . (23)

Table I presents the skewness factor averaged over the statistic study interval Γ for different s-values. Notably, the
skewness factor converges toward different values depending on s, even if the microscale Reynolds number remains
below 200 for all cases examined. For instance, for s = 2, an averaged skewness factor of S = −0.43 is obtained while
for s = 4, the skewness factor has increased up to S = −0.30. Thus, the assumption of a constant skewness factor
for Reλ < 200 does not hold for variable-density flows. Moreover, we note that an increase in s tends also to increase
the skewness factor. This suggests that PDFs would become progressively more symmetrical as the density ratio is
increasing. This characteristic is even more obvious in fig. 9(a), where the PDF of ∂u/∂x appears more symmetrical
for s = 8 compared to smaller values of s. Finally, the scaling law provided by eq. (23) tends to overestimate the
absolute value of the skewness factor in the case of variable-density flows, as can be observed in fig. 10.

Prior investigations on constant-density flows have demonstrated that the flatness factor exhibits an increasing
trend as the microscale Reynolds number increases for 100 < Reλ < 1000. Ishihara et al. [13] propose the scaling law

F ≈ (1.14± 0.19)Re0.34±0.03
λ . (24)

While our findings align with an increasing trend of F with respect to Reλ, (see fig. 10) our dataset is not large
enough to draw definitive conclusions.

D. Spectral analysis

From previous statistical investigations, the modification of energy distributions over the different scales has been
clearly illustrated as variable-density effects increase. In an effort to explain this behavior, this section is devoted to
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give some physical insights from a structural point of view using Fourier spectral analysis and flow-fields visualization.
The first difference is highlighted in fig. 11 where cross-sections of vorticity norm isosurfaces for both constant- and

variable-density flows (referenced 256-1 and 256-4, respectively) are depicted. It shows that the variable-density flow
exhibits smaller coherent structures than constant-density flows.

Let us now further examine the mechanisms behind the generation of these motions. For that purpose, the spectral
density of energy is represented in fig. 12 for the variable-density simulations and its constant-density counterpart.
From the figure, it is obvious that the Kolmogorov slope remains unchanged in the larger scales; however, there is
a discernible alternation in energy levels within the range of the smallest scales. An analogous pattern can also be
observed when calculating the spectrum based on the kinetic energy per unit of volume (i.e. ρu). Indeed, fig. 13
presents comparison between spectra calculated traditionally using the energy per unit of mass and spectra calculated
using energy per unit of volume (dotted lines). Both spectra exhibit the Kolmogorov cascade, and a noticeable increase
in energy can be observed towards the end of the inertial range. It then suggests an additional mechanism associated
with the emergence of these smallest scales.

In summary, the spectra of the variable-density HIT exhibit an energy bump in the smaller scales of the inertial
range that is absent in the constant density spectra. This modification confirms the presence of additional dynamics
introduced by mass effects, which become dominant beyond a certain structure size. This observation completes the
analysis of the velocity PDFs, which reveals a greater distribution of energetic structures in the variable-density flow
compared to the constant-density flow. The spectral analysis indicates that this increase in energy distribution is
associated with an energy gain within the smallest structures of the flow. It appears that in a variable-density HIT
flow, the final scale of the inertial range, which in the constant-density case is related to viscous diffusion, exhibits an
energy transfer dynamic induced by mass variations.

As a result, viscous dissipation emerges as the predominant process at smaller scales compared to the constant-
density case. This outcome is also illustrated by the reduction of the Taylor and Kolmogorov scales as a function
of the density ratio s, as shown in table I and fig. 14. In this figure, the vertical line representing the Taylor scales
of the variable-density simulation gradually moves away from the constant-density lines as s increases. For s < 1,
the Taylor scale increases, and the viscous cutoff appears earlier in the spectrum; in constant-density DNS of HIT,
the reduction in scales and the shifting of the viscous cutoff to smaller scales are the consequence of an increase in
the Reynolds number. Therefore, increasing s leads to a phenomenon similar to increasing the Reynolds number Re.
This observation aligns with the results of the PDF analysis, where an increase in s results in broadening, which is
generally associated with an increase in Re.

This behavior can be deducted from the momentum equation eq. (1a), where the viscous dissipation term is
transformed, upon introducing the variable-density field, from Re−1 ∇2u to

(ρRe)−1∇2u ≈
(
s− 1

2
Re

)−1

∇2u ≡ Re ′−1 ∇2u, (25)

where 1
2 (s−1) represents the mean value of the density field. Thus, for s > 1, the introduction of the variable-density

field leads to an increase in the equivalent Reynolds number Re ′ and, consequently, a decrease in the viscous length
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scale. Conversely, for s < 1, Re ′ decreases, resulting in an increase in the viscous length scale. This increase in the
viscous length scale explains the observed behavior in the simulation with s < 1.

It is important to recall that the introduction of a density field where the lighter fluid is confined within the sphere
for the initial condition has little influence on turbulence dynamics. This is reflected in velocity field PDFs that are
less spread out than those of the constant-density simulation, as well as spectra exhibiting a viscous cutoff at larger
scales. Consequently, in this configuration, the viscous cutoff occurs before the range of scale where variable-density
introduce the energy peak. Therefore, it has a limited impact on turbulent dynamics. It is essential to note that the
flow does not exhibit s→ s−1 symmetry since the mean values of ρ are not equal, resulting in different equivalent Re
numbers and, consequently, different dynamics.

It is widely recognized that density variations can give rise to various phenomena, with the Rayleigh–Taylor insta-
bility (RTI) being one of the most prominent examples [36–39]. Now, we will investigate whether the emergence of
higher energy structures within the lower region of the spectrum is a result of vortical structures developing under
the influence of the Rayleigh–Taylor instability. Recently, Jacques et al. [40] prove that R < 0, with

R = local acceleration · local mass variation = ((u ·∇)u) ·∇ρ, (26)

is a sufficient condition for RTI in rotating flows. Figure 15 displays a cross-section of the RTI criterion, presenting
both unfiltered and filtered flow fields. When comparing it with cross-sectional view of the vorticity depicted in
fig. 11(d), it becomes evident that the RTI criterion is satisfied for similar flow structures. Finally, fig. 16 illustrates
a comparison between the spectra and the RTI criterion (26) spectral density of energy

ESDR = |FR|2. (27)
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Notably, the region where the criterion exhibits the highest energy aligns with the range of modes where we observe
the alterations in energy levels.

This study supports that differences observed in PDFs could be attributed to the generation of smallest scales
structures under the effect of Rayleigh–Taylor-like mechanism.

IV. CONCLUSIONS

In this paper, we investigate the effects of density variations on statistically stationary forced isotropic turbulence.
Simulations are carried out by introducing a density field in the shape of a sphere into a homogeneous isotropic
turbulent state obtained from a preliminary constant-density simulation. The preservation of the turbulent kinetic
energy is achieved with the linear forcing method proposed by Lundgren, extended here to the incompressible variable-
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density equations. We explore density ratios ranging from s = 0.5 to s = 8, while maintaining a Reynolds number
of 1000 and a Schmidt number of 1. Initially, it is noted that the microscale Reynolds number Reλ reaches different
values depending on s. For a better understanding of variable-density effects, statistical analyses are conducted within
a time interval of approximately 2 eddy turnover times. In this interval, Reλ and the skewness factor remain nearly
constant, while the effects of mass diffusion stay significant. In order to mitigate the occurrence of transient effects
resulting from the abrupt introduction of the inhomogeneous density field into the turbulent initial condition, a filter is
applied during the first hundred iterations of the simulation. Additionally, the statistical analysis interval commences
two eddy turnover times later than the start of the simulation.

Special attention is paid to the PDFs of velocity gradients and Lagrangian acceleration. DNS data show that PDFs
for variable-density flows exhibit wide tails, which become even wider as s increases. As a result, a noticeable increase
in space- and time-intermittency is observed once a threshold s value is exceeded. As quantitative measurements of
the deviation from Gaussian distributions, we study the skewness S and flatness factors F of the longitudinal velocity-
derivative for various s values. Our findings indicate that the skewness factor increases with the density ratio, even
for Reλ < 200. Consequently, the PDFs gradually become more symmetrical as the value of s increases. Additionally,
the flatness factor shows an increasing trend with respect to Reλ. These results are consistent with trends observed
in constant-density scenarios. However, the Reλ-power-laws found in the literature for homogeneous density fields
tend to overestimate both S and F values.

Flow visualization reveals that variable-density flows exhibit smaller coherent structures compared to constant-
density flows. Fourier analyses show there is a significant modification in energy levels within the smallest scales of
the inertial range. In particular, the region where the energy levels are altered matches area where the Rayleigh–
Taylor instability criterion peaks. It suggests that the introduction of variable-density effects into isotropic turbulence
results in the generation of smaller eddy structures through Rayleigh–Taylor-like instability.

As a perspective, the logical continuation of this study should be devoted to the analysis of variable-density jets
that undergo a transition from laminar to turbulent flow. In particular, density variations are known to shift the
jet dynamics though subtle mechanisms. In that respect, the work of Di Pierro and Abid [41], Di Pierro and Abid
[37], Ravier et al. [42], and Jacques et al. [40] dealing with inhomogeneous jets can be mentioned. Hence, it would
be interesting to evaluate if statistics obtained within the framework of homogeneous isotropic turbulence can be
compared to those computed from variable-density turbulent jet simulations. Specifically, one may wonder whether
the alteration of energy levels in the small scales observed in the present study — which could be associated to RTI
— is observed.
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Appendix A: Relation between mean-mass and mean-volume velocity fields

The incompressible formulation serves as an efficient and self-contained tool for describing the physics of low-Mach
number flows, whether they exhibit constant or variable-density. This formulation is based on the assumption that
velocity field is solenoidal. However, in a mixing flow, there are multiple possible representations of the velocity
field. Each species k has a velocity vk, defined as the Eulerian-averaged velocity of the k species molecule. In a
DNS approach aimed at resolving the entire flow within the study domain Ω, the goal is to work with an ensemble
velocity that encompasses the behavior of all these species. For modeling the ensemble velocity, two approaches are
conceivable:

• The mean-mass velocity ū, averaged over the total mass of the mixture and weighted by the partial mass ρkVk
of each species

ū(r, t) =

∑N
k=1 ρk(t)Vk(t)vk(r, t)∫

Ω
ρ(r, t) dV

(A1)

where ρk and Vk represent the mass density and partial volume of species k, respectively. In the case of a binary
A–B mixture, this velocity is expressed as follows:

ū(r, t) =
(ρA(t)VA(t))vA(r, t) + (ρB(t)VB(t))vB(r, t)∫

Ω
ρ(r, t) dV

. (A2)
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In simpler terms, this ensemble velocity field can be referred to as the “barycentric velocity”. This baricentric
representation is employed for the momentum balances and consequently appears in the Navier–Stokes equations.

• The mean-volume velocity u, averaged over the total volume of the mixture V and weighted by the volume
fraction of each species

u(r, t) =

∑N
k=1 Vk(t)vk(r, t)

V
=

N∑
k=1

φk(t)vk(r, t), (A3)

where φk represent the volumetric fraction of each species. In the case of a binary A–B mixture, this velocity
is expressed as follows:

u(r, t) =
VA(t)vA(r, t) + VB(t)vB(r, t)

V
. (A4)

In more common terms, this ensemble velocity field can be referred to as “kinematic velocity”.

By definition, a flow is considered incompressible if the elemental volume of a given fluid particle remains constant
over time. Mathematically, this is expressed as follows:

lim
V→0

1

V

dV

dt
= 0. (A5)

In a variable-density context, the change in the elemental volume V is equal to the sum of the changes in the partial
volumes of each species. Using a transport equation for Vk with vk within the elemental domain ∆ of the particle, it
can be expressed as follows:

dV

dt
=

N∑
k=1

dVk
dt

=

N∑
k=1

∫
∆

(
∂φk
∂t

+∇ · (φkvk)

)
dV =

∫
∆

∇ · u dV. (A6)

The constraint of incompressibility in the case of a mixing flow is thus expressed as follows:

lim
V→0

1

V

dV

dt
= ∇ · u = 0 (A7)

which states that the mean-volume velocity u must have zero divergence. It is important to note that mean-mass
velocity ū is not necessarily solenoidal in the case of a variable-density flow. This particularity arises because this
representation of the velocity field depends on the mass variation within the elemental volumes associated with each
particle. However, these two representations are not independent and can be connected through the mass diffusive
flux Jk here expressed by Fick’s law:

ū = u −
N∑

k=1

φk(vk − ū) = u −
N∑

k=1

φk
ρk

Jk = u + ρ

N∑
k=1

N∑
i=1
i 6=k

Dki
φk
ρk

∇wk (A8)

where wk(r, t) = mk(r, t)/M represents the local mass fraction of species k with respect to the total mixture mass M
at a given position r and time t. In the case of a binary mixture with equal diffusion coefficient, the relation simplifies
to

ū = u + ρD∇
(
φA

ρA
wA +

φB

ρB
wB

)
= u + ρD∇

(
1

ρA
+

1

ρB

)
= u − D

ρ
∇ρ, (A9)

where D represent the common diffusion coefficient for both species.
The incompressible formulation of the equations of motion of the mixing is derived by combining the Navier–Stokes

equations with the incompressibility constraint developed above (eq. (A7)). The Navier–Stokes equations are obtained
by applying Newonts’s second law to fluid motion and thus use the baricentric velocity ū. By employing Fick’s law
from eq. (A9) to relate the two representations of the velocity field, the equations are rewritten using only the mean-
mass velocity. This approach, notably detailed by Guillén-González et al. [28], leads to the system (1) used in this
study.
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Appendix B: Isotropy degree calculation

The HIT modeling requires a condition of statistical isotropy within the considered flow. This implies that the
statistical properties of turbulent fluctuations exhibit uniformity in all spatial directions. Departure from isotropy
can be quantified through the trace-deviator splitting of the real part of the spectral tensor R̂ij(k, t)

Re
(
R̂ij(k, t)

)
=
E(k, t)

4πk2
Pij(k)︸ ︷︷ ︸

isotropic part

+

(
E(k, t)− E(k, t)

4πk2

)
Pij(k)︸ ︷︷ ︸

directional anisotropy

+ Re
(
R̂

(pol)
ij (k, t)

)
︸ ︷︷ ︸

polarization anisotropy

, Pij(k) = δij −
kikj
k2

in terms of isotropic, directional and polarization parts [43–45], where E(k, t) is the energy spectra that depends only
on the wave-number modulus k and no longer on the orientation of the vector k.

1. Polarization anisotropy

Polarization anisotropy is measured by computing the degree of isotropy of the velocity field after each temporal
integration using a measurement inspired from the methodology introduced by Curry et al. [33]. The measurement is
notably depicted in fig. 3 for simulation 256-4.

This approach involves constructing a vector basis composed of a unit vector ez of the Cartesian coordinates in
physical space, and two spectral unit vectors

e1(k) =
ez × k

‖ez × k‖
, e2(k) =

e1 × k

‖e1 × k‖
.

In the absence of carrier effects along the ez direction, nonlinear effects along with mixing lead to an equal distri-
bution of energy of û(k) along the e1(k) and e2(k) axes [33]. A measure of isotropy is thus provided by comparing
the contributions ψ1 and ψ2 of the kinetic energy per unit mass 1

2u in the spectral space:

ψ1 = 〈‖e1 · û(k)‖2〉, ψ2 = 〈‖e2 · û(k)‖2〉

where the angular brackets 〈·〉 represent an average over the entire periodic volume, or in other words, a summation
over all available wave numbers. For a fully isotropic flow, ψ1 = ψ2; thus, an approximate measure of deviation from
isotropy is given by:

I2 = ψ1/ψ2.

A flow is considered close to a fully isotropic state when 0.95 ≤ I ≤ 1.05.
It is crucial to note that when a nonisotropic forcing method is implemented to maintain the HIT, the modes

associated with energy injection should not be considered in the isotropy measurement. In this study, simulations
are initialized similarly to the method of [8], which excites the first modes in each direction (see eq. (12)). This
initial condition is not isotropic. To eliminate a signature in the isotropy measurement, the first and last modes of
each direction are not counted. The exclusion of these modes does not pose an issue concerning the HIT modeling
constraint since it requires isotropy of fluctuations. The first modes are associated with the large flow structures, while
the fluctuations at other scales are independent of the behavior of the large vortices, in accordance with Kolmogorov’s
theory [7].

2. Directional anisotropy

Directional anisotropy can be measured by computing the angular distribution of E − E/(4πk2). By using the
spherical polar coordinate system {e1, e2, ez} in k-space defined earlier, the spectral Reynolds tensor and E(k, t)
simplifies [43] as

[R̂ij ] =

φ11 φ12 0

φ∗12 φ22 0

0 0 0

 , E(k, t) = 1

2
R̂ii =

1

2
(φ11 + φ22) .
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FIG. 17: Evolution of the relative difference between E(k) and E(k, t)/4πk2 during simulation run 256-8. The
difference between these two terms measures directional anisotropy. Here, a difference of a few percents is observed,

indicating that the flow is isotropic. A similar behavior is obtained in all simulation runs.

From this, one can compute the angular distribution E −E/(4πk2) in order to verify that this directional anisotropy
term is indeed nearly zero. Figure 17 shows the evolution of the maximum relative difference between E and E/4πk2
during simulation run 256-8. Here too, the modes associated with energy injection from forcing are excluded. It is
observed that the relative difference ranges between 0.1 and 5% which confirms that the departure form isotropy due
to directional anisotropy is negligible. Similar results are observed for all other simulations runs, with a maximum
relative difference ranging from 5–6%.

Appendix C: Evolution of turbulence characteristics

Figures 18 to 21 present the time evolution of various turbulence characteristic during the variable density HIT
DNSs. Simulation parameters for variable-density HIT DNSs are listed in table I page 5.Time evolutions for run 256-4
are presented in the main text in fig. 3 page 8.
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FIG. 18: Evolution of the volumetric total kinetic energy, isotropy degree [33] (calculation detailed in appendix B),
microscale Reynolds number Reλ, density field standard deviation in space σ(ρ), velocity longitudinal-derivative
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