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Weak well-posedness and weak discretization error for
stable-driven SDEs with Lebesgue drift

Mathis Fitoussi Benjamin Jourdain! Stéphane Menozzi*

May 9, 2024

Abstract

We are interested in the discretization of stable driven SDEs with additive noise for a € (1,2) and
L% — LP drift under the Serrin type condition % + % < a—1. We show weak existence and uniqueness as
well as heat kernel estimates for the SDE and obtain a convergence rate of order *(a—1— (5 + %)) for
the difference of the densities for the Euler scheme approximation involving suitably cutoffed and time
randomized drifts.

1 Introduction

For a fixed time horizon T" > 0, we are interested in the weak well-posedness and the Euler-Maruyama
dicretization of the SDE

dX, = b(t, X,)dt + dZ,, Xo==z,  Vte[0,T], (1.1)

where b belongs to the Lebesgue space L([0, T], LP(R%)) := {f 200, T) x RE - ||t || £(2, Mol pao,rp) < oo}
=: L7 — LP and Z; is a symmetric non-degenerate d-dimensional a-stable process, whose spectral measure
is equivalent to the Lebesgue measure on the unit sphere S¢~! (see Subsection 1.4 for detailed assumptions
on the noise).

We will work under the integrability condition

d «
-+ —-—<a-1, ac(1,2). 1.2
i (1,2) (1.2)
This condition can be seen as the a-stable extension of the Krylov-Réckner condition for Brownian-driven
SDEs (see [KRO05]), although not guaranteeing strong well-posedness in the strictly stable setting (o < 2).
To this end, some additional smoothness conditions on the drift naturally appear, expressed in terms of
Bessel potential spaces (see [XZ20]).

In this paper, we first establish well-posedness of (1.1) through the study of a suitably associated Euler
scheme, for which we prove heat kernel estimates. These then allow to follow the usual route to derive
well-posedness: tightness, identification of a martingale problem solution and stability. As a consequence of
this approach, we derive Duhamel-type expansions for the densities of the Euler scheme and the diffusion,
which paves the way for an error analysis.

There has recently been a growing interest for SDEs of the type (1.1) which involve a singular drift,
both from the theoretical and numerical points of view. Drifts of the above form indeed appear in some
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physics-related models, having in mind, for example, the Biot-Savart kernel or Keller-Segel-type equations.

This paper can be viewed as a stable-driven extension of [JM23], in which the corresponding Brownian
case was addressed for the weak error. Stable processes naturally appear when modelling anomalous diffusion
phenomena (see [Esc06] for the fractional Keller-Segel model and [MS12] for general fractional models). It
is therefore important to be able to quantify how discretization schemes can approximate (1.1).

1.1 Definition of the Euler scheme

Since we consider a potentially unbounded drift coefficient, it is natural to introduce a cutoff for the dis-
cretization scheme. For a time step size h, the two cutoffs we consider are the following:

e Ifp=gq=00, we simply take V(t, y) € [OvT} X [Rd7 bh(tay) = Bh(ta y) = b<tay)

e Otherwise, we set

1

min {|b(t, Y)l, Bh™ %57

bh(ta y) = |b(t,y)| b(tvy)]llb(t,y)\>07 (tvy) € [OaT] X lev (13)
_ min | [b(t, y)|, Bh= !
bh(t7y) = { |b(t y)| }b(t7y)j]-t>h,|b(t,y)|>07 (tvy) € [07T] X IRd7 (14)

for some constant B > 0 which can be chosen freely as long as it does not depend on h nor T

The first option has a cutoff level related to the integrability condition (1.2), while the second one is related
to the auto-similarity index of the driving noise. The latter also artificially sets the drift to 0 on the first
step (we will see later that this allows in particular to compute estimates on the gradient of the density of
the Euler scheme). The idea behind this cutoff level is to make sure the contribution of the drift does not
dominate over that of the stable noise on each time step of the scheme.

We then define a discretization scheme with n time steps over [0, 7], with constant step size h := T/n.
For the rest of this paper, we denote, Vk € {1,...,n},t, := kh and Vs > 0,71 := hl7] € (s — h, s], which is
the last grid point before time s. Namely, if s € [tg, tgt1), Tg = tg.

In order to avoid assumptions on the drift b beyond integrability and measurability, we are led to ran-
domize the evaluations of by, (resp. by) in the time variable. For each k € {0,...,n — 1}, we will draw a
random variable Uy according to the uniform law on [kh, (k4 1)h], independently of each other and the noise
(Zt)1>0. We can then define a step of the Euler scheme as

Xh

b =Xt 4+ (Ziy — Za) + hbn (U, X12), (1.5)
and its time interpolation as the solution to

dX}' = dZ; +bp(Uyz ), X1) dt. (1.6)
Similarly, for the alternative cutoff, we define

Xh

tht1 Xt}l + (Ztk+1 - Ztk) + hi)h(Uk)Xt]—;)a (17)
and its time interpolation as the solution to
dXth = dZ; + Bh(UL%J’Xf}L) dt. (1.8)

As by, and by, are bounded, the schemes (1.6) and (1.8) are well defined and admit densities in positive times.
We will denote by T'"*(0,z,t,-) and T'"(0,z,¢,-) their respective densities at time ¢ € (0,7] when starting
from « at time 0.
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1.2 Well-posedness - state of the art

Let us recall that weak well-posedness is often investigated through the parabolic PDE which is naturally
associated with the SDE (1.1)

(05 + b(s,2) -V + LY u(s, ) = f(s,2) on [0,T) x RY, u(t,-) = g on RY, (1.9)

where £ is the generator of the noise and f and g are suitable functions. Bearing in mind that, in the
(B-Holder setting, the associated parabolic gain is 8 + «, the regularity condition S+ a > 1 naturally appears
to define the gradient of the solution. Let us point out that this condition already appeared in the seminal
work of [TTWT74]. For weak and strong well-posedness in the Holder setting, we can e.g. refer to [MP14]
and [CZZ21], which also includes the super-critical case. Since we do not have any regularity available on
the drift b, we are naturally led to consider sub-critical regimes for the stability index (i.e. a > 1).

Establishing estimates on the gradient of the solution to the PDE naturally leads to weak uniqueness
in the multidimensional setting for (1.1) through the martingale problem. In this paper, under (1.2), we
obtain such estimates exploiting heat kernel estimates for the density I'" of X" and taking the limit as h
goes to 0. Keep in mind that some additional smoothness is required to derive strong well-posedness in the
multidimensional case.

In the strictly stable and time-homogeneous setting with mere integrability assumptions on the drift,
weak existence and uniqueness of a solution to (1.1) was first investigated in [Por94] in R and extended to
the multidimensional case in [PP95] under the condition g < a — 1 by constructing the density using its

d
parametrix expansion. When considering the embedding LP(R?) < Bao'oo (R?) (the latter being the Besov
space with regularity f%), the previous condition is then consistent with the condition o+ 3 > 1 appearing
in the Holder case.

Let us also mention the work [CdRM22], in which weak well-posedness is proved for distributional drifts

1— o d
in the Besov-Lebesgue space L7 — [Bg’r under the condition 8 > % In view of this threshold, our

well-posedness result can be seen as an extension of this work for g = 0.

Our approach to well-posedness naturally provides heat kernel estimates for both the discretization
scheme and the limit SDE that quantify the behavior of their time marginal laws. Namely, as detailed in the
seminal work by Kolokoltsov [Kol00], for a smooth bounded drift, the time marginals of the solution (1.1)
and the noise behave alike. This work was then extended in various directions, mostly for Hélder continuous
drifts (see [KK18], [Kull9], [CHZ20] and [MZ22]), and more recently for distributional drifts (see [PvZ22]
in the Brownian setting and [Fit23] in the strictly stable case). In those works, the authors again establish
that the time marginal laws of the process have a density which is “equivalent” (i.e. bounded from above
and below) to the density of the noise, and that the spatial gradients exhibit the same time singularities and
decay rates (see Theorem 1 below in the current Lebesgue setting).

1.3 Euler scheme - state of the art

For the discretization of singular drift diffusions, a rather vast literature exists, although it mostly focuses on
the Brownian setting for an additive noise. A first approach consists in using the sewing lemma (see [Lé20])
in order to obtain results on the strong error rate, which is defined as the convergence rate of

sup |X; — Xth\
t€(0,T)

(1.10)

LT

for some r > 1. This was done in the work of Lé and Ling ([LL22]), who obtain a convergence in hz|In(h)|
under the Krylov-Réckner condition g + % < 1 (see also [DGI22]) even with multiplicative noise (when the
corresponding coefficient is Lipschitz in the spatial variable) for the semi-discrete scheme where the time-
variable of the coefficients is not discretized. This is a remarkable result since, up to the logarithmic factor,
this corresponds to the convergence rate for the strong error associated with a Brownian SDE with Lipschitz
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coeflicients with non-trivial diffusion term. It remains open to understand whether the strong convergence

rate improves in terms of the gap to criticity 1 — (% + %) in the additive noise case.

The main contribution of the sewing lemma consists in bounding L" norms of the form

|

that is, the strong error associated with local differences of the path along an irregular function with suitable
integrability properties.

t
/ b(s, X") — b(s, XI) ds
o !

] , (1.11)

On the other hand, deriving weak error rates usually involves studying the PDE (1.9) or the associated
Duhamel representation. Indeed, the weak error is related to the difference between the density of the SDE
(1.1) and that of the corresponding Euler scheme (1.6). Using the Duhamel representations satisfied by the
respective transition densities I' and I'" of the diffusion and its Euler scheme, we will estimate

‘F(())mvtay) - Fh(071‘7t’ y)|

This approach allows to integrate against any type of irregular test functions enjoying suitable integrability
properties.

When the coefficients of (1.1) are smooth, the seminal paper of Talay and Tubaro ([TT90]) gives a
convergence of order 1 in h. With S-Holder coefficients, the work of Mikulevicius and Platen ([MP91])
proves a convergence in h% in the Brownian case. In these works, for u solving (1.9) with smooth terminal
condition g and no source term f, applying It6’s formula, the error writes

E(g.t,,h) = Eoulg(X]") — 9(X0)]) = Eoufu(t, X[') — u(0,2)]

= Eo, Uof (b(r, XM - b(TTh,Xfﬁ)) - Vu(r, Xﬁ)} dr,

where the index 0,z of the expectation sign means that the scheme is started from X/ = x at time 0. The
authors then use classic Schauder type estimates, see e.g. [Fri64], to control ||Vu||pe. From the g-Holder
continuity of the drift, the following bound is then derived

t
E(g,t,2,h) < C|[ V|| 1o / Eo [|IX0 — X1 1°] dr < O Vu . (1.12)
i ,

The above final rate then comes from the magnitude of the increment of the Euler scheme on one time step in
the L?(P) norm. However, one can see that this essentially consists in using strong error analysis techniques
to derive a weak error rate, which does not seem adequate.

In the current work, we want to investigate errors of the form £(d,,t, z, h) (where ¢, is the dirac mass at
point y). This formally writes

t
5((5y,t, z, h) = [EOJE |:/ (b(?’, X:’L) - b(T;lath))> : VZF(T,t, Z, y)|z:X’L dr y (113)
0 r "

where I is the density of (1.1). When comparing this equation to (1.11), we see that, in the weak setting, an
additional gradient term appears. Whenever this term is not regular enough, which is the case in the current
Lebesgue setting, it lowers the time integrability properties of the irregular function that we want to inves-
tigate. However, in the specific case of a Holder continuous drift and terminal condition g, this additional
term can be handled using sewing techniques. Doing so in [Hol22], the author improves the convergence rate
in (1.12) to h"5 . The study of the weak error for Hélder coefficients and a final Dirac mass will be the topic
of an upcoming work.
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In the irregular setting, for the weak error associated with the densities, the randomization of the time

variable permits to replace b(7*, X",) by b(r, X,) du in (1.13) (up to some error term on [7/", ]) and another

new idea was introduced in [BJ22] in order to tackle mere bounded drifts, which consists in writing

Eo.[b(r, X) - VT (r,t, X y) — b(r, X1 - VT (r,t, X0 )]

h
Tr

s Ipo

= /[Fh((),x,r, 2) = TM0, 2,7, 2)|b(r, 2) - VT (r,t, 2,9) dz (1.14)

and exploiting the regularity in the forward time variable of T'” instead of that of b- VI'. In [JM23], authors

use this technique with a drift in L9 — L? to derive a rate of order I, where v :=1 — d _ 2 s the so-called
“gap to singularity” or “gap to criticity”. Note that, with respect to the rate obtained in [LL22], due to the
additional gradient term in VI in (1.14) (as opposed to (1.11)), an order % is lost on the convergence rate.

However, the techniques developed therein allow to take advantage of the gap to singularity.

As mentioned, the rate for the strong error under the Krylov-Réckner condition is (at least) 3, up to a
logarithmic factor. Since we expect the weak error rate to be at least as good, it remains to understand how
to improve it beyond %

In Theorem 2, we obtain a weak error rate in h=, where our “gap to singularity” is now defined as
yi=a—1-— (% + %) > 0. Importantly, there is continuity w.r.t. the stability index for the associated error
rates.

1.4 Driving noise and related density properties

Let us denote by £ the generator of the driving noise Z. In the case a = 2, £ is the usual Laplacian 1A

b

When « € (1,2), in whole generality, the generator of a symmetric stable process writes, V¢ € C§°(R®,
(smooth compactly supported functions),

£o4(z) = pv. / [B(z + 2) — 3(x)] v(d2)

R4
= /[R+ /SGF1 [p(x + p§) — ¢(x)] pn(dE) pita

(see [Sat99] for the polar decomposition of the spectral measure) where p is a finite measure on the unit
sphere 5971 such that pu(A) = p({¢ € S 1: —¢ € A}) for each Borel subset A of $41.

This general setting will not allow us to derive heat kernel estimates, because it does not lead to global
estimates of the noise density. In [Wat07], Watanabe investigates the behavior of the density of an a-stable
process in terms of properties fulfilled by the support of its spectral measure. From this work, we know that
whenever the measure p is not equivalent to the Lebesgue measure m on the unit sphere, accurate estimates
on the density of the stable process are delicate to obtain. However, Watanabe (see [Wat07], Theorem 1.5)
and Kolokoltsov ([Kol00], Propositions 2.1-2.5) showed that if

ctm(d¢) < p(d€) < em(d€) for some ¢ € [1, +00), (1.15)

the following estimates hold for the density z — p, (v, z) of Z, with respect to the Lebesgue measure on R?
when v > 0 : there exists a constant C' depending only on a,d, s.t. Vv € R,z € R?,

—(d+a) —(d+a)
C-ly% (1 + |Z1|) < pa(v,2) < Co—a <1 + ZJ) . (1.16)
va va

As our approach heavily relies on these global bounds, we assume that u satisfies (1.15).
Note that in Section 2.1 and Appendix A which are dedicated to technical lemmas, we will be using the
proxy notation

c,, —(d+a)
Pa(v,2) = — (1 + |z1) , v>0,2€RY, (1.17)
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where C,, is chosen so that Vv > 0, [ pa(v,y)dy = 1, because we therein explicitly rely on the global bounds
provided by p,. In the rest of the paper, we will prefer the notation p,, directly referring to the density of
the noise.

Further properties related to the density of the driving noise are stated in Lemmas 1 and 2 below.

1.5 Main results

We are now in position to state the main results of the current work. The first result concerns the well-
posedness of (1.1).

Theorem 1 (Weak existence and density estimates for the diffusion). Assume (1.2). The stochastic differ-
ential equation (1.1) admits a weak solution such that for eacht € (0,T], X; admits a density y — T'(0,t,z,y)
w.r.t. the Lebesque measure such that 3C := C(b,T) < oo : Vt € (0,T],V(x,y) € (R)?,

F(vaat;y) < Cpa(t,yfx), (118)
and this density is the unique solution to the following Duhamel representation among functions of (t,y) €

[0,T] x R? satisfying (1.18):

¢
vt € (0,T], Yy € RY, T(0,2,t,9) = pa(t,y — x) —/ / I'0, 2,7, 2)b(r, 2).Vypa(t —r,y — z)dzdr. (1.19)
0 Jre

Furthermore, there exists a unique solution to the martingale problem related to b -V + L% starting from x
at time 0 in the sense of Definition 1 (see page 30 below).

Finally, let us define the “gap to singularity” as

d
’y::a717<7+g)>0. (1.20)
p q
Then, T has the following regularity in the forward spatial variable: ¥t € (0,T],¥(x,y,y’) € (R%)3,
ly—y' [ Ate
ol

o

|F(O,x,t,y) _F(vaat7y/)| < C (pa(tay_x)+pa(t7y/ —ZIJ)) (121)

The proof of the heat kernel estimates for the diffusion heavily relies on the following heat kernel estimates
for the density the Euler schemes (1.6) and (1.8).

Proposition 1 (Density estimates for the Euler scheme). Assume (1.2). Set h =L n e N*. Let X" be the
scheme defined in (1.6) (resp. X" the scheme defined in (1.8)) starting from zo € R? at time 0.
Then, for all 0 < t == kh <t < T, k € [0,n —1],(z,y) € (RY)?, the random variable X}' admits,
conditionally to XZL =z, a density T (ty, z,t,-), which enjoys the following Duhamel representation: for all
y € RY,
t
T (te, 2, t,y) = pa(t —te,y — ) — /

tr

Et .o [bh(UL%J X1 Vypalt =y — X1 dr, (1.22)

where the index ty,x of the expectation sign means that the scheme (X]})re[tkj] is started from X[; ==z
at time ti,. Similarly, the random variable X}' admits, conditionally to X't};_ = x, a transition density
T (tg,z,t,-), which enjoys the following Duhamel representation: for all y € RY,

t
Fh(tk7w7t,y)=pa(t—tk,y—x)—/ Et.c [bh(ULﬁj»X:—t{z)'Vypa(t_ray_X:}) dr. (1.23)
tr

Furthermore, there exists a finite constant C' not depending on h = % such that for all k € [0,n —1],t €
(ts, T), 2,9,y € RY,

Fh(tk,l‘7t,y) S Opoz(t_tkay_x) (124)
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and

|Fh(tk’ x,t,y') - Fh(tkvffata y)|

— YAt —t)>
<O|y y(ll t()7 2 (pa(t*tkyy*$)+pa(t7tk7y/7‘T))’ (1.25)
— )=

for v defined in (1.20). Also, for all0 < k < £ <n, t € [ty,ter1], 7,y € RY,

t—ty)a
‘Fh(tk7l‘7t, y) - Fh(tk7$7tfay)| < CMpa(t - tkay - I), (126)

and the same estimates hold with T" replacing T'".
Our second main result states a weak convergence rate bound for the Euler schemes (1.6) and (1.8) :

Theorem 2 (Convergence Rate for the stable-driven Euler-Maruyama scheme with L? — L? drift). Assume
that (1.2) holds. There exists a constant C < oo s.t. for all h = T/n with n € N*, and all t € (0,T],
x,y € RY

|Fh(0,x,t,y) —T(0,2,t,y)| < C’h%pa(t, y— ),
resp.  [T7(0,2,t,y) — T(0,2,t,y)| < Chapa(t,y — ).

1.6 Notations
We will use the following notations :
e A < B if there exists a constant C' > 1, which depends only on «,d, p,q,b, T, such that A < CB.

o A= B if there exists a constant C > 1, which depends only on «, d,p,q,b, T, such that C™'B < A <
CB.

o For £ € [1,+00], we always denote by ¢’ € [1,+00] its conjugate exponent, i.e. % + %, =1.

The article is organized as follows. The proof of Theorem 2 is developed in Section 2 (assuming that the
controls of Theorem 1 hold). Section 3 is dedicated to the proof of the estimates for the schemes. The proof
of Theorem 1 is presented in Section 4.1. The proof of some technical results are gathered in Appendix A.

2 Proof of the convergence rate for the error (Theorem 2)

2.1 Technical tools

We will profusely use the following technical lemmas which hold for any stability index a € (1,2) and are
proved in Appendix A:

Lemma 1 (Stable sensitivities - Estimates on the a-stable kernel). For each multi-index ¢ with length
I¢| <2, and for all0 <u <u' <T, (x,2') € (RY)?,

o Bounds for space and time derivatives: for all 8 € {0, 1},

Pa(u, )
|05V 5 pa(u, 2)| < ;ﬁ+ﬁ : (2.1)

o Spatial Holder regularity: for all 6 € (0,1],
¢ ¢ / |3§ — 1./‘6 1 /
|pra(u, x) — Vipa(u, x )| S| —a— A1) =7 (Palu, ) + pa(u, ). (2.2)

a

S



Weak well-posedness and weak discretization error for stable-driven SDEs with Lebesgue drift 8

Time Holder regularity: for all 6 € (0,1],

|Vipa(u,2) = Vpa(u', 2)] T(pa(u @) + pa(u, ). (2.3)

o Time scales for spatial moments: for all £ € [1,400] and § € [0, % + ),
Ipa(u, )| - Pl o < Cumar 5. (2.4)

o Convolution: for all (z,y) € (RH)?, 0<s<u<t<T,{>1,

Pa(t =, = y)pale— s, =)o S [(t_lu)jz o _18)51 palt—s2-y).  (25)

Integration of an L* function in a spatial stable convolution: for all (x,y) € (R1)2, 0<s<u<t<T,
(>1,¢4 € LR, R),

1 n 1
(t —u)ar

/pa( u, 2 = 2)|¢(2)|palu — s,y — 2)dz S [ i ]pa(t—s,y—x)dlm (2.6)

(u—s)az

Lemma 2 (Feynman-Kac partial differential equation). Let t > 0 and ¢ : R — R be a C? function with
bounded derivatives. Then the function v(s,y) = Lecipa(t — 8,-) x d(y) + Ls—sd(y) is C12 on [0,1] x R? and
satisfies the Feynman-Kac partial differential equation

Y(s,y) € [0,t) x RY, d,v(s,y) + L(s,y) = 0.

Lemma 3 (Integration of the drift in a spatial stable time-space convolution). Let 0 <u < v <t < T and
B1,B2 € Ry. Let b€ L([0,T], LP(R?)) with p,q such that (1.2) holds.

e Singular case. If v <t and

d d
q ( +51> >1 and q < +ﬁ2> <1,
ap ap

1 1
/ /pa x)|b(r, z)|pa(t r,y—z)mﬁdr

S paltyy — x)((v —u) e TP 4 (p ) (- ) Bl) (2.7)

then,

o Integrable case. If
d d
q ( +ﬂ1> <1 and q < +Bg> <1,
ap ap
then,

/ /pa r,z —x)|b(r, 2)|pa(t —ry — )( L B 7;2 dr < pal(t,y —x)[(v—u)%l—(ﬁﬁﬁz)]. (2.8)

The previous lemma will be used to treat the main error terms in the analysis of the error The most

common use case is when 8, = 0 and 81 = 1 (we are thus in case (2.8)) and u = h,v = 7/ — h. This
configuration appears when we previously used (2.1) to bound the gradient of p,(t — r,y — 2z) and that no
other singularities come into play. The case 83 > 0 with an additional singular in r factor is needed for the
proof of Theorem 2 (which will require setting 2 = ).
We will also use (2.7) whenever there is an additional singularity in (¢ —r) which makes the previous integral
non-convergent (see e.g. (2.22)). This will actually happen in order to obtain exactly the gap ~ defined
(1.20) in the convergence rate or in the Holder exponents for the density, see e.g. Section 3.3.1 for the proof
of the Holder regularity of the density of the scheme stated in Proposition 1.
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—(d+a)
Remark 1. From the definition of po(u,x) = er (1 + %) , one can gather the following:
Let x € RY and u > 0.
o If x| > us (off-diagonal regime),
_ u
o If|z| <us (diagonal regime),
_ 1
Pa(u,z) X —. (2.10)
U

Those two regimes will be central in our proofs. The scales which we consider for these regimes derive
from the self-similarity of the noise. Let us as well point out that the diagonal bound in (2.10) is also a
global upper bound for both p, and p,.

The next lemma is very important since it precisely emphasizes that the drift by, (resp. by,) is actually a
negligible term w.r.t. the scale of the underlying noise for a one-step transition of the corresponding scheme.

Lemma 4 (About the cutoff on a one-step transition). Here, by, € {by,bn} stands for one of the two drifts
considered for the schemes.

e For all (u,r) € (0,T)?, s <min(u, h), (z,y) € (R))?, and each multi-index ¢ € N with length |¢| < 1,

PalU, Yy
1V Pty — b (r, )] < 22let), (2.11)
u «

e Forall (u,r) € (0,T)?, s < min(u, h), (z,y,9') € (RY)3, for each multi-index ¢ € N with length |¢| < 1,
and for all 6 € (0,1],

116
— 1
Vi = 300 (1,0) = Vopatis’ = sburo)] £ (PEEAL) o )+l ).
a U
(2.12)

2.2 Proof of the error bounds of Theorem 2

Comparing the Duhamel formula of the scheme, (1.22), to that of the diffusion, (1.19), we get
Fh(oa z,t, y) - F(O7 x,t, y)
¢ ¢
= / / I'0,2,s,2)b(s, 2).Vypa(t — s,y — z)dzds — Eg 5 [/ bh(UL%J,X:_Lh,) Vypa(t — s,y — X ds] .
0 JRe 0 s
Respectively, for the alternative scheme involving by,
(0,2, t,y) = T(0,,t,y)

t t
= / / [(0,z,s,2)b(s,2).Vypa(t — s,y —2z)dzds — Eg » [/ B;L(UL;J,XZL) -Vypal(t — s,y — Xf) ds] .
0 JRd 0 ' s
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The error admits the following decomposition:
t
Fh(oa :c,t,y) - F(vaat,y) = / /[F(O, z, 572) - Fh(o,(ﬂ, S, Z)}b(sa Z) : vypa(t — S5y — Z) dzds
0
T, —h
+ Lye>3my / /Fh(O, x,5,2)(b(s,2) — br(s, 2)) - Vypa(t — s,y — z)dzds
t1
'rthfh
+ Lye>3my / /[Fh(O,av7 5,2) = TM0, 2,71, 2)|bn(s, 2) - Vypa(t — s,y — z)dzds
t1
T, —h
+ Ly>3ny / Eo,» {bh(ULs/hJa w) - (Vypa(t = Uls/n)y — ng) — Vypalt — s,y — X)) | ds

/th/ /pa —x —by(r,z)s) (b(s, 2) = bu(r,)) - Vypa(t — s,y — z)dzdrds

Ty hih
+]1{t>h}h/h .- / //Fh (0, x77-5,w (s—TSh,z—w—bh(r,w)(s—TSh))
- 1

x (b(s, z) = bp(r,w)) - Vypa(t — s,y — z) dzdwdrds
=: A1+ Ao+ Ag + Ay + As + Ag, (2.13)

where, for the last term, we use that for s € (¢1,7], not belonging to the discretization grid and gb
R? x R? x R — R measurable and bounded, since X! = X", + Z, — Zmn + bh(UL%J,th)(s — 71 with X
Zs — Z.n and Uz independent, we can write ' ‘

Eo.e [6(X0, X2, UL ))]
T, hip
/ //qﬁwszhOx,Tg,w)pa( — 7Pz —w—bp(r,w)(s — ")) dzdwdr.  (2.14)
Similarly, we define
fh(oaxatvy) - F(O,J}ﬂf, y) = A1 + A2 + A?} + A4 + AS + AG,
where by, is replaced by by.
For As, Az, Ay, we suppose that ¢ > 3h (otherwise these contributions vanish) and rely on the fact that
the current integration time is distinct from 0 and from ¢, meaning that we can rely on the smoothness

properties of the integrands on the considered time intervals. For As, Ag, on the opposite, we rely on the
smallness of the considered time intervals.
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\ t1 Tth —h Tth
I ! ' !
0 t
Aq
Gronwall lemma
Ay
Cutoff error terms
As
Forward time regularity of I'"
Ay
Stable sensitivities
As
—> Overall error on the first full time step
Ag
“— Overall error on the last full time step

Figure 1: Splitting of the error

Let us first deal with A,. Since this term vanishes when p = ¢ = oo (the same is true for A, when
h < (J|bllpec—p~/B)T=), we assume that either p < oo or ¢ < oo. Let A > 1. Using the fact that

Vy € Ry, 1gy>1y < y 1, we obtain that Vf : R — R, VO > 0,

flifscy < Ao
This allows us to control the cutoff error in the following way:

1

b— b = (|b| _Bh @i

) < |b| 4 < ‘b|>\BlfAh(a%,+é)()\fl).
T b|>Bn" &

1
q

Respectively

b— 5| = (|b| . Bhé—l) < bl < [pP B AR B0,
+

1
[b|>Bha "

Along with the use of (1.24) and (2.1), we obtain

Tthfh
|Ag] = |T1g>3n3 / /Fh(O,x, 5,2)(b(s, z) — bin(s,2)) - Vypa(t — s,y — z) dzds
t1

7P —h
t o t_ , —
suErey [0 pals, 2 — a)lo(s, ) AL B8 ) g g
t1 (t—S)E

Let us check that we can choose

gi! .
+a with T € (’77 1]1
q

SRS

(2.15)

(2.16)

small enough so that p = £ and ¢ = { satisfy p > 1 and ¢ > 1. This is indeed possible since, by the definition

t
(1.20) of v and (1.2),

d+ 22 4 4+
p7 = 2 >1 and ql > £ >1
1+—ngg a—1 I+ = Q
P q P q
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Morever, in order to estimate the time integrals that will appear below after the application of Holder’s
S S
q—1— 5]

inequality, let us observe that A\ > 1 and since
1 d
—+— 1+ d - a
ija | ap ol
P q

1 dx 11 od
we have — (2) [ + } (1 — )\> [ + )\] < -1
A a  ap q a  ap

Using the identity Vf : R = R,Vu € Ry,vp > p, ||f”||LfI = [|fIF, and (2.6) with ¢ = p then Young’s
inequality, Holder’s inequality in time and the last inequality combined with (t — 7/ + h) > h, we get

[} t— y Y T
|As| < HE+HHO- 1>/ /pa D)b(s, PPt =Y =2 4 g,
(t—s)=
@11 b 1 1
S Rt )(ty—@/m b5, )2 | + x| ds
t1 (t—s)= ser  (t—s)or
441yt ' —h 1 1
5 h(Tera)( B )pa(t,y—x)/ ||b(87)||2p 1 dx + ( )1+d)\ ds
ty §o Tap t—8§)aap

d
S RGO, (kg — 2)lls > [1b(s, Il ¢

T, —h 1 1 ;
) /f W8 oG |

(E+H(a- Dy 47—1-2 N B
Sh altyy —a) (B tt—Tr+n®

Q

|~
+

h( LLy(a— 1)+1—77,\( L %)pa(t,y—x)

< hipaltyy — o). (2.17)

- _1_y(dy1
The same computations with the same choice of X yield |Ag| < RI-DA-Dp! " )‘<O‘P+q)pa(t,y —1x) <
A
e po(t,y —z) S hapa(t,y — ).

We now turn our attention to Az, for which we mainly rely on the Hélder regularity of I'* in time

(equation (1.26) of Proposition 1). We assume ¢ > 3h, otherwise this contribution vanishes. Using (1.26),
we can write

_ +hyZ
Us > 1, [Th(0,2,5,2) — Th(0,2,71, 2)] 5 E-T2)®
()2

We plug this into the definition of Az, using as well |b,| < |b] (vesp. |bn| < |b]):

pa(S,Z - CU)

7h h ol
|Asz| </ / sl Dal(s,z — x)|b(s, 2)||Vypa(t — s,y — z)|dzds

t—h
<h3 L (s 2 — D)5, )| Vypalt — 5, — 2)] dzds.
" (Th)F !

We now deal with the gradient using (2.1) and notice that since s > ¢; > h then (77)71 < 257! to write

L, [rh 1
Y Ay
t—s

S Pa(8, 2 — x)|b(s, 2)|pa(t — s,y — z)dzds
<h //t L 1 Pal(s,z — )|b(s, 2)|pa(t — s,y — z)dz ds.
— s)asa

Q\H
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Using (2.8) (with u = 0,0 =t, 8 = 1/a, B2 = 7/a so that L — (8, + 2) = 0), we obtain
[As] < hopa(t,y — o). (2.18)

For Ay, we first expand the expectation with the known densities using (2.14):

T, —h
A4=/ [E0x|:bh(U[s/hJu ) (Vpa(t = Uls/nyy — X! W) — Vpa(t — s,y — X1))| ds
t1

:Li/ M0, 2,85, 2) ///p — 2= ba(r,2)(s — 1))

Jj=1 J
X bh(rvz) . (vPa(t N Z) - Vpa(t — S,y — w))dzdwdrds

We then derive, using (1.24) and (2.11),

L2 G+ 1 fli+t
_ _ )
INEDS / E/ //r (0,2, 5, 2)pe(s — t,w — 2 — ba(r, 2)(s — ;) [b(r, 2)|
j=1 Jti tj

X (|Vpa(t —ry—2) = Vpa(t — s,y — 2)| + |[Vpa(t — s,y — 2) — Vpa(t — s,y — w)|) dzdwdrds
L J -2

/ﬁll/m//pat 2= @pals —tjw = 2)|b(r, 2)

(|Vpa(t —ry—2)—Vpa(t— s,y —2)|+|Vpalt — s,y — 2) — Vpo(t — s,y — w)|) dzdwdrds.

(2.19)
Next, we use (2.3) to write
< |7ﬁ — S|
[Vpa(t —ry —2) = Vpa(t — s,y — 2)| £ W(l’a(t—r Y —2) +palt —s,y—2)).
Since r —s < h,t >3h and t —r V s > h, we can use (1.16) to deduce that
r—s

IVpa(t =1y —2) = Vpa(t —s,y — 2)| S (t|_r)1J|r1pa(t -y —z),

which also yields, for any v; € (v, ], recalling that r — s <t —r,
|r— 8|
IVpalt =1y —2) = Vpalt — s,y —2)| S Wpa( =1y —2) (2.20)

For the second term in (2.19), assuming that v, € (v,1] , we deduce from (2.2) that

|z — w|™

(t—s)«

¥t =5.5=2) = Vralt = s,y =) S (5 A1) g Gult = s,y = 2) palt sy = ).

(2.21)
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Plugging (2.21) and (2.20) into (2.19), we can write

L% —2 j+1 1 J+1 |T |771
A4 / / //pa s % a( tj,w—Z)|b(7“,z)|pa(t—r’y_Z)ilmdzdwdrds
=t t—r) a
L7122 J+1
1 j+1 B
+ Z / / //pa ik a( tj,w*Z)|b(7”,z)|pa(t—57yfz)|27wl‘+ﬁdzdwdrds
=t 7t (t—s)a
l£1-2 4, L i
=3 [T et = apats = w = 2lb )
j=1 tj t;
|z —w|™ ) 1
X Palt =8y —w A1 dzdwdrds
pa( Yy )<(t—8)11 (t—s)i
= A} + A7+ AL (2.22)

Let us treat A}. From the Fubini theorem, we integrate first in w using the fact that p, is a probability
density:

tit1 1 tit1 r—s 71
Aj= Z / /t /Pa (tj, 2z —x)|b(r, 2)|pa(t —r,y — )(t||1+71 dzdrds. (2.23)

Then, using tj_1 < 2r~! and (1.16) along with the fact that |r — s| < h, we get

L]—2
N<Li S DIb(r. 2)[pat — 1.y — 2)—— - dzdrd
4~ . \ Pa(r T Z2)|Pall =T Y — 2 T )1+wl zdrds
3J

—r o

tLLJ— " 1
5/ % 1h? /pa(r,zx)b(r,z)|pa(tr,yz)wdzdr
t1

—r o

Using (2.7) (singular case with u = t1,v = 7/* — h, 81 = (1 + 1)/, 82 = 0 and noting that since t > 3h,
v—u>h), we get

AL S paltiy = )b (W= 4 (=t
< paltyy —2)he. (2.24)
Let us treat A% defined in (2.22). We integrate in w using (2.4) and use the fact that s — t; < h:

%]

J+1 ]_ Jj+1 _ Y1
I / / [ [rattsz = omats - wz>|b<r,z>|pa<ts,yz)k;iﬁdzdwdrds
Z

(t—s)"a
\.%J -2 tit t Rl
b1 Jt+1 —t;
/ / /pa js % |b(’l" z |pa(t—s y_Z)(Sil)Jrﬁ dzdrds
t tj (tfs) o
1 J+1 1 J+1 1
hll / / /pa Jr % x)|b(r, 2)|pa(t — s, y_Z)(tildedeS
] — S o

Notice that in thc previous integral, as above p,(tj, 2 —2) S pa(r,z—z) and po(t—s,y—2) S pa(t—r,y—2),

l—< 1+n This yields
(t=r) " a

wl L£1-1 1
Ai / /pa r,z — x)|b(r, 2)|pa(t — r, y—z)( )le dzdr,
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which is the right form to use (2.7) with the same parameters as for A}. Doing so, we obtain similarly
=1

1
AZ Spa(tay —l‘)h g (t_tlﬁjfl) o
< palty —a)he

(2.25)

Let us now turn to the term A} in (2.22):
|z — y| > t=, then, since |y — x| < |y — w| + |z — w| + |z — 2/, at least

¢ Global off-diagonal case:
one of the stable transitions in A} will be off-diagonal as well. In this case, we will actually manage to

retrieve the global final regime for p,(¢,y — ) from the inner densities in A3
1
—If[z—a|> 3z —y| > %té 2 t5, we can write

t t
pa(t]’z_x) 5 |Z—x|d+a /S |$—y|d+a spa(t7x_y)

We can then compute

L%J—Q tit t;
1 j+1
31._ ) _
j= J J

|z — w|™ 1
X pa(s —t;,w — 2)|b(r, 2)|pa(t — s,y — w) m A1l Wdzdwdrds

L1122 i 1 i+t
Spa(tayfx) Z / E/t /‘/pa(sftjvwiz) (226)
j=1 Yl J

|z —w|™
X |b(’l",Z)|pa(t -5y - w)ilm dzdwdrds
(t—s)"=
lil-2 tit1 1 flit
Spaltw=o) >, [ 5 [ e ar
t; t;

j=1

Pall =8,y —w
X/||pa(8_tjaw_')|'_wpl”Lp’aEt)w)dwdS.
—s) =

Note that 11 <d+a — g, allowing us to use (2.4):

o d
[Pa(s —tj,w— )| - —w[™ | S (s —t;) =27,
yielding, once integrating in w,
L%J*Q tit1 21 d
1 ( t ) o ap
3,1
AN S palty—a) 3 / a L e e s
]:1 tj _S) i
L J-1 wl 1 1
oty — ) & ura ds
6 (t . )1+a’v1
Spalty—a)h e w5 ap' e
(t,y — x)h=, (2.27)

the last inequality being true only if 1 — = — 21 < 0, which is always possible to satisfy since the

choice of vy € (v,1] is free.
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—Iflz—w[> iz -yl > %té7 remarking that s —t; < h and 0 < 2 + % < 1, we can write

x4 1
%) 5—t; s—t; t 5—t; he™7a

J
pa(s_tjvw_ 5 |w—z|d+0‘ ~ t X ‘.’E—y|d+a ~ n pa(tam_y) 5 %_,'_1 poz(t '/E_y)a

t
and then compute

L

ti+1 1 i+
82,
AyTi=1 oth /t /t //]Hz w]>3a—y|Pa(tj 2 = @)
= J

|z — w|™ 1
X pa(s —tj,w— 2)|b(r, 2)|pa(t — s,y —w) | ———=1 A1) ——— dzdwdrds
(t—s)= (t—s)a
2411 L7 g1 it
/Spa(tayfx)hl 1 Z/ / //pat fo

X |b(r, 2)|pa(t — S,y—w)idzdwdrds

(t—s)a

h%-‘r%—l th 2

tj+1 tj+1 1
Spalt,y—z)——F— pEm: / / /pa i,z —x)|b(r, z)|(tidzdrds

_ S)é
LA LLJ 2 .
patg—1 't ti+1 ti+1 1
Spalty—2)—1 Y / l[o(r, )| dT/ palty,  — @)l —— ds
taT4q j=1 t; ty (t - 5)a
L£]-2 .
ha % tivr 1
S palt,y — ) T / - —— ds,
t2te GOy g (t—s)a

using (2.4) (with § = 0) and the Holder inequality in space for the antepenultimate inequality
and the Holder inequality in time for the last one.

Next, remarking that i < ¢; and therefore tj_l < 2571, we can write

ha [t 1 1

3.2

A4 Spoc(tay_ )1+1/ d ds.
te"a Jo

Hence,

h= a1 (1 1
A3? Spalt,y — )= tlf?rf?/ ——dAX
# S palby =) A TATESE:

S palt,y — 2)he, (2.28)
recalling the definition of « in (1.20) for the last inequality.

—Ifly—w| > iz —y| > %té > (t —s)=, we can write

t—s t
pa(t_57y_w) 5 |y—w|d+0‘ S ‘l’—y|d+a Spa(t,x—y)
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This yields, using (2.4) to bound ||pa(s —t;,z — )|z — || 1,

L%J_Q t7.+1 t.
i+1 1 ftier
33 ._ L .
Ay \m yl>ta Z /t h/t //]lly*wb%\w*ylpa(tﬂ’z z)
j=1 7t i

|z — w|™ 1
X pa(s —tj,w — 2)|b(r, 2)|pa(t — s,y — w) m/\l Wdzdwdrds
72t t;
1 J+1

Spa(tvy_m) Z/ / //pa ]7 - a( tj,w—z)

¢
1
x |b(r, Z)||z;ul|+ﬁ dzdwdrds  (2.29)
t—s

o+

F]-2

i) i1 3+1 —t;)

Spalt,y —x) Z / / (s 1”1 /pa(tj,zfx)\b(r,z)|dzd7"ds.
— t—s o
i=1

Next, we use s — t; < h, a Holder inequality in z and (2.4):

t

-2
L] i1 1
A33 Spalt,y —a)h - Z /t [[b(r; )l e dr/ [Pa(t;,- —QT)HLP'mdS

Choosing 1 € (v, 1] such that H'% > 1 we conclude that

1ty

AZ’?’Spa(t,y—x)h F 2 5 (ﬁ—Tt +h)' e < palt, y—x)h ) (2.30)

o Global diagonal case: |z — y| < t=. We will use the fact that Palt,y — ) =< =% to replace one

of the local transitions with p,(t,y — x), and then the computations will be the same as in the global
off-diagonal case:
—ift; <t/2, pa(t—s,y—w) S (t—s)"6 Sta

= pa(t,y — ), and the computations are the same
as from (2.29),

Qla

d
< -

—ift; > /2, pa(tj,z—x) S t; = pa(t,y — x), and the computations are the same as from

(2.26).

St

Overall, gathering the estimates (2.27), (2.28) and (2.30) as well as the estimates from the global diagonal
case, we obtain A3 < p,(t,y — x)h% which together with (2.25), (2.24) and (2.22) eventually yields

A4 Spa(t7y_m)h%7 (231)

as intended. As we only used |by| < b for Az and Ay, the estimations remain valid for Az and Ay.

Let us turn our attention to Ay in (2.13) (first time step). Note that, even though a term b(s, z) — by (1, )
appears in Az, its smallness actually follows from the fact that it only covers the first time step (over (0,¢;At)).

Thus, we will bound Ajs using the triangular inequality |b(s, z) — bp(r, 2)| < b(s, 2)| + hoar (resp. using
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|br.(r, )| = 0 for r < h), and then compute a bound for each term. Namely,

1 1Nt h
|As| = E/ / /pa(s,z—x—bh(r,x)s)(b(s,z) —by(r,x)) - Vypa(t — s,y — z)dzdrds
0 0

1 tiNt h ) 1
S */ / /Pa(s,z—x —bp(r,z)s) <|b(s 2)|+h™ (Tp—a) — palt— s,y —2)dzdrds.
hJo 0 (t—s)a

Since in our current integrals, using (2.11), pa(s,z — . — bp(r,2)s) < pa(s, z — ), we can write
ti At 1
|A5\§/ /pa(s,z—;E)|b(s,z)|7lpa(t—s,y—z)dzds
0 (t—s)a

fant 4 _1 1
+/ /pa(sazfx)h_?p_aﬁpa( — s,y —z)dzds.
0 (t—s)

We then use (2.8) with u =0, v =t At, 1 = é and B2 = 0 for the first term in the right-hand side and the
convolution properties of the stable kernel for the second one to conclude that :

1As] < palt,y —z)h=. (2.32)

resp.  |As| S palt,y — )= (2.33)

Let us now turn to Ag in (2.13), for which the same reasoning as for Ay applies, although this time we
are working on the last time step, over ((7}* — h) V t1,t). Let t > h (otherwise, Ag vanishes). Using (1.24),
(2.11) and (2.1), we can write

1 t T +}L
_h‘/(h ot / //FhO:EJS,w (s—T:,z—w—bh(r,w)(s—Tsh))
T —h)Vity

X (b(s, z) — bp(r,w)) - Vpa(t — s,y — z) dzdwdrds

/ //Pa Z)pal(s Tf,z—w)|b(s,z)\wdzdwds
h)Vty (t—s)=

T, hih
at_ yd T
/ / //pa Z)pa (s Tf,z—w)|b(r,w)|wdzdwdrds
(Tt h)\/tl (t — S)E

=: A6 + A%.

For A}, we first use the convolution properties of the stable kernel in w and then apply (2.8) with u =
(th—h)vt,v=t, B = é and B2 = 0 to obtain

t

fe% t— ) x

Aé 5/ /pa(s,z—x)|b(s,z)|p—( 5 yl )dzds S palt,y —x)h=.
(rh—h)Viy (t—s)=

For A2, we use the convolution properties of the stable kernel in z and (2.6)

T +h h
all =755y —
A2 < / / /pa T w— ) \b(r,w)|p (- yl w) dwdrds
—h)Vi (t—s)a

Th+h
palt, )/ L 1 ! / b(r, )| v drd
Y- r,:)||Le drds
b Jr —nyvis (Tsh)“%’ (t—TSh)a% (t—s)x Jon

< palt Y~ /t L L 4
~ P Yy—x 4 S.
: (h-myve [ (th)@5 (¢ —rh)es | (=)=
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Remarking that ¢t — 7" >t — s, that 7/ > h and (t — (7} — h) V t;) < 2h we get

¢ 1 1

(t—s)as | (t—s)=
SPaltiy = )b ™5 (A3 (= (7 = B) V)8 4 (= (7l = h) v ) )

< palt,y — x)he.

ds

A2 < paltyy — )b /

-
h™a5 +
(Tth' —h)\/t1

This is also a valid bound for |Ag| as we only used |b| < |b|.

Now that, plugging the above computations for Ag and (2.17), (2.18), (2.31), (2.32) in (2.13) and using
(2.1) for Ay, we obtain

|].—‘h(0,£[,'7t,y) _P(O €, t Y | <pa(t y_x)h

o t— Y T
/ /\Fh (0,z,s,2) F(O,x,s,z)\|b(s,z)|w dzds. (2.34)
(t— s
Setting for all u € (0,71,
|Fh(03$au7z) — F(O,ZE,’LL,Z)‘
u) := sup
f( ) z,2€RY pa(u, z = LC)

, (2.35)

we use (2.34) then (2.5) and Hoélder’s inequality in time to obtain :

ok poz(t_svy_z)
ft) Sh= + sup //f $)pals,z — x)|b(s, z)|———F+—=dzds
(t) S oty =) )[b(s, 2)] =)
a2 1 f(s)
<h=a+ sup ——— Pals, — X)pa(t — s,y — )| 1o ]|0(s, ) ||r ———— ds
T pa(s. = 2 L R P e

(e [ VL)
' /o<<t—s>i Lfﬁt—sﬂpb v

Up to a convexity inequality, we thus obtain an estimation which permits to conclude by a suitable Gronwall-
Volterra lemma

[

>

S

1 1
o T w] ds.
sar  (t—s)er

LRy

Since £ + % < 1, Lemma 2.2 and Example 2.4 [Zhal0] ensure that

[0

x
o

f) < h=,

The same reasoning applies for scheme involving by, which concludes the proof of Theorem 2.

3 Proof of Proposition 1: Duhamel representation for the density
of the schemes and associated controls

3.1 Duhamel representation for the density of the scheme

Let us first prove (1.22). Let t € (t,T], ¢ be a C? function with compact support and v(s,y) = Ls<¢pa(t —
8,) * d(y) + Ls=tb(y). According to Lemma 2, v is C1% on [0,#] x R? and satisfies the Feynman-Kac partial
differential equation

Y(s,y) € [0,) x RY, d,v(s,y) + L(s,y) = 0.
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Applying It6’s formula between t; and t to v(s, X") where (Xg)se[tkj] denotes the Euler scheme started
from Xt}; = z and evolving according to (1.6), we obtain :

t
(X)) = vlte, @) + ML+ [ Vols, X2) b (U, XDy ) ds,
tr

where Mt};’t = fttk f[Rd\{O} (v(s,Xf, +x) — v(s,Xf,))N(ds,dx), in which N is the compensated Poisson

measure associated with Z. Taking now the expectation (recalling that (M}

ir.s)selty.t] 15 @ martingale) and
using Fubini’s theorem, we derive

t
[ o ezt dy = oltio) + [ Eue [Vols, X2) by (Vg X0 )| .

ty

Using the definition of v, we get

/¢ tk,x t,y)dy
:/pa(t—tk,x— dy+/¢ / Ei\ o [ ypa(t—s,Xf—y)-bh (UL%J,X%)} dsdy.

Since ¢ is arbitrary and p,(t — s, -) is even, we deduce that dy a.e.,
t
T (te, 2, t,y) = pa(t — te,x —y) — / Et, » [Vypa(t —s,y— X" by, (UL%be“ﬂ ds. (3.1)
tr ®

We will see later that (3.1) actually holds for all y € R? as a consequence of the Holder regularity of T in
the forward space variable. This concludes the proof of (1.22).

3.2 Heat kernel bounds for the scheme

We will now prove inequality (1.24), upper stable bound for the density of the scheme, in 3 steps. First,
we will prove it for ¢ € (tg,tx11], using only the definition of the cutoffed drift and assuming h < 1. Then,
we will prove it between t; and ty, when t; — t; is small enough at a macro scale. We will finally chain the
previous estimates to obtain (1.24) for any time interval (t,t] C [0, T].

Step 1 : t € (t,trt1]

Remarking that when t € (t1,tr11], V2 € RY, T (ty, 2,1, 2) = %ft"“ Po(t —tg,z —x — (t —tg)bp(r,z))dr
(vesp. I (tg, 2, t,2) = 3 t’““ Palt —ty, z—x — (t—tg)by(r, ) dr), we obtain (1.24) in the case t € (ty, tpy1]
using (2.11) from Lemma 4 to get rid of the drift.

Step 2 : t —tp small enough

Recall that for j € {k,---,[t/h] — 1} and r € [t;,t;41], X = Xthj +(Zr — Zy;) + bh(Uj,Xthj)(r —t;).
Using this and the independence between Xthj, (Zr — Zy;) and Uj, we have, starting from the Duhamel
representation (1.22), '

-1 i

T (tr, 2, t,y) = palt — th,y — ) Z / [Etk, ypa(t—r,y—Xf)-bh (Uj,Xthjﬂ dr
:pa(t_tk:ay_x)

f%]—l t; +1/\t1 1 N N N
- / 7 / By oo {Vypa (t =1y —X{ = (Zr — Zy;) — bals, X)) (r — tj)> - by, (s,thﬂ dsdr.
j=k Yl tj
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Using Fubini’s and Lebesgue’s theorems and the convolution property of the stable density,
Fre [V (= oy = XI' = (Ze = Z0,) = bu(s, X0)(r = 15) ) - bn (5, X1 )]
= /[Etk@ [Vypa (t —ry— Xthj —z— bh(s,Xthj)(r — tj)> - by, (8, XZ)} Pa(r —t;,2)dz
=Eyn [Vy (/pa (t —ry — Xthj —z— bh(s,ij)(r — tj)> Pa(r —t;, 2) dz) by, (s,X,Z)}

=i, 0 [Vypa (t—tj,nythj - bh(s,Xthj)(r—tj)) - bp (s,X[;)] .

Hence

b 1AL 1 tet1
I (tk, x,t,y) = pa(t — g,y —x) — n VDo (t =ty —x —bp(s,x)(r —tg)) - b (s,z) dzdsdr
123

ti+1At i+t
/ / / (tryx,t5,2)Vypa (t — 5,y — 2 — bp(s, 2)(r — ;) - by, (s,2) dzdsdr.

]k+1t

(3.2)

Note that we have not used any property related to by, here, so the same holds with (', by,) in place of (I'", by,).

Set for j € {k+1,--- ,n}, my j :=sup, ,cga % Observe from the previous one-step part that

there exists C' > 1 s.t. my ; < C"~ k < +00. The point of step 2 is to make this bound uniform in n. Using
(2.11) to get rid of the negligible cutoffed drift, we get, forn >¢>k+1 > 1:

Thty. .t bt 1 Pet
( ky Ty Zay) 51_;'_/ 7/ |bh(8’.’L‘)|de7”
Da(te tk» y— ) te  h(te— tk) t

i+ J+1 —t 1
/ / / B2 P (te — tj,y — 2) |bu(s, 2)| dzds dr.
] pa tz—tk,y ) (te —tj)=

In the first integral, we use the bound |b,| < hTe (the bound remains valid for by, since the latter vanishes
on the first time step) and in the second we use t; —t; > t; — s for s € [t;,t;41] and then bound my, ; from
above:

j=k+1

Fh(tk7x; t€7y)
Pa(te —th,y — )

himara — 2 —
§1+7pql+ max —m 73/ / (s = twyz = ) Do (te — 8,y — 2) |b(s, 2)| dz ds.
(tg —tg)=  delk+1,6-1] tonJ (te—s) te ey )"

We are now in the right setting to apply (2.8) (with u = tgy1,v =4, 1 = 1/, f2 = 0), which readily gives

Th(ty, . by, Rl=a 7
( kyLylp y) 5 1 7pql + max mk,j(tZ _tk+1)%
Pa(te —tg,y — ) (te —tr)a  d€lk+1,6-1]
ST+ (te—te)™ +  max g j(te —tryr)=

je[k+1,6-1]
ol
5 1+ max M, j (tg — tk+1) a
jElk+1.6—1]

Taking the supremum over (z,y) € R? in the Lh.s., and remarking that the r.h.s. is non-decreasing with ¢,
along with the definition of <, we get
a2

max m C+C(ty—t max m
FElk+1,4] kg S (b = ) jelbrte
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for some constant C' not depending on h. Thus, if C(t, — t;)a < 1, then

C
max

mep, < —————————. 3.3
jelk+1,1] i = 1—-C(ty —tg)= (3:3)

In particular, it is bounded uniformly in A for k, ¢ s.t. (t; — tx) < c5.

As we only used the fact that |b,| < b for the main term, which remains true with by, instead of by, the same
o X =g T (t,,t5,y)

estimates hold for my, ; := sup, ,cga m

Remark 2. Note that in the Gaussian setting, a precise control of the variance was required because of the

exponential structure of the Gaussian tails (see [JM23]). In the stable setling, as the tails of the stable kernel

are polynomial, these controls are not required.
Step 3 : chaining the previous estimates

In order to obtain the result for any arbitrary time interval, we will now chain the previous estimates. This
will be done in the following way: denote # = C~ ~ and let us first suppose that h < 6, which implies that
7> 8 Let t>0s.t. t—t; >0 andlet J =[] —1 < 2L We will first divide (fx,t) into a main term

6

(over (tg,tg + J7J)) composed of J slices of size 7' (and thus on which we can use (3.3)) and a remainder
term (over (tj + J7}',t)). This remainder term will then be split into two terms again ((t; + J72, 7/*) and
(tF,1)), in order to account for the fact that ¢ does not necessarily belong to the discretization grid. Over
(te+J7}, T]'), as we work on the grid, we will use (3.3) again, and over (77, ), we will use the cutoff and (A.3).

With the convention yy = =,

rh(tk,m,w:/

(R?)

J

Hrh(tk + (= D7yt + 57 y) U (b + I 75y, 6, y) dyn . dys
J
=1

J
S /('Rd)l H mk+(j71)L%J’k+jL%Jpa(Tél7yj - y]*l)]‘—‘h(tk + JTgbvvat7y) dyl dy]
i

Using the boundedness of Mgy (-1)| 2 | kgl 2> We get

J

Fh(tlmxvt? y) S / o Hpa(T9h7y] - yj—l)rh(tk + JTgayJat7y) dyldyJ
(R4) j=1

< /pa(JTﬁ,yJ —yo)I" (e + I8y, toy) dyy.
Pay attention that the constants grow exponentially fast with J, but J < %. Remarking that

Fh(tk + JTQ’layJat7y) = /Fh(tk + J’T'GhavaTth7Z)Fh(Tthazata y) dz

S mk—&-J[%J,‘rt" /pa(tk + JTehayJaTth’Z)pa(Tthazvta y) dz

Spa(tk + JTO}L?yJatay)a

we obtain, by convolution,

T (t, 2, t,y) S paltr, 2.t y).
When h > 6, then % < % and the conclusion remains valid by chaining in a similar way with Tél replaced
by h the estimate derived in Step 1. The same reasoning applied to I gives

fh(tka z,t,y) < palth, 2,1, y),
which concludes the proof of (1.24).
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3.3 Holder regularity of I' in the forward variables

We will establish here the Holder properties for the density of the scheme stated in Proposition 1. We begin
with the forward time variable and discuss the forward space variable later on.

3.3.1 Holder regularity of I'" in the forward time variable

Let us now prove (1.26). Let 0 < k < ¢ <n, z,y € R and t € [t;, to41]-

125 tj te tot1 tn

Going back to (3.2), we can write:

TP (ty, 2, te,y) — T (tks @, t,y) = palte — tr,y — @) — palt — ti,y — )

tht1 tet1
- — / / [Vpa (te = te, w) = Vpa (t = b, W)y — ot (5,2) (r—t) * On (8,@) dsdr

]1 ook j+1 J+1
{> +2} Z / / / (th, @, t5,2)[Vpa (te — tj, w)
t

Jj=k+1
= Vpa (t = tj, w)]wmy—2—by,(s,2)(r—t;) ~ b (8, 2) dzdsdr
1 toy1
+E/ / / tkax te, z )bh(s Z) Vpa( tg,y—z—bh(s Z)(T—te))dzdsdr
te Jtp
= Al + A2 + A3 + A4. (34)

Resp. T (tg, z,te,y) — T (tg, z,t,y) = Ay + Ay + Az + Ay for the scheme involving by,.

For A; (which is actually the same as A;), we use (2.3) and t —t, < t, —t), then t —t, <t — t;:

t

— 1y t—ty
Al -t -

t— 1t

)apa(t—tk,y—x). (3.5)

For Ay, let us first bound [Vp,, (t¢ — tx, w) — Vpg (t — tg, w)}w:y_x_bh(s 2)(r—ty)> USINg again (2.3) along with
t—tp Xty — 1ty

t—1ty
VDo (te = ti, w) = Vpa (t =t W)|ymy— o, (5,2) (r—tr) S (t|t)1|+1pa(t —tiy —x —bp(s,x)(r —tr))
) itE

In our current integral, r—t; < t—tx, which means that, using (2.11), we get p, (t—tx, y—x— bh(s x)(r—tg)) <
1
q

Ta):

they1  flet1
/ / [Vpa (te = ti, w) = Vpa (t = ti, W) ey — i by (5,2) (r—ty) * On (8,2) dsdr
tr tr

Pa(t — ti, x —y). We can thus compute the following bound for Ay (recalling that |by| < h™ ap

1
|Ag| =

tet1 tht1 t—ty
< =
< / /k ) 1+1pa(t ti,y — x)|br (s, x)| dsdr
R B, V[ a1
S — Dot — Uk, —1‘/ n(s,x)|ds
(t_tk)pré o Yy "
t—ty d _1

< -
TR

Using the fact that ¢t — tx >ty — tx, > h, we get

(t — tiy —a)h! 35 %,

t—ty _1_d_1 t—ty 5
|A2\§mpa(t—tk,y—x)hl *Tarq S( ) Pal(t —tr,y — z)ho. (3.6)
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For the alternative scheme, we would have used the inequality |by,| < hé_l, which yields

J
Aol < ) Palt =ty — ).

t—1ty t—1ty
ﬁpa(t —tey—1) S (

For As, note that for all j € [k+1,¢—1], denoting v =ty —t; and v’ =t —t;, we cansee v/ —u =t —t; €
[0, h] as a small perturbation at the scale of u or w'. This allows us to use (2.3) along with ¢t —t; < ¢, — t;
and then (2.11):

t—ty
[Vpa (te —tj,w) — Vpg (t — £, w) |w:yfszh(s,z)(r7tj) s mpa(t —tj,y—z—bp(s,2)(r —t;))
t—1ty
< mpa( —tj,y — 2).

For the computations on Aj, we assume that ¢ > k 4+ 2 and introduce an exponent v, € (vy,«]. Here, we
singularize some of the estimates in order to obtain the expected Hoélder rate involving . This is somehow
a flexibility of the scheme: since we stay away from the final time ¢ for this contribution, we can afford to
make non-integrable exponents appear. Those terms will be handled with Lemma 3 (eq. (2.7)). Namely,
using |by| < b and the stable upper-bound (1.24), we get

ti1 ti1 t—1t
A3 < = Z Fh (tr,x, t,2) ¢ —————Palt —tj,y — 2)|b(s, 2)| dzdsdr
W2, GRS
-1 tiy1 t—t il
< z/t (t(tj)ﬂ“/p““ a5 — )palt — g,y — 2)|b(s, 2)] dz ds
j=kt17t -

S G
hS Z / ﬁ/pa(tj —tg, 2 — 2)pa(t —tj,y — 2)|b(s, z)|dzds
skt (t=t)

o(t—t)®
+ — pa(té—l—tk,Z—I)pa(t—té—lay_Z)|b(5775)|d2d3
te—1 (t_tf 1) «

= AL+ AL
Assume ¢ > k + 3 (otherwise A} vanishes). In Al, which only contains non-singular integrals, we now

approximate the discrete (Z;);e[r+1,1—2] With s in the corresponding time integrals to apply (2.7) with
u=tp1,v="te1,p1 = (1 +1)/a,B2=0:

te—1 (t— 15@)771
A3 Lio>kya) NS Pa(s —th, 2 — 2)pa(t — 5,2 — y)|b(s, 2)| dz ds
tha1 (t‘* S) @

Y= =
Spalt—tiy—o)(t—t)? [ty —tn) T+ (E—ter) T

—71

Spalt —tiy—x)(t —t) T h =",

where, for the last inequality, we used ty_1 —tp41 > hsince ¢ —1> (k+1)+ 1, t—tp1=t—ty+h>h
and v — 1 < 0.
For A2 (last time step), let us first use the convolution estimate (2.6):

t—t)) e 1 1 te
A2 < pult = thyy —a)—— 1) 1[( _— ]/ 16(s, )1 z» d.

+ d_
(t—te—1) s [(tem1 —tr)or (E—te—1)®r | Jue

+1

Using L L ] 1 =7 < has~ s and applying Holder’s inequality to the integral,
(te—1—ty) P (t—te—1)op | (t—te— 1) 'a

we obtain:

1 d

A3 S palt —thyy —2)(t —te) = h™ o~

—1,te) HL‘Z/
1 Y71

SPalt =ty —x)(t —tg)«h™ =
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Gathering both estimates and recalling that ¢t —t, < h and v — v, < 0, we obtain
|As| S palt —tiy — a)(t —t) = (3.7)

Let us now bound Ay in (3.4). Recalling that from its definition, |b,| < |b| (vesp. |bn| < |b]), we can write,
using also (1.24) and (2.11):

(t—tg)l_é et
Ay < — / /pa(tg —tg, 2 — x)|b(s, 2)|palt — te, 2 — y) dzds.
te

We can now bound |A,| using (2.6), then (t, — t) ! < (¢t — t,)~! and finally t — ¢, < h:

t—t 17% 1 1 tet1
) g 1 -+ | Palt =ty =) [ [b(s,)l|ze ds
h
(tz — tk) ap (t — tg) op te

(t—te)* palt — ti,y — ). (3.8)

As, for Az and A4, we only used the fact that [by| < [b], the same estimations still hold for the alternative
scheme involving by,. Plugging the estimates (3.5)-(3.8) into (3.4) concludes the proof of (1.26).

3.3.2 Holder regularity of I'* in the forward space variable

Let us now prove (1.25). This property is important to prove that any limit point of the law induced by the
Euler scheme solves the martingale problem and that its marginals will satisfy heat kernel estimates through
a compactness type argument (see Section 4.1 for details).

+ Off-diagonal regime: |y — /| > (t —t;,)"/°.
In this case, using the stable upper bound (1.24), we only need to write
T (tg, z, t, ') — T (tg, 2, t, )| ST (trs 2, t, ') + T (te, 2, )
Spalt —te,y = @) + palt — try — )
=yrae-nd

~ ol

(t — tk)E

Palt —try — @) +palt —tr,y —z)).

+ Diagonal regime: |y —3/| < (t—t;)"/®. Note that in this setting, pa (t —tg, y — ) =< pao(t —tr, 3y’ — ).
In this case, we go back to (3.2), denoting ¢ = [t/h] — 1 (so that t € (ts,tr+1]) and we write, similarly
o (3.4):

Th(ty, 2, t, ') — T (tg, 2, t,y) = pal(t — try' — 2) — pa(t — tr,y — )

tkr1i Nt ptryr
—*/ / [VDa(t —tr, ¥ —w) = Vpa(t = th, y — W)|weatby, (s,0)(r—t) - On(s,2) dsdr

tit1 tit1
/ / /I‘h (tr,z,t5,2)
t; t;

[Vpoa 7y/ - ) Vpoz( — 1,y — w)]w:z—i—bh(s,z)(r—tj) : bh(sa Z) dzdsdr

]]-é>k+1/ / / (ths 30t 2

[Vpa(t — ty, y - w) - Vpa (t —te,y — w)]w=z+bh(s,z)(7“—t4) : bh(s, Z) dzdsdr
=: Al + AQ + A3 + A4. (39)

j=k+1
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Resp. T (ty, z,t,y") — T (tg, z,t,y) =: Ay + Ay + Az + Ay for the scheme with by,.
Those terms will be treated in similar way than for the time sensitivities, up to the fact that we will
use the Holder regularity in space of p, (2.2) instead of its Holder regularity in time (2.3).

For A; (which is the same as A1), we directly use (2.2) with § = 1 and the diagonal regime:

o
S H(pa(t—tk,y’—x)+pa(t—tk,y—:c))
)=
|y_y/"y ’
N m(ﬁa(t —th, Y —x) + palt —ty,y —)). (3.10)

For Ag, we first use (2.12) to bound [Vp, (t — t, z +bp(s,z)(r —tx) —y') — Vpa (t — t, x + bp(s, z)(r —
tr) —y)] and get rid of the drift:
IVpa(t = ti, ' — 2 = bu(s,2)(r — t)) = Vpa(t — te,y — = — bu(s, 2)(r — i)
-

SR );(pa(tftk,y’*fc)era(tftmy*x))
)2

We then compute, recalling from the definition (1.3) that |by| < h e (resp. |bn| < ha—1),

ly =yl / P At
Ay S W(I’a(t—tk,y —x)—|—pa(t—tk,y—x))/ b (s, )| ds
—lg)~ tr
< |y7y/| ( (t t / )+ (t t ))(tk-ﬁ-l/\t*tk)h_%_%
N i Pall = kY — X Pall =T,y —
(t—te)= ’ (t—te)=
/
— _1,_d_1
5M(pa(t—tk,y’—fﬂ)+pa(t—tk,y—x))(tk+1At—tk)l ah era
—ty)=
A < |y_y/| / 1-L,21-1
resp. 2Nw(pa(t—tk,y — ) 4+ palt = th,y — o)) (thg1 At —tg) " @ha™".
—ty)=
In our current diagonal regime, we can write (tly;y)'L < (‘ty*ty,)ll , which, along with t.1 At —t, < h,
—tg) @ —tp) @
yields
‘y_ylp ’ 2
2§m(pa(t—tk,y — )+ palt — ti,y — x))he. (3.11)
Ao < M t—to. 4 — t—t _
resp. St )l(pa( kY =)+ Pa(t —te,y — 2)).
1)

For As, we first use (2.12) and (1.24) to write, for 1 € (v, 1]

-1 tj+1 o m 1
O S A LR = o B
j=k+1vti (t—t;)= (t—t;)=
X (pa(t_tj7y —2) —i—pa(t—t]’,y/ —z)) |bh(saz)‘d2d8~

Then, we will proceed differently depending on whether, at the current time ¢;, the spatial difference
ly — /| we are interested in is in the diagonal regime w.r.t. the corresponding time scale t —¢;. To
this end, let us split between what we call meso-scale diagonal and off-diagonal regimes (respectively
ly—o/| < (t—t;)= and |y —y/| > (t — tj)é). This meso-scale dichotomy did not appear in the proof
of the Hélder time-regularity of I'*. It does now because of technical reasons: we need to retrieve the
loss induced by the introduction of 1 € (7, @], which can only be done in the mesoscopic diagonal case.
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Let us point out that |y — ¢/| < (t —t;)« <= j < % Set jmax 1= [%J A (£ —2). We

recall that, when t; is close to t, a local off-diagonal regime might appear. With the previous notations

it will precisely be the case from ¢; _ 41 to t; whenever jnax < £ —2 . We can thus write

ty
y—yl”
Aj Sﬂjmax:‘e72 ‘ |1+7 / /pa tl 1=tk 2 — {E)
t —ty— 1 te—1

(Pa(t = te—1,y — 2) + pa(t — te—1,y’ — 2)) [bu(s, 2)| dzds

J+1 1
+ ]]'Jmax<e 2 Z / /pa tk7Z - J;)

J=Jmax+1 (t_tj)%
X(pa(t_tjvy_z)+pa(t_tjvyl_Z))|bh(37z)|d2d5
Jmax
S oo
j=k+1 t (t_tj) @
X(pa(t_tjvy_z)+pa(t_tjvyl_Z))|bh(37z)|d'2d5
= AFPOE L AP + AD.

For the first term, we first use |by| < |b| and (2.6), then Hoélder’s inequality for the time integral and
last t —ty_1 =t —ty + h > h to obtain:

t—ti,y — ) +pat —te,y — 1 1 te
A3EDGE5pa( kY —T) pa(i kY ) _— _ / 1b(s, ) 1o dis
(t—te—1)@ (te—1 —tg)or  (t—to—1)or | Jto
—_ Y
.1y ylw
(t —te—1)=
1 1 1 1
S Palt = th,y — ) 4+ palt — tr,y' — ) TETARE: [(t Y +(t ; )d]hl a
T W-1)e -1 — Uk —lg—1)°P
—
.1y ylw
(t—te—1)=

S Palt —te,y — 2) + pa(t — te,y' — ) [y — o'

Next, note that in the integrals appearing in AP and AP we canuse t — s <t — t; for s € [t;,t11].
Together with [by,| < ||, this yields

1
AOD“FAD ~ Jmax<€ 2/ /pa —tk, 2 )7

timax+1 (t - s)é
X (pa(t — 8,y — 2) + palt — s,y" — 2)) |b(s,2)| dz ds

timax Y1
y—y
/ /pa s — tk7 ) | 1‘+~,1
tet1 (

—s) =
X (pa(t — 8,y — 2) + palt — s,y" — 2)) |b(s, 2)| dz ds.

For A§P | we simply use (2.8), with u =t; 11,0 =1, = 1/a, B2 =0.
For AP/

- lf %(tjmax — tk+1) >t — tjmaxv we use (27) Wlth u = tk+1, v = t]‘max, 61 = (’}/1 + 1)/0&,52 = 0
— if 2(tjne — tht1) <t — tj,.., we use the bound (¢t — s)" e < (t— e )~

& for s < . then
apply (2.8) with u =typ11,v=1t;,.. .61 =1/a,B2 =0.
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This yields
AQP + AP S(pa(t — e,y — 2) + palt — ti,y — ) [(t — 1) * L <2

Y71
+ 1y =y " ({Far — trr1) =+ (E—t,.0)

_n 3
F( = L) Fjax — tet1)® ]l%(tjmax—tkﬂ)gt—tjmax)}

Y71 :[l
[e3
} 3 (Ejmax —tht 1) >t

Jmax

S (alt =ty = 2) + Palt = st/ = 2)) [(¢ = bt 1) ¥ L2

-7
Hy =y (¢ = ) T

Since (t —tj,.c+1) < |y —Y'|* if jmax <€ —2and (t —t;,..) > |y —y'|*, we obtain

Jmax
AQP + AP S (Dot — te,y — ) + palt —tiy —2)) ly — ¥/ (3.12)

Finally, for A4, we suppose that ¢ > k + 1 since otherwise this term vanishes. Using again (2.12), we
get

|vy'pa(t - t@a Zl// - ’U}) - Vypa(t - tf? y— w)|w:z+bh(s,z)(r7tg)

— '
< lv=vI

~ Hi-y(pa(t_tfay/_z)+pa(t_t€ay_z))7
(t— tz) o

yielding, along with (1.24) and |by| < |b],
-y [ ,
Ay S m / /pa(tg —ti, 2 — ) (Pa(t —te,y — 2) + palt — te,y — 2))|b(s, 2)| dz ds.
—lg) « te

Let ,
dy : {y,y'} 3> »—>/ /pa(tg —tg, 2 — T)pa(t — te,n — 2)|b(s, z)| dzds,
te

so that |Ay4] < %(d;;(y) +ds(y")). Let us then bound dy using the convolution inequality (2.6).

—le

Fory € {y,y'},

t
dy(n) < / /pa(tg —th, 2 — T)pa(t — te,n — 2)|b(s, z)| dzds
17

1 1 ¢
< 4 ! m(t—tk,n—x)/ 155, )| ds
te

d_ d_
(te —ti)or  (t—tg)or

1 1
S Palt = th, ) = 2) |0l La—re [Tty )|l o [ — + d]
(te —tg)or  (t—tg)or

Spa(t_tkat)_m)(t_tl) . er,

1-1_4d

where, for the last inequality, we used the fact that t; — t;, > ¢ — t;. Plugging this into |A4] yields

S (Palt —ti,y — @) + palt — ti, v — )y —y'|. (3.13)

The estimates for Az and A4 remain valid for Az and Ay since we only used |by,| < |b]. Plugging the
estimations (3.10)-(3.13) into (3.9) concludes the proof of (1.25) and of Proposition 1.
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4 Proof of existence of a unique weak solution and heat kernel
estimates for the SDE (1.1) (Theorem 1)

4.1 Uniqueness of solutions to the Duhamel formulation (1.19) satisfying the
estimation (1.18)

Assume that I'; and I'y both satisfy the estimation (1.18) and the Duhamel formula. Then

:U'm(t) = sup | 1(0,1’, ’y) 2(0,£E, ay)‘
yERY pa(t7y — LIJ)

is bounded on (0,7] and we can write for all (t,y) € (0,T] x R%:

¢
I (0,2,t,y) — T2(0,2,t,y) = / /b(r, 2) - Vypa(t —r,y — 2) [2(0,2,7,2) —=T1(0, 2,7, 2)] dzdr.
0

We deduce that for (¢,y) € (0,7] x R?,

’F1(0,$,t,y) - FQ(O,JT,t,y)
Palt,y — )

‘g ol ! /Ot/|b(r,z)|Vypa(t—r,y—z)|pa(r,z—x)uw(7“)dzdr.

oY tvy_x)

Using (2.1) and (2.6), we get:

r -T t Mer | 1 1
‘ 1(07 xv ta y) Q(Oa J:, t7 y) ’ S ||b(7“, )”f — _|_ - /f(‘w(r) d’l".
Palt,y — ) o (t—=7r) |rer  (t—r)or

Taking the supremum over y € R? on the L.h.s. and applying Holder’s inequality in time, we get like in the
last step of the proof of Theorem 2

t ¢ |1 1
ve 0.7 n ) 5 [ L s L
0 (t—=r)a [ror  (t—r)er

immedcixately deduce I'y = T's.

Since L + % < 1, Lemma 2.2 and Example 2.4 [Zhal0] ensure that V¢ € (0,7, pg(t) = 0, from which we

4.2 Tightness of the laws P" of ((X!)sco.r))n and P" of ((X)sejo.r))n

Let B" .= [EO,.T |:f0T ‘bh(U\_%Jan}—:h) !

(1.2), p/n > 1, q¢/n >1and n(d/p+ a/q) < . Using |bp| < Bh™ %57 on the first time step then |br] < 10],
(1.24), Holder’s inequality and (2.4) with 6 = 0, we obtain

ds], where 1 > 1 is chosen sufficiently close to 1 in order that, under

L4 1 n—1 tk+11 tht1
‘B",ﬁh‘@‘&+2/ & /|bry\"I‘(0xtk, y) dy drds
k=1"7tr
n—1

tre41
< i-- q+z/ /\b<r,y>|”pa(tk,y—w>dydr
trt1

pl=35—3 +Z/ [o(r, ||Pa(tk7'—$)\|L<%>' dr
a1 tk+1 dn
< q+z/ b (1o, )12
123
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We then write
tky1  dn tht1 dn
[ oo ar < [ e e, ar
tk tr

and use a Holder inequality to obtain from the condition 7(d/p+a/q) < o which ensures that — ()’ Z—Z > —1,

tn @y
B S S dr) T x e b0, )|
S r r 7= W1 Mzl 2
ty
_d _1 1—mp(-4 41
ShiTa e T GEEED b7, (4.1)

~

In the same way,

— T— Sh n T— Sh n
i Eo | [ [0 X[ ds| = Eou | [ [Bu(01, X8
0 h

Cp(dg1
ds] ST Db g

By Holder’s inequality, we have

1

B T W
/S (t — u)nTl (/ ’bh(UL%J;Xq}—lh) ! dS) . (4.2)
0 s

and the same estimation holds with (bs, X") replaced by (b, X"). Since by (2.4) applied with § = 1,
E[|Z; — Z,|] < (t — u)=, setting ¢ = (1 - %) AL >0, we deduce that

VO<u<t<T,

t

V0 <u<t<T, B[XY - X))+ E[X7 - XEIS (-, (4.3)
which ensures the tightness of the laws P of X" and P" of (X") on the space D([0, T], R?) of cadlag functions
endowed with the Skorokhod topology (see Proposition 34.9 from [Bas11] for example). Let (’Es)se[o 7) denote

the canonical process on this space.

We may then extract a subsequence, still denoted by (P") (resp. (P")), such that P" (resp. (P")) weakly
converges to some limit probability P on D([0,T],R?) as h — 0. For u,t € [0,T] outside the at most
countable set {s € (0,7] : P(|& — &—| > 0) > 0}, the law of (X! X}) (vesp. (X!, X}')) converges to
Po(&,&)" so that (4.3) combined with the right-continuity of sample-paths ensures that supg<, ;<7 (t —
u)~¢ fD([o,T],[Rd) |& — &u|P(d€) < co. As a consequence

{5 €(0,T]: P(|§s — &[> 0) >0} =0 (4.4)

and for each t € (0, T}, the distribution T'"*(0, z,t,y) dy of X (resp. ['*(0,x,t,y) dy of X}') converges weakly
to P, = Po& ', By (1.24) and (1.25), the Ascoli-Arzela theorem ensures that we can extract a further
subsequence such that y ~— I'"(0,x,t,9) (resp. y + T7(0,2,t,y)) converges uniformly on the compact
subsets of R? to some limit y + T'(0,2,t,y) so that P;(dy) = I'(0,x,t,y)dy. Taking the limit A — 0 into
(1.24) and (1.25) ensures that I' satisfies (1.18) and (1.21).

We are next going to prove that the limit probability measure P solves the following martingale problem.

Definition 1 (Martingale Problem). A probability measure P on the space D([0,T],R%) of cadlag functions
with time-marginals (P;)icjo,1), solves the martingale problem related to b-V + LY and x € RY if :

(Z) Py = 5.%7
(ii) for a.a. t € (0,T], Pi(dy) = p(t,y)dy for some p € L9 ((0,T], L' (R%)),

(iii) for all CY2 function f on [0,T] x R? bounded together with its derivatives, the process

{Mtf:f(t,gt)—f((),ﬁo)—/o ((8s+£a)f(s,§s)+b(s,£s)-Vf(s,és))ds} ; (M)

0<t<T

is a P martingale.
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Let us point out that, in the current singular drift setting, condition (#¢) which guarantees that

T
/ / Ib(s, £)] dsP(d€) < oo
D([O,T],[Rd) 0

is somehow the minimal one required for all the terms in (M) to be well defined.

Before checking that the limit probability measure P solves the martingale problem, let us prove that
this implies that I solves (1.19), which concludes the proof of Theorem 1 (in fact, for this purpose, it would
be enough to check that the limit probability measure associated with either the schemes X" or the schemes
X" solves the martingale problem). Let ¢t € (0,7] and ¢ : R? — R be a C* function with compact support.
Choosing f(s,z) = Ljo4)(8)pa(t —5,-) * @(2) + L 71(5)(d(2) — (s — ) L*¢(2)) which, according to Lemma 2,
satisfies (95 + L) f(s,z) = 0 for (s, z) € [0,] x R% and writing the centering of M (introduced in Definition
1) under P, we obtain that

t
o(y)T(0,z,t,y)dy = / o(Y)pa(t,z —y)dy + / / 0, z,s,2)b(s,z) - V.f(s,z)dzds.
Rd R4 0 Rd

Using (1.18) and (2.1) to justify the use of Fubini’s theorem and the fact that for s € (0,7, pa(s,-) is an
even function, we deduce that

t
) o(y)T(0,z,t,y)dy = /d o(y) <pa(t,y —x) — / I'(0,z,s,2)b(s, 2) - Vypa(s,y — 2) ds> dy
R R 0
Since ¢ is arbitrary, we conclude that (0,7] x R? > (¢,y) + T(0, z,t, y) satisfies (1.19).

4.3 Any limit point solves the martingale problem

Let us now prove that the limit point P solves the martingale problem associated with (1.1) and introduced
in Definition 1. Since for each h, X! = z = X[, one has Py = §,. Moreover, for t € (0,T], P;(dy) =
I'(0,z,t,y)dy with I satisfying (1.18). By (2.4) applied with § = 0, [|T(0, z,¢, )|, < Ct~ar where the right-
hand side belongs to L4 ([0, T]) since q’aip < 1by (1.2). As a consequence, I'(0,z,-,-) € L9 ((0,T], L*' (R%)).
Therefore properties (i) and (é¢) in Definition 1 hold.

Let f:[0,7] x R? — R be C*? and bounded together with its derivatives, 1 : (R%)? — R be continuous
and bounded, 0 < 1 <...<s, <u <t <T withu >0 and F: D([0,T], IRd) — R be defined by

(&) = <f(t,€f,) — fu, &) — /ut [(0s + L) f (5,85) +b(s, &) - VIf(5,84)] d5> P(&srr s sy )- (4.5)
In order to prove that P satisfies (i7¢) in Definition 1, we will show that fD([o,T],[Rd) F(§)P(dE) = 0.
Proof of limj,_,o E[F(X")] = 0 = limj,_,o E[F(X")].
Using It6’s formula, we can write

t t
FEXP) = £ X0 = ME = M2+ [ A5, X0 by U Xl ds ot [ (024 £ (s, K1) ds,
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with M!' =[] f[Rd\{o} (f(r, XM 4 z)— f(r, Xf_))N(dr, dz) where N is the compensated Poisson measure

associated with Z. Since M" is a martingale, taking expectations, we get:
t
PO = | ([ (0@l X0 = 8. X8)) - 955, X0 s ) (XKL )|
= [([ b Xt (V706,30 = V165, 61)) s ) 0 )
T/t
+E </ (bh(ULS/hJ,X ») — bn(s, X" )) -Vf(s7XfSh)ds) ¢(X§1,..,Xgp)}

w2 [( [ (s o6 00)) - W, X1 s ) w0 X )

F ot
+E ( / (bls. X2 - Vf(s, XLy) = bls, XV (5, XD)) ds) WX, Xé;)]
= Al + AQ + Ag + A4. (46)
In the same way, E[F(X")] = Ay + Ay + Az + Ay where A; is defined like A; with (X", by,) replaced by
(X" by) fori € {1,--- ,4}.
For A1, we first write, using |by| < h~a5 "7 and conditioning w.r.t. Fon = J(X[f, 0<u< Tsh),

Er  [VF(s,X0) = V (s, X1 < V2 fll~Ex | X0 — X7,

S
< ||V2f||L°°[Ef,5, [/h 0n (U /ny, X2 dr + | Zs — Zn|

|

Q=

SIVEfllz l/” h™ar " adr + (s —7h)
S ||V2f||Looh§.

Using this bound along with [b,| < |b] and (4.1), we can compute
2 L r h 2 L
A S 19l [V fllzeh=E ; b(Us/ny Xl ds | S 19l [V fll e b=

The same bound holds for \A1| since the larger cutoff |by| < ha ! does not deteriorates the estimation of
Er h|Vf(3 XM —vVf(s, X" )| where ]-"Sh =o(X!, 0<u<th).

For Ay, supposing that h is small enough to ensure that 7 < 7/*, we split the time integral into three
terms: a main term over (7 + h,7/') which matches the time grid, and two terms around the edges, over
(u, 7! + h) and (7], t) respectively. For the main term, we will use the following cancellation:

Th+h

E V (bh(ULs/th 1) — br(s, XT;,)) -V (s, X)) ds fTHh] =0.

For the other two terms, we use that |by (U s/nj, X") — bp(s, X)) < [bu(Us/ng, X2 + [br(s, X2 S
h~% 4 and the inequalities 7 + h — u < h and t — 7} < h to write

Aa] < 9l |V £l L~ E l /

(\bh(ULs/hJ,thﬂ + |bh(57th)|) dsl
[u, 7 +h]U[T] 1] ° °

Sl IV fllzh' 2~

In the same way, |Ag| < ||| p | V.f] Leho.
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When p = ¢ = 0o, Ag vanishes. Otherwise, applying (2.15) with A = n where n > 1 is such that (4.1)
holds, we get

18] < ]l [V e B30 ”rﬁ[ / s, X7h>|”ds} < Nl [V fll e R+,

Since |b— b"| < [b|7B-1h(1=2)1=1) | we obtain in the same way that [As| < |4l e |V f]|oe A &)1,
For A4, we have

‘[Ef - Ut (b(s XD -V (s, X0) — b(s, Xh)Vf(s,Xg)) ds]

//|bsz Vi(z ’FhT —hXhh e TH2) =T (7h —hXhh,sz)‘dzds
Assuming w.l.o.g. that h is small enough to have 7 — h > sp, we deduce that:

t
Sal Sl [ [ [ bs2) TR T~ oyl 2) = Tl = by, 2)| (0., 7~ hoy) dadyds,
u

Then, we use the Holder regularity (1.26) of I'* in the forward time variable:

h a
|A4|<||1/;|\Loo||VfHLoo/ //|b5 z —zh)lp (s—T{f—i—h,z— )I‘h(O T, 7— — h,y)dzdyds.

Since s — 7" < h and 7% — 7" + h > s — u, we get, using (1.24), Holder’s inequality and (2.4)
\b 8,2) h
A4l S Wl IV £l wpa — 7ttt bz — y)pa(th — by —x)dzdyds
|b 8, 2)
SYll< IV flleh= 7 ———5Pal(s,z —x)dzds

b(s »
< [l |V |z b / ”i”zds.

S—U a§ap

Finally, using Hélder’s inequality in time and & — 2 — 4 = 1 e obtain
q « ap «

1AL S [l Lo IV £l o bl La—poh ™ (= u)=.

The same estimation holds for [A4|. Putting together the previous estimates on (A;);eq1,... 43 in (4.6) we
obtain limy,_,o E [F(Xh)} = 0. In the same way, limj, .o E [F(Xh)} =0

P solves the martingale problem.

In this paragraph, we only consider the case when P is the limit of the laws of the schemes X h since the
argument is exactly the same when P is the limit of the laws of the schemes X". The lack of continuity of
the functional F on D([0,7],R?) prevents from deducing immediately that fD([O 7)) F(P(E) = 0. Let

us first suppose that p < oo and set ¢ = qlgcoo + %RKM. We have % + % < a — 1. We introduce

for € € (0,1], a smooth and bounded function b. such that lim._,o ||be — b||pa_r» = 0. The functional F,
defined like F in (4.5), but with b, replacing b is bounded. According to (4.4), for fixed e € (0,1}, P gives
full weight to continuity points of F. and since limy, o E[F(X")] = 0, we have

= lm = lim hy _ hy1.
/D([OT] ,, FoOP(d8) = Jim E[F-(X")] = Jimy EIF(X") — F(X")
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We deduce that

/ F(€)P(de)
D([O,T],[Rd)

One has, using (1.24), then Holder’s inequality in space together with (2.4) applied with (£,d) = (p,0) and
last Holder’s inequality in time,

< limsup/ |F(€) — F.(€)|P(d€) + limsup lim sup E[| FL(X") — F(X™)|].
D([0,T],R?)

e—0 e—0 h—0

E[|F-(X") - F(X")[] < IWIILwHVfIILw/ Efb(s, X{) = b(s, XJ)[1 ds

u

t
<l 1V £l / / 1be(5,9) — b(s, 9)lpa(s,y — @) dy ds

i be S, . _bS,. p
Sl\wllmuwnm/ Ie(s:) = bls: e

sap

1—(144
< bl IV F o [ — bl gt~ (55

Since the same estimation holds for fD([O 7).R%) |F'(&)—F-(&)|P(d€), because the heat kernel estimates hold as
well for the limit point, we conclude that fD([O,T],[Rd) F(§)P(d§) = 0. Taking f, 9, u, s1,.. ., Sp, t in countable
dense subsets, we deduce that P satisfies (i¢7) in Definition 1.

Let us now deal with the case p = co. We set (p,q) = ((afql%, Qlgcoo + (ag—fll, %)]lqzoo. We have
% + % < a—1. We introduce for ¢ € (0,1], a smooth and bounded function b. such that [|be||ps—p~ <
2|[bl|La—r~ and, for each K € N*, setting bX (¢, ) = 1|_k ga(2)be(t, 2) and bX (t,2) = 1_ gja(2)b(t, 2),
we have lim. ¢ ||bX — 05|/ a_15 = 0. The above reasoning when p < oo remains valid once we now bound
E[|F.(X") — F(X")|] from above by

t

||¢||Loo||VfHL°°/ E[[bZ (s, X2) = 0% (5, X1)| + (b (s, Mz + 165, )| ) L x0 1> 1] s

u

(1. t ) 1/q’
Sl IV F ]l <|b§ 8 ot ) e ( / (P(X"| > K))? ds) )

According to (4.3), ft([P(|X§‘| > K))? ds can be made arbitrarily small uniformly in h for K large enough
while for fixed K, |[b — b%|| 4_15 goes to 0 with e. This concludes the proof.

4.4 Uniqueness of the solution to the martingale problem

For this paragraph, we assume p,q < oo (otherwise, we can proceed in a similar way to the previous
paragraph to mollify the drift). Let (b,,)men denote a sequence of bounded smooth approximating functions
s.t. ||b—bm|lLa—rr — 0 as m — oco. We study the mollified equation

(Os + LY+ by, - V)up (s, z) = f(s, ), (s,z) €[0,t) x RE up(t,-) = 0. (4.7)

It is well known that for a smooth compactly supported f, (4.7) has a unique smooth bounded classical solu-
tion (see [MP14]). Furthermore, the following Schauder estimates (whose proofs are postponed to Appendix
A.5) hold:

Lemma 5 (Schauder). Let f : [0, T] xR% — R be C*2 with compact support and (u, )men denote the sequence
of classical solutions to the mollified PDEs (4.7). Then, for all £ € [0, (v + 1)/a), for all0 < s < s’ <, for
all x € R, and for all m € N,

[V llzee SN fllzes (4.8)

[um (', ) = um(s, @) S |s" = s[*l|fl|z~-
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Let P! and P? be solutions of the martingale problem associated with b-V + £ and = € R? in the sense
of Definition 1. Let f be a smooth bounded function. For all m € N, denote u,, € C'([0,T],C*(R% R)) the
classical solution to the Cauchy problem associated with (4.7) with source term f. For i € {1, 2},

{M:m = 'U/m(37§8) - um(07 Z‘) - /08(67" +L%+b- V)um(ra ET) d?“} (410)
0<s<t

is a P'-martingale. Equations (4.9) and (4.8) allow us to apply the Ascoli-Arzela theorem to (u,): let
(tm,, ) be a subsequence of (Wim)m which converges uniformly on every compact subset of [0,2] x R? to some
Uso. Now, taking p’ € L9 ((0,T], L (R%)) such that P;(dy) = p'(t,y) dy, taking expectations in (4.10) and
using the Fubini theorem, we have, when s — ¢,

£ [/Ot f(r &) dr] = —Upm, (0, ) / / me — ) - Vi, (1, 2)p" (1, 2) dz dr. (4.11)

Since p' € Lq/((O7 7], Lp/(le)), using a Holder inequality in space and then one in time along with the fact
that ||Vumk ||z is bounded uniformly in &k (from Equation (4.8)), we obtain

b, — ) - Vi, (1, z)pi(r, z)dzdr

S 1Vt e I = by oo 16° - — 0.
Thus, takmg the limit as k goes to co in (4.11), we obtain

EF [/Otf(r, é})dr] = —Use(0,2) = EF Uotf(r, fr)dr] , (4.12)

which readily gives P! = P? (see e.g. Theorem 4.2 in [EKS86]).

A Proof of the technical lemmas involving the stable density

A.1 Proof of Lemma 1 (Stable Sensitivities)
Ttem (2.1) directly follows from Section 2 in [Kol00]. Let us prove (2.2).

» Diagonal case: |z —z/| < u'/*. Since we are looking at a small perturbation in the space variable,
it makes sense to use a Taylor expansion:

1
|V§pa(u,z) — Vpalu,z) | = / VoVspa(u, 2’ + (x — 2)A) - (x — ') d)\’

/
1+|c\|/ Pa(u, 2" + (z —2")A) dA,

using (2.1) and py < Do (see (1.16) and (1.17)) for the last inequality. Up to a modification of the
underlying constant,

"M — 2! —d—a o —d—a
ﬁa(u,:rl—l—(x—x'))\)gu_g <2+|x—|—(xx)|> <y (2_|xlx+ |$1|>

ué ~ U U
a |$/| —d—a«
Su = <1+ ) S Po(u, 2'),
U
We conclude the proof in the diagonal case noting that for all 6 € (0, 1], o=z “l < (l fll )0.
u u o

+ Off-diagonal case: |z — 2’| > u!/®. In this case, a Taylor expansion in space is not relevant. We
simply use the fact that 1 = 2=%1 T A1 and (2.1):

u

o
|Vipa(u,z) = Vipa(u,a’)| < (lajuf' ) (|Vspa(u,2)| + |Vipalu,2)|)

< (BB A0) i )+ ).
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This concludes the proof of (2.2).
Let us now prove (2.3). Let 0 < u < v/ <T. Assume first [u —u'| < 3.

1
|V§pa(u,x) — Vgpa(u’,xﬂ = / OtV spa(u+ (u' —u)\, x)(u' — u)dA
0

i~

1
S / ! ~Pa(u+ (v —u)\, x)u" —uldX
0 (ut (u — W

ju—u'| !

°
Q

Pa(u+ (u' —u)\, x) d),

~

Il
wlts Jo

recalling that u’ > w for the last inequality. We now discuss in function of the position of the spatial variable
x w.r.t. the current time u.

+ Diagonal case: |z| < u!/®. Then,

Palu+ (0 —u) ) S (u+ (0 = u)A) "5 S u™s = pa(u,x) < pa(u, @)
+ Off-diagonal case: |z| > u'/®.
B u+ (v —u)\ U _
pa(u + (’U,I - u))\,x) /S ;ld—&-a ) S |x|d+a xp@(“‘?x) Xpa(u,x).

Note that the condition |u’ —u| < § is actually needed only for the second above inequality. Namely, it
ensures that the term A(u’ — u) has the same magnitude than u (otherwise the previous expansions are
useless and the estimation is direct as discussed below).
In turn, we obtain
u—u'|’
wf+ e

fu— |

G Palu,2) S Pa (U, 2),
u @

|V<zpo¢(ua CU) - Vgpa(u',x)| 5

for all 6 € (0, 1].
In the case |u — /| > §, we simply write using (2.1)

u—u'[\?
VSpalon.2) — Vipalal, )| < (2 ) (1VEpa(o,2)] + V5paut, 2))
u—u'|?
| | (pa(u,x)+pa(u’,x)),

~

S
uft

which concludes the proof of (2.3).
Let us now prove (2.4). Using P, < po, we can write

7’ ’ ’ 1 1 /
Ipatus - U5 = [ patu) Wi dy S [~ x a9 dy.
R Rd o (1 4 @)
u o
Set z = yu’é:
’ dq_pyg ce 1 o
wumwMRSuﬂf”a/ 2| dz,

which converges whenever ¢'(( —d—a)+d—-1< -1<=(<d+a-— %,, in which case we obtain

T I
lpa(u, )] - [Ny S u”ar s
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Let us now prove the convolution part (2.5). Denote

3= |[Palt —u,- = y)Palu —s,2 — )L

1 1 1 1
<
~ / (t—u)% * CE=STEe (5= X arayr 9% (A1)
(1 + 'Z_y|1> (1 + Iw—zl)
(t—u)e (u—s) @

We now discuss in function of the magnitude of the distance |z — y| w.r.t. to the global time scale ¢t — s.

« Diagonal case: |z —y| < (t —s)'/@
In this case, either (£ —u) > 2(t —s) or (u—s) > 1(t — s), we can then use the global diagonal bound
in (A.1) for the corresponding density.

—If(t—u) > i(t—s),

Qla.

1 1 1 1 1 1
< & <
73 (t - u)iﬁ/ X (’U, - 5)%(@’_1) / (u — 5) X (1 . o >(d+a)€’ AN — X
- I
(u—s) @

Since (t —u) > 3(t —s), — 4 < —15 < pa(t — s,y — 2), and

1

N< 5 _ o 8/7
IS Palt = 5w —y) (u—s)at-n’

— If (u—s) > 1(t — s), we readily obtain by symmetry

1

N< 5 _ _ 817
T < Palt—s,2—y) (tfu)g(e/_l).

+ Off-diagonal case: |z —y| > (t — s)'/@

In this case, either |z — z[ > 3|z — y| or [z — y| > 1|z — y|, i.e. one of the two contributions in J is in
the off-diagonal regime, allowing us to use (2.9). In this cas we split the upper-bound for J in (A.1) as

follows:
~ 1 1 1 (1]-|I—Z\Zl\z—y| +]]‘|Z—y\21\m—y|) .
J 5 / ae’ X (d+a)t’ X r X 2 (d+a)2’ dz =: Ji+ 32.
(t—’u)a 1+M (U—S)a 1—"_@
(t_u)é (u—s)é
= For 3y, [z — 2| > lo —y| > 3(t - s)V/ we get
1 1 1 1
e (u—s)& s () / (t—u)% x @70 La—z|24lz—y 42
(1 + 'z_y|> (1 + Iz—y|1>
(u—s)a (t—u)«
’ ]_ 1 1
= ¢
N / t—wi Ljo—z)2 }lo—y| 92

(A1)t
(1 ) )
(t—u) e

Since |z —y| > (u— 8)"*, po(u— s, —y) < lr_“y‘jﬂ < |x_t;‘§+u = Po(t — s,z —y), and

1

<pot—sz—yf ——
J1 S Palt — 5,2 —y) (t—u)gwil).

~

— For Ty, |z —y| > %|x —y| > %(t — 5)1/®, the same computations give, when swapping the roles of
|z — 2| and |y — z|,
1

v (A.2)

J2 S Palt —s,2—y)"

~

(u—s)

(t—U)T (ufg)%(f’_l).
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In each case, we have established that

_ _ - 1 1 B
1Palt —u,- = y)palu—s,2 — )| Lo =3T¢ S Lt ez “”]pa(ts’xy)
Y

which concludes the proof of (2.5).
Equation (2.6) then eventually follows from (2.5) and Hélder’s inequality.

A.2 Proof of Lemma 2 (Feynman-Kac partial differential equation)

Recall that for v > 0,z € R%:

Pl 2) = 1)d / exp(uby o (C)) exp(—iC - 2)dC,

/[R+ [, fesptic- p6) =1 (de)—

being the Khinchin exponent associated with the operator £¢. It is thus direct to see from the non-degeneracy
assumption (1.15) that there exists ¢ > 0 s.t. V¢ € RY, [ou1 [¢ - €]*u(d€) > ¢[¢]™ so that exp(u®, () <
exp(—cCq,qu|¢|*). We deduce that p, is smooth on R* x R? and

e =~Caa |10 €0 u(d), Cau >0,
+ gd—1

1

Oupa(u,z) = (@m)?

[, Bua€) expluy (6)) expl—i - 2) dc.

Since, by symmetry of the measure y and Fubini’s theorem,

B esplutya(@) = [ [ [ lespic - p) 1 utae) 5
= [ L et ()~ explic ) pato ) dantae)

/ exp(iC - 2)pa(u, 7) dz

/[R /Sd 1 /[Rd exp(i€ - x) (pa(u, T + p€) — palu, x)) dxu(df) 1+a
= / exp(i¢ - ©)LYDq (u, z) dz,
Rd
one has 0,pq(u, 2) = L (u, 2).

The fact that v solves the Feynman-Kac partial differential equation on [0,¢) x R? is easily deduced using
(1.16) and (2.1) to apply Lebesgue’s and Fubini’s theorems. Last, for s € [0,1),

os.9) = 60| = [
:/Rd

and Lebesgue’s theorem ensures that the right-hand side converges to 0 as s goes to t.

6 (y—(t=9)%2) = 9y)| (t = 5)Epalt —s,(t —5)¥2) dz

6 (y—(t—9%z) —oy)

pal(l, z)dz,

We refer to [Kol00] (in particular the introduction, Proposition 2.5 and Section 3) for additional details
and properties about the density p,,.
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A.3 Proof of Lemma 3: stable time-space convolutions with Lebesgue function

Let us first use (2.6) with £ = p and then Holder’s inequality in time:

v 1 1
I, 3, (u,v) ::/ /pa(r,zx)|b(r,z)|pa(tr,yz)(dzdr

t_r)Bl 7"62
1 1 ] 1 1

+ —dr
ras (t— r)aip (t—r)Pr P>

< paltiy — ) / 16(r, )l e

vl 1 1 1 e
< _
Spalt,y — ) / -+ ; e ——dr
“ u | ey (t_r)% (t —r)aPrrd'he

= pa(t> Yy— .13)531732 (u7 ’U).

Set A== <= r=u+ A(v—u), then

v—Uu

’

‘951,52 (u7 U)q

1
Sto-u) [
0

Assume first that ¢/ (aip + ﬂi) <1, i € {1,2} (integrable case). Then,

1 n 1 1 1 a\
(u+ Av — u))% (t—u—Av— u))% (t—u—Av—u)?P (u+ Nv—u))?P "

’

Sgy,p, (u,v)?

1
a 1 1 1 1 dq’ _ 1
<l — a1 —q' (B1+52) A\ < (v — u)l— a5 —9 (BitP2)
N(U ’LL) /O [)\i‘é}l + (1 _ A) (iq‘l: ] (1 — )\)q’ﬁ1 )\q152 ~ (U U) )

and .
Ig, 6, (4,0) S paltyy — x) (v —w)t "o~ ap—(At)
which, recalling (1.20), gives (2.8).

Let us now consider the case ¢’ <a% + ,81) >1,¢ (a% + Bg) < 1 (singular case) with v < t. We then
write:

’

551,132 (uvv)q
<(U o u)l—q,(%p'i‘ﬁl"r/ﬁ) /1 1 + 1 d\
~ 0 )\q’(‘%erﬁz)(t—iu _ )\)q’ﬂl (t—J _ )\)(I’(a%+ﬁl))\q/ﬂg
<(’U _ u)lfq’(o%ﬂrﬁﬁ*lb) (/
0

(0 — u) =0 G +o+2) (1 Pl 1)1—q'(a%+/31))
v—1u

Nl

1 ! 1
A\ (25+82) d)\+/é (=2 _ )\)Q’(a%-i-ﬂl) d)\)

A

(v — u) Y GEHOHB) (4 ) ~0 B2 (- )10 (G5 A
Hence, in the divergent case we have established
Iy (,0) S paltyy =) (v —u)' =575 (0 — ) (¢ — o))

)

which precisely gives (2.7). This concludes the proof of Lemma 3.
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A.4 Proof of Lemma 4 (About the cutoff on a one-step transition)

Using the fact that p, < P, and |y — sbp(r,x)| > |y| — s|br(r, z)|, we get for 0 < s < min(u, h),

1 — sbp(r,x —(d+a) 1 (dta)
oty = sta(r)) $ —p (24 LN g L (00 Sy a4 )
U U U U U
—(d+a) (d+o)
1 1 1
5d(2—sl—ah—$—i+|yl|> §d< — he +|y|>
Ua U Ua U
—(d+a)
1
~ 4 (1+ng|) Spa(u7y)a (A 3)
U« U @
provided h <1 for the last inequality, which we can assume w.l.o.g.
In the case of by, we derive similarly,
—(d+a) (d+a)
_ 1 1
Pa(u,y — sbu(r,z)) S — (2—1bh(r7x)+ |y1|) NS ( —nY+ y|)
U« U« o U U o
—(d+a)
1
5d<1+|y1|) = Pa(u,y)
U« U

This proves (2.11) for [¢| = 0. For 0 < [¢| < 1, one simply needs to apply (2.1) beforehands. For the proof of
(2.12), it is enough to apply (2.2) to ’VCpa(u, y — sby(r,z)) — Vepa(u,y’ — sbp(r,z))], bn},
which yields

‘cha(u, y — sby(r, ) — Vopa(u,y’ — sby(r, !L‘))’

-yl N 1 ,
~ s A1 <1 (pa(u,y—sbh(nx))—l-pa(u,y —sbh(r,x))),

Ue U

for all 6 € (0, 1] and then use (2.11) to get rid of the drift in the previous equation.

A.5 Proof of Lemma 5: Schauder estimates for the mollified PDE (4.7)

Let m € N and u,, denote the classical solution to (4.7). For s € (0,t],z € R?, computing u,, (¢, z) + (Z; —
Zs) — um(s,z) by Ito’s formula and taking expectations, we obtain

—/t/f(r,y)pa(r—Svy—m)dydr

/ / (r,y) - Vum (r,y)pa(r — s,y —z) dy dr
=: I1(s,x) + Iz(s, ). (A.4)

Let us first prove the gradient bound (4.8). For I, using that f is bounded on [0,7] x R? along with (2.1),
we get

t
Vs, 2)] s/ /|f<r,y>||vzpa<r—ay—xﬂdydr

1
S fllee— Loo/ /par—s y—x)( )idydr

< Hf||L°°—L°°/ Wdr

Sz
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For I, let us first note that due to standard Schauder estimates (see [MP14]), we already know that Vu,, (r, )
is bounded (although not necessarily uniformly in m) for all € [0,¢]. We can thus write, using a Holder
inequality, then (2.4), and finally a Holder inequality in time,

t
Vs, )| < / IVt )| / bon () |pa(r — 5,y — ) dy dr

< / ||Vum<r,->|Loo|bm<r,->||m(1)ddr

t ’ 1 i
< Wl | [ 19wt ——rar)
s (r—s)er

Gathering the previous estimates, we have
’ ! ’ t ’ ]_
[Vtm (s, Mo ST + IIbm||Ciq_Lp/ IVt (1, )| oo ——7 -
s (r—s)ar

Since % < 1, using Lemma 2.2 and Example 2.4 [Zhal0], we deduce (4.8).
Let us now prove (4.9). Using the previous notations, we can write

[um (8, @) — um(s,2)| < |11 (s, 2) — I1(s,2)| + [I2(8', z) — I2(s, 2)|.
For the first term, using (2.3) with § = ¢, for any € € [0, (v + 1)/a) and ¢ = 0, we readily have
(s, 2) = T (5,2 S 15" — slS11 fllz_poe.
For the second term, using (2.3) with # = £ and ( = 0, as well as (2.1), we can write
|s" — s

1(6'2) = D5, 5 [ [ o) Vs ) e ol = ooy =)+l = 5. = ) dyr

+ / / By 4) - Vit (1 9)lpe(r — 5,y — ) dy dr.

Using then a Hoélder inequality in space, (2.4), a Holder inequality in time and the previously established
boundedness of Vu,,, we get

1

t Py
1 1 1
a(s',2) ~ Ta(s )] 5 om0 [ Wt <]~ o (/ QT [ s ] dr)

Sl 1 ?
TR TSP\ (/ dq/dr> -
s (r—s)er

Notice now that

which concludes the proof of (4.9).
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