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All convex bodies are in the subdifferential of some

everywhere differentiable locally Lipschitz function

Aris Daniilidis, Robert Deville, Sebastián Tapia-Garćıa

Abstract. We construct a differentiable locally Lipschitz function f in RN with the property that
for every convex body K ⊂ RN there exists x̄ ∈ RN such that K coincides with the set ∂Lf(x̄)
of limits of derivatives {Df(xn)}n≥1 of sequences {xn}n≥1 converging to x̄. The technique can
be further refined to recover all compact connected subsets with nonempty interior, disclosing an
important difference between differentiable and continuously differentiable functions. It stems out
from our approach that the class of these pathological functions contains an infinite dimensional
vector space and is dense in the space of all locally Lipschitz functions for the uniform convergence.
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1 Introduction

Given a nonempty open subset U of a Euclidean space RN , a function f : U → R is called
Lipschitz if there exists a constant L > 0 such that

|f(x)− f(y)| ≤ L ∥x− y∥, for all x, y ∈ U . (1.1)
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We denote by ∥f∥Lip the infimum of the above constants, so that:

∥f∥Lip = sup
x,y∈U , x ̸=y

|f(x)− f(y)|
∥x− y∥

. (1.2)

In what follows, we call a function k-Lipschitz if ∥f∥Lip ≤ k, where k ≥ 0. We also call a function
locally Lipschitz, if around any point x0 of its domain, there exists k > 0 and a neighborhood V
of x0 such that the function f is k-Lipschitz on V.

According to the Rademacher theorem, every locally Lipschitz function is differentiable almost
everywhere (see [5, Chapter 9] e.g.). If N is any null subset of U ⊂ RN , then denoting by Df

the set of points of differentiability of f and by Df(x) the derivative of f at a point x ∈ Df , the
Clarke subdifferential at x ∈ U is given by the following formula (see [13, Chapter 2]):

∂f(x) = conv

{
lim
xn→x

Df(xn) : {xn} ⊆ Df⧹N
}
, (1.3)

where conv(A) stands for the convex envelope of a set A. It follows that the above definition
is independent of the choice of N and that ∂f(x) is a nonempty convex compact subset of the
closed dual ball B(0, ∥f∥Lip) containing the derivative Df(x), whenever this latter exists.

The Clarke subdifferential admits an alternative description based on Fréchet subgradients,
without explicit use of derivatives or the above null set. We recall that x∗ ∈ RN is a Fréchet
subgradient of f at x (and denote x∗ ∈ ∂̂f(x)) if x∗ = ∇ϕ(x) for some C1-smooth function
ϕ ≤ f with ϕ(x) = f(x). Then we say that p ∈ RN is a limiting subgradient of f at x, and
denote p ∈ ∂Lf(x), if there exists a sequence {(xn, x∗n)}n in RN × RN with x∗n ∈ ∂̂f(xn) such
that limn→∞xn = x and limn→∞x

∗
n = p. The Clarke subdifferential can then be defined as the

convex envelope of the limiting subdifferential, that is, ∂f(x) = conv {∂Lf(x)}, for every locally
Lipschitz function f . Therefore, ∂Lf(x) ⊂ ∂f(x). Notice that if f is everywhere differentiable,
the limiting subdifferential is given by the formula:

∂Lf(x) :=

{
lim
xn→x

Df(xn)

}
(1.4)

and if f is C1-smooth, we have ∂f(x) = ∂Lf(x) = {Df(x)}, for all x ∈ U . In fact, for a
Lipschitz function f , ∂f(x) reduces to a singleton if and only if f is strictly differentiable at x
[13, Proposition 2.2.4].

Notice that ∥ · ∥Lip is a seminorm in the vector space Lip(U) of all real-valued Lipschitz
functions on U and becomes a norm in the subspace Lipx0

(U) of those functions that vanish
at some (arbitrarily chosen) prescribed point x0 ∈ U . In particular, (Lipx0

(U), ∥ · ∥Lip) is a
Banach space (known also as the dual space of the free space of U). Alternatively, setting
∥ · ∥L := ∥ · ∥∞ + ∥ · ∥Lip and denoting by L∞(U) the set of bounded functions on U , the normed
space (Lip(U) ∩ L∞(U), ∥ · ∥L) is also complete.

If the set U is bounded, one can also consider the norm ∥f∥∞ := sup {|f(x)| : x ∈ U} of uni-
form convergence. In this case (Lip(U), ∥ · ∥∞) is not complete (in fact, it is dense in the Banach
space (Cb(U), ∥ · ∥∞) of bounded continuous functions). However, one can remedy this lack of
completeness by considering the set Lip[k](U) of Lipschitz continuous functions with Lipschitz
constant ∥f∥Lip ≤ k. This set is a complete metric space under the distance of uniform conver-
gence d∞(f, g) := ∥f − g∥∞. In this setting (where the vector structure is of course lost) and
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assuming that U is convex, a standard application of Baire’s category theorem has been used by
J. Borwein and X. Wang (see [8, 9] e.g.) to establish that the set of Lipschitz functions with
maximal Clarke subdifferential (that is, ∂f(x) ≡ B(0, k) for all x ∈ U) is residual in Lip[k](U).
Therefore, a generic Lipschitz function in Lip[k](U) has Lipschitz constant equal to k and satu-
rates its Clarke subdifferential at every point. The first explicit construction of a Clarke saturated
function was given in [24] (in dimension one) and in [7] (in higher dimensions).

The aforementioned result of J. Borwein and X. Wang underlines the fact that uniform con-
vergence does not entail any control on derivatives and local oscillations. The genericity is thus
tightly related to the d∞-topology: one easily sees that the set of Clarke-saturated functions (that
is, functions whose subdifferential is identically equal to the closed ball B(0, ∥f∥Lip)) cannot be
dense for the (more adequate) distance dLip(f, g) = ∥f − g∥Lip given by the Lipschitz norm. Still,
in [16] it was established that the set of Clarke saturated functions is spaceable in (Lip(U), ∥ · ∥L),
that is, it contains a closed infinite dimensional subspace (see [1, 18] for a discussion about space-
ability). The construction of this infinite dimensional subspace of Clarke saturated functions is
explicit, but the result requires working in ℓN1 (rather than in the usual Euclidean space RN ).

Let us mention for completeness that important subclasses of Lipschitz functions, such as
semialgebraic (more generally, Whitney stratifiable) or finite selections of CN -smooth functions
have small Clarke subdifferentials: they often reduce to a singleton and the (generalized) critical
values satisfy the conclusion of the Morse-Sard theorem, see [3, Corollary 5(ii)] and [2, Theorem 5]
respectively. On the other hand, every point of a Clarke-saturated Lipschitz function is (Clarke)
critical, since 0 ∈ ∂f(x) ≡ B(0, ∥f∥L). Other pathological situations have also been detected
in [15] where the authors constructed examples of Lipschitz continuous functions with finite Clarke
critical values, but with pathological subgradient dynamics both in continuous and discrete time:
the iterates generate bounded trajectories that fail to detect any Clarke critical point of the
function. Finally, in [6] the authors constructed locally Lipschitz functions whose subdifferential
assumes a prescribed set of values.

In this work we establish the following result for the range of the Clarke subdifferential. (The
term convex body employed below will refer to a compact convex set with nonempty interior.)

• There exists a compactly supported, differentiable 1-Lipschitz function f : RN → R whose
Clarke subdifferential contains all convex bodies of the closed unit ball.

The construction is different for N = 1 (Theorem 3.7) and for N ≥ 2 (Theorem 3.12). In the
first case, the function f is also subdifferentially exhaustive (see Definition 2.4), that is, its Clarke
subdifferential takes all of its possible values. In both cases, N = 1 and N ≥ 2, the construction
reveals that the set of all such functions whose support is contained in an open bounded set U
of RN is spaceable in (Lip(U), ∥ · ∥L) and dense in (Lip[1](U), d∞), see Remark 3.8 (v),(vi) and
Subsection 3.2.

By enhancing the techniques employed in Subsection 3.2 we obtain, in Subsection 3.3, a more
general result (Theorem 3.16), that recovers all compact connected subsets of RN with nonempty
interior (not only the convex bodies). The construction requires N ≥ 2 (but for N = 1 the two
notions coincide anyway). The general result reads as follows:

• There exists a compactly supported, differentiable function f : RN → R whose limiting
subdifferential contains all compact connected subsets of RN with nonempty interior.
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2 Prerequisites.

We recall that the term Polish space refers to any separable topological space, whose topology can
be metrizable in a way that the resulting metric space is complete. We denote by ∆ := {0, 1}N
the Cantor set and recall that every uncountable Polish space contains a homeomorphic copy
of ∆, see [22, Corollary 6.5].

In this work, we consider the Euclidean space RN , N ≥ 1 and denote by B(0, r) (respectively,
B(0, r)) the open (respectively, closed) ball centered at x ∈ RN with radius r > 0.

Given a nonempty convex compact subset C of RN we set:

FC := {K ⊂ C : K ̸= ∅, compact}. (2.1)

It is known that FC is a compact metric space for the Hausdorff distance

DH(K1,K2) := max

{
sup
x∈K1

d(x,K2), sup
x∈K2

d(x,K1)

}
(2.2)

where d(x,A) := inf {∥x− a∥ : a ∈ A} for every A ⊂ RN . We further set

KC := {K ⊂ C : K ̸= ∅, compact convex}. (2.3)

Notice that KC is a closed subset of FC under the Hausdorff distance, therefore (KC , DH) is also
a compact metric space.

In what follows we denote by LN the Lebesgue measure on RN . Given an integrable function
f : RN → R, we say that a point x is a Lebesgue point of f if

lim
r↘0+

1

LN (B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0

Therefore, a Lebesgue point is a point where f does not oscillate in an average sense, see [19,
§1.7]. It is known that the set of Lebesgue points of every integrable function f is of full-measure.
In particular, for a.e. x ∈ RN it holds∣∣∣∣∣∣∣ f(x)−

 1

LN (B(x, r))

∫
B(x,r)

f(y)dy


∣∣∣∣∣∣∣ −→r→0

0 (Lebesgue differentiation theorem)

Let us further recall the interval splitting property for subsets of the real line.

Definition 2.1 (splitting property). (i). A set A ⊂ R is called everywhere positive-measured, if
it intersects any nontrivial interval in a set of positive Lebesgue measure.

(ii). We say that A has the splitting property for the family of intervals of R if both A and R⧹A
are everywhere positive-measured.

The following lemma goes back to Bruckner [10] (see also [29, Lemma 4.1]).

Lemma 2.2 (countable splitting partition). There exists a countable partition {Ak}k∈N of R,
each of which splits the family of intervals.
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Let us now recall that given a nonempty open subset U of RN and a k-Lipschitz function
f : U → R, the Clarke subdifferential operator ∂f : U ⇒ RN has closed graph and nonempty
convex compact values (in particular, ∂f(x) ⊂ B(0, k) for every x ∈ U). We also recall that ∂f is
an upper semicontinuous multivalued operator, in the sense that for every ε > 0 and x ∈ U there
exists δ > 0 such that for all y ∈ B(x, δ) ∩ U it holds ∂f(y) ⊂ ∂f(x) +B(0, ε).

In what follows, U will denote a nonempty open subset of RN . We recall from [16] the following
definition.

Definition 2.3 (subdifferential saturation). A Lipschitz function f : U → R is called Clarke
saturated if for every x ∈ U we have ∂f(x) = B(0, ∥f∥Lip).

Therefore, a Lipschitz function f with ∥f∥Lip = 1 is Clarke saturated if and only if its Clarke
subdifferential at any point is equal to the unit ball of RN .

We shall further use the following terminology.

Definition 2.4 (subdifferential exhaustiveness). A Lipschitz function f : U → R is called Clarke
exhaustive (respectively, almost exhaustive) if for any nonempty closed convex subset K (respec-
tively, of nonempty interior) of the ball B(0, ∥f∥Lip), there exists x ∈ U such that ∂f(x) = K.

3 Main results

In this section we are going to construct an everywhere differentiable function in RN with bounded
derivatives (thus, in particular, a Lipschitz continuous function) whose Clarke subdifferential is
almost exhaustive. This yield the result announced in the title of the paper.

The construction requires at least two dimensions (that is, N ≥ 2), but the result is also true for
N = 1 through a different construction which will be treated first. Moreover, in the 1-dimensional
case the constructed function turns out to be Clarke-exhaustive, that is, the subdifferential is sur-
jective (assuming all of its possible values).

Since we deal with functions which are everywhere differentiable, the result is rather unexpected,
taking into account that the derivative is a Baire–1 function (therefore, generically continu-
ous) and the Clarke subdifferential of a strictly differentiable function (thus, a fortiori, of a
C1-function) is singleton everywhere.

As a matter of fact, our results also hold for the (smaller) limiting subdifferential, see forthcoming
Remark 3.8(i) (for N = 1) and Remark 3.13 (for N ≥ 2). A further refinement will be performed
in Section 3.3 where we eventually show that there exists a differentiable, locally Lipschitz func-
tion such that every compact connected subset of RN with nonempty interior appears in the
range of its limiting subdifferential.

3.1 Subdifferentially exhaustive differentiable functions in R

Let f : (0, 1) → R be 1-Lipschitz. Then for every x ∈ (0, 1), the subdifferential ∂f(x) is a
nonempty closed subinterval of [−1, 1] (possibly reducing to a singleton). We shall need the
following notation:

T+ =
{
(a, b) ∈ R2 : 0 ≤ a ≤ b ≤ 1

}
(3.1)

Let us start with the following essentially known result.
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Lemma 3.1. There exists a continuous surjective curve γ1 : [0, 1] → T+ such that γ1((0, 1)) = T+.

Proof. It is well-known that there exists a continuous surjective curve γ0 : [0, 1] → [0, 1] × [0, 1].
This map is called a Peano curve, see [27]. The function φ : R2 → R2 defined by

φ(a, b) =
(
min{a, b},max{a, b}

)
is continuous and maps [0, 1]× [0, 1] onto T+. Thus the function γ1 = φ◦γ0 satisfies the assertion
of the statement. □

3.1.1 An easy nonsmooth example

Let us first provide a straightforward construction of a 1-Lipschitz Clarke exhaustive function
(omitting momentarily the additional requirement of being everywhere differentiable).

Theorem 3.2 (exhaustive Lipschitz function in R). There exists a Lipschitz function f : [0, 1] → R
with ∥f∥Lip = 1 such that for every nonempty closed interval [a, b] ⊂ [−1, 1], there exists x ∈ (0, 1)
such that ∂f(x) = [a, b], that is, ∂f([0, 1]) = K[−1,1].

Proof. Let γ1(t) =
(
a(t), b(t)

)
, with t ∈ [0, 1], be the continuous curve given by Lemma 3.1 and

let A ⊂ (0, 1) be a measurable set which splits the family of nonempty open intervals of [0, 1] (c.f.
Definition 2.1(ii)). The required function f is explicitly defined as follows:

f(x) =

∫ x

0

[
a(t)1A(t) + b(t)1[0,1]\A(t)

]
dt.

Indeed, let us prove that for every x ∈ [0, 1], we have ∂f(x) = [a(x), b(x)].

To this end, let us first consider a Lebesgue point t ∈ A of the function 1A. Since a is continuous,
we have that f ′(t) exists and f ′(t) = a(t). Similarly, if s ∈ (0, 1) \ A is a Lebesgue point of the
function 1[0,1]\A, then f

′(s) exists and f ′(s) = b(s). Fix now x ∈ (0, 1) (arbitrarily chosen). Since
any open interval containing x meets the sets A and [0, 1]\A on a set of positive measure, we
deduce that a(x) ∈ ∂f(x) and b(x) ∈ ∂f(x), yielding [a(x), b(x)] ⊂ ∂f(x).

To establish the other inclusion, let us fix ε > 0 and

N := {x ∈ [0, 1] : x is not a Lebesgue point for f}.

Since the functions a, b are continuous, there exists δ > 0 such that |a(t) − a(x)| ≤ ε and
|b(t)− b(x)| ≤ ε, for all t ∈ (x− δ, x+ δ). It follows that ∂f(x) ⊂ [a(x)− ε, b(x) + ε]. Since ε > 0
is arbitrarily chosen, we deduce ∂f(x) ⊂ [a(x), b(x)] and consequently, equality holds.

Recalling that γ1 satisfies Lemma 3.1, for every nonempty closed interval [a, b] ⊂ [0, 1], there
exists x ∈ (0, 1) such that γ1(x) = (a, b) ∈ T+ ⊂ R2, and consequently, ∂f(x) = [a, b]. Replacing f
by the function

f̃(x) := 2f(x)− x, for all x ∈ [0, 1],

we obtain a function f̃ which is also 1-Lipschitz: Indeed, notice that f̃ ′(x) = 2f ′(x)− 1 ∈ [−1, 1]
whenever f ′(x) exists. It follows directly that

∂f̃((0, 1)) =
{
[a, b]; −1 ≤ a ≤ b ≤ 1

}
= K[−1,1].

The proof is complete. □
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Remark 3.3. Notice that the set of bounded 1-Lipschitz Clarke exhaustive functions in R cannot

be d∞-residual in the (complete) metric space
(
Lip[1](R), d∞

)
of all bounded 1-Lipschitz functions

in R, since it shares with the set of Clarke-saturated functions (which is known to be d∞-residual,
see [8]) only the null function f ≡ 0. However, we shall see later (Remark 3.8(iv)) that the set of

bounded 1-Lipschitz functions in R which are Clarke exhaustive is dense in
(
Lip[1](R), d∞

)
.

3.1.2 An involved construction ensuring differentiability

We shall now enhance the result of Theorem 3.2 by adding the requirement that the constructed
function f should also be everywhere differentiable. The construction becomes more involved,
but remains explicit. Before we proceed, we shall need the following preliminary results (lower
integral estimations for ν-root type functions).

Lemma 3.4 (lower integral estimation I). There exists a function σ : (0, 1) → (0, 1] satisfying
lim
ν→0

σ(ν) = 0 such that for every x, h ∈ R with h ̸= 0, we have:

1

h

∫ x+h

x
|t|νdt ≥ |x|ν

(
1− σ(ν)

)
. (3.2)

Proof. If x = 0 the assertion follows trivially. Therefore we may assume that x ̸= 0. Since the
functions x→ |x|ν are even, we can limit our attention to the case h > 0. We set:

I =
1

h

∫ x+h

x
|t|νdt.

We consider successively all four possible cases:

We first assume that x > 0 and t ∈ [x, x+h]. In this case, |t|ν ≥ |x|ν and I ≥ |x|ν , therefore (3.2)
holds for any function σ with nonnegative values.

Let us now assume x < 0 < x+ h ≤ |x|. A direct computation gives:

I =

(
1 + y1+ν

1 + y

)(
|x|ν

1 + ν

)
, where y :=

x+ h

|x|
∈ [0, 1]. (3.3)

Consider the (continuous) functions Ψν : [0, 1] → [0,+∞), ν ∈ (0, 1), defined by

Ψν(y) =
1 + y1+ν

(1 + ν)(1 + y)
, y ∈ [0, 1].

Then the functions {Ψν}ν>0 converge pointwise to the function Ψ ≡ 1 as ν tends to 0. Since the
above convergence is monotone, we deduce from Dini theorem that the convergence is uniform.
Setting

σ(ν) := 1− min
y∈[0,1]

1 + y1+ν

(1 + ν)(1 + y)
(3.4)

we readily deduce that lim
ν→0

σ(ν) = 0. Therefore (3.3) yields

I ≥ |x|ν (1− σ(ν))

and (3.2) holds true for σ given in (3.4).

7



If x < x+ h ≤ 0, then a direct computation yields

I ≥ |x|ν

1 + ν
=

(
1− ν

1 + ν

)
|x|ν ≥ (1− σ(ν))|x|ν ,

where σ is given by (3.4).

It remains to deal with the case x < 0 < |x| < x+ h. In this case we have

I =
1

h

∫ |x|

x
|t|νdt+ 1

h

∫ x+h

|x|
|t|νdt ≥ 1

h

{
(|x| − x)|x|ν

(
1− σ(ν)

)
+ (x+ h− |x|)|x|ν

}
≥ (1− σ(ν)) |x|ν .

Therefore (3.2) is still satisfied and the proof is complete. □

We now extend (3.2) to a more general class of functions. Fixing parameters d ∈ R, m > 0 and
ε > 0, we set for each ν ∈ (0, 1)

R(t) = min

{
mν ,

(
|t− d|
ε

)ν}
, t ∈ R. (3.5)

The above function is continuous and nonnegative. The following result shows that R also satisfies
the same lower integral estimation as in (3.2).

Lemma 3.5 (lower integral estimation II). For every x, h ∈ R with h ̸= 0, the function R given
in (3.5) satisfies

1

h

∫ x+h

x
R(t)dt ≥ R(x)

(
1− σ(ν)

)
, (3.6)

where σ : (0, 1) → (0, 1] is the function defined in Lemma 3.4.
(Notice that this integral estimate does not depend on the values of the parameters ε, d and m.)

Proof. We first consider the case ε = 1 and d = 0. Let x ∈ R and h > 0. If m ≤ x < x+ h or if
x < x+ h ≤ −m there is nothing to prove since in both cases the function R is constant on the
interval [x, x+ h]. The case −m ≤ x < x+ h ≤ m follows from the previous lemma, since in this
case R(t) = |t|ν on [x, x+ h].

Let us now consider the case −m ≤ x ≤ m < x + h. Then, according to the previous lemma,∫m
x R(t)dt ≥ R(x)

(
1− σ(ν)

)
(m− x). Since∫ x+h

m
R(t)dt = mν(x+ h−m) ≥ R(x)(x+ h−m),

we deduce

1

h

∫ x+h

x
R(t)dt =

1

h

(∫ m

x
R(t)dt+

∫ x+h

m
R(t)dt

)
≥ R(x)

(
1− σ(ν)

)
.

It remains to consider the case x < −m < x+ h. In this case∫ −m

x
R(t)dt = R(x)(−m− x)
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and
1

h

∫ x+h

x
R(t)dt =

1

h

(∫ −m

x
R(t)dt+

∫ x+h

−m
R(t)dt

)
≥ R(x)

(
1− σ(ν)

)
since, according to the previous case,∫ x+h

−m
R(t)dt ≥ R(−m)

(
1− σ(ν)

)
(x+ h+m) = R(x)

(
1− σ(ν)

)
(x+ h+m).

This proves the validity of (3.6) for the function R(x) = min {mν , |x|ν} . The general case for
arbitrary values of the parameters d ∈ R and ε > 0 in (3.5) easily follows by translation and a
standard argument. □

We shall also need the following refinement of Lemma 3.1.

Lemma 3.6. Let C be any compact subset of [0, 1] which is homeomorphic to the Cantor set
∆ := {0, 1}N. Then there exists a continuous curve γ : [0, 1] → R2, such that

γ
(
[0, 1]

)
= γ(C) = T+ (see (3.1))

Proof. Let φ be a homeomorphism from C onto {0, 1}N and let ψ : {0, 1}N → [0, 1] be defined as
follows:

ψ
(
(xn)

)
=
∑
n≥1

2−nxn.

It follows easily that ψ is continuous and surjective, therefore, γ2 := ψ◦φ is a continuous function
from C onto [0, 1]. By Urysohn lemma, we can extend γ2 to a continuous curve γ̃2 from [0, 1]
onto [0, 1]. If γ1 denotes the function constructed in Lemma 3.1, then the continuous curve
γ := γ1 ◦ γ̃2 satisfies the assertion. □

We are now ready to construct the desired function f .

Theorem 3.7 (smooth exhaustive function in R). There exists a 1-Lipschitz differentiable func-
tion f : R → R with compact support for which the range of its Clarke subdifferential contains all
closed sub-intervals and all singletons of [−1, 1].

Proof. Let D = {dn}n≥1 be a countable dense subset of [0, 1]. Let {εn}n be a nonincreasing
sequence of positive real numbers such that

∑
n≥1

εn < 1/2. Let {νn}n be a sequence in (0, 1) such

that
∑
n≥1

σ(νn) < +∞, where σ is the function defined by (3.4) and evoked in Lemma 3.5. Let rn

be the function defined by

rn(x) :=
( |x− dn|

εn

)νn
, x ∈ R. (3.7)

According to our choice of ε, the set

F := [0, 1]⧹

(⋃
d∈D

(dn − εn, dn + εn)

)
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is a closed subset of [0, 1] of positive Lebesgue measure. Since F is an uncountable Polish space,
there exists a closed subset C of F which is homeomorphic to the Cantor set ∆ = {0, 1}N (see
[22, Corollary 6.5] e.g.) Notice also that

rn(x) ≥ 1, for all x ∈ F and n ∈ N.

We are now ready to construct our function f . Let

γ(x) =
(
α(x), β(x)

)
∈ T+, x ∈ [0, 1],

be the continuous curve constructed in Lemma 3.6 with respect to the closed subset C of F
evoked above. We set

g0(x) = β(x)

and define inductively

gn(x) = min
{
gn−1(x), α(x) + rn(x)

}
, for n ≥ 1.

Finally, we set

g(x) = inf
n≥1

gn(x) = min
{
β(x), α(x) + inf

n≥1
rn(x)

}
and f(x) =

∫ x

0
g(t)dt. (3.8)

Notice that the function g is upper semi-continuous (as infimum of continuous functions), hence
measurable, with values in [0, 1] because α ≤ g ≤ β. Therefore, the function f is 1-Lipschitz and
nondecreasing. By construction, we have

g(x)− α(x) ≤ rn(x), for every x ∈ [0, 1] and n ≥ 1.

Let us fix x ∈ [0, 1] and define

Rn(t) := min{g(x)− α(x), rn(t)}, for all t ∈ [0, 1].

It follows readily that Rn(x) = g(x)− α(x), thus 0 ≤ Rn(x) ≤ β(x) ≤ 1. Since

max{0, g(x)− α(x)− rn(t)} = Rn(x)−Rn(t),

we obtain from (3.5)–(3.6) with d = dn, ν = νn and m =
(
g(x)− α(x)

)1/νn
1

h

∫ x+h

x
max{0, g(x)−α(x)− rn(t)}dt = Rn(x)−

1

h

∫ x+h

x
Rn(t)dt ≤ Rn(x)σ(νn) ≤ σ(νn). (3.9)

Claim 1 : The function f is differentiable at every point and f ′ = g.

Proof of Claim 1. We shall consider separately two cases:

— Case g(x) = α(x).

Since g ≥ α, g(x) = α(x), g is upper semi-continuous and α is continuous, we deduce that g is
continuous at x, and consequently f is differentiable at x with f ′(x) = g(x). Notice that the level
set

[g − α = 0] := {x ∈ [0, 1] : g(x) = a(x)}
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of the function g − α is dense Gδ in [0, 1]: indeed, it contains the dense set D = {dn}n≥1 (notice
that rn(dn) = 0 and consequently, by (3.8), g(dn) = α(dn), for every n ≥ 1) and it is Gδ since the
strict sublevel sets [

g − α <
1

n

]
=

{
x ∈ [0, 1] : g(x)− α(x) <

1

n

}
are open (thanks to the upper semicontinuity of g and the continuity of α) and[

g − α = 0
]
=
⋂
n≥1

[
g − α < 1/n

]
.

— Case g(x) > α(x).

Since g is upper semi-continuous, we always have

lim sup
h→0

f(x+ h)− f(x)

h
= lim sup

h→0

1

h

∫ x+h

x
g(t)dt ≤ g(x).

It remains to prove that for fixed ε > 0, there exists h1 > 0 such that, if |h| ≤ h1, then

f(x+ h)− f(x)

h
≥ g(x)− 5ε. (3.10)

Without loss of generality, we may assume that

κ := g(x)− α(x)− ε > 0.

Thus, for any n ∈ N, x does not belong to the closed set r−1
n

(
{κ}
)
, which yields that

dist
(
x, r−1

n

(
{κ}
))

= dist
(
x, r−1

n ([0, κ])
)
> 0.

Moreover, up to a subsequence,

dist
(
x, r−1

n

(
{κ}
))

−→
n→+∞

0.

Therefore, setting

N(x, h) := min
{
n ≥ 1 : r−1

n

(
{κ}
)
∩ [x− h, x+ h] ̸= ∅

}
, for h > 0

we deduce easily that
lim
h→0

N(x, h) = +∞.

Let us fix h0 > 0 such that N := N(x, h0) satisfies both∑
n>N

σ(νn) < ε and |gN (x)− g(x)| < ε.

Then, we fix 0 < h1 ≤ h0 such that, if t ∈ [x− h1, x+ h1], then

|gN (x)− gN (t)| ≤ ε and |α(x)− α(t)| ≤ ε.
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Consequently, if |h| ≤ h1, we have

1

h

∫ x+h

x
gN (t)dt ≥ gN (x)− ε ≥ g(x)− ε.

Therefore, in order to prove (3.10), it is enough to prove that

1

h

∫ x+h

x

(
gN (t)− g(t)

)
dt ≤ 4ε, whenever |h| ≤ h1.

Since g(t) = min
{
gN (t), α(t) + inf

n>N
rn(t)

}
, we obtain

gN (t)− g(t) = max

{
0, sup

n>N
{gN (t)− α(t)− rn(t)}

}
.

If |t− x| ≤ h1, then we also have that gN (t)− α(t) ≤ g(x)− α(x) + 3ε. Hence,

gN (t)− g(t) ≤ max

{
0, sup

n>N
{g(x)− α(x) + 3ε− rn(t)}

}
≤ max

{
0, sup

n>N
{g(x)− α(x)− rn(t)}

}
+ 3ε

≤
∑
n>N

max {0, {g(x)− α(x)− rn(t)}}+ 3ε

Integrating the above inequality, we obtain thanks to (3.9)

1

h

∫ x+h

x

(
gN (t)− g(t)

)
dt ≤

∑
n>N

1

h

∫ x+h

x
max {0, g(x)− α(x)− rn(t)} dt+ 3ε

≤
∑
n>N

σ(νn) + 3ε ≤ 4ε
(3.11)

Thus, we have shown that f is differentiable at each point and that f ′ = g. ♢

Claim 2 : Im(∂f) = ∂f((0, 1)) = K(0,1) :=
{
[a, b] : 0 ≤ a ≤ b ≤ 1

}
.

Proof of Claim 2. For every x ∈ (0, 1), we have 0 ≤ f ′(x) = g(x) ≤ 1, whence ∂f(x) ⊂ [0, 1]. Let
us now fix x ∈ C. Since C ⊂ F , we have rn(x) ≥ 1 for all n ≥ 1 and consequently

f ′(x) = g(x) = β(x) ∈ ∂f(x).

Since the set [f ′ = α] = [g = α] is dense in [0, 1] and α is continuous, we deduce that α(x) ∈ ∂f(x),
hence [α(x), β(x)] ⊂ ∂f(x). The reverse inclusion follows easily from (1.3), since f ′(x) = g(x) ∈
[α(x), β(x)] and the functions α and β are continuous.

Let us finally recall that the curve γ = (α, β) satisfies the conclusion of Lemma 3.6. This ensures
that

∂f(C) =
{
[a, b] : 0 ≤ a ≤ b ≤ 1

}
.

We conclude that ∂f((0, 1)) = ∂f(C) = K[0,1] as asserted. ♢
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Replacing again f by f̃ := 2f − I, where I is the identity on [0, 1], we obtain a differentiable
function f̃ with derivatives in [−1, 1]. It easily follows that f̃ is 1-Lipschitz and satisfies

∂f̃((0, 1)) = K[−1,1] =
{
[a, b] : −1 ≤ a ≤ b ≤ 1

}
.

The proof is complete. □

Remark 3.8. (i). In the above construction, ∂f(x) is a singleton if and only if x belongs to the
(Gδ dense) subset [g = α] of [0, 1]. Moreover, since g = f ′ has the Darboux property, we can
easily deduce that ∂f(x) = ∂Lf(x), for all x ∈ (0, 1) and consequently, the conclusion also holds
for the limiting subdifferential.

(ii). We can assume that C is contained in (0, 1) and that α(0) = β(0) = α(1) = β(1) = 0. This
allows to extend f to a differentiable function on R satisfying f ′(0) = f ′(1) = 0.

(iii). We can also assume that L1(C) = 0. In this case we have a negligible set C satisfying

∂f(C) := {∂f(x) : x ∈ C} = K[−1,1].

(iv). It is clear from the above construction that the domain of f can be any nontrivial interval
of arbitrarily small length and that the range of f can be taken inside [c− ε, c+ ε] for any choice
of c ∈ R and ε > 0. It follows easily, by a standard argument, that for any nonempty open
interval J of R, the set of bounded, differentiable, Clarke exhaustive k-Lipschitz functions in J
is d∞-dense in the (complete) metric space

(
Lip[k](J ), d∞

)
of all bounded Lipschitz functions

in J with ∥f∥Lip ≤ k.

(v). Let I = (a, b) be a nonempty (possibly unbounded) interval. Then the set E of all real-valued
Lipschitz functions in I which are everywhere differentiable and Clarke exhaustive is spaceable
when equipped with the semidistance dLip(f, g) := ∥f − g∥Lip, for all f , g in E .
Indeed, it is sufficient to consider a sequence of disjoint intervals {(an, bn)}n such that

a < an < bn < an+1 < b , for every n ∈ N ,

a sequence of Clarke exhaustive functions {fn}n such that ∥fn∥Lip = 1 and supp fn ⊂ (an, bn) for
all n ∈ N, and the operator T : c0(N) → E defined by

T ({xn}n) :=
∞∑
n=1

xnfn(·).

Since the supports of the functions fn are pairwise disjoint, it follows easily that the operator
T is well defined and establishes a linear isometry between c0(N) and its image. Therefore, the
metric space (E , dLip) contains an isometric copy of c0(N). Similar constructions of operators T
can be found in [16, 17].
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(vi). The set of all Lipschitz functions in [0, 1] which are everywhere differentiable and Clarke
exhaustive cannot be ∥ · ∥∞-spaceable in (Lip([0, 1]), ∥ · ∥∞) (the latter being seen as a dense
subspace of the Banach space (C([0, 1], ∥ · ∥∞)). This is a straightforward consequence of the
classical fact that every subspace Y of Lipschitz functions which is ∥ · ∥∞-closed in C([0, 1])
is necessarily finite dimensional. Let us sketch a proof for reader’s convenience: we consider
the family of linear operators {Tx,y : x, y ∈ [0, 1], x ̸= y} defined by Tx,y(f) = f(x)−f(y)

|x−y| , for

all f ∈ Y ⊂ Lip([0, 1]). Since Tx,y(f) ≤ ||f ||Lip for all x, y ∈ [0, 1], x ̸= y, and (Y, ∥ · ∥∞)
is complete, applying the Banach-Steinhaus theorem we deduce that for some M > 0 and all
x, y ∈ [0, 1], x ̸= y, it holds ||Tx,y|| ≤M. It follows from Arzelà-Ascoli theorem that every || · ||∞-
bounded sequence {fn}n in Y has a converging subsequence, and consequently, the closed unit
ball BY (0, 1) of Y is compact, ensuring that Y is finite dimensional.

3.2 Subdifferential containing all convex bodies in RN (N ≥ 2)

We shall now deal with the higher dimensional case and construct a differentiable Lipschitz
function f which is almost exhaustive, that is, its Clarke subdifferential contains all nonempty
convex compact subsets of B(0, ∥f∥Lip) of nonempty interior. The question of whether it is
possible to obtain a Lipschitz Clarke exhaustive function in dimension N ≥ 2 remains open.

Let us stress the fact that the forthcoming construction cannot be applied in one dimension.
Roughly speaking, our approach occupies one-dimension to code the family of convex bodies in
B(0, ∥f∥Lip) (based on the fact that any compact geodesic metric space can be represented as a
continuous surjective image of [0, 1]) and requires at least one extra dimension to make an efficient
use of this coding. Although the overall construction is less explicit and more involved, the reader
can possibly trace some analogies between the aforementioned surjection and the curve obtained
in Lemma 3.1 which was used to recover all closed intervals in [0, 1].

In order to keep notation simple, RN will be considered with its natural Euclidean structure
(despite the fact that our results Lemma 3.9 and Theorem 3.12 hold true in any finite dimensional
normed space). Therefore, by Riesz representation theorem, the dual space of RN will be identified
to itself. We shall also identify 1-formsDf(x) with gradients∇f(x), for any differentiable function
f : RN → R. In what follows we are going to construct:

(I) for every n ≥ 1, a compactly supported differentiable n-Lipschitz function fn : RN → R
whose Clarke subdifferential contains in its range every compact convex subset of nonempty
interior that lie in the closed ball B(0, n).

Similarly to the one-dimensional case, the method of construction will directly yield that the set
of all functions as above is d∞-dense in (Lip(U), ∥ · ∥∞) (for U ⊂ RN open and bounded) and
∥ · ∥L-spaceable in (Lip(U), ∥ · ∥L) .

(II) a differentiable locally Lipschitz function f : RN → R whose Clarke subdifferential contains
in its range all compact convex bodies of RN .

Notice that the second assertion follows directly from the first: it is enough to consider a family
of differentiable Lipschitz functions fn : RN → R with Lip(fn) = n and disjoint supports (for
instance, supp(fn) ⊂ B(3n e1, 1) where e1 = (1, 0, · · · , 0)), satisfying the statement (I) and define
the function

f(x) =
∑
n≥1

fn(x), for all x ∈ RN . (3.12)
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One readily gets that f is everywhere differentiable, locally Lipschitz and satisfies assertion (II).

Let us now proceed to the construction evoked in (I). It clearly suffices to do it for the case n = 1
and construct a 1-Lipschitz function.
This will be done in two stages: we first fix a compact convex subset C in RN that contains 0
and construct an L-Lipschitz function (with C ⊂ B(0, L)) whose Clarke subdifferential contains
all compact convex subsets K of C that contain 0. The general case will follow using separability
arguments, by considering an adequate sequence {Cn}n of compact convex sets with 0 ∈ intCn,
then gluing adequate translations of the corresponding constructed functions.

3.2.1 An intermediate construction

For a nonempty compact convex subset C of RN with 0 ∈ C, recalling from (2.3)–(2.2) the
definition of (KC , DH) we denote by

K0
C := {K ∈ KC : 0 ∈ K} (3.13)

the set of all convex compact subsets of C containing 0. Notice that K0
C is closed in KC , therefore

(K0
C , DH) is a compact metric space. Moreover, it is a geodesic space (see [28, p. 72] e.g.). Indeed,

for any two elements K0,K1 ∈ K0
C and λ ∈ (0, 1), we have:

Kλ := (1− λ)K0 + λK1 ∈ K0
C and DH(K0,Kλ) = λDH(K0,K1). (3.14)

We shall show, as an application of the next lemma, that there exists a differentiable 1-Lipschitz
function f : RN → R such that K0

B(0,1)
is contained in the image of the subdifferential of f .

Lemma 3.9. Let C ⊂ RN be a convex compact set such that 0 ∈ C and L := max
x∈C

{∥x∥}. Then:

(i). There is a differentiable L-Lipschitz continuous and compactly supported function f : RN → R
such that:

for every K ∈ K0
C , there exists x ∈ RN such that ∂f(x) = K. (3.15)

(ii). Let us further assume that 0 ∈ int(C). Then in addition to (3.15) we get:

∂f(x) ⊂ C, for all x ∈ RN (3.16)

Figure 1: Sketch of the function constructed in Lemma 3.9.
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Proof. (i). If C = {0}, then the function f ≡ 0 satisfies trivially the conclusion. Therefore,
we may assume {0} ⊊ C. Since

(
K0

C , DH

)
is a compact metric space, there exists a continuous

surjective map from the Cantor set ∆ to K0
C (see [22, Theorem 4.18]). Since K0

C is also geodesic,
a standard argument shows that this map can be extended to a continuous surjective map

h : [0, 1] → K0
C (coding the elements of K0

C).

Let
D = {dn : n ∈ N}

be a countable dense subset of (0, 1).

Let us define, by induction, two sequences {αn}n and {εn}n, satisfying αn > εn > 0, for all n ≥ 1,
satisfying

lim
n→∞

αn = lim
n→∞

εn = 0

and the following property: setting

Qn = (dn, αn, 0, . . . , 0) ∈ RN , where n ∈ N, (3.17)

the balls B(Qn, εn) are pairwise disjoint and contained in (0, 1)N .

Indeed, assuming that α1, · · · , αn, ε1, · · · , εn have already been constructed accordingly, pick

0 < αn+1 < mn := min{αi − εi; 1 ≤ i ≤ n}

and then choose 0 < εn+1 < αn+1 such that αn+1 + εn+1 < mn and εn+1 < min{dn+1, 1− dn+1}.
Notice that we can also assume the extra condition lim

n→∞
εn/αn = 0 (which will be needed later).

A concrete choice of such sequences is given by αn = 1/2n, εn = 1/n2n+2 and {dn}n∈N be a
standard enumeration of the dyadics in (0, 1) given by d1 = 1/2 and

dn =
2 i(n)− 1

2m(n)+1
,

where for every n ≥ 2 we denote by m(n) the unique m ∈ {1, . . . , n} such that

sm :=
m−1∑
k=0

2k < n ≤ sm+1 :=
m∑
k=0

2k

and we set i(n) := n− sm(n) ∈ {1, . . . , 2m(n)−1}. Further, for every n ∈ N we define

Hn :=
(
h(dn) +B(0, γn)

) ⋂
B(0, L), (3.18)

where {γn}n is an arbitrary sequence of positive numbers converging to 0. Therefore, for every
n ∈ N we have

B (0,min {γn, L}) ⊂ Hn ⊂ h(dn) +B(0, γn). (3.19)

Since Hn is a convex compact subset of RN such that 0 ∈ int(C), according to a consequence
of a result of J. Borwein, M. Fabian, I. Kortezov and P. Loewen [4, Theorem 12] (see also
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T. Gaspari [21]), for every n ∈ N, there exists a C1-smooth function bn : RN → R, with support
in the unit ball, such that ∇bn(RN ) = Hn and ∥bn∥∞ ≤ 1. We set

ϕn(x) := εn · bn
(x−Qn

εn

)
(3.20)

and observe that ϕn is L-Lipschitz and satisfies:

∥ϕn∥∞ ≤ εn and supp(ϕn) ⊂ B(Qn, εn).

It follows that the elements of the family S = {supp(ϕn) : n ∈ N} are pairwise disjoint and
contained in [0, 1]N . Moreover, for any x ∈ RN and n ∈ N, we have

∇ϕn
(
B(Qn, εn)

)
= Hn. (3.21)

Notice further that if x /∈ R×{0}N−1, then B(x, δ) intersects at most one element of the family S
for δ > 0 sufficiently small.
We are ready to define the function f that satisfies our assertion:

f : RN → R

f(x) =
∞∑
n=1

ϕn(x).
(3.22)

Since supp(f) ⊂ [0, 1]N , the function f is compactly supported. It follows easily that f is L-
Lipschitz and coincides with ϕn in a neighborhood of Qn. Therefore, ∂f(x) ⊂ B(0, L), for all
x ∈ RN . Moreover, since ∥ϕn∥∞ −→

n→∞
0, f vanishes and is continuous on R× {0}N−1. The next

claim yields directly (3.15).

Claim 1 : For every K ∈ K0
C there exists x ∈ [0, 1]× {0}N−1 with ∂f(x) = K.

Proof of the Claim 1. Fix K̂ ∈ K0
C and pick any t̂ ∈ [0, 1] such that h(t̂) = K̂. Set

x̂ = (t̂, 0, . . . , 0) ∈ [0, 1]× {0}N−1.

We first show that K̂ ⊂ ∂f(x̂). Indeed, by continuity of the function h we have

lim
t→t̂

DH(h(t), K̂) = 0.

Take a sequence dk(n) ∈ D converging to t̂ so that x̂ = limn→∞Qk(n). Recalling (3.19) we deduce
that:

lim
n→∞

Hk(n) = K̂. (3.23)

Thus, if p ∈ K̂, there exist points xn ∈ B(Qk(n), εn), n ≥ 1, such that the sequence
{
∇f(xn)

}
n

converges to p. Since x̂ = limn→∞ xn, we obtain p ∈ ∂f(x̂). This proves that K̂ ⊂ ∂f(x̂).

Let us now prove ∂f(x̂) ⊂ K̂. Fix ε > 0. Since h is continuous, there exists δ > 0 such that

h(t) ⊂ K̂ +B(0, ε/2), for all t ∈ (t̂− δ, t̂+ δ) ∩ [0, 1]. (3.24)

For ρ > 0 sufficiently small (the exact value of ρ will be fixed later) we set:

Uρ :=
[
(t̂− δ

2
, t̂+

δ

2
)× (−ρ, ρ)N−1

]
\
[
{0} × RN−1

]
.
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Since for every x ∈ Uρ there is at most one n ∈ N such that x ∈ supp(ϕn), it follows that either
∇f(x) = 0 (if x does not belong to any element of the family S) or in view of (3.21)

∇f(x) = ∇ϕn(x) ∈ Hn,

In this latter case, since dn ∈ (t̂− δ, t̂+ δ) it follows from (3.24) and (3.18) that

∇f(x) ∈ Hn ⊂ h(dn) +B(0, γn) ⊂
(
K̂ +B(0,

ε

2
)
)
+B(0, γn).

We can take ρ > 0 sufficiently small to ensure that γn < ε/2, whenever supp(ϕn) ∩ Uρ ̸= ∅.
Choosing ρ > 0 in this way, we infer that

∂f(x) ⊂ K̂ +B(0, ε), for all x ∈ Uρ.

Since the set N := {0}×RN−1 is negligible for the Lebesgue measure, we deduce easily from the
formula (1.3) of the Clarke subdifferential that

∂f(t̂× {0}N−1) ⊂ K̂ +B(0, ε).

Since ε > 0 can be chosen arbitrary small, we obtain the desired conclusion.

Claim 2 : The function f is differentiable on RN

Proof of the Claim 2. Since the compact sets supp(ϕn) are disjoint subsets RN and do not intersect
the closed subset [0, 1] × {0}N−1 of RN , the function f is C1-smooth on RN \

(
[0, 1]× {0}N−1

)
.

Let us now treat the case where x ∈ [0, 1] × {0}N−1. In this case, f(x) = 0. Take any y ∈ RN .
If the point y does not belong to supp(ϕn) for any n, then f(y) = 0, while if y ∈ supp(ϕn) for
some n ∈ N, then we deduce from (3.20) that |f(y) − f(x)| = |f(y)| ≤ εn ≪ ∥y − x∥ because
∥y − x∥ ≥ αn − εn and lim

n→∞
εn/αn = 0. Since supp(ϕn) is compactly contained in (0, 1)N, we

conclude that f is differentiable at x and ∇f(x) = 0. ♢

This completes the proof of (i).

(ii). We now assume that there exists λ > 0 such that B(0, λ) ⊂ C. To construct a function f
that satisfies (3.15)–(3.16), we replace the definition of Hn in (3.18) by

Hn :=
(
h(dn) +B(0, γn)

)
∩ C,

and we proceed as before. It follows easily that ∂f(x) ⊂ C ⊂ B(0, L), for all x ∈ RN (in particular
f is L-Lipschitz) and (3.15) follows as in (i). □

Remark 3.10. (i). A more elementary (and self-contained) proof of Lemma 3.9 can be provided if
the assumption of differentiability of f is dropped. Indeed, following the lines of the above proof,
once defined the sets Hn in (3.18), we can consider the functions b̂n : RN → R defined by

b̂n(x) := min{0, sup
p∈Hn

⟨p, x⟩ − cn},

where cn > 0 is chosen such that supp(̂bn) ⊂ B(0, 1) and ∥b̂n∥∞ ≤ 1. Note that, in a neighborhood
of 0, the function b̂n + cn is the support function of Hn. The function b̂n is non-differentiable
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and ∂b̂n(x) ⊂ Hn = ∂b̂n(0) for all x ∈ X. Then we define ϕn as in (3.20), using the functions
{b̂n : n ∈ N} (instead of bn) and the function f̂ : RN → R as in (3.22). Proceeding as in the
above proof and using the fact that the Clarke subdifferential ∂f̂ is outer semicontinuous and
∂f̂(Qn) = Hn for all n ∈ N, we deduce that ∂f̂((t, 0, ...0)) = h(t), for any t ∈ [0, 1].

(ii). We can also use this idea to construct an everywhere differentiable function satisfying
Lemma 3.9. Indeed, fixing a positive mollifier ρ : RN → R, we set ρn(·) := ν−N

n ρ(·/νn), νn ≥ 1
and consider the convolution b∗n := b̂n ∗ ρn. Then taking νn > 0 sufficiently small, we ensure that
b∗n is a good approximation of b̂n, which becomes better and better as ν → 0. (The interested
reader is invited to work out the details of this construction.)

(iii). A careful inspection of the proof of Lemma 3.9 reveals that one can work directly with the
continuous surjective map h : ∆ 7→ K0

C by simply replacing [0, 1] by ∆ in the proof and by taking
a countable dense subset D of ∆ \ {0, 1}. The coding over ∆ does not use the fact that the space
(K0

C , DH) is a geodesic space. This remark will be particularly relevant in Section 3.3.

3.2.2 Main result: recovering convex bodies

Based on Lemma 3.9 (which recovers all convex bodies containing 0), we can now deduce the
general case. We shall also need the following lemma.

Lemma 3.11. Let x∗ ∈ RN be such that ∥x∗∥ < 1. Then, there exists a continuously differentiable
and 1-Lipschitz function h : RN → R with support in the unit ball B(0, 1) and δ > 0 such that

∇h(x) = x∗(x), for all x ∈ B(0, δ).

The proof of the above lemma is straightforward. It is sufficient to set x 7→ x∗(x) on a small ball
centered at 0, consider an affine interpolation outside this ball which brings to the value to 0,
and finally use a mollifier with a sufficiently small support.

We are now ready to state the main result of this section.

Theorem 3.12 (almost exhaustive function in RN ). There exists a differentiable 1-Lipschitz
compactly supported function f : RN → R such that for every convex body K of B(0, 1), there
exists x ∈ RN such that ∂f(x) = K.

Proof. Let {q∗n}n ⊂ B(0, 1) be a dense sequence in B(0, 1). We claim that there exists a
differentiable, 1-Lipschitz and compactly supported function g : RN → R satisfying that for each
n ∈ N, there exists a set Un ⊂ RN with nonempty interior, such that

∇g(x) = q∗n if x ∈ Un.

Let us present a quick construction of the function g. First, applying Lemma 3.11, for any n ∈ N,
there exists a continuously differentiable and 1-Lipschitz function gn : RN → R with support in
the unit ball such that ∇gn(x) = q∗n(x), for all x in a neighborhood of 0. Take any sequence {xn}n
of distinct points of B(0, 1) that converges to some point ℓ of the open unit ball, with ℓ ̸= xn, for
all n ∈ N. Choose further {εn}n ⊂ (0, 1) such that

{
B(xn, εn)

}
n
is a sequence of disjoint closed

balls contained in B(0, 1). The required function g is defined by

g(x) :=
∑
n

εngn

(x− xn
εn

)
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The function g is the sum of disjointly supported functions, hence g is 1-Lipschitz, the support
of g is contained in the unit ball, ∇g(x) = q∗n in a neighborhood Un of xn, and g is differentiable
at every point x ∈ RN \ {ℓ}.
Let us now show that the function g is also differentiable at ℓ, provided the sequence {εn}n
satisfies

lim
n→∞

εn
∥xn − ℓ∥

= 0 (by shrinking the values of εn we can always guarantee this.)

Indeed, for n sufficiently large and for any x ∈ B(xn, εn), we have

g(x) = εn gn

(x− xn
εn

)
≤ εn and

g(x)− g(ℓ)

∥x− ℓ∥
≤ εn

∥x− ℓ∥
≤ εn

∥xn − ℓ∥

(
∥xn − ℓ∥
∥x− ℓ∥

)
︸ ︷︷ ︸

≥1/2

−→
n→∞

0 ,

yielding that g is differentiable at ℓ with ∇g(ℓ) = 0.

For each n ∈ N, let xn ∈ RN and λn > 0 be such that B(xn, λn) ⊂ int Un. Set Cn := B(−q∗n, 1)
and notice that 0 ∈ intCn. Applying Lemma 3.9(ii) for C = Cn, we obtain a differentiable
1-Lipschitz function fn : RN → R satisfying (3.15)–(3.16). Up to a suitable re-scaling, namely
replacing fn by δnfn(·/δn), we can assume that supp fn ⊂ int B(0, λn). We define the function f : RN → R

f(x) = g(x) +
∞∑
n=1

fn(x− xn).

Notice that, for any x ∈ RN , there is at most one n ∈ N such that x− xn ∈ supp fn. Moreover,
for any n ∈ N and x ∈ Un, we deduce that

∇f(x) = q∗n +∇fn(x− xn) ∈ B(0, 1),

and if x is not in any Un, then ∇f(x) = ∇g(x) ∈ B(0, 1). It follows easily that f is 1-Lipschitz.
Let us now verify that f satisfies the property asserted in the statement of the theorem. To
this end, let K ⊂ B(0, 1) be a convex compact set with nonempty interior. Since {q∗n}n is dense
in B(0, 1), there exists n ∈ N such that q∗n ∈ intK. Therefore, K − q∗n ⊂ B(−q∗n, 1) = Cn. From
property (3.15) of Lemma 3.9, there exists y ∈ supp(fn) ⊂ B(0, λn) such that ∂fn(y) = K − q∗n.
Recalling that xn ∈ Un, setting xK := y + xn ∈ B(xn, λn) ⊂ Un, we obtain

∂f(xK) = ∇g(xK) + ∂fn(y) = K.

The proof is complete. □

Remark 3.13. A careful inspection of the proof of Theorem 3.12 reveals that for the constructed
function f : RN → R, the Clarke subdifferential ∂f(x) and the limiting subdifferential ∂Lf(x)
coincide at every point. Let us recall that the same situation occurred in Theorem 3.7, for the
case N = 1, based on the fact that differentiable real valued functions on the real line have
the Darboux property (c.f. Remark 3.8(i).) Consequently, the main results of this paper apply
equally well for the limiting subdifferential.
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3.3 Recovering compact connected sets with nonempty interior

In the current subsection we refine the previous construction to obtain an everywhere differen-
tiable, compactly supported, 1-Lipschitz function f : Rd → R such that its subdifferential contains
every closed connected subset of the unit ball with nonempty interior.

We shall work with the limiting subdifferential ∂Lf which at a given point x ∈ RN consists of all
accumulation points of sequences of derivatives {∇f(xn)}n≥1 as xn → x. In strong contrast with
the case of strictly differentiable functions (where the only possible limit is ∇f(x)), we show that
we can recover all compact connected sets (even completely irregular fractal-type sets) provided
they have nonempty interior.

To start, let C be any convex compact set containing 0 and consider the set

K̃0
C := {K ⊂ C : K is compact connected and 0 ∈ K}. (3.25)

We first show that, similarly to K0
C , the above set can also be coded on the Cantor set ∆ ⊂ [0, 1].

Lemma 3.14. (K̃0
C , DH) is a compact metric space (therefore, it can be seen as continuous

surjective image of the Cantor set ∆).

Proof. Let us first show that K̃0
C is closed in F0

C (see (2.1)) for the Hausdorff distance. To this

end, let {Kn}n be a sequence in K̃0
C that converges to a compact set K ∈ F0

C . It is straightforward
to see that 0 ∈ K⊂ C. If K is not connected, then there would exist two nonempty disjoint open
subsets U1 and U2 in RN such that Ki = K ∩ Ui is nonempty, for i ∈ {1, 2} and K = K1 ∪K2.
Then the convergence DH(Kn,K) −→ 0 forces Kn to be disconnected for n sufficiently large,
which is a contradiction. This shows that (K̃0

C , DH) is a compact metric space and there exists a

continuous surjective function h that maps the Cantor set ∆ onto K̃0
C (see [22, Theorem 4.18]).□

Based on Remark 3.10(iii), we can now refine the proof of Lemma 3.9 and enhance the conclusion.
This is done in the following lemma, whose proof follows closely the proof of Lemma 3.9. We
present a sketch of the proof, highlighting the main changes.

Before we proceed, let us recall that a closed set C ⊂ Rd is called strictly convex if for any two
distinct points x, y ∈ C, the open segment (x, y) joining x and y lies in the interior of C. (In
particular, a strictly convex set is either singleton or has nonempty interior.)

Lemma 3.15. Let C ⊂ RN be a convex compact set such that 0 ∈ C and L := max
x∈C

{∥x∥}. Then:

(i). There is a differentiable L-Lipschitz continuous and compactly supported function f : RN → R
such that:

for every K ∈ K̃0
C , there exists x ∈ RN such that ∂Lf(x) = K. (3.26)

(ii). Let us further assume that 0 ∈ int(C) and C is strictly convex. Then in addition to the
above conclusion we get:

∂Lf(x) ⊂ C, for all x ∈ RN (3.27)

Proof (Sketch). (i). Let h : ∆ → K̃0
C be a continuous surjective map (which will be used to

code the elements of K̃0
C). Let D = {dn : n ∈ N} be a countable dense subset of ∆ \ {0, 1} and

consider two sequences {αn}n and {εn}n of positive real numbers as in the proof of Lemma 3.9.
In particular, we have αn > εn > 0, for all n ≥ 1, lim

n→∞
αn = 0 and lim

n→∞
εn/αn = 0.
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Define {Qn}n by (3.17). Then, the sets {B(Qn, εn)}n are pairwise disjoint and are contained
in [0, 1]N . Let {γn}n be an arbitrary sequence of positive numbers converging to 0. For every
n ∈ N, since h(dn) is totally bounded, there exists a finite γn-net An of h(dn), containing 0, i.e.

0 ∈ An ⊂ h(dn) ⊂
⋃

a∈An

B(a, γn).

We then define

H̃n :=
(
An +B(0, 2γn)

) ⋂
B(0, L) =

⋃
a∈An

B(a, 2γn) ∩B(0, L). (3.28)

Notice that H̃n is a finite union of strictly convex sets and 0 ∈ B (0,min {2γn, L}). Moreover, for
every n ∈ N we have

h(dn) ⊂ int(H̃n) ⊂ h(dn) +B(0, 2γn). (3.29)

Therefore, int(H̃n) is connected, therefore, according to [4, Theorem 8], for every n ∈ N, there
exists a C1-smooth function bn : RN → R, with support in the unit ball, such that ∇bn(RN ) = H̃n

and ∥bn∥∞ ≤ 1. We set

ϕn(x) := εn · bn
(x−Qn

εn

)
(3.30)

We are ready to define the function f that satisfies our assertion:
f : RN → R

f(x) =
∞∑
n=1

ϕn(x).
(3.31)

Since supp(f) ⊂ [0, 1]N , the function f is compactly supported.

Claim: For every K ∈ K̃0
C there exists x ∈ [0, 1]× {0}N−1 with ∂Lf(x) = K.

Proof of the Claim. It follows as in the proof of Lemma 3.9 by noticing that (3.29) gives us that

DH(Ĥn, h(dn)) ≤ 2γn, for all n ∈ N,

and that the Cantor set ∆ is a perfect set. ♢
Finally, the differentiability of f follows exactly as in the proof of Lemma 3.9. This completes
the proof of (i).

(ii). We now assume that there exists λ > 0 such that B(0, λ) ⊂ C and that C is strictly convex.
To construct a function f that satisfies (3.26)–(3.27), we replace the definition of H̃n in (3.28) by

H̃n :=
(
An +B(0, 2γn)

)
∩ C =

⋃
a∈An

B(a, 2γn) ∩ C.

Thus, H̃n is a finite union of strictly convex sets and 0 ∈ int(H̃n). Proceeding as before, it easily
follows that ∂Lf(x) ⊂ C ⊂ B(0, L), for all x ∈ RN (in particular f is L-Lipschitz) and (3.26)
follows as in (i). □

Similarly to the proof of Theorem 3.12, we can now use Lemma 3.15 to obtain the existence
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of a compactly supported differentiable 1-Lipschitz function f : RN → R such that the range
of its limiting subdifferential ∂Lf contains all compact, connected subsets of the closed unit
ball B(0, 1) with nonempty interior. (Notice that Lemma 3.15 uses the fact that the Euclidean
balls are strictly convex.) Then by a standard argument, already evoked in the beginning of
Subsection 3.2, see (3.12) we deduce the following result.

Theorem 3.16. There exists a differentiable locally Lipschitz function f : RN → R such that for
every compact, connected subset K of RN with nonempty interior, there exists x ∈ RN such that
∂Lf(x) = K. Moreover, given ε > 0, f can be taken to satisfy ∥f∥∞ < ε.

Let us mention the following interesting consequence of the above result. Denoting by

gph(∇f) := {(x,∇f(x)) : x ∈ RN} ⊂ RN × RN

the graph of the derivative ∇f of a differentiable function f : RN → R, we have:

Corollary 3.17. There exists a differentiable locally Lipschitz function f : RN → R with the
property that for every compact, connected subset K of RN with nonempty interior, there ex-
ists x̄ ∈ RN such that

(x̄, y) ∈ gph(∇f) ⇐⇒ y ∈ K. (3.32)

This illustrates the gap between mere differentiability versus C1-smoothness, since in the latter
case, only a singleton set K (namely, K = {∇f(x̄)}) satisfies (3.32).

Let us finally notice that Theorem 3.16 can be seen as a result of almost exhaustiveness for the
limiting subdifferential of a differentiable, locally Lipschitz function. Indeed, Malý [25] established
a Darboux-type property for the gradient ∇f of a differentiable function f in RN , namely, that

∇f(B) := {∇f(x) : x ∈ B}

is connected, for any convex body B of RN . It follows that if f is differentiable and locally
Lipschitz, then the above set is bounded and the limiting subdifferential is also given by the
formula

∂Lf(x̄) =
⋂
ε>0

cl
(
{∇f(x) : x ∈ B(x̄, ε)}

)
.

Therefore ∂Lf(x̄) contains {∇f(x̄)} and is always a compact connected set (as intersection of
nested compact connected sets). It follows that the differentiable, locally Lipschitz function f
of the statement of Theorem 3.16 is almost exhaustive for the limiting subdifferential (compare
with Definition 2.4).
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[17] M. Bachir, G. Flores, S. Tapia-Garćıa, Compact and limited operators. Math. Nachr.
294(2021), 1085–1098.

24



[18] P. H. Enflo, V. Gurariy, J. Seoane-Sepúlveda, Some results and open questions on
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