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Abstract

This work targets the discretisation of contact-mechanics accounting for small strains,
linear elastic constitutive laws, and fractures or faults represented as a network of co-
dimension one planar interfaces. This type of models coupled with Darcy flow plays
an important role typically for the simulation of fault reactivation by fluid injection in
geological storages or the hydraulic fracture stimulation in enhanced geothermal sys-
tems. To simplify the presentation, a frictionless contact behavior at matrix fracture
interfaces is considered, although the scheme developed in this work readily extends to
more complex contact models such as the Mohr-Coulomb friction. To account for the
geometrical complexity of subsurface, our discretisation is based on the first order Vir-
tual Element Method (VEM) which generalises the P1 finite element method to polytopal
meshes. Following previous works in the finite element framework, the contact conditions
are enforced in a weak sense using Nitsche’s formulation based on additional consistent
penalization terms. We perform, in a fully discrete framework, the well-posedness and
convergence analysis showing an optimal first order error estimate with minimal regu-
larity assumptions. Numerical experiments confirm our theoretical findings and exhibit
the good behavior of the nonlinear semi-smooth Newton solver.

Keywords: Polytopal method, Virtual Element Method, Nitsche’s method, Fully dis-
crete approach, Error estimates, Contact-mechanics, Fracture networks, Poromechanics.

1 Introduction

The simulation of poromechanical models in fractured (or faulted) porous rocks plays an
important role in many subsurface applications such as fault reactivation by fluid injection
in geological storages or the hydraulic fracture stimulation in deep geothermal systems. One
of the key difficulty to simulate such models is the discretisation of the contact-mechanical
model which must be adapted to geological meshes. This motivates the use of polytopal dis-
cretisations to cope with the complexity of the geometries representing geological structures
including faults/fractures, layering, erosions and heterogeneities.

Different classes of polytopal methods have been developed in the field of mechanics such
as Discontinuous Galerkin [3434], Hybrid High Order (HHO) [2626], MultiPoint Stress Approx-
imation (MPSA) [3838], Hybrid Mimetic Methods [2525] and Virtual Element Methods (VEM)
[66, 55, 77]. Some of them have been extended to account for contact-mechanics as in [99] for
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the MSPA based on face-wise constant approximations of the surface tractions and displace-
ment jump along the fracture network, in [1818] for HHO combined with a Nitsche’s contact
formulation, in [4444, 2323] for VEM based on node to node contact conditions, and in [4141, 4545]
for the VEM method combined with a primal variational inequality formulation. Among
these polytopal methods, VEM, as a natural extension of the Finite Element Method (FEM)
to polyhedral meshes, has received a lot of attention in the mechanics community since its
introduction in [55] and has been applied to various problems including in the context of ge-
omechanics [22], poromechanics [2424, 1111, 3131] and fracture mechanics [4343].

Another key feature of subsurface applications of contact-mechanical models is the choice
of the contact formulation which must be able to deal with network of fractures including
corners, tips and intersections. This raises difficulties for nodal based contact conditions and
has motivated the use of mixed formulations with face-wise constant Lagrange multipliers as
in [88, 3030, 3333, 1010] in the Finite Element framework. This approach enables the handling of
fracture networks and the use of efficient semi-smooth Newton nonlinear solvers. It has been
recently extended to the VEM framework in [2828]. On the other hand, the combination of a
first order nodal discretisation of the displacement field with a face-wise constant approxi-
mation of the Lagrange multiplier requires a stabilisation to ensure the inf-sup compatibility
condition. This is achieved in [2828] by extending to the polytopal framework the P1-bubble
FEM discretisation [88] based on the enrichment of the displacement space by an additional
bubble unknown on one side of each fracture face.

Another key feature of subsurface applications of contact-mechanical models is the choice
of the contact formulation which must be able to deal with network of fractures including
corners, tips and intersections. This raises difficulties for nodal based contact conditions
and has motivated the investigation of various formulations such as Mortar methods (see
[4242] and the references there-in), mixed and stabilised mixed methods [3535, 4242, 4040, 3636], and
augmented Lagrangian methods [11, 1616, 1515]. Mixed formulations with face-wise constant
Lagrange multipliers, as in [88, 3030, 3333, 1010] in the Finite Element framework, are particularly
well-suited to deal with complex networks of fractures and lead to efficient semi-smooth
Newton nonlinear solvers. This type of discretisation has been recently extended to the VEM
framework in [2828]. On the other hand, the combination of a first order nodal discretisation
of the displacement field with a face-wise constant approximation of the Lagrange multiplier
requires a stabilisation to ensure the inf-sup compatibility condition. This is achieved in [2828]
by extending to the polytopal framework the P1-bubble FEM discretisation [88] based on the
enrichment of the displacement space by an additional bubble unknown on one side of each
fracture face.

In this work, we investigate an alternative approach based on the Nitsche’s formulation of
contact-mechanics introduced in [1919, 2121, 1717, 2020] in the Finite Element framework. Nitsche’s
method formulates the contact condition in a weak sense by appropriate consistent penali-
sation terms that involve only the primal displacement unknown. Moreover, no additional
unknown (Lagrange multiplier) is needed and, therefore, no discrete inf–sup condition must
be fulfilled, contrarily to mixed methods. It is naturally suited to semi-smooth Newton non-
linear solvers and readily deals with network of fractures. The first polytopal discretisation
of contact mechanics using Nitsche’s method is developed and analysed in [1818] based on the
HHO scheme with cell and face unknowns. However, to the best of our knowledge, the ex-
tension of Nitsche’s technique to the nodal VEM framework has not been yet derived nor
analysed.

The objective of this work is to introduce and analyse the first order VEM Nitsche’s for-
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mulation of contact-mechanics considering small strains hypothesis and a linear elastic con-
stitutive law. For simplicity, the discretisation and the convergence analysis is presented for
a frictionless contact model but the scheme readily extends to the Coulomb frictional model
and the numerical analysis to the Tresca frictional model following [1717, 2020, 33]. The VEM
Nitsche’s discretisation is introduced based on a fully discrete framework with vector space
of discrete unknowns and reconstruction operators in the spirit of HHO discretisation [2626].
The numerical analysis combines techniques developed in [1919, 2121] for the Nitsche’s method
together with those of [2929] for non conforming discretisations in a fully discrete framework.
It leads to an optimal first order error estimate with minimal regularity assumption which
readily extends to the Tresca frictional model.

The remaining of this paper is organised as follows. Section 22 introduces the static
contact-mechanical model with frictionless contact conditions. Section 33 introduces the main
ingredients of the discretisation with the mesh described in Section 3.13.1, the discrete displace-
ment space in Section 3.23.2, the function, jump, normal traction, and gradient reconstruction
operators in Section 3.33.3, the definition of the interpolation operator in Section 3.53.5, and
Nitsche’s formulation in Section 3.63.6. Section 44 performs the well-posedness and convergence
analysis of the scheme and Section 55 investigates the numerical behavior of the scheme in or-
der to assess our theoretical results. We first consider a 3D manufactured analytical solution
with a single fracture from [2828] to check numerically the error estimate. Then, we consider
a more challenging 3D Discrete Fracture Matrix model with Coulomb frictional contact. We
first study the sensitivity of Nitsche’s method to its parameters. Then, we compare the VEM
Nitsche’s discretisation with the VEM-bubble method introduced in [2828] both in terms of
accuracy of the solution using a fine mesh reference solution and in terms of robustness of
the nonlinear solver.

2 Contact-mechanical Model

We let Ω ⊂ Rd, d = 3, denote a bounded polyhedral domain, partitioned into a fracture
domain Γ and a matrix domain Ω\Γ. The network of fractures is defined by

Γ =
⋃
i∈I

Γi,

where each fracture Γi ⊂ Ω, i ∈ I is a planar polygonal simply connected open domain.
Without restriction of generality, we will assume that the fractures may only intersect at
their boundaries, that is, for any i, j ∈ I, i ̸= j it holds Γi ∩ Γj = ∅, but not necessarily
Γi ∩ Γj = ∅.

The two sides of a given fracture of Γ are denoted by ± in the matrix domain, with unit
normal vectors n± oriented outward from the sides ± such that n+ + n− = 0. We denote
by γa the trace operators on the side a ∈ {+,−} of Γ for functions in H1(Ω\Γ). The jump
operator on Γ for functions u in H1(Ω\Γ)d is defined by

JuK = γ+u− γ−u,

and we denote by JuKn = JuK · n+ its normal component. The normal trace operator on
the side a ∈ {+,−} of Γ oriented outward to the side a, applied to Hdiv(Ω\Γ) functions is
denoted by γan.

The symmetric gradient operator ϵ is defined such that ϵ(v) = 1
2(∇v+ T∇v) for a given

vector field v ∈ H1(Ω\Γ)d.
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Given for simplicity homogeneous Dirichlet boundary conditions, the space for the dis-
placement is

U0 = H1
0 (Ω\Γ)d,

endowed with the semi-norm ∥v∥U0 = ∥∇v∥L2(Ω)d which defines a norm on U0 assuming
that Ω\Γ is connected.

The model accounts for the mechanical equilibrium equation with a linear elastic consti-
tutive law and a frictionless contact model at matrix–fracture interfaces. In its strong form,
it is defined by the following system of partial differential equations:

−divσ(u) = f on Ω\Γ,
σ(u) = Aϵ(u) on Ω\Γ,
γ+n (σ(u)) + γ−n (σ(u)) = 0 on Γ,

σn(u) ⩽ 0, JuKn ⩽ 0, JuKnσn(u) = 0 on Γ,

στ (u) = 0, on Γ,

(1)

with A the fourth order symmetric elasticity tensor having the usual uniform ellipticity and
boundedness property, and the normal and tangential surface tractions defined by{

σn(u) = γ+n (σ(u)) · n+ on Γ,

στ (u) = γ+n (σ(u))− σn(u)n
+ on Γ.

(2)

The model (11) is formulated in mixed form using a Lagrange multiplier λ : Γ → R at
matrix–fracture interfaces. Define the normal displacement jump space by

WΓ,n = {JvKn : v ∈ U0}

and denote by W ′
Γ,n its dual space; the duality pairing between these two spaces is written

⟨·, ·⟩Γ. The dual cone is then defined by

Cf =
{
µ ∈ W ′

Γ,n : ⟨µ, v⟩Γ ≤ 0 for all v ∈ WΓ,n with v ≤ 0
}
.

The weak mixed-variational formulation for adressing the problem (11) reads: find u ∈ U0

and λ ∈ Cf such that for all v ∈ U0 and µ ∈ Cf , one has∫
Ω
σ(u) : ϵ(v) + ⟨λ, JvKn⟩Γ =

∫
Ω
f · v, (3a)

⟨µ− λ, JuKn⟩Γ ≤ 0. (3b)

It is well known that this problem admits a unique solution (u, λ) ∈ U0×W ′
Γ,n (see e.g. [2222]).

Note that, based on the variational formulation, the Lagrange multiplier satisfies λ = −σn(u),
and that, assuming σn(u) ∈ L2(Γ), one has

σn(u) = [Pβ(u)]R− , (4)

with [a]R− = min(a, 0), where Pβ is the linear operator such that

Pβ(u) = σn(u)− βJuKn,

and β ∈ L∞(Γ) is any given strictly positive function.
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3 Discretisation

This Section introduces the discretisation of the contact-mechanical model (11) based on
nodal unknowns accounting for the discontinuity of the displacement field at matrix fracture
interfaces. The presentation of the scheme is done in a fully discrete framework with vector
space of discrete unknowns and reconstruction operators. Proceeding as in Section 3.4 of
[2828] it can be shown to be equivalent to a VEM formulation based on the same displacement
degrees of freedom [55]. The scheme can therefore be interpreted as a P1 VEM Nitsche’s
discretisation.

3.1 Mesh

We consider a polyhedral mesh of the domain Ω assumed to be conforming with the fracture
network Γ. For each cell K (resp. face σ), we denote by hK (resp. hσ) and |K| (resp. |σ|)
its diameter and its measure, and we set

hD = max
K∈M

hK .

The set of cells K, the set of faces σ, the set of nodes s and the set of edges e are denoted
respectively by M, F , V and E . It is assumed that there exists a subset of faces FΓ ⊂ F
such that

Γ =
⋃

σ∈FΓ

σ.

We denote by Mσ the set of cells neighboring a face σ ∈ F ; thus, Mσ = {K,L} for interior
face σ ∈ F int (in which case we write σ = K|L) and Mσ = {K} for boundary face σ ∈ Fext.
Since Γ ⊂ Ω, we have FΓ ⊂ F int. For a face σ ∈ FΓ, K and L in the notation σ = K|L
are labelled such that nKσ = n+ and nLσ = n−, where nKσ (resp. nLσ ) is the unit normal
vector to σ oriented outward of K (resp. L). We denote by Vext the set of boundary nodes.
We denote by Vσ the set of nodes of σ, Eσ the set of edges of σ, by FK the set of faces of K,
by VK the set of nodes of K. For each σ ∈ F , we denote by nσe the unit normal vector to
e ∈ Eσ in the plane σ oriented outward to σ.

Throughout this paper we suppose that mesh regularity assumptions of [2626, Definition
1.9] hold, and we write a ≲ b (resp. a ≳) as a shorthand for a ≤ Cb (resp. Ca ≤ b) with C > 0
depending only on Ω, Γ, on the mesh regularity parameter, and possibly on the elasticity
tensor and f .

If X ∈ M∪F and ℓ ∈ N, we denote by Pℓ(X) the space of polynomials of degree ≤ ℓ on
X. For X = M or X = FΓ, we use the notation Pℓ(X ) for the space of piecewise-polynomials
of degree ≤ ℓ on X .

In the following, we denote by H2(M) (resp. H1(FΓ)) the space of functions defined on
Ω that are H2 on each K ∈ M (resp. defined on Γ and H1 on each σ ∈ FΓ). These spaces
are endowed with their usual broken semi-norms.

3.2 Discrete space

The degrees of freedom (DOFs) for the displacement are nodal (attached to the vertices of
the mesh), but could be discontinuous across the fracture network (see Figure 11). To be
more specific, let us first define a partition Ms of the set of cells Ms around a given node
s ∈ V. For a given cell K ∈ Ms we denote by Ks ∈ Ms the subset of Ms such that⋃

L∈Ks L is the closure of the connected component of (
⋃

L∈Ms
L) \ Γ containing the cell K.
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In other words, Ks is the set of cells in Ms that are on the same side of Γ as K. A nodal
displacement unknown vKs is defined for each Ks ∈ Ms. Let us note that there is a unique
nodal displacement unknown vKs at a node s not belonging to Γ, since Ms = Ms in that
case. On the other hand, for a fracture node s, the nodal displacement unknown vKs is the
one on the side K of the set of fractures connected to s.

The discrete space of displacements, accounting for the possible discontinuities across the
fracture network and for the zero boundary condition on ∂Ω, is

U0,D =
{
vD = (vKs)Ks∈Ms,s∈V : vKs ∈ Rd , vKs = 0 if s ∈ Vext

}
. (5)

VEM Discretisation

The discrete space of displacements, accounting for the possible discontinuities across the
fracture network and for the zero boundary condition on m⌦, is

U0
D =

n
vD = ((vKs )K 2M, s2VK

: vKs 2 Rd , vKs = 0 if s 2 Vext

vKs = vLs if K , L 2 Ms are on the same side of �
o
.

Nodal displacement unknowns:

Mohamed Laaziri VEM-Nitsche 10 / 30

Figure 1: Example of a 2D polygonal mesh with three fracture faces in bold lines and the
nodal DOFs at red dots. The displacement unknown at node s on the cell K side is denoted
by uKs.

3.3 Reconstruction operators in U0,D

We first define, for each K ∈ M and σ ∈ FK , a tangential face gradient ∇Kσ : U0,D →
P0(σ)d×d and tangential displacement reconstruction ΠKσ : U0,D → P1(σ)d. First, we choose
nonnegative weights (ωσ

s )s∈Vσ to express the center of mass xσ of σ in terms of that of its
vertices:

xσ =
∑
s∈Vσ

ωσ
s xs ,

∑
s∈Vσ

ωσ
s = 1. (6)

Then, for vD ∈ U0,D, we set

∇KσvD =
1

|σ|
∑

e=s1s2∈Eσ

|e|vKs1 + vKs2

2
⊗ nσe,

ΠKσvD(x) = ∇KσvD(x− xσ) + vKσ ∀x ∈ σ, where vKσ =
∑
s∈Vσ

ωσ
s vKs.

(7)

Above, we have noted e = s1s2 to indicate that the edge e has vertices s1, s2.
If σ ∈ FΓ is a fracture face, and K (resp. L) is the cell on the positive (resp. negative)

side of σ, we define the normal displacement jump operator on σ as J·Kσ,n : U0,D → P1(σ)
such that, for all vD ∈ U0,D,

JvDKσ,n = (ΠKσvD −ΠLσvD) · nKσ. (8)

For each cell K ∈ M, we select nonnegative weights (ωK
s )s∈VK

of a linear decomposition
of the center of mass xK of K in terms of its vertices

xK =
∑
s∈VK

ωK
s xs ,

∑
s∈VK

ωK
s = 1,
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and we constrict a gradient reconstruction ∇K : U0,D → P0(K)d×d and a displacement
reconstruction ΠK : U0,D → P1(K)d by setting, for vD ∈ U0,D,

∇KvD =
1

|K|
∑

σ∈FK

|σ|vKσ ⊗ nKσ, (9)

ΠKvD(x) = ∇KvD(x− xK) + vK ∀x ∈ K where vK =
∑
s∈VK

ωK
s vKs. (10)

These local normal jump, gradient and displacement reconstructions are patched together
to create their global piecewise polynomial counterparts J·KD,n : U0,D → P1(FΓ), ∇D :
U0,D → P0(M)d×d and ΠD : U0,D → P1(M)d: for all vD ∈ U0,D,

(JvDKD,n)|σ = JvDKσ,n ∀σ ∈ FΓ,

(∇DvD)|K = ∇KvD ∀K ∈ M,

(ΠDvD)|K = ΠKvD ∀K ∈ M.

We also define the cellwise constant reconstruction operator Π̃DvD : U0,D → P0(M)d such
that (Π̃DvD)|K = vK . Finally, the discrete symmetric gradient ϵD, and stress tensor σD are
deduced from the previous operators:

ϵD =
1

2
(∇D +

T∇D), and σD(·) = AϵD(·).

3.4 Stabilisation bilinear form

Except in the case of simplectic cells, the affine function reconstruction ΠKuD cannot control
all the cell nodal unknowns uKs, for s ∈ VK . Following the VEM approach [66, 55, 77], this
motivates the definition of a local stabilisation bilinear form SK : U0,D × U0,D → R given
for each K ∈ M by

SK(uD,vD) = hd−2
K

∑
s∈VK

(
uKs −ΠKuD(xs)

)
·
(
vKs −ΠKvD(xs)

)
, (11)

leading to the definition the scaled global stabilisation bilinear form

Sµ,λ,D(uD,vD) =
∑
K∈M

AKSK(uD,vD), (12)

where AK = 1
|K| maxi,j,k,l

∫
K Ai,j,k,ldx. We also introduce the unscaled global stabilisation

bilinear form
SD(uD,vD) =

∑
K∈M

SK(uD,vD). (13)

3.5 Interpolator

The space C0
0(Ω\Γ) is spanned by functions that are continuous on Ω\Γ, have limits on each

side of Γ, and vanish on ∂Ω. The interpolator IU0,D : C0
0(Ω\Γ)d → U0,D is defined through

its components by setting, for v ∈ C0
0(Ω\Γ)d,

(IU0,Dv)Ks = v|K(xs) ∀K ∈ M , ∀s ∈ VK . (14)

We note that, since v = 0 on ∂Ω, this operator indeed defines an element in U0,D.
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3.6 Nitsche’s discretisation

The normal surface traction operator on the + side of the fracture network σD,n : U0,D →
L2(Γ) is defined by

σD,n(vD)|σ = γ+n (σD(vD)) · n+.

For a parameter θ ∈ R, we define the operator PD,β,θ : U0,D → L2(Γ) by

PD,β,θ(vD) = θσD,n(vD)− βJvDKD,n

and we set PD,β = PD,β,1, with the function β ∈ P0(FΓ) such that

β|σ =
β0
hσ

∀σ ∈ FΓ,

and β0 the Nitsche’s penalisation parameter. We can now introduce the Nitsche’s discreti-
sation for addressing the contact-mechanics problem. Find uD ∈ U0,D such that, for all
vD ∈ U0,D, ∫

Ω
σD(uD) : ϵD (vD) + Sµ,λ,D (uD,vD)−

∫
Γ

θ

β
σD,n(uD)σD,n(vD)

+

∫
Γ

1

β
[PD,β(uD)]R−PD,β,θ(vD) =

∫
Ω
f · Π̃DvD.

(15)

The positive parameter β0 plays the role of a stabilisation parameter which needs to be large
enough in order to ensure the stability and accuracy of the discretisation as shown in the
next section. The parameter θ encompasses symmetric and non-symmetric variants of the
method [2121]. The symmetric case obtained for θ = 1 can be advantageous to use solvers
for symmetric matrices, while the choice θ = 0 leads to a simplified variational formulation,
easier to extend to large strain. The choice θ = −1 has the remarkable property to provide
a stability of the discretisation irrespectively of the value of the stabilisation parameter as
shown in the subsequent analysis.

As already noticed in [1919], the Nitsche’s formulation (1515) has closed links with the Bar-
bosa and Hughes stabilised mixed formulation introduced in [3737] and extended to contact
mechanics in [3636]. The difference is that, for the Nitsche’s formulation, the Lagrange multi-
plier accounting for the normal surface traction is taken in {µ ∈ L2(Γ) |µ ≥ 0} and can be
eliminated from the mixed formulation. For facewise constant Lagrange multipliers, a strict
equivalence can be shown using a mean value approximation of the normal surface traction
and jump in the Nitsche’s terms [33].

4 Numerical analysis

In Section 4.14.1, we introduce or recall from [2929] preliminary definitions and lemmae. Section
4.24.2 establishes the well-posedness of the scheme (1515). Then, Section (4.34.3) first proves an
abstract error estimate which is used to obtain an optimal first order error estimate with
minimal regularity assumption on the solution.

4.1 Preliminary definitions and lemmae

Assuming that Ω\Γ is connected, the semi-norm given for all vD ∈ U0,D

∥vD∥1,D :=
(
∥∇DvD∥2L2(Ω\Γ) + SD(vD,vD)

)1/2
, (16)

defines a H1-like discrete norm on U0,D.
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Lemma 4.1 (Discrete Poincaré inequality). There exists CP,D depending only on Ω, Γ and
the mesh regularity such that for all vD ∈ U0,D, one has

∥Π̃DvD∥L2(Ω\Γ) ≤ CP,D∥vD∥1,D.

Proof. Using the discrete Poincaré inequality for the Hybrid Finite Volume discretisation
[3232], it holds that

∥Π̃DvD∥2L2(Ω\Γ) =
∑
K∈M

|K||vK |2 ≲
∑
K∈M

∑
σ∈FK

hK |σ|
( |vKσ − vK |

hK

)2
.

Since from Lemma 5.11 of [2929], one has∑
K∈M

∑
σ∈FK

hK |σ|
( |vKσ − vK |

hK

)2
≲ ∥vD∥21,D,

the result is proved.

Let us recall the following discrete Korn’s inequality already proved in Theorem 5.7 of
[2929].

Lemma 4.2 (Discrete Korn’s inequality). Assuming that Ω\Γ is connected, it holds

∥vD∥21,D ≲ ∥ϵD(vD)∥2L2(Ω\Γ) + SD(vD,vD) ∀vD ∈ U0,D, (17)

with a constant depending on Ω, Γ and the regularity of the mesh.

To shorten the notations, let us define the discrete energy inner product ⟨., .⟩e,D such that,
∀uD,vD ∈ U0,D

⟨uD,vD⟩e,D =

∫
Ω
σD(uD) : ϵD (vD) + Sµ,λ,D (uD,vD) , (18)

and denote by ∥.∥e,D its associated norm. From the above discrete Korn’s inequality, we
deduce the following bound for all vD ∈ U0,D

∥vD∥1,D ≲ ∥vD∥e,D.

We also define H±1/2-like discrete norms for all µ ∈ L2(Γ) by

∥µ∥−1/2,D = (
∑
σ∈FΓ

hσ∥µ∥2L2(σ))
1/2 and ∥µ∥1/2,D = (

∑
σ∈FΓ

h−1
σ ∥µ∥2L2(σ))

1/2. (19)

Lemma 4.3. There exists ΛD depending only on Ω, Γ, A, and on the regularity of the mesh
such that

sup
vD∈U0,D :vD ̸=0

∥σD,n(vD)∥2−1/2,D

∥vD∥2e,D
≤ ΛD.

Proof. Let vD ∈ UD, using the uniform ellipticity and boundedness of A and the mesh
regularity, we have

∥σD,n(vD)∥2−1/2,D =
∑

σ=K|L∈FΓ

hσ

∫
σ
|(σD(vD)|KnKσ) · nKσ|2

≲
∑

σ=K|L∈FΓ

∫
K
σD(vD) : ϵD(vD) ≲ ∥vD∥2e,D,

which provides the estimate.
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Let us introduce the space W of tensor fluxes defined by

W =
{
σ ∈ Hdiv(Ω\Γ;Sd(R)), : γ+n (σ) + γ−n (σ) = 0,

γ+n (σ)× n+ = 0, γ+n (σ) · n+ ∈ L2(Γ)
}
,

where Sd(R) is the space of symmetric d× d matrices with real coefficients. The space W is
equipped with the Hilbertian norm

∥σ∥W =
(
∥σ∥2

L2(Ω\Γ)d×d + ∥divσ∥2
L2(Ω\Γ)d + ∥γ+n (σ) · n+∥2L2(Γ)

)1/2
.

Let us define the bilinear form wD : W ×U0,D → R by, ∀σ ∈ W,vD ∈ U0,D

wD(σ,vD) = −
∫
Ω
σ : ϵD(vD) +

∫
Γ
(γ+n (σ) · n+)JvDKD,n −

∫
Ω
Π̃DvD · divσ. (20)

The following adjoint consistency property of the discretisation is proved in Lemma 5.10 of
[2929].

Lemma 4.4 (Adjoint Consistency). Let WD : W → R be defined as follows: for all σ ∈ W,

WD(σ) = sup
vD∈U0,D

wD(σ,vD)

∥vD∥1,D
,

then, for all σ ∈ W such that σ|K ∈ H1(M)d×d, we have the estimate

WD(σ) ≲ hD|σ|H1(M). (21)

For u ∈ U0 and vD ∈ U0,D, let us introduce the primal consistency term defined by

CD(u,vD) =
(
∥∇u−∇DvD∥2L2(Ω\Γ) + SD(vD,vD)

)1/2
. (22)

4.2 Well-posedness

Proposition 4.5. Let β0 be such that β0 > 1
2(1 + θ)2ΛD, then there exists a unique solution

uD ∈ U0,D to (1515). Moreover it satisfies the following a priori estimate:

∥uD∥1,D ≲ ∥f∥L2(Ω\Γ),

with a constant depending only on Ω, Γ, A, and the regularity of the mesh but independent
on β0 and θ.

Proof. The proof proposed in [2121] in the conforming Finite Element case is readily adapted
to our non-conforming framework. Let us define the operator BD : U0,D → U0,D such that

⟨BDvD,wD⟩e,D = ⟨vD,wD⟩e,D −
∫
Γ

θ

β
σD,n(vD)σD,n(wD)

+

∫
Γ

1

β
[PD,β(vD)]R−PD,β,θ(wD)

10



for all vD,wD ∈ U0,D. Writing PD,β,θ(uD − vD) = PD,β(uD − vD) + (θ − 1)σD,n(uD − vD),
using ([a]R− − [b]R−)(a− b) ≥ ([a]R− − [b]R−)2 for all a, b ∈ R, Cauchy-Schwarz and Young’s
inequalities, we have for all c > 0

⟨BDuD −BDvD,uD − vD⟩e,D ≥ ∥uD − vD∥2e,D − θ

β0
∥σD,n(uD − vD)∥2−1/2,D

+
1

β0
∥[PD,β(uD)]R− − [PD,β(vD)]R−∥2−1/2,D

− 1

β0

|θ − 1|
2c

∥[PD,β(uD)]R− − [PD,β(vD)]R−∥2−1/2,D

− 1

β0

|θ − 1|c
2

∥σD,n(uD − vD∥2−1/2,D.

Choosing c = |θ−1|
2 and using Lemma 4.34.3 we obtain the estimate

⟨BDuD −BDvD,uD − vD⟩e,D ≥
(
1− (1 + θ)2

4β0
ΛD

)
∥uD − vD∥2e,D, (23)

which shows that BD is an M-operator as soon as β0 > 1
4(1 + θ)2ΛD. Using that |[a]R− −

[b]R− | ≤ |a − b| for all a, b ∈ R, it can also be shown as in [2121] that BD is an hemicontin-
uous operator in the sense that the function t → ⟨BD(uD − twD),wD⟩e,D is a continuous
real function for all vD,wD ∈ U0,D. From its M-operator property and hemicontinuity,
applying Corollary 15 (p. 126) of [1414], it results that BD is a one to one operator from
which the existence and uniqueness of uD is deduced. The estimate on uD is derived from
⟨BDuD,uD⟩e,D =

∫
Ω f · Π̃DuD, the discrete Poincaré inequality of Lemma 4.14.1 and Korn’s

inequality of Lemma 4.24.2.

4.3 Error estimate

Let us first derive the following abstract error estimate.

Theorem 4.6. Let u the solution of (33) with σn(u) ∈ L2(Γ), and uD the solution of (1515).
Then, for β0 ≥ 4(θ + |θ|

2 + |1− θ|2)ΛD we have the estimate

∥∇u−∇DuD∥L2(Ω\Γ) +
1

β0
∥σn(u)− [PD,β(uD)]R−∥−1/2,D

≲ WD(σ(u)) + inf
vD∈U0,D

{
CD(u,vD) +

1

β0
∥σn(u)− σD,n(vD)∥−1/2,D

+ β0∥JuKn − JvDKD,n∥1/2,D
}
,

(24)

with a constant depending only on Ω,Γ, A, θ and the regularity of the mesh. Moreover, for
θ = −1, the estimate holds for β0 > 0 at the expense of a constant depending additionnally
on β0.

Proof. From (44), we have for all wD ∈ U0,D that

−
∫
Γ
σD,n(u)JwDKD,n = −

∫
Γ

θ

β
σn(u)σD,n(wD) +

∫
Γ

1

β
[Pβ(u)]R−PD,β,θ(wD). (25)
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Combining (2525) with the adjoint consistency (2020) for σ = σ(u) with divσ = −f , (γ+n σ) ·
n+ = σn(u), we have∫

Ω
σ(u) : ϵD(wD)−

∫
Γ

θ

β
σn(u)σD,n(wD) +

∫
Γ

1

β
[Pβ(u)]R−PD,β,θ(wD)

−
∫
Ω
f · Π̃DwD = −wD(σ(u),wD).

(26)

Combining (2626) with the scheme (1515) we get∫
Ω
(σD(uD)− σ(u)) : ϵD(wD) + Sµ,λ,D(uD,wD)− wD(σ(u),wD)

=

∫
Γ

θ

β
(σD,n(uD)− σn(u))σD,n(wD)

−
∫
Γ

1

β

(
[PD,β(uD)]R− − [Pβ(u)]R−

)
PD,β,θ(wD).

(27)

Setting wD = uD − vD for vD ∈ U0,D we obtain

∥uD − vD∥2e,D =

∫
Ω
(σ(u)− σD(vD)) : ϵD(uD − vD)− Sµ,λ,D(vD,uD − vD)

+ wD(σ(u),uD − vD) +A1 +A2,

(28)

with
A1 =

∫
Γ

θ

β
(σD,n(uD)− σn(u))σD,n(uD − vD),

and
A2 = −

∫
Γ

1

β

(
[PD,β(uD)]R− − [Pβ(u)]R−

)
PD,β,θ(uD − vD).

First, using Cauchy-Schwarz, Young and the discrete Korn (1717) inequalities, we obtain that
there exists a constant c0 such that∫

Ω
(σ(u)− σD(vD)) : ϵD(uD − vD)− Sµ,λ,D(vD,uD − vD) + wD(σ(u),uD − vD)

≤ 1

2
∥uD − vD∥2e,D + c0

(
CD(u,vD)

2 +WD(σ(u))
2
)
.

(29)

The contact terms A1 and A2 are estimated as in [2121]. Starting with A1, writing

σD,n(uD)− σn(u) = σD,n(uD − vD) + σD,n(vD)− σn(u),

and using Cauchy-Schwarz and Young’s inequalities and Lemma 4.34.3, we obtain that for all
c1 > 0:

β0A1 ≤ (θ +
|θ|
2c1

)∥σD,n(uD − vD)∥2−1/2,D +
c1|θ|
2

∥σn(u)− σD,n(vD)∥2−1/2,D

≤ (θ +
|θ|
2c1

)ΛD∥uD − vD∥2e,D +
c1|θ|
2

∥σn(u)− σD,n(vD)∥2−1/2,D

(30)

Writing

PD,β,θ(uD − vD) =PD,β(uD − vD) + (θ − 1)σD,n(uD − vD)

=(PD,β(uD)− Pβ(u)) + (σn(u)− σD,n(vD))− β(JuKn − JvDKD,n)

+ (θ − 1)σD,n(uD − vD),
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and using that ([a]R− − [b]R−)(a− b) ≥ ([a]R− − [b]R−)2 for all a, b ∈ R, Cauchy-Schwarz and
Young’s inequalities, and Lemma 4.34.3, we obtain that for all c2 > 0, c3 > 0:

β0A2 ≤
(
−1 +

1

2c2
+

|1− θ|
2c3

)
∥[PD,β(uD)]R− − [Pβ(u)]R−∥2−1/2,D

+ c2

(
∥σn(u)− σD,n(vD)∥2−1/2,D + β2

0∥JuKn − JvDKD,n∥21/2,D
)

+
|1− θ|c3

2
ΛD∥uD − vD∥2e,D.

(31)

Gathering (2929)-(3030)-(3131) in (2828) and using σn(u) = [Pβ(u)]R− , we obtain the estimate

1

2
∥uD − vD∥2e,D ≤ 1

β0

(
−1 +

1

2c2
+

|1− θ|
2c3

)
∥σn(u)− [PD,β(uD)]R−∥2−1/2,D

+
1

β0

(
θ +

|θ|
2c1

+
|1− θ|c3

2

)
ΛD∥uD − vD∥2e,D

+ c0

(
CD(u,vD)

2 +WD(σ(u))
2
)

+
1

β0

(
c2 +

c1|θ|
2

)
∥σn(u)− σD,n(vD)∥2−1/2,D

+ β0c2∥JuKn − JvDKD,n∥21/2,D.

(32)

Choosing c1 = 1, c2 = 2, c3 = 2|1− θ|, and β0 ≥ 4(θ + |θ|
2 + |1− θ|2)ΛD, we obtain

∥uD − vD∥2e,D +
1

β0
∥σn(u)− [PD,β(uD)]R−∥2−1/2,D

≲ CD(u,vD)
2 +WD(σ(u))

2

+
1

β0
∥σn(u)− σD,n(vD)∥2−1/2,D + β0∥JuKn − JvDKD,n∥21/2,D,

(33)

with a constant independent on u and β0 and depending only on Ω, Γ, A, θ and the mesh
regularity. Using the discrete Korn’s inequality, this proves (2424). For θ = −1, it can be
shown as in [2121] that c1, c2 and c3 can be chosen in such a way that whatever β0 > 0 we have
−1+ 1

2c2
+ 1

c3
< 0 and ΛD

β0
(−1+ 1

2c1
+ c3) ≤ 1/4 by setting c1 =

1
2η , c2 = 1+ 1

η and c3 = 1+ η

and η = β0

8ΛD
. On the other hand, the constant in (3333) depends additionnally on β0.

Theorem 4.7. Let u the solution of (33) with u ∈ H2(M)d ∩ U0, and uD the solution of
(1515). Then, for β0 ≥ 4(θ + |θ|

2 + |1− θ|2)ΛD we have the error estimate

∥∇u−∇DuD∥L2(Ω\Γ) +
1

β0
∥σn(u)− [PD,β(uD)]R−∥−1/2,D ≲ hD|u|H2(M), (34)

with a constant depending only on Ω,Γ, A, θ and the regularity of the mesh. Moreover, for
θ = −1, the estimate holds for β0 > 0 with a constant depending additionnally on β0.

Proof. We set vD = IU0,Du in (2424). Lemma 5.8 of [2929] provides the estimate of the gradient
reconstruction consistency term

CD(u, IU0,Du) ≲ hD|u|H2(M). (35)

From (2121), the estimate of the adjoint consistency term is given by

W(σ(u)) ≲ hD|u|H2(M). (36)

Gathering the estimates (3535)-(3636), and the estimates (3737), (4141) of respectively Lemmae 4.84.8
and 4.94.9 stated below, concludes the proof.
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Lemma 4.8 (Consistency of the jump reconstruction). If u ∈ H2(M)d then

∥JIU0,DuKD,n − JuKn∥1/2,D ≲ hD|u|H2(M). (37)

Proof. From the definition (1919) of the H1/2-like discrete norm and the definition (88) of the
normal jump reconstruction operator, it suffices to prove (considering the + side to fix ideas)
that for all σ = K|L ∈ FΓ, one has

h−1/2
σ ∥ΠKσIU0,Du− γ+u∥L2(σ) ≲ hK |u|H2(K).

Let q be the L2(K)-orthogonal projection of u on P1(K)d. By the approximation properties
of the polynomial projector [2626, Theorem 1.45], we have

|u− q|Hs(K) ≲ h2−s
K |u|H2(K) , ∀s ∈ {0, 1, 2}. (38)

Applying the bound [2626, Eq. (5.110)] to u− q yields

max
K

|u− q| ≲ |K|−1/2
(
∥u− q∥L2(K) + hK |u− q|H1(K) + h2K |u− q|H2(K)

)
≲ |K|−1/2h2K |u|H2(K). (39)

where the conclusion follows from (3838). From the definition (77) of ΠKσ and the mesh regularity
it follows that for all vD ∈ UD one has

∥ΠKσvD∥L∞(σ) ≲ max
s∈Vσ

|vKs|.

From the first order polynomial exactness of ΠKσ, we deduce that

∥ΠKσIU0,Du− q∥L∞(σ) = ∥ΠKσIU0,D(u− q)∥L∞(σ)

≲ ∥γ+u− q∥L∞(σ)

≲ |K|−1/2h2K |u|H2(K).

Using this estimate together with (3939) and the mesh regularity, we obtain

h−1/2
σ ∥ΠKσIU0,Du− γ+u∥L2(σ) ≤ h−1/2

σ |σ|1/2
(
∥q− γ+u∥L∞(σ)

+ ∥ΠKσIU0,Du− q∥L∞(σ)

)
≲ h−1/2

σ |σ|1/2|K|−1/2h2K |u|H2(K)

≲ hK |u|H2(K),

(40)

which concludes the proof.

Lemma 4.9 (Consistency of the normal surface traction reconstruction). If u ∈ H2(M)d

then
∥σD,n(IU0,Du)− σn(u)∥−1/2,D ≲ hD|u|H2(M). (41)

Proof. From the uniform boundedness of A, we have

∥σD,n(IU0,Du)− σn(u)∥−1/2,D =
( ∑
σ=K|L∈FΓ

hσ∥σn(ΠKIU0,Du− u)∥2L2(σ)

)1/2

≲
( ∑
σ=K|L∈FΓ

hσ∥∇(ΠKIU0,Du− u)∥2L2(σ)

)1/2
.

(42)
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From the trace inequality given in Lemma 1.31 of [2626] (see also [1212] and [2727]) applied to
∇(ΠKIU0,Du− u), we obtain that

h
1/2
K ∥∇(ΠKIU0,Du− u)∥L2(σ) ≲ ∥∇(ΠKIU0,Du− u)∥L2(K) + hK |u|H2(K).

where we have used the property |ΠKIU0,Du|H2(K) = 0. Combining (4242), with this trace
inequality and with the gradient consistency error estimate (3535), we obtain (4141).

Remark 4.10. Combining the estimate (3333) with vD = IU0,Du together with the estimates
in the proof of Theorem 4.74.7 and the discrete Korn inequality of Lemma 4.24.2, we obtain the
following estimate on the discrete norm ∥uD − IU0,Du∥1,D which includes the stabilisation
term:

∥uD − IU0,Du∥1,D ≲ hD|u|H2(M). (43)

From the previous remark we can derive the following Corollaries.

Corollary 4.11. Under the same assumptions as in Theorem 4.74.7, we have the following
error estimate on the normal surface traction reconstruction:

∥σn(u)− σD,n(uD)∥−1/2,D ≲ hD|u|H2(M). (44)

Proof. Using Lemma 4.34.3 for uD − IU0,Du and the estimate (4343), we obtain that

∥σD,n(IU0,Du)− σD,n(uD)∥−1/2,D ≲ hD|u|H2(M),

which, combined with the estimate of Lemma 4.94.9 concludes the proof.

The second Corollary states an error estimate for the VEM virtual function reconstruction
in H1(Ω\Γ) denoted by πhuD (see [66, 55]).

Corollary 4.12. Under the same assumptions as in Theorem 4.74.7, we have the following
error estimate on the VEM virtual function reconstruction:

∥∇u−∇πhuD∥L2(Ω\Γ) ≲ hD|u|H2(M). (45)

Proof. Using the VEM stability property [66, 55, 44, 1313] combined with the estimate (4343), we
obtain that

∥∇(πhIU0,Du)−∇πhuD∥L2(Ω\Γ) ≲ ∥IU0,Du− uD∥1,D ≲ hD|u|H2(M).

The proof is concluded from the approximation property of the VEM interpolant πhIU0,Du
stating that ∥∇(πhIU0,Du)−∇u∥L2(Ω\Γ) ≲ hD|u|H2(M) (see [66, 55, 44, 1313]).

5 Numerical experiments

In order to verify numerically the previous error estimate, Section 5.15.1 studies the convergence
of the scheme on various families of meshes based on a 3D manufactured analytical solution
with a single fracture. Then, Section 5.25.2 considers a more complex 3D Discrete Fracture Ma-
trix model using a family of tetrahedral meshes refined along the fracture network, leading
to polyhedral meshes. To be more challenging, this test case considers a Coulomb frictional
contact model. The VEM Nitsche’s discretisation is readily extended to such model and we
refer to [3939] for a detailed description of this extension. For this test case, the sensitivity
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of Nitsche’s method to its parameters is investigated, and the scheme is compared with the
VEM-bubble discretisation from [2828] both in terms of accuracy (using a fine mesh reference
solution) and in terms of robustness of the nonlinear solver. The VEM-bubble discretisation
uses a mixed formulation with facewise constant Lagrange multipliers combined with a sta-
bilisation based on one bubble displacement additional unknown on one side of each fracture
face.

In both cases, the Nitsche’s nonlinear term on each fracture face is approximated using
a quadrature formula which is exact on second degree polynomials and based on quadrature
points defined by the mid edges of a triangular submesh of the given face. The resulting
nonlinear system is solved with a semi-smooth Newton algorithm which just amounts to a
piecewise differentiation (typically the function [x]R− is differenciated according to the sign
of x ∈ R). The stopping criteria is set to 10−5 on the relative residual and the linear system
at each Newton iteration is solved using the sequential version of the direct sparse solver
SuperLU.

5.1 3D manufactured solution

We consider the test case introduced in [2828] defined on the domain Ω = (−1, 1)3 with a single
non-immersed fracture Γ = {0}× (−1, 1)2. The material is isotropic and homogeneous given
by the Lamé coefficients µ = λ = 1. The exact solution

u(x, y, z) =



 g(x, y)p(z)
p(z)

x2p(z)

 if z ≥ 0, h(x)p+(z)

h(x) (p+(z))
′

−
∫ x
0 h(ξ)dξ (p+(z))

′

 if z < 0, x < 0, h(x)p−(z)

h(x) (p−(z))
′

−
∫ x
0 h(ξ)dξ (p−(z))

′

 if z < 0, x ≥ 0,

with g(x, y) = − sin(πx2 ) cos(πy2 ), p(z) = z2, h(x) = cos(πx2 ), p+(z) = z4 and p−(z) = 2z4, is
designed to satisfy the frictionless contact conditions at the matrix–fracture interface Γ. The
right hand side f = −divσ(u) and the Dirichlet boundary conditions on ∂Ω are deduced
from u. Note that the fracture Γ is in contact state for z > 0 (JuKn = 0) and open for
z < 0, with a normal jump JuKn = −min(z, 0)4 depending only on z. The convergence
of VEM Nitsche’s formulation is investigated on families of uniform Cartesian, tetrahedral
and hexahedral meshes. Starting from uniform Cartesian meshes, the hexahedral meshes are
generated by random perturbations of the nodes and by cutting non-planar faces into two
triangles (see Figure 22). The Nitsche’s parameters are fixed to θ = −1 and to β0 = 100 (see
[33] for more details motivating this choice).
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Figure 2: Example of randomly perturbated Cartesian cell with non planar faces cut into
two triangles.

Let us define the face-wise constant approximation of the normal surface traction λ =
−σn(u) by

λD(x) = −
[ 1

|σ|

∫
σ
(|σD,n(uD)− βJuDKD,n)

]
R−

, ∀x ∈ σ, ∀σ ∈ FΓ, (46)

and the reconstruction of the displacement jump vector by

JuDKD(x) = ΠKσuD(x)−ΠLσuD(x), ∀x ∈ σ, ∀σ = K|L ∈ FΓ.

Figure 33 exhibits the relative L2 norms of the errors u − ΠDuD, JuK − JuDKD,∇u − ∇DuD
and λ − λD on the three family of meshes as a function of the cubic root of the number of
cells. It shows, as expected for such a smooth solution, a second-order convergence for u and
JuK with all families of meshes. A first-order convergence is obtained for ∇u and λ with both
the hexahedral and tetrahedral families of meshes, while a second order super convergence is
observed with the family of Cartesian meshes.
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Figure 2. Relative !2 norms of the errors u �⇧DuD , JuK � JuDKD ,ru � rDuD and _n � _D,n as a
function of the cubic root of the number of cells, using the families of Cartesian (a), tetrahedral (b)
and hexahedral (c) meshes.
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5.2 3D Discrete Fracture Matrix (DFM) model with intersecting fractures
htest_dfmi

We consider the domain ⌦ = (0, 1,m)3 with the fracture network � depicted in Figure 3, which we
discretise using tetrahedral meshes containing 47k, 127k, 250k and 450k cells. To improve accuracy,
each of these meshes is further refined along the fracture network by cutting each fracture face into 4
triangles leading to conforming polytopal meshes.

The material is isotropic and homogeneous characterized by its Young’s modulus and Poisson’s ratio
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Figure 3: Relative L2 norms of the errors u−ΠDuD, JuK − JuDKD,∇u−∇DuD and λ− λD
as a function of the cubic root of the number of cells, using the families of Cartesian (a),
tetrahedral (b) and hexahedral (c) meshes.

5.2 3D Discrete Fracture Matrix (DFM) model with intersecting fractures

We consider the domain Ω = (0, 1,m)3 with the fracture network Γ depicted in Figure 44
discretised using tetrahedral meshes containing 47k, 127k, 250k and 450k cells. To improve
accuracy, each of these meshes is further refined along the fracture network by cutting each
fracture face into 4 triangles leading to conforming polytopal meshes (see the right image
in Figure 44). We consider an isotropic homogeneous elastic material with Young’s modulus
E = 4GPa and Poisson’s ratio ν = 0.2 (µ = 5

3 GPa), combined with a Coulomb frictional
contact model with constant friction coefficient F = 0.75. Dirichlet boundary conditions are
imposed at the bottom and top boundaries for the displacement field with u = 0 at z = 0, and
u = t[0m, 0.005m,−0.002m] at z = 1. Homogeneous Neumann conditions are imposed at
the lateral boundaries. No analytical solution is known for this data set, hence we investigate
the numerical convergence of the VEM Nitsche’s discretisation using the reference fine mesh
solution obtained with 450k cells and the VEM Nitsche’s discretisation.

We investigate the sensitivity of Nitsche’s discretisation to the normal and tangential
penalty parameters βn

0 , βτ
0 (two different values are used in the Coulomb frictional case),

and to the parameter θ set typically to either −1, 0, or 1. The well-posedness analysis of
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Section 4.24.2 easily extends to Tresca friction (see e.g. [33] in the FEM case) leading to the
sufficient condition (1 + θ)2

(
ΛD
βn
0
+

ΛD,τ

βτ
0

)
≤ C, with C < 4 where ΛD is defined in Lemma

4.34.3 and ΛD,τ is defined in the same way based on the tangential traction rather than the
normal traction. Using the inverse power algorithm we obtain on the coarsest mesh the
following values ΛD ≈ 3.8µ and ΛD,τ ≈ 1.6µ providing an order of magnitude of the penalty
parameters. Note that for Coulomb friction additional conditions must be imposed on the
penalty parameters to obtain the existence of a discrete solution based on the convergence of
a fixed point algorithm related to the Tresca solution [2020]. Table 11 investigates, for different
values of βn

0 , βτ
0 and θ, the efficiency of the semi-smooth Newton nonlinear solver combined

with a backtracking line search algorithm (see [3939] for details). As could be expected from
the Tresca well-posedness criteria, the choice θ = −1 provides robustness over a larger range
of penalty parameters compared with θ = 0 or 1. Note however that, at given penalty
parameters, the solutions for θ = −1, 0, 1 exhibit no significant differences for this test case.
For small values of the penalty parameters, as could be expected, the solution can exhibit
oscillations as illustrated in Figure 55 on the normal displacement jump for βn

0 = 5µ and
βτ
0 = 2µ. Based on these results, we select θ = −1 combined with βn

0 = 100µ and βτ
0 = 10µ

which offers a good compromise between the accuracy of the solution and the efficiency of
the nonlinear solver.

Figure 55 shows no significant differences on the normal displacement jump obtained on the
47k cells mesh with the VEM-bubble discretisation and VEM-Nitsche’s method for θ = −1
and βn

0
µ = 100 and βτ

0
µ = 10. Figure 66 plots, for both the VEM-Nitsche’s and VEM-bubble

discretisations, the τ2-tangential displacement jump along the diagonal of the right vertical
fracture obtained on the meshes with 47k, 127k and 250k cells. Here (τ1, τ2) denotes a local
coordinate system on each fracture plane. We observe that Nitsche’s method captures more
accurately the jump discontinuity at the fracture intersection even on the coarsest meshes
while the discontinuity is smoothed out with the VEM-bubble method as a result of the
contact conditions satisfied only in average over each fracture face.

Table 22 investigates the numerical behavior of both schemes in terms of number of non-
linear iterations and total CPU time required by each method on the meshes with 47k, 127k,
and 250k cells. The results show that VEM-Nitsche’s method is more computationally effi-
cient with a similar number of nonlinear iterations for both methods but a lower CPU time
for Nitsche’s formulation resulting from having half the number of DOFs. This is due to
the fact that the VEM-bubble discretisation requires two additional vectorial unknowns (one
bubble displacement and one Lagrange multiplier) on each fracture face.
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Figure 4: Polytopal mesh of the 3D DFM with roughly 47k cells and 6k fracture faces and
obtained from an initial tetrahedral mesh refined along the fracture network by cutting each
fracture face in four triangle (left). Example of a polyhedral cell with a tetrahedral shape but
7 faces and 7 nodes as a consequence of the refinement along the fracture network (right).

βn
0 /µ 1 5 10 50 100 100 200 800

βτ
0/µ 0.4 2 4 20 10 40 80 320

θ = −1 7 8 9 13 16 18 26 81
θ = 0 6 8 9 13 16 18 26 NCV
θ = 1 NCV 8 9 14 15 20 32 NCV

Table 1: Number of Newton iterations obtained on the 47k cells mesh for different values
of Nitsche’s parameters θ, βn

0 , βτ
0 . NCV means that the converge is not achieved after 300

iterations.

#M 45k 127k 250k
Schemes VB VN VB VN VB VN
DOFs 28k 14k 63k 33k 117k 64k

Newton 18 16 19 18 23 23
CPU (s) 3918 2156 25k 12k 139k 84k

Table 2: Performance of the nonlinear solver in terms of number of iterations and CPU
time for both the VEM Nitsche (VN) and VEM-bubble (VB) discretisations on the family of
meshes. Nitsche’s parameters are fixed to θ = −1, βn

0 = 100µ, βτ
0 = 10µ.
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(a) VN 47k, β0

µ = (100, 10) (b) VB 47k

(c) VN 47k, β0

µ = (5, 2) (d) Reference solution

Figure 5: Normal displacement jump for (a) VEM-Nitsche (VN) on the 47k cells mesh with
β0

µ = (
βn
0
µ ,

βτ
0
µ ) = (100, 10), (b) VEM-Bubble (VB) on the 47k cells mesh, (c) VEM-Nitsche

on the 47k cells mesh with βn
0
µ = 5, βτ

0
µ = 2, and (d) the reference solution on the 450k cells

mesh.
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Figure 6: The τ2 component of the tangential displacement jump along the diagonal line of
the right vertical fracture for the 47k, 127k, and 250k meshes, compared with the reference
solution, for both VEM-Nitsche’s and VEM-Bubble methods. Nitsche’s parameters are fixed
to θ = −1, βn

0 = 100µ, βτ
0 = 10µ.

6 Conclusion

We have presented in this work a first order VEM polytopal discretisation combined with
Nitsche’s formulation for frictionless contact-mechanics based only on the displacement field
nodal unknowns. The numerical analysis, performed in the fully discrete framework, provides
an optimal error estimate with minimal regularity assumptions. The discretisation and the
analysis account for networks of fractures including corners, tips and intersections. Following
[1717, 2020, 33], the discretisation readily extends to the Mohr-Coulomb frictional model and
the numerical analysis to the Tresca friction. Moreover, this approach is naturally suited
to semi-smooth Newton nonlinear solvers. Numerical experiments illustrate the theoretical
convergence on a manufactured solution and the good numerical behavior of the scheme on a
Coulomb frictional model both in terms of CPU time and accuracy compared with the VEM-
bubble discretisation. Applications to poromechanical models including fault reactivation by
fluid injection will be presented in a forthcoming work.
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