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ABSTRACT
The present paper deals with the cover-source mismatch (CSM)
problem in operational steganalysis. It first investigates the
distribution of the noise in natural images, and shows how
this property can be used to build a fingerprint of the cover-
source, to address the issue of source identification from a single
image. In particular, fingerprints from different noise extraction
techniques are studied. Results show that these fingerprints
can be complementary. The method proposed in the present
paper aggregates them in a unique forensic feature to build a
more accurate source identification algorithm than when using
steganalysis features, such as the discrete cosine transform residual
(DCTR). Last, the paper exploits the proposed forensic tool to
mitigate CSM via "atomistic steganalysis". Used together with
steganalysis methods, experimental results highlight the superiority
of our approach, as compared to other atomistic mitigation
strategies. The relevancy of these results is further studied on out-
of-camera images coming from Flickr and the ALASKA dataset. We
show that for some devices, our approach gives results superior to
the omniscient scenario.
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• Computing methodologies→ Image processing; • Applied
computing → Investigation techniques; • Security and
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1 INTRODUCTION
Steganography is the art of hidden communication. It uses
innocuous media, such as videos or text files as cover objects to
embed a secret communication in. Steganalysis, on the opposite,
tries to detect cover from stego objects. It designs detectors, most
commonly Machine Learning (ML) models, which use a training
set, containing cover and stego objects, to confront a testing set.
In the most optimistic scenario, both training and testing samples
come from the same origin, called a cover-source; it also assumes
that the same steganographic scheme was used to generate the
stego objects in both sets. This scenario might seem naive, but
it can be considered a conservative interpretation of Kerckoff’s
principle, summarized under Shannon’s maxim: "the enemy knows
the system" [23].

In a more realistic approach, however, it is very difficult to know
the cover-source of the testing set or, even worse, from a single
object to inspect. A steganalysis detector can still be trained, but it
would most likely be carried out over a cover-source that differs
from the one used to generate the test set. This mismatch between
the two distributions, called the cover-source mismatch (CSM) in
operational steganalysis, might lead the steganalyst to dramatically
low accuracy on the test set.

Many attempts at mitigating this drop of accuracy have been
proposed ; let us recall the three major ones (although there exists
more [16]):

• the holistic strategy aims at building the decision rule with the
best possible generalization ability; it relies on a training set
containing cover-sources as diverse as possible. Designing a
training set was recently addressed [1]. Otherwise, holistic
steganalysis trades accuracy on specific sources for its
generalization ability [28].

• the atomistic strategy introduces a cover-source identification
step that suppresses the CSMwhen performing steganalysis; This
approach performs really well when dealing with CSM with a
fixed number of cover sources [12, 26].

• the domain adaptation framework tries to learn an invariant
representation to convert unknown cover-sources to. It is
relevant, contrary to the atomistic approach, when dealing with
unseen cover-sources. This approach is promising but can suffer
from the double impact of steganography and CSM on current
state-of-the-art features [25].

The holistic and domain adaptation ideas try to cope with CSM
while performing steganalysis. On the other hand, the purpose of
the atomistic approach is to eradicate CSM preemptively. As a result,
it has been shown that it can actually perform just as well as the
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clairvoyant scenario. To do so, however, it assumes the availability
of a cover-source identification tool and knowledge of the existing
cover-sources.

The current state of the art defines the CSM as the discrepancy
between the distributions of training and testing samples, but the
term is also used to designate the drop in accuracy of the detector
when facing the CSM. We evaluate that using the same term for
both the cause and the consequence is confusing. Rather, we suggest
talking about CSM for the former and CSM problem (in steganalysis)
for the latter.

Identifying the potential causes and the consequences helps us
excavate the difference between the two problems of the steganalyst.
We suggest that each problem should be dealt with separately. In this
scenario, the atomistic approach appears to be the most appropriate
way to free steganalysis from the CSM problem.

In section 2, we summarize the existing literature on source
identification and atomistic steganalysis. In section 3 we give a
detailed explanation of the rationale and methodology behind the
proposed Correlation Feature (𝐶F ). In order to be comprehensive,
we specifically highlight its strong & weak points. Section 4 details
the experimental setup used in this paper, explaining the choices
in designing our training and testing sets, as well as our choices of
model. Results are presented and discussed in section 5. Section 6
concludes this paper and draws future work ideas.

2 RELATEDWORK
The atomistic scheme is almost as old as the CSM problem; early
studies reporting drops of accuracies when using different datasets
in training and testing models already mentioned training one
detector per cover-source as well as a multiclassifier to detect the
cover source (or the embedding scheme) [20].

The atomistic mitigation strategy relies on a two-step process, as
shown in Fig. 3. The idea is to get rid of the CSM before performing
steganalysis. To do that, it relies on a multiclassifier, trained to
recognize the cover-source of tested images, followed by a set of
steganalysis detectors: one for each of the considered cover sources.
This source identification step is crucial as, if reliable, it allows
steganalysis to perform as well as in a scenario without CSM, called
the clairvoyant scenario.

Over the years, multiple atomistic approaches have been
proposed. To detect the JPEG quality factor, [2] suggested using a
tool "out-of-the-shelf" from the forensic literature. Others suggested
unsupervised clustering [11, 19]. Steganalysis features are also
popular in building the source identification step, e.g. cc-PEV
[14], cc-JRM [3], DCTR [7]. Indeed, while tailored for detecting
steganography, they are all highly sensitive to the type of cover-
source. But despite their competitive results, steganalysis features
bear one major flow : they act as a fingerprint of both the
steganography – which it is designed to, and the cover-source
– which it suffers from. In the context of CSM, a good steganalysis
feature would be resistant to the impact of the cover-source on
images. On the other hand, in the context of steganography, a
good forensic feature (i.e. to perform source identification) should
be equally resistant to the impact of embedding, and should only
capture the impact of the cover-source. This paper proposes such a
forensic feature.

Extracting the noise in an image is an open problem. Under
the assumption that the image processing pipeline is both linear
and stationary, the noise can be modeled with an heteroscedastic
Gaussian distribution. This distribution can then be estimated [6].
But this assumption is strict, especially when considering that, e.g.,
the gamma correction is a non- linear operation. It is therefore hard
to leverage the properties of the Gaussian model of the noise in a
practical scenario, where the steganalyst does not have access to
side information.

3 CORRELATION FINGERPRINT OF THE
IMAGE PROCESSING PIPELINE

3.1 Rationale
Pixel noise is inherent to any natural image. It comes from (1) the
quantic measure of the number of photons hitting the photosensor
when taking a picture and (2) the components of the camera itself
(see [15] for references). Fig. 1 is a schematical illustration of the
reasons inducing a multivariate distribution of the noise. The three
correlation matrices show the relationship between pixels in an 8×4
neighborhood. A red cell indicates a positive correlation between
two pixels, and a blue one indicates a negative correlation. This
noise can be considered independent in the RAW domain, just after
the acquisition [5]. However, processings such as demosaicking,
denoising, and JPEG compression will introduce correlations
between pixels, and their associated noise [24]. Naturally, different
processings should introduce different correlations, as obtained
after applying a sharpening and a denoising operation to the raw
decorrelated noise. If one can capture the correlation of the noise
in the image, he should be able to characterize the cover-source.

In an image, pixels are highly correlated together w.r.t. the
content. To compute the correlation induced by the image
processing pipeline (IPP), one should first remove the correlation
caused by the content. In the present study, we try multiple methods
to extract the noise in the image. But, to limit the impact of the
content, we also provide a method to only keep the noise coming
from the regions of the images bearing the least content.

There exist many solutions to estimate noise in an image, from
trivial high-pass filtering to state-of-the-art noise extraction or
denoising algorithms. In section 3.2, we describe the 6 methods that
we considered in this experiment.

3.2 Noise estimation
In this section, we provide a concise introduction to the different
noise estimation techniques, noted F , that we explored. The goal
here is to extract a multivariate noise coming from the acquisition
of an image 𝐼 , and fingerprinted by the IPP.

High-pass filtering. is the first type of filter we looked at. The
straightforward convolutive Laplacian kernels are tested, both the 4-
neighbor and 8-neighbor filters. The Sobel filter was also considered
as an "off-the-shelf" tool; all 3 were implemented in the opencv

1Content icon comes from https://flaticon.com. Camera icon comes from
https://iconarchive.com, and Acquisition parameter icon from https://icon-icons.com.
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Figure 1: Schematic reasoning for the multivariate
distribution of the noise in natural images.1

library. 
F1 = I⊛ L4,

F2 = I⊛ L8,

F3 = I⊛ (S2
𝑣 + S2

ℎ
) .

(1)

where ⊛ is the convolution operator and

L4 =


0 −1 0
−1 4 −1
0 −1 0

 ,L8 =


−1 −1 −1
−1 8 −1
−1 −1 −1

 ,
S2
𝑣 =


1 2 1
−2 −4 −2
1 2 1

 and S2
ℎ
=


1 −2 1
2 −4 2
1 −2 1

 .
(2)

Wavelet Filtering. is another famous family of algorithms in
image processing. The Daubechies wavelet was considered here,
based on the work of [5].

F4 = I⊛W ⊛W𝑇 , (3)

whereW𝑇 is the transpose matrix of W and

W =
[
.035 .085 −.135 −.460 .807 −.333

]
. (4)

NoisePrint [4]. is a camera fingerprint extraction method. It is
based on siamese convolutional neural networks, trained to extract
similar noise estimations out of images from identical camera
models. Its initial use was to detect image forgeries; two kinds
of fingerprints would then be detected in a single image. We use it
in our case to extract a single fingerprint that – hopefully, contains
information on the IPP:

F5 = NPR(I) . (5)

DRU-Net [27]. is a deep learning denoiser. It is designed based
on integrating the residual blocks of ResNet [8] in the architecture
of the well-known U-net [22], and trained using images manually
degraded with Gaussian noise. By computing the noise residual
between the input and the output of the network, we can also hope

to obtain a decent fingerprint of the processing pipeline:

F6 = I − DRU(I) . (6)

3.3 Building the 𝐶F feature
In an ideal case, one would want to compute the correlation of the
noise between pixels in the whole image, noted 𝐼 . For an image of
size 512 × 512, however, that would result in a correlation matrix
Σ ∈ M218×218 , containing around 6.910 coefficients. For this reason,
and to take into account the JPEG compression pattern, we opt for
correlations in an 8 × 8 neighborhood, that will be synchronized
on the JPEG grid all throughout the paper. We therefore define
neighbourhoods 𝑏𝐼

𝑖
∈ 𝐵𝐼 , where 𝐵𝐼 is the set of 8 × 8 matrices

scanned from the noise residuals.
Furthermore, as stated above, we want to limit the presence of

the content in the estimation of the correlation of the noise. To
that end, we sample blocks 𝑏𝐼

𝑖
for which the intra-block mean and

variance are simultaneously low. This ensures that the selected
blocks will be the smoothest of the image and centered around 0,
i.e. they will bear the minimal amount of content that can persist in
the filtered domain, such as edges and gradients, and, to a certain
extent, textures.

We exploit the fact that, in the filtered domain, the mean and
the variance of the samples are highly positively correlated. This
ensures that a block with a low residual mean will very likely also
have low variance. The sampling strategy is defined as such:

𝐵
F𝑘
𝑠 =

{
𝑏
F𝑘
𝑖

/ 𝑏F𝑘
𝑖

∈
𝑁
min
𝑖

V[𝑏F𝑘
𝑖

] ∪ min𝑁𝑖 E[𝑏F𝑘
𝑖

]
}
, (7)

where V[.] is the variance, and E[.] the mean value, and min𝑁
𝑖
𝑆 is

the set of the 𝑁 lowest elements of set 𝑆 . The correlation matrix is
then computed between the samples in the set 𝐵 (F𝑘 )

𝑠 :

Σ(F𝑘 ) = (𝜎 (F𝑘 ) )𝑢,𝑣 =
Cov(𝑏 (F𝑘 )𝑢 , 𝑏

(F𝑘 )
𝑣 )√︃

V(𝑏 (F𝑘 )𝑢 )V(𝑏 (F𝑘 )𝑣 )
. (8)

Once the correlationmatrices are computed, the correlation features
can be formed as an aggregation of the correlation coefficients of all
of the correlation matrices. Since a correlation matrix is symetrical,
and its diagonal is equal to 1, we get:

𝐶F =

{
tri(ΣF𝑘 ),∀𝑘 ∈ 0 . . . 6

}
, (9)

where tri(𝐴) is the vectorization of the lower triangular coefficients
of matrix 𝐴.

For 8×8 patches, we get 64×64 correlation matrices. Thus, there
is 64×64

2 − 64 = 1984 coefficients per noise estimation.

3.4 Resistance to embedding
As advocated in Sec. 2, one of the purposes of designing a new
forensic feature is to ensure high resistance to steganographic
embedding. The sampling strategy makes it naturally resistant to
adaptative schemes, as highlighted in Fig. 2. For a given cover image
(2a), the selected and rejected blocks, chosen according to Eq. 7,
are shown in yellow and purple respectively. Then, the location of
the embedding changes are shown in red. As expected, the selected
(yellow) image blocks contain a vast minority of the embedding
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(a) Cover Image (b) J-UNI 0.05 (c) J-UNI 0.1

(d) J-UNI 0.15 (e) J-UNI 0.2 (f) J-UNI 0.25

Figure 2: Sampling strategy against adaptative embedding
strategy (J-uniward): (a) cover image, (b)-(f) embeddings
at 0.05, 0.1, 0.15, 0.2, 0.25 bpnzAC respectively. Yellow and
purple areas indicate the selected and rejected samples for
the correlation estimation, respectively. The red dots indicate
the DCT coefficients modified with the embedding.

changes, even as the embedding rate increases from 0.05 bpnzAC
to 0.25 bpnzAC (2b-2f).

The reason is simple: adaptative schemes embed in the regions
of the image where the changes are the least detectable, i.e. where
the image is the most textured. Therefore, the sampling strategy
naturally avoids the blocks where the changes are made. From
Fig. 2b -2f though, one can see that as the payload increases, the
number of changes included in the sampled blocks increases.

4 EXPERIMENTAL SETUP
In this section, we describe the experimental conditions to measure
the performance of our new atomistic scheme compared to other
atomistic schemes. We give particular emphasis on the synthetic
and out-of-camera image datasets used. We also motivate our
choices of ML models for both forensic and steganalysis, as well as
the baseline used to show the relevance of our method.

4.1 Proposed atomistic scheme
Atomistic steganalysis is composed of two steps, as illustrated in
Fig. 3. First, source identification is done using a multiclassifier
based on the proposed 𝐶F feature. Then, for each cover-source, a
binary classifier is trained on steganalysis features extracted from
images of the corresponding cover-source, to detect whether the
samples are cover or stego objects. We used the DCTR and the
Gabor filter residual (GFR) features as comparative baselines for
the source identification step, as they were shown to perform well
for this task [7].

For the forensic analysis, we chose the linear ensemble classifier
proposed in [13], that has shown good performances with DCTR
[9] in [7]. For the steganalysis, we chose a simple logistic regression

Source Id

detect
cover

stego

detect
cover

stego

detect
cover

stego

Figure 3: Illustration of the general workflow of the atomistic
scheme. A multiclassifier performs source identification on
images of unknown sources, which are then given to the
steganalyzers trained on their predicted cover-sources.

RAW

Linear

dem
WB

Grayscale

& Cropping
Processing

JPG

Figure 4: General flow of the processing pipelines used to
generate our sources. RAW images come from the ALASKA
Dataset. The processing part highlighted in blue changes
between the sources, and can be seen in Table 1, while the
other remain unchanged. The JPEG compression is done at
QF 100.

(LR) model, as in [1], used with the DCTR features for all three
source identifiers.

4.2 Datasets
4.2.1 Synthetic sources. Hand-crafted processing pipelines are
first used to provide a controlled experimental setup to test our
features on. The main advantage is that we are able to control
the introduction of CSM through changes in the IPP. Images
are developed using the open source software Rawtherapee. Two
kinds of post-processings are used to generate synthetic sources:
the directional pyramid denoising (DPD) [18] and the unsharp
masking (USM) [21]. For both, 4 values of intensities are used. Eight
additional sources are created by combining a strong DPD (resp.
USM) followed by different intensities of USM (resp. DPD).

The whole processing pipeline is shown in Fig. 4. RAW images
are first processed by linear demosaicking and a white balance.
The specific post-processing is then applied. Images are finally
converted to grayscale and center-cropped to size 512 × 512.
Conversion to JPEG at quality factor 100 is then performed.

4.2.2 Out-of-camera sources. Additionally, we tested the source
identification on several "out-of-camera" (OOC) JPEG images. The
goal of this experiment is to measure the loss of accuracy when
using our atomistic scheme, comprising 16 detectors trained on
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synthetic sources, as compared to a clairvoyant detector, trained
on the wilder OOC sources directly.

OOC sources all contain 1000 images. They are of two origins.
Two are extracted from Flickr, and are formed by images taken by
2 users, equipped with a Sony SLT-A37 and a Canon Powershot
SX30 IS, respectively. When looking for traces of post-processings
in the metadata of the images, mentions of adobe were found for
the Canon images. However, they consistently appear in all of
the images. Therefore, we concede a slight abuse of language by
calling this cover-source OOC. The other four are original ALASKA
OOC images. They consist of an iPhone 11 Pro, a Xiaomi Mi 10T
Pro, a Huawei P40 Pro, and a Nikon D810. These images will be
used to measure the CSM problem between our atomistic scheme
and dedicated OOC detectors. Since we only have 1,000 images
per source, we apply a 5-split K-Fold procedure when training
and testing the steganalysis detectors. The reported results of the
steganalyzers in the clairvoyant scenario in Sec. 5.3 are the averaged
results on the 5 splits. All the sources, both synthetic and OOC, are
summarized in table 1.

Table 1: Processings and camera models used to define the
synthetic and OOC cover-sources used in our experiments.

Synthetic sources

USM DPD DPD-USM USM-DPD

50 30 90-50 350-30
150 50 90-150 350-50
250 70 90-250 350-70
350 90 90-350 350-90

OOC sources

Flickr ALASKA

Sony iPhone 11
Xiaomi

Canon Huawei
Nikon

5 EXPERIMENTAL RESULTS
We first investigate the results of the source identification step
in section 5.1. We then report the performances of the atomistic
scheme on the synthetic setup in section 5.2. The case of OOC
sources is studied in section 5.3.

The adaptive scheme J-UNIWARD [10] was used to generate
stegos, at a payload 𝜌 = 0.5 bpnzac (bit per non-zero AC
coefficients).

5.1 Source identification
To highlight the complementarity of the different filters F𝑘 , 𝑘 ∈
{1 . . . 6}, we show the performance of the source identification
model with the correlation coefficients of each filter separately in
table 2. As we can see, noiseprint has the best informativeness on
the source by far, further confirming the relevance of this model.
Then, we see that the laplacians and the Sobel filters give better
performances than the wavelet filter. Our explanation is that the
impact of the latter on the pixels is more important than the formers,
erasing the fingerprint of the processing pipeline. Finally, as shown
in [17] with non-local means, out-of-the-shelf denoising-based
residual estimation, such as DRU-net, can struggle, especially when
dealing with already denoised images.

To further emphasize the resistance to embedding, we also report
the classification results with only covers and balanced covers and

Table 2: Detection accuracy in% of all the features: the 6filters.
The accuracies between cover only and 50% cover and stegos
are very close, highlighting the low amount of degradation
due to embedding (at 0.5 bpnzac).

L4 L8 S W Npr Dru

Cover only 50.5 52.4 52.8 41.2 66.2 46.6
Balanced 50.4 52.3 52.6 40.9 66.3 46.5

Table 3: Source identification accuracy for the aggregated
features 𝐶F , DCTR and GFR.

𝐶F DCTR GFR

Cover only 78.6 75.5 90.5
Balanced 78.7 75.2 90.3

stegos in the training and testing sets. Results are almost equal for
all filters. We then compared the detection accuracy of the source
identifier when using the full 𝐶F feature, the DCTR, and the GFR
features. Identically, we tested the performances for both the cover-
only and the balanced cover and stego setups. Results are reported
in table 3. Again, both setups bear similar results. Although our
proposed scheme outperforms DCTR, it is still vastly inferior to
GFR in this setup.

On the other hand, in table 4, we look at the accuracy of the 3
detectors in the worst-case scenario, i.e. when training on only one
class (cover or stego) and testing on the other. This time, we can
see that the detector based on the𝐶F feature is not impacted, while
the ones based on the steganalysis features become completely
blind. While not very realistic in an experimental setup, these
striking results should raise some awareness of this weakness of
the steganalysis features.

Another way to visualize the CSM (but not its impact on
steganalysis) is to look at the confusion matrices of the source
identification models, shown in Fig. 5. Fig. 5a highlights that
that when using the 𝐶F feature, errors mostly occur between
cover-sources sharing the same set of processings. On the other
hand, Fig. 5b DCTR tends to misclassify images from the "simple"
cover-sources, defined by only one processing, as coming from
"complex" ones, containing both sharpening and denoising. Fig. 5c
further illustrates the superiority of the GFR features for the source
identification task with the given set of cover-sources.

5.2 Atomistic steganalysis
Atomistic steganalysis is then performed using the proposed source
identification methods. For each cover-source, we train a specific
steganalysis detector, using the images used in the training of
the source identification step. Similarly, the test images are the
tested images from the first step. The results of the steganalysis
step, when using DCTR, are reported in table 5. We see that,
despite the difference in accuracies in the source identification, the
steganalysis schemes end up with similar results. Note that, despite
the discrepancies reported for the source identification in table 3,
we end up with average accuracies very close to the clairvoyant
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Figure 5: Confusion matrices obtained with the different
source identification methods.

Table 4: Accuracy (in %) of the source identification step
for the considered features in a worst-case scenario, where
training on either covers or stegos, and testing on the other
class.

Feature 𝐶F DCTR GFR

Train
Test Cover Stego Cover Stego Cover Stego

Cover 78.6 79.0 75.5 6.2 90.5 6.3
Stego 78.4 79.1 5.8 75.3 6.1 90.5

scenario. This can be explained by the fact that with a relatively
high payload of 𝜌 = 0.5 bpnzAC, steganalysis models trained on
similar sources will probably output identical predictions for an
image coming from one of these sources. Note again that when
using GFR instead of DCTR to perform steganalysis, the obtained
accuracies are still very close to the clairvoyant scenario.

Table 5: Results of atomistic steganalysis on synthetic
sources, using the DCTR features in the steganalysis step.

IPP
Source Id Clairvoyant 𝐶F DCTR GFR

USM

50 58.4 59.4 59.5 58.1
150 54.2 50.6 55.7 51.8
250 51.3 50.1 53.3 51.0
350 53.2 52.3 49.0 53.6

DPD

30 67.3 67.2 69.1 67.6
50 80.6 79.6 82.5 80.2
70 89.9 90.6 91.3 89.4
90 94.0 94.7 94.5 95.7

DPD-USM

90-50 90.3 91.4 90.8 91.4
90-150 83.3 82.7 85.1 83.6
90-250 77.0 76.6 78.1 76.5
90-350 72.7 69.1 70.9 72.4

USM-DPD

350-30 51.3 52.4 52.2 51.7
350-50 53.6 55.7 52.8 56.7
350-70 63.8 64.4 63.5 65.0
350-90 72.2 70.6 72.2 72.3

Average 69.6 69.2 70.0 69.8

5.3 Out-of-camera images
In this last experiment, we use the complete atomistic scheme
trained on synthetic sources, and observe its overall detection
accuracy compared to clairvoyant detectors trained and tested on
each specific OOC cover-sources.

First, we can observe the differences in identifying the source
of the OOC images, shown in Fig. 6. Whereas the DCTR detector
mostly identifies the images as strongly denoised (see Fig. 6b) and
the GFR one as being mostly slightly sharpened (see Fig. 6c), the𝐶F
model is more nuanced (see Fig. 5a). This can be a consequence of
the sampling strategy, which is adaptive to the amount of textures



Statistical Correlation as a Forensic Feature to Mitigate the Cover-Source Mismatch IH&MMSEC’24, June 24–26, 2024, Baiona, Spain

Table 6: Detection accuracy (in %) of atomistic steganalysis
on OOC sources.

Clairvoyant 𝐶F DCTR GFR

Sony 90.8 65.8 67.5 81.7
Canon 58.8 60.1 59.0 62.0

iPhone 87.2 76.3 49.2 75.1
Xiaomi 64.8 78.4 54.5 61.0
Huawei 66.8 68.4 51.9 68.8
Nikon 72.8 75.9 50.0 55.2

Average 73.5 70.8 55.3 67.3

in the image. Indeed, very textured images will necessarily produce
"noisy" correlation coefficients, which can correspond to correlation
matrices produced by a cover-source that has a stronger sharpening
operation. A similar reasoning can be made for low-textured images.

In the second step of the atomistic scheme, we perform
steganalysis similarly to Sec. 5.2. This time, for the three atomistic
models, we observe detection accuracies substantially lower than
the ones obtained with the clairvoyant detector (table 6). However,
this time our scheme also clearly outperforms both GFR and DCTR
features. This is probably a consequence of the more "accurate"
predictions of the 𝐶F model in the source identification step.
One plausible explanation is that modern smartphones embed
adaptive image correction algorithms. This can result in larger
variety within a single cover-source. Consequently, the relatively
low amount of samples during training might lack the ability to
predict the unseen images of the same cover-source. On the other
hand, our atomistic approach can grasp the actual distribution of the
noise in every image, and correctly distribute them to the correct
specific steganalyzer. In particular, this could explain the seemingly
outstanding results obtained with the 𝐶F model on the Xiaomi
images. Experiments of a larger scale would be a good follow-up to
these very promising results, which already validate the relevance
of our work.

6 CONCLUSION
In this work, we paid attention to define carefully the CSM as the
cause of the drop in accuracy, and not being both the cause and the
consequence. Having two problems to deal with at once, CSM first
and steganography then, we proposed an atomistic scheme based
on a newly proposed forensic feature designed to be a fingerprint
of the IPP, the main cause of the creation of cover-sources.

We showed that the source identification using correlation
coefficients of the noise in images is a promising alternative to
the most common steganalysis features. Its interpretability is much
greater, as it is based on a rigorous statistical model of the noise
in developed natural images. It is also robust to the embedding,
even at relatively high payloads. We also showed that our approach
has better generalization capabilities to cover-sources unseen in
the training of neither the source identifier nor the steganalysis
models. Experimental results are very promising, and highlight the
relevance of our approach.
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Figure 6: Predicted IPP by the three source identification
models for the considered OOC images.

With regard to the atomistic framework, our paper raised a
number of questions. First, we opened the atomistic steganalysis
to the problem of generalizing to unseen cover-sources. Second,
the joint impact of the cover-source and the stego-scheme on the
source identification can also be a point of concern in practical
scenarios.

On another note, although the promising ideas behind the 𝐶F
feature have been validated in this paper, we can draw the following
leads. First, the perspective of it becoming a rich model will
naturally raise the question of the redundancy of the information
contained in each filter. But, while it is a practical approach, its
efficiency is to compare to the one of a single filter, such as
noiseprint, which can already bear very good results on its own.
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Designing our own noise extraction method, tailored for extracting
a fingerprint of the cover-source, might also be a valid approach.
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